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We present a nonsupersymmetric orbifold of type Il string theory and show that it has a vanishing cosmo-
logical constant at the one and two loop levels. We argue heuristically that the cancellation may persist at
higher loops[S0556-282(99)04808-0

PACS numbdis): 11.25.Mj

I. INTRODUCTION guantum field theory to vanishing dilaton potentials or iso-
lated minima of the dilaton potential in string theory. This
One of the most intriguing and puzzling pieces of data igprovides hints as to where to look for more general models
the (nearjvanishing of the cosmological constahff1]. Un-  with vanishingA. In particular we will be interested in mod-
broken supersymmetry would ensure that perturbative quarg!s without the tree level Bose-Fermi degeneracy that we
tum corrections to the vacuum energy Varﬁ'ghthe absence have here, as well as models in which the dilaton is stabi-
of a U(1) D term] due to cancellations between bosonic and!ized. We should note in this regard that instead of working
fermionic degrees of freedom. However, although both" four-dlmen5|0na(4D_) perturbative string theory as we do
bosons and fermions appear in the low-energy spectrunh,e_re’ we could con3|d_er the same class of models in 3D
they are not related by supersymmetry and this mechanis®fing theory and consider the limit of largg,. If the ap-
for cancellingA is not realized. propriateD-brane bound states exist in this theory to provide
Because string theor§M theory) is a consistent quantum Kaluza-KIe_m _mod_es of an M theoretic fourth dmensm_n, one
theory which incorporates gravity, it is interestitand nec- ~ could obtain in this way 4D M theory vacua with vanishing
essaryto see how string theory copes with the cosmologicalcosmological constant and no dilatén this way similar to
constant. In a perturbative string framework, because théhe scenario of3], but here without the need for 3D super-
string couplinggs, (the dilaton is dynamical, the quantum Symmetry.
vacuum energy constitutes a potential for it. So the issue of We understand that a complementary set of models has
turning on a nontrivial string coupling is related to the form Peen found in the free fermionic descriptip#]. We would
of the vacuum energy in string theory. like to th:_:mk Zura_b .Kakushadze for pointing dand fixing
In this paper we present a class of perturbative stringtn efror in our original model.
models in which supersymmetry is broken at the string scale

but perturbative quantum_ corrections to the cosm_ological Il. NON-ABELIAN ORBIFOLDS AND THE 1-LOOP
constant can_cgl. We pegm with a simple mechanism that COSMOLOGICAL CONSTANT

ensures thétrivial) vanishing of the 1-loop vacuum energy _ _ _

(as well as certain tadpoles and mass renormalizatidkie Consider the world sheet path integral formulation of or-

then compute the(spin-structure-dependent part of the bifold compactificationg5]. In general one mods out by a
2-loop partition function and demonstrate that it vanishesdiscrete symmetry group of the 10-dimensional string theory.
This requires some analysis of world sheet gauge-fixing conThis group involves rotations of the left and right-moving
ditions, modular transformations, and contributions from theworldsheet scalarX{’ ; and fermionsy{‘ r as well as shifts
boundaries of moduli space. Examination of the general fornof the scalarsX{';. Here u=1,...,10 is aspacetime

of higher-loop amplitudes suggests that they similarly mayS(Q(9,1) vector index. The worldsheet path integral at a
cancel and we next present this argument. We are unable tiven loop orderh splits up into a sum over different twist
rigorously generalize our 2-loop calculation to higher loopsstructures, in which the fields are twisted by orbifold group
at this point because of the complications of higher-genuglements in going around the various cycles of the génus-
moduli space. We hope to be able to make the higher-genugiemann surfac& . These twists must respect the homol-
result more precise by using an operator formalism as wilbgy relation

become clearer in the text, though we leave that for future

work. h
In addition we discuss how this model may fit into the H aba b l=1 2.1
framework [2] relating conformal fixed lines or points in = ’
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This can be thought of as discrete torsi@j: in the right-
moving Ramond sector tHeprojection has the opposite sign
from what it would have without the-1)"r action. Simi-

h larly the above table indicates the action of the genergtor
on the world sheet fields. This orbifold satisfies level-
matching and the necessary conditions derived8if] for
higher-loop modular invariancéwve do not know if these
conditions are sufficient

There are several features to note about the spectrum of

g this model. First, it is not supersymmetric. In particular,

projects out all the gravitinos with spacetime spinor quantum

numbers coming from the right-movers. Similagyprojects

out the gravitinos with left-moving spacetime spinor quan-

A / X tum numbers. Because of the shifts included in our orbifold

ticular, at genus 1, one sums over pdgsh) of commuting  4¢tion, there are no massless states in twisted sectors, so in

orbifold space group elemengsandh (see Fig. 1. particular no supersymmetry returns in twisted sectors. Sec-
In considering nonsupersymmetric orbifolds, this Suggesty g, the model is nonetheless Bose-Fermi degenerate. In par-

an interesting clags of models. Consider orbifolds in whichcjar the massless spectrum has 32 bosonic and 32 fermi-
no commuting pair of group elements breaks all the supers

. . > ; onic physical states.
symmetry (i.e., projects out all of the gravitinpsbut in In addition to the spectrum of perturbative string states

which the full group does break all the supersymmetry. Atipere js aD-brane spectrum in this theory which one can
the or_1e—|oop level, each contribution to the path integral the’?analyze along the lines dtL0]. This will be of interest in
effectively preserves some supersymmetry and thereforgiacing this example in a more general context in the final
vanishes. This is a formal way of encoding the fact that the;gtion.

spectrum for this type of model will have Bose-Fermi degen-  ~; orbifold group elements satisfy the following alge-
eracy at all mass leveléhough no supersymmetrySo the  prgic relations:

one-loop partition function, as well as appropriate tadpoles,
mass renormalizations, and three-point functions, are uncor-
rected.

We will discuss the following specific modéLet us start
with type Il string theory compactified on a square tofifs ~ Where T, denotes a shift byr on X{ **** and T denotes a
~(SH® at the self-dual radiuR=1 (wherel,=a’ is the  shift byRonXg " Clearly alsof commutes witiT andg
string length scale Consider the asymmetric orbifold gener- commutes withT .

FIG. 1. Torus twisted by elementg,h).

wherea; andb; are the canonical 1-cycles diy,. In par-

fo=gfT 'Tg, fT0=T_ %, 9TA=TR% (2.2

ated by the elementsandg: The first relation in Eq(2.2) tells us thatf andg do not
commute in the orbifold space group. Therefore at the one

st f g loop level they never both appear as twidtg) in the parti-
tion function(i.e., we cannot twist by on thea-cycle and by

1 (=1s) (s,—1) g on theb-cycle). Furthermore we can check that no com-

2 (19 (s,—1)  muting pair of elements break all the supersymmetry. In or-

3 (=19) (s,—1) der to break the supersymmetry we would need pairs of the

4 (=19 (s,—1)  form (fT3TR,gTCTY) or (FTATR,fgTCETY), for arbitrary in-

5 (s%,0) (s,9 tegersa,b,c,d,3,b,g,d. (We could also have the latter form

6 (s,9 (059 with f interchanged withg but these are isomorphjcBy

(-1)Fr (—1)Ft  using the relation$2.2) we see that neither pair of elements

commutes:

We have indicated here how each element acts on the left
and right moving Ramond-Neveu-SchwdRNS) degrees of
freedom of the superstring. Hesaefers to a shift byrR/2. So
for examplef reflects the left-moving field} 4yt 4 _ _ _ _
and shiftsxé""‘ by RI2, XE by R andX6=%(Xf+Xg) by So there is no chou;e of integeasb,c,dfor which the two
R/2. In addition it includes an action of(1)"r which acts elements commute in the space group of the orbifold. Simi-

with a (—1) on all spacetime spinors coming from right- larly
moving worldsheet degrees of freedom.

FTETROTITR = (9T TR (FTRTR T M TR 2.
(2.3

(FTETR(TTETE) = (T TE T (TETR T 478 2
(2.4
10ther similar models can be constructed, some of which do not
actually require the group to be non-Abelian to get 1-loop cancel-So at the one loop level, there will not be any contribution to
lation [6,4,7]. the partition function.
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this case before going on to our 2-loop diagram. The ampli-

tude is
= <= ¢ _
= — LogLo
Al f (lm T)ZTr(q q f )1 (31)
FIG. 2. Basic twist structure at genus 2. whereq=e2"" andL, andL, are the usual Virasoro zero
mode generators. Let us consider the spin-structure depen-
lll. THE 2-LOOP VACUUM ENERGY dent piece of this amplitude. As explained[it2], the deter-

minants for the world sheet Dirac operators acting on the
RNS fermions are proportional to theta functions. The
#-function is definedfor general genuf) by

At two loops the orbifold algebra itself does not automati-
cally ensure the cancellation of the partition function. Let us
denote the canonical basis of 1-cycles bly-dimensional
vectors(ay,...,a,; bq,...,by). At genus two, we run into
twist structures like (1,%;,g) around the canonical cycles. Ol a,B](Z|7)= D, elm(n+airnta)+2mi(nta)ztp)],

In Fig. 2 we indicate theutsin the diagram in a given n
twist structure—here the fields are twisted in going around 3.2

the b-cycles, as in doing so they pass through the indicate%ere2ech/(zh+ 77" and s the period matrix of the Rie-

cuts. In particular this diagram involves bdtandg twists, mann surface, defined in terms of the canonical basis of ho-
and therefore has the information about the full supersym; '

metry breaking of the model. Is there reason to believe théomorphp l.—fOI‘mSwi by $a,wi= 5,” and 9Sbjw‘_Tfi - The
vacuum energy might nonetheless cancel? Heuristically, theharacteristicsx,3 encode the spin structufe 3], i.e., the
following argument suggests that we should indeed expect Boundary conditions of the fermions around theandb
cancellation. Consider evaluating the diagram of Fig. 2 neafycles respectively of the Riemann surface. So for example if
the factorization limit in which the diagram looks like a @1=1/2 (respectively 0, the corresponding fermion hae-
propagator tube connecting two tori. Because of the homoltiodic  (respectively antiperiodig boundary  conditions
ogy relations, in this twist structure the intermediate state irdround thea, cycle. . .
this propagator is untwisted. The diagram thus becomes a The integrand of the 1-loop amplitud®.1) is propor-
sum over products of tadpoles of untwisted propagatingional to
states(weighted bye™™T wherem is the mass of the state
andT gives the length of the tupeEach term is a tadpole of 2 2
the untwisted state in thg-twisted theory times a tadpole of AlocaZﬁ Ve 80 [a,p1(0] )
the untwisted state in thitwisted theory. The contour de-
formation arguments df11] imply that these tadpoles van- where 7, ; are the phases encoding the Gliozzi-Scherk-
ish. In order to make this rigorous one needs to see explicitlplive (GSO projection. The first9? factor comes from the
that unphysical states decouple properkhich only has to  left-moving RNS fermionapﬁ""‘ and the secon@? factor
happen after summing over all twist structyrda what fol-  comes from the other four transverse left-moving fermions
lows we will provide an explicit computation of the 2-|00p lﬂEB The Symmetry between these two factors will p|ay
contribution and verify that it vanishes. an important role for us. Let us consider first the terms in the
sum(3.3) with a=1/2. This describes left-moving Ramond-
sector states propagating in the loop, as the left-moving fer-
mions ¢ are periodic around tha-cycle. Because we have
In order to appreciate the relevant mechanism, it is worthgn f-twist around thés-cycle, half they!" are periodic around
returning momentarily to the 1-loofsupersymmetriccon-  the b-cycle and half are antiperiodic around theycle for
tribution (1f) (see Fig. 3 each value ofg in the sum. Thus in each=1/2 term half
This contribution must vanish by supersymmetry, but it isthe RNS fermions have zero modes, so these terms identi-
instructive to observe how the spin structure sum works ifbally vanish.
Let us now consider the terms with= 0, which describe
left-moving Neveu-Schwarz states propagating in the loop.
These give

1
a,ﬂ-i—z

(0]7), (3.3

A. Back to 1-loop

> 71036%00,81(0|7)6%0,8+1/2](0|7). (3.4
B=0,1/2

Note that both terms in this sum have the same functional

form (62[0,1/2](0| 7) #7[0,0](0| 7). The only issue left is

then the relative phase between them. The sum @vés

simply the GSO projection on the states propagating around
FIG. 3. One-loop diagram with aintwist on theb cycle. the b-cycle. Let us normalizepgg to 1. Then g =—1.
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This follows from the fact thain the NS sectothe GSO Heredu is a fixed measure on the supermoduli spSgd,, ,
projection operator is 4 (—1)F. This encodes the fact that integrated over a fixed domain independent of the beltrami
we must project onto odd fermion number in the superstringlifferentials. ® contains the 8—3 holomorphic and B

in order to project out the tachyon which would otherwise —3 antiholomorphic 2-differential ghost zero mode wave
come from the vacuum at the1/2 mass level. So our inte- functiong and the Z—2 holomorphic and B—2 antiholo-

grand is morphic 3/2-differential§3 ghost zero modes
After choosing delta-function support for the world sheet
(1-1)6%0,01670,1/2]=0. (3.9  gravitinos, and integrating out the supermoduli, one obtains a

correlation function of picture changing operatfi)]
B. 2-loops with supersymmetry

In order to proceed to the 2-loop computation, we must :e®Tg:=coé+ %e“’wﬂaxf’“— %anez‘f’b— %&( 7e?%b)
consider various subtleties arising in string loop computa- (3.10
tions for strings with world sheet supersymmet($ee for '
example[14,15,16 for reviews with some referencgd.et . .

. . N ; : and other ghost insertions
us begin by briefly reviewing some of the issues in the su-
persymmetric case. We will work in the RNS formulation;
for discussion of the supersymmetric case in Green-Schwarz =~ »' du[sdet,®)]" [ sdet®,d)]¥qdX][dB]
language see for exampl&7]. a,B,twists

In performing the Polyakov path integral at geryswve Jh_2
must integrate over all the world sheet fields including the X[dCle™S(#,b)®N8&(xo) H - e?Te(2y):

world sheet metrich and gravitinoy. This infinite dimen- a=1

sional space is reduced to a finite dimensional space of ah—a

(superyimoduli by dividing out the diffeomorphisms and lo- T TE

cal supersymmetry transformations. There ahe-3 com- Xazlzls @7 Te(za):60Y0). .13
plex bosonic modulirand Zh—2 complex supermodul. At

genush=2 we can take the gravitino to have delta-function The superconformal ghosfg=dée™ ¢, y= ne? are defined
support on the world sheet for even spin struct{ife. (For  in terms of spin-0 and spin-1 fermior&z, and a scalarp
odd spin structures the amplitude vanishes as a result of tHa1]. The spin-0 fermior¢ has a zero mode on the surface

integration of fermionic zero modes. which is absorbed by the insertion x) in Eq. (3.11.

We will review the supersymmetric cancellation at 2 There is an anomaly in the ghost numbefjucurrent which
loops. As explained for example {16,19,14, the type Il requires insertions of operators with total ghost number 2
string path integral can be written as —2 to get a nonvanishing result. The correlation functions

6h—6 dh—4a (3.11) can be evaluated using the formulas derived in, e.g.,

_s [21,22.
JSMhd'uOJ’ [dB dC dXe ,[[1 (7:.B) all 3((772,B)). We will now fix the gauge for the gravitinos by making a
(3.6)  definite choice of pointsz; ,. As explained in[14], the
choice of points must be taken in such a way that the gauge
Here B,C denote theb,3 andc,y ghosts, wheréb,c) are the  slice chosen is transverse to the gauge transformations. It
spin{2,—1) conformal ghosts andB,y) are the spin3d/2, must also respect modular invariance of the amplitude
—1/2) superconformal ghostX denotes the matter fields and [19,14). Ultimately, we will be interested in a gauge choice
7, and n, are Beltrami differentials relating the metric and for which z;,z,— A, whereA  is a divisor corresponding
gravitino to the moduli and supermodulin essence, they to an odd spin structure, that is a point where a holomor-
determine the way in which superdiffeomorphism invariancephic 1/2-differential has a zero. As explained [it¥], this
is gauge-fixedl In components, choice(which amounts to putting the insertions at one of the
branch points in a hyperelliptic description of the surface
2 " - _ satisfies transversality. It was argued|£8,24] that despite
(’7“8):[ ’750224'[ ’7rz782++J ”fzb§+J TP earlier worried14], this choice is also consistent with modu-
(3.7 lar invariance. The modular invariance is not manifest in the
description in terms of-functions, as the calculation of cor-
, N - B relation functions on the Riemann surfaf2l] involve a
(ﬂa,B):f Waiozz*‘f ’7a282++f 77azb5+J NazBz- - choice of reference spin structufeHaving to choose a spin
(3.9 structure naively appears to violate modular invariance. Had
we chosen a different reference spin structérewe would
As explained, e.g., ifi20,16, we can write the path integral have shifted the arguments of our theta functions by ele-
measure on supermoduli space in terms of a fixed measuraentsn+ mr of the Jacobian lattice. Such a shift introduces
on moduli space a mdependent phase multiplying the&-function—the
#-functions transform as sections of line bundles over the
duo=du[sdet 7, ®)] [ sdetd,d)]*2 (3.9  Jacobian torus. These phases must cancel out of the properly
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defined integrand, and ir23] this was demonstrated explic- C. (Non-)superstring perturbation theory

itly for certain (nonvanishing 2-loop contributions. In an orbifold model, one can consider separately differ-
We need to consider théeft-moving spin-structure- ot yist structures, and analyze the fundamental domain of
dependent pieces of the correlation function, the poles arisye modular group that preserves a given twist structure. In
ing from the spin-structure-independent local behavior of théyenarq| there are an infinite number of contributions coming
picture changing correlator, and the behavior of the determigo gitferent choices of bosonic shifts. In Sec. IV we will
nant(3.9) in this gauge. According tp19] we have the fol- 5576 the twist structure of Fig. @with no additional
lowing contr|but|o_n_s to the_spm—structure—dependent PieCeHosonic shiftsand see that the resulting modular group acts
of the 2-loop partition function. The matter part B¢ CON-  freely onr. In this situation, the choice of a branch point for
tributes 2, , is manifestly modular invariant; the possible obstruction
. to modular invariance discussed|it9,14] does not arise, as
S (s 6[517(0) 0 6](z1—2,) 31 there are no orbifold points in the moduli space. We also
S (3l7) 0[81(z1+2,—2A,) (3.12 analyze i_n Sec. IV the boundary contributiqns and see that
they vanish. One can show that with arbitrary additional
shifts (respecting the homology relation of the Riemann sur-
face there are still no orbifold points in the moduli space.
We will analyze the twist structure (1f1g) (it will later

Here 6=(a,B) encodes the spin structure of the various
contributions and 8] y) =e*™(«¥2=£71) encodes the Gliozzi-
Scherl_<-OI|ve(GSfO) phdases[hZ_Sa]. Here the ?rgu_ment§ph be shown why this is the only twist structure which needs to
—2q In terms ofp and g which are sets of points on the o 5na1y7e The f twist affects the characteristics of some
Rieman surface is shorthand for the Jacobi ve&§f wi  of the ¢ functions (arising from twisted fieldsby shifting
— Efgowi . them by(0,0,1/2,0—we shall denote this as a shift By.. «

Let us first, following[23], take z;+2,=2A,, that is  Will be defined asy+(0,0,0,1/2), and we choosesuch that

place z,+2, at a divisor corresponding to the canonical Poth y and « are odd.

class, without setting;=z,. The contribution(3.12 then The correlation function of the matter part of the picture
simplifies to changing operators breaks into two contributions. The terms

involving (' 9X!(z1) ' 9X'(z,)) with i=5, .. .,10give

> ()61 513(0) 6] 51(z1—25) = 48[ Y] (z.— A ), 0[51(0)%0[ 6+ 3 L1(0)?6[ 6](z1—25)
5 y 2 <K|5>
(313 S5 0[5](21"!‘ ZZ_ZA),)

where in the last step we have used a Riemann identity. The X| pfw'(z1)pf 0 (z,) Bz
Riemann vanishing theorem then implies that this vanishes 1z
identically as a function of; [23]. Thus in this case what- 3
ever poles arise as—z,, the identical zero from the spin + Waﬁ% l0gE(21,2,) | det(®3(2))-
structure sum cancels it.

Now turning to the ghost piece of the correlation function (3.1

of picture-changing operators, one obtains contributions iso-

morphic to Eq.(3.13 as well as Upon settingz; +z,=2A ,, we can cancel the denominator

against one factor in the numerator to get

6 51°(0) ;6] 81(2z,— 2A.)

1
) _ - 2
wi(Z1) Lol (zitz—28,) (3.19 25 (k| 8)0[ 51(0) 6] 81(z,— 2,) 0] S5+ ZL}(O)
Herew; are the canonical basis of holomorphic one-forms on :49[,(](}(21_22)) ol K+ EL} (l(zl_ZZ))
the Riemann surface, satisfyinf, o;=46; and [, ;=7 2 2 ]\2

wherer is the period matrix for the surface. Again simplify- (3.17
ing this by first takingz, +z,=2A , we obtain
for the spin-dependent piece of this correlator. Becauie
an odd spin structure, this vanishes like € z,). As z;
> (4| y>a21(6[5]3(0)6[5](21—22)) —Z, the determinant factof3.9) produces another zero:
° plugging in the delta functiony, we obtain

— 4 _
_4(?21(6[’)/] (Zl A}’)) (315) [Sde(n,CD)]flOCde(7]a,<13§/2)=dei(q)g/2(za))

3.1
Because the right-hand side of this expression is a derivative (318
of 0 (by the Riemann vanishing theorgnit vanishes identi- Here ®32, b=1,2 form a basis of holomorphic 3/2-
cally. Again any poles from the picture changing operatordifferentials. As thez, approach each other, the determinant
product expansion€OPES are irrelevanf23]. (3.18 goes to zero, so all in all Eq3.16 has a ¢,—2,)°
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multiplying the prime forms. However, since the prime-  The second type of matter correlator arises from contract-
forms are yielding poles as—z,, it remains to check that ing they'9X'(z,) '9X'(z,) withi=1,...,4.This leads to a
there are no finite pieces in E(8.16). contribution

Note thatE(z,,z,) goes likez;—z, asz;—z,. Thus, the

terms proportional to H(z;,z,)? times the loop momenta

clearly vanish in the limit, since there is only a second order S10)30l 5+ EL 0ol 5+ EL _
pole from the prime forms which cannot cancel the third 611(0)"6 2 (0)6 2 (21-2)
order zero we found from the spin structure sum and the 25 (x|5) 60[5](z,+2,— 2A)
. . . . Y
superdeterminant. This leaves the term which goes like
1/E(2,1,2,)%)9, 9, 109E(zy,2). Using the fact that . . 1
[1E(21,2:)°10;, 97, 109 E(z.2)- g [ prolzyprolzy) 2
E(z;,2,) has a Taylor expansion of the form E(z1,2y)
* +——>50,0d, logE(z;,2 ))
E(z1,20)~ 2 Co(21-2)%""* (3.19 E(zy,2,)2 107 097 0%
n=0
X de( @34 zp)). (3.23
asz;—2z,, one sees that this combination of prime forms has
an expansion Choosingz; +2z,=2A ., the spin sum in Eq(3.23 sim-
plifies to
. — _ 2n
E(21.2,)2 d2,02,100E(21,2,) nziz dn(zy—25)". . L
(3.20 25 (k| 6)6[ 51(0)%6| 5+ EL}(O)@ o+ EL (21— 2)
On the other hand, the determinant factor isoald function (3.29

of z;—z, with an expansion of the form

which, after applying a Riemann identity, becomes

de(¢§’2<zb>)~r§0 em(zi—2,)°™1  (3.21)

1 2 1]/t 2
40[K](E(Zl_22)) 0 K+§L (5(21_22)) .

while the sum over spin structuré3.17 is an even function (3.25
with a second order zero &j=z,. From these facts, it is ’

easy to see that the full expressi@16 has an expansion of

the form

as Zl—> 22 .

So in fact after summing over spin structures this looks the
same as the spin sum of the first type of matter contribution
. (3.17. Again, it vanishes like%;—2,)? asz;—z,.

S f(z—z,)81 (3.2 Now,'the argument for the cgncellation proceed; as if[ did
s 2 : for the first type of matter contribution. The terms involving
only the 1E(z;,2,)? multiplying loop momenta only have a
second order pole, which cannot cancel the third order zero

Examining Eq.(3.22), we see that there are no finite con- coming from the determinant times the spin structure sum

tributions
Z,—25;in

asz;—z, and there is dgauge artifagtpole as  (3.295. The terms involving higher inverse powers of the
fact this pole receives contributions from the vari- prime forms lead to a simple polghich cancels after sum-

ous matter and ghost correlators proportional to the matter aning over matter and ghosts, as it is proportional to the total
ghost central charges, and hence cancels once all of the terroentral chargeand no finite contributions.

are taken

into accourn(since Coi= Cmattert Cghos=0). We Next, let us consider the terms in the correlator of picture

will see this explicitly once we compute the remaining mat-changing operators coming from the ghost part of the world
ter and ghost contributions. sheet supercurrent. These terms take the form

1 1
< - ang(zl)(zane2¢b+ noe>?b+ ne2¢ab)(zz)> +< - Z(zane2¢b+ noe>*b+ ne2¢ab)(zl)ca§(zz)> . (3.2

There are three types of terms that afi$8]. We are in the twist structure (1flg). As in the matter sector, thietwist
affects the characteristics of thefunctions arising in the world sheet correlation functions and determinants. We will denote
the shift in the characteristic, which 8,0,1/2,0, as3L. The first type of contribution is
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1
6[ 81(0)%6 5+§L}(0)20[5](222—2A7)0 z,-2,+ 2, w—3A
z& (xl®) 00 8)(z1+2,—2A)°E(21,25)°
I E(z;,w) I E(z;.w)
Xde(q)a(zb))n - d,, log Ez1.250(2) +(z1-12,). (3.27)
The second is
6[ 51(0)%6 5+%L}(O)Zwi(zl)ai0[5](222—2Ay)0(zl—zz+2 W—3A) 11 E(z;.w)
2{; (k| 6) L0121+ 23— 20 )E(21.25)° de(q)a(zb))m+(zl<—>zz)-
21
(3.28
The third is
6[ 51(0)%0 5+%L}(0)20[6](222—2A7)wi(21)&i0<zl—zz+2 W—SA) 1T E(z;,w)
25 <K|6> 9[5](Zl+22—2A7)2E(21,22)3 det@a(zb)m—'—(zf_’zﬂ-
21
(3.29

Settingz, +z,=2A , and doing the spin structure sum we 0,1E(21,25)_, . 3
find for the spin-structure-dependent pieces of contribution§5m[z1z+ CaZypt ][ 212 €325+ ]
(3.27 and(3.29: 1e2

1 IT Ezw
25 (x|8)6[51(0)6 5+§L}(0)29[5](222—2A7) X———+(z102y), (3.32
I1 E(zp,w)
— 2 1 2
—0[K](22_A,y) 0 K+ EL (ZZ_A‘}/)
~(21—2p)2+ Cy(21— 2p) 4+ - (3.30  where we denote;—z, by z;,. Here the second factor

comes from the spin structure sum, the third from the Taylor
expansion of the determinant abayt=z, (wheree; is some
constant We should emphasize what is meant here by
(z,+z,). We are computing a correlation function of picture

1 ‘ changing operators. The ghost piece of this correlator has the
o+ EL}(O)Zwi(zl)a' 0[ 61(2z,—2A ) form (3.26. So for example the second term in E§.26

corresponds to the term denoted-z, in Eq. (3.32. So in
}(1( ) 2 particular the second term involves interchanging the opera-
521722 )

for some constant, where in the last line we expanded the
result in a Taylor expansion aroumg=z,. For contribution
(3.28 we get

Eﬁ (k|8)6[ 51(0)6

1
k+ =L

2 tors in the ghost correlator, without changirgto z, in the

determinant factor. The first and fourth factors involving the
~(21—2,) +bg(z;—2,) %+ -+ . (3.3)  prime forms encode the physical poles and zeroes of the
correlator. The leading singularity from the prime forms here

(e Sums give vanishing contriouions, they muliply smgu.COMeS fom the I term i the expansion of the prime
9 9 ey P SINGU-¢41m factors. Therefore only the leading term in the Taylor

larities arising from the prime formé(z;,2,) and we must expansion of the spin structure sum and determinant factors
analyze the potential finite terms in the Taylor expansion. P P

Let us consider first Eq.3.27). There are two types of con- potentially survive(so we can ignore the terms proportional

tributions here. After doing the spin structure sum as abov&® C4 Or €3, which give fifth-order zergs Similarly expand-
the first takes the form ing the prime formsE(z,,2,) gives a subleading term with

1 2
=\ 3@z 0
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only a 1t§2 pole, which is cancelled by the third order zero matter and ghost contributiorj& is not one of the pieces
coming from the leading piece of the spin structure sumwhich would have contributed to th&z* pole in the opera-
times determinant. tor product expansiofOPE of picture changing operators

Putting the factors together, we see that the leading pieckefore accounting for spin structure sums and determinant
is a simple pole irg;,. The first three factors in Ed3.32  factorg. However, on general grounds we expect such gauge
are the same in the term with« z,. When we include the artifact poles to constitute total derivatives on moduli space.
term with z,2,, they multiply the prime form factor Otherwise the invariance of the path integral on gauge slice
[TIE(zy,W)/I1E(Z,, W) ]+ [HE(Z;,W)/IIE(z;,W)]. This is  would be lost. In this case, we can argue for that conclusion
even undeg; < z,. In our Taylor expansion it therefore be- a5 follows. The pole we are discussing receives a;1/(
comes of the formO(1)+f,z,+..., andonly the first term  —z,)3 contribution from the prime forms which is softened
contributes. Therefore in Taylor expanding the contributionto 1/(z,—z,)? by the theta function zer¢and then to a
(3.32, we get a pole piece plus higher order terms whichsimple pole by the determinant factomn the OPE of picture
vanish in the limitz;—z,. In particular, no finite pieces changing operators, the ¥j(— 22)2 divergence is multiplied
survive. What is the interpretation of the pole piece? It ishy the stress-energy tensor, which gives a derivative with
proportional to the ghost central charge, and precisely canrespect to the metric and therefore the moduli. The term we
cels the pole piece coming from the matter contribution.  are finding is part of this total derivative. In the gauge we

The second type of contribution in E(3.27) takes the have chosen, it is the only nonvanishing pietiee other
form pieces vanish even before integration over the moduli 9pace
However, since there cannot be gauge artifact poles, we ex-
pect it to integrate to zertwhich one can argue for by ana-
lyzing the boundary contributions, as we will do Iater

Finally let us consider the last ghost contributi29).

1 2
m[zlz"‘"'][zu"““]

1T E(z;,w) IT E(z;,w) This contribution takes the form
X —— 9, log o(Z0) ,
11 E(z,,w) 1 I1 E(z;,w)
=3[zt N[zt —————— + (215 2,).
(3.33 E(z1,2,) 1 Ezw)

where the--- denote terms which vanish automatically as
Zz,—Z,. The leading pole from the prime forms here is cu-
bic. Before including thez;<z, term there is a finite piece
obtained by multiplying this times the third order zero ob
tained from the spin structure sum and determinant factor ) . : L s
The spin structure sum is even under the interchangg of tiplying a third order zero ire,,. .Her.e again, in the limit
andz, in this case, and as discussed above the determinafit %2 SVeNY factor except the J'rSt Is the same in Fhe two
factor is the same in both terms. The factdE(iz; ,z,)° does terms. The first factor E.I(Zl’ZZ). has 'the Opposite sign in
change sign between the two terms, however. So when V\/@e two terms. Thus again after including the-z, term the
add the g, 2z,) term the contribution cancels. contribution cancels.

Let us now consider the contributidB.28. This gives a
contribution of the form IV. BOUNDARY CONTRIBUTIONS

(3.35

_In this contribution before including the <z, contribution
éhere is a potential finite term from the third order pole mul-

1 In the previous section, we studied the two loop diagram
m[zm*" “[Zapt -] with twists byf andg going around thé, , cycles, i.e., with
twist structure (1,%,9). We saw that the computation yields
a vanishing integrandf we make a very specific choice of

IIE@zw IIE@zw insertion points for the picture-changing operat@&T: .
X + : Since the answer should be independent of the choice of
I zow) 11 E(z;.w) these insertion points, this seems to imply that the two loop
vacuum energy vanishes.
(3.34 However, under a change of the choice of insertion

oints, it can be shown that the computation changes by a

Here similarly to the above analysis we took into account th otal derivative[19,26]

relative sign of the two contributions in E¢3.26) and in-
cluded thez, <z, contribution. The last factor here is even
under interchange of; andz,, so its Taylor expansion is of f dw, (4.2

the form 1+h,z3,+--- for some constanh,. The leading F

contribution here is a simple pole, and there is no finite con-

tribution. where F is the appropriate fundamental domain of integra-

Unlike the previous simple poles we have encounteredtion for the computation. Therefore, one must worry about
the pole encountered here does not cancel with the otheontributions arising at the boundary &t[14].
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A. The fundamental domain f

What is the fundamental domaif for this computation?
At genus two, the Teichmuller space is given very explicitly
in terms of the Siegel upper half space 0of 2 matrices:

Ho={7oxp: 7'=7, Imr>0}.

7is the period matrix of the genus two surface. The modular
group at genus two i&=Sp(47). The moduli space can
then be constructed by taking the quotientrof by G. One
must also remove the modular orbit of the diagonal matrices.
For our computation, on the other hand, we have twists
(1,1f,9) about the &,,a,,b;,b,) cycles of the surface.
Therefore, we need to integrate the correlator of the picture FIG. 4. Picture of boundar(l),

changing operators ovef="H, /G, whereG is the subgroup

of Sp(4,Z) which preserves the twist structure (1,B). the moduli space of Riemann surfaces in termggf we

Itis easy to see that the allowed matrices are the ones thihj 15 delete the modular orbit of diagonal matrices, yielding
act on the homologyd ,a;,by,by) like an additional boundary at;,— 0.

a b 0O _
c d o o B. The boundaries
4.2 Now that we have determinefl, we can look for bound-
x y 1.0 aries where the total derivativd.1) might give a contribu-
z w 0 1 tion after integration by parts. There are in fact three bound-
aries inF. We will examine each of these boundaries in turn,
Denoting the % 2 blocks as§ p) we must impose and argue that no boundary contribution exists.

(1) 7, or 7,—i. In this limit, one of the handles degen-
erates to a semicircle glued on to the “fat” handle at two
points(i.e., a homology cycle collapseé&ee Fig. 4. It was
argued in[14] that in such a limit, no boundary contribution
exists in theories without physical tachyons. Our theory has
no physical tachyons, so we will receive no contribution

A"'C=C"A, B'D=D"B, A'D-C'B=1 (4.3

which is just the requirement that E¢4.2) is in Sg4,7).
This further restricts the allowed matricés2) to be of the
form

1 0 0 O from this boundary.

(2) 71o—0. In this limit, the genus two surface degener-
0 100 4.4 ates into two tori connected by a very long, thin tulsee
X y 1 0] ' Fig. 5. Only massless physical states propagate in this tube
y w0 1 [14], and in this limit the genus two vacuum amplitude is

related to a sum of products of one loop tadpoles for the
massless states.
The relevant one loop tadpoles are computed on tori with
twists (1f ) or (1g) around thea,b) cycles. Now, thd and
7—(Dr+C)(Br+A) "L (4.5 g twist alone preservd=4, A'=2 supersymmetry. So, there
are no one loop tadpoles for states in ther g twisted
So from the allowed actions on the homolo@l4), we see theory. This implies that the genus two diagram vanishes in

that the identifications to be made on the period matrices ar@is limit.
(3 Im 7 ,—0 or (Im7)%—(Im r)(Im 7). To see the
( T1 7'12)
-
T2 T2

Now, if (¢ g) acts on the homology, then the action on
the period matrixr is given by §  $)—in other words,

Ti+X Tty vanishing in this limit, we recall that the integrand for the
. (4.6 vacuum amplitude contains a factoref>*), i.e., the action

for map from the genus two surface to spacetime. The rel-

7'12“1‘ y T2 +w

In addition, positivity of Imr requires that evant mapsgiven thef andg twists about thé cycles of the
surface wind around theX; and Xg directions of spacetime.
Im7,5>0, (Im7)%<Imryim7,. (4.7  This yields a contribution to the action which goes like

The constraint$4.6) and (4.7) together yield the correct /\
fundamental domaitFC 7, for our computationr; , live on
strips with real part between-(1/2,1/2) and positive imagi- )
nary part, whiler;, has real part betweet+1/2,1/2 and g f

imaginary part bounded above and below by the second in-
equality in Eq.(4.7). Also, we must recall that in describing FIG. 5. Picture of boundarg2).
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R2 Im 7, +1m 7 contribution at the boundary of moduli spa@ehere the tube
S=— 20 (4.8)  becomes infinitely long A similar discussion applies to the
| | — (I
a’ {Imrim 7, (Im 7,;) (f,fg,fg,f) twist structure with arbitrary shifts.

whereR is the radius of theXs and X circles[27,28. Now,

positivity of Im 7 comes to the rescue: If Im—0 at fixed V. TWISTS AT GENUS h=2
Im ,, then the second inequality in E@.7) implies thatS
—o; if Im 7, ,—0, one can prove that the denominator in
Eq. (4.8 vanishes as the square of the numeré&boce again
using positivity of Imr), so S—o; if Im 7, , are fixed and
(I.m 1) approaches Iny Im 7, it is obvious that the action alblailbl’l- . -ahbhaglbglz 1. (5.1
diverges.

The upshot is that the™S*) in the integrand vanishes |n this section, we will argue that in fact using modular
quickly enough at this boundary to rule out any contribu-transformations one can greatly reduce the kinds of twist
tions. structures that one needs to consider.

For our considerations, we do not need to worry about
C. Cases with shifts twists that preserve some of the spacetime supersymmetry at
genush (for instance, twists only bfaround various cycles

In additional to the amplitude (1f,g) which knows ; d .

. The real concern will be sets of twists around different cycles

about the supersymmetry breaking at genus two, there aFhich break the full spacetime supersymmetry. We will now
other genus 2 amplitudes with (1f1g) twists on the world |

sheet fermions around theag,a, b, .b,) cycles but with show that, up to inducing shifts on the world sheet bosons

additional shifts acting on the bosonic fields. In fact we showaround some cycles, orly has to considef andg twists

: g . on theby,_, andby, cycles with no twists on any other cycles.
;netsi?s\ijtheiﬂ:rﬁr:g?rp tgr?;kt?ﬁlar dtigrgr%rsm?rgh\?\:: :lue”e d tAny twist which breaks all of the spacetime supersymmetry
persy y 9 9 an be brought to this canonical ,(1.,1f,g) form by

consider at genus two. :
. - : modular transformations.
In each twist structure we will find that the spin-structure . . . . . . . .
Since in this section we will be ignoring the possible

dependent .part of the vacuum amplitude \{anishes. Thighifts on bosons around various cyclgge are only inter-
leaves the issue of possible boundary contributions. After

. . . ested in thd,g action on fermiong we can use relations like
summing over the various twist structures, we know the ge-
nus two vacuum energy can be written as an integral over f2=g2=1, fg=gf (5.2

M, the moduli space of genus two Riemann surfaces. The

possible boundary contributior@fter we compactifyMa)  which are true for the action on fermiofisut only true in the

will come from boundaries of typél) and(2) in Sec. IVB || model up to shifts in the space group

(where a handle collapses or the surface degenerates into two

surfaces of lower genus connected by a long, thin tube

Hence, if we can argue that with arbitrary twist and shift

structures on the,b cycles the vacuum amplitude vanishes =~ We will show that all twists of interest can be taken to the

at boundaries of typ€l) and (2), we will be done. (1, ... f,0) form in several steps. First, consider genus two
As we will discuss in Sec. V, up to additional shifts on surfaces. The modular group @¥) is generated by

various cycles the possible structufeghich break all of the

A priori on a genush Riemann surface, one needs to
consider any combination of twists on the various cycles
a;,b; fori=1,... h consistent with the relation

A. Genush=2

supersymmetry are basically (1,%,9), (f,g9,9,f) and 1000 1000
(f,fg,fg,f) (up to possible exchanges of the rolefadnd 01 0O 01 0O
g). Since we could use modular transformation to relate these Da,= , Da,= ,
X . . 111 0 10 210 010
to (1,1f,9) twist structure on the fermions, the spin-
0 0 0 1 0 1 01

structure dependent piece of the amplitude vanishes in each
of these cases. In addition, each of these vanishes at bound- (5.3
aries of typeg(1) because there are no physical tachyons. This
leaves the analysis of boundai3).

Any amplitude with (1,1f,g) twists on the fermions, re-
gardless of additional shifts, vanishes at bound&@y be- Dy, =
cause it can be written as a product of tadpoles inthe
=2 supersymmetri¢ and g orbifolds (as in Sec. IVB. On
the other hand, the amplitude with twist,§,g,f) would (5.4
naively yield a product of one loop tadpoles in a nonsuper-
symmetric theory. However, it turns out that the state propa- 1
gating on the tube between the first and second handle must
be a massive state because it must be twisted to be emitted Dy1,.=
from the “subtorus” with (f,g) twist on its (a,b) cycles. !
Since only massive states can run in the tube, there is no 1 -1

._\
o O O -
o O ~» O
S B O B
~ O O O
o O O O
o O - =
o » O O
=, O O Bk

: (5.9

O B, O O
R O O O
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— FIG. 6. One sums over states in the channel
C\_/: RN Eg / AN Ef /\ between thd andg twisted handles.

which are simply the Dehn twists about the various cycles of.e., one can group like twists on neighboringycles onto a

the genus two surface, acting on the homologysingleb cycle.

(a;,a,,b;,by).2 Putting together ouh=2 result with fact41)—(3) above,
We now consider genus=2 twists which are not of the we see that at gendrs>2 the only twist structure we need to

canonical (1,1,g) form but which break all the supersym- consider is (1,1...,1f,9). To prove this, we simply work

metry. on genus 2 subsurfacdsising Si§4,7) subgroups of the
(1) First, take the cases where no “subtorus” has twistsmodular group to reduce everything td or g twists onb

which break the full supersymmetty.e., nof,g twists on  cycles, and then usd) and(3) to simplify to a singlef and

dual (a,b) cycled. Then, by using SL(Z)CSp(4%Z) trans- g twist.

formations which act on theag ,b;) and @,,b,) cycles, one

can arrange to have twists only on theycles, so the twist VI. COMMENTS ON HIGHER LOOP VANISHING

structure is(1,1#,*). Then the only cases we need to worry )

about are (1,1,fg) and (1,1g,fg). One can easily see that ~Once we have put the twists on our gertusurfaceX,

(1,1f,fg) is mapped byD, to (f,1f,fg) and then by into the canonical (1 ..,1f,9) form, we can provide a

B . ) y . rough physical argument for the vanishing. This section is
Dal ta, 10 (f,l_,l.g). That[ n tl_Jm 's SI2.7) equivalent to very heuristic; it would be nice to make these arguments
(1,1f,9). A similar manipulation works for the (14,fg) more precise.

case. . . The argument involves supersymmetry. One can think of

(2) Second, consider the case where thame twists on 3, in terms of a genuf—1 surfaceS,,_, (with a g projec-
some “subtorus” that break the full supersymmetry. Ex-tjon on one cycleconnected to an extra handleolding the
amples are(f,g,9,/) and (f,fg,fg,f). Now, for instance, ¢ projection by a nondegenerate tulten which massive or
(f.9.9.f) can be mapped by, 1,, to (f,g,9.f) which is  nassless string states may propagésee Fig. 6.

equivalenfusing Sl(2,7) transformations on both subtdtd This suggests that one rewrite the diagram as
(1,1f,9). One can similarly reducdf,fg,fg,f) and other T
analogous structures to the canonical fofiRecall that in %s (s tadpole onX_j)Xe™ s

this discussion we are ignoring extra bosonic shifts that make

the twist structures considered here consistent with Eq. X(s tadpole onf-projected handlg (6.1)

(5.9)]. ! ) ) where the sum runs over possible intermediate physical

So, we find thatll supersymmetry breaking twists at ge- statess of massM., and the tube has lengh In this way of
nush=2 can be mapped by the modullar_gr_oup to (fL.d), thinking about it, the diagram vanishes because even for
(up to shifts on world sheet bosgndhis is important be- massive string states, the tadpoles at gemusl in the g

cau:(;je our van;shing_ att|= Zh_was_for the spin str(lil(_:tu_re dde- projected theory and at genus one in thgrojected theory
pendent part of precisely this twist structure, and Is Indepeng o4 vanish(as those theories are both 40=2 super-
dent of any shifts on world sheet bosons. symmetrig

B. Genush>2 Toward a (perturbative) symmetry argument

We now argue that at arbitrary genus, one can reduce all The world sheet arguments for the perturbative vanishing
supersymmetry breaking twist structures tg .(1.,1f,9) of the cosmological constant in supersymmetric string theo-
using modular transformations. We will need to use threeies used contour deformations of the spacetime supercur-
important facts(1) Among the elements of Spt2Z) there  rents crucially{29,19,18. Thus one could see the constraint
are matrices that allow one to permute the different “sub-of spacetime supersymmetry through world sheet current al-
tori” (sets of conjugata, b cycles of the genush surface; gebra.

(2) in order to satisfy Eq(5.1), there must exist amven In our theory, of course, the spacetime supercurrents are
number of “subtori” with twists on the &;,b;) cycles that projected out, which is to say that they have monodromy
break all the supersymmetr(3) using Sp(47)CSp(zh,7Z)  around the twist fields in the orbifold. On the Riemann sur-
one can map face with a given twist structurgas in Fig. 4, these opera-
tors pick up phases upon traversing the cuts in the diagram.
(L,1f,f)—(1,1£,0), (5.6 Let us consider the argument 9] in this context. One
splits open one handle of the surfasay the handle with the
f-cut), and rewrites the propagating stateas$ .S, V' for
2There are also inhomogeneous terms that shift the characteristi&Mme operato¥’. (So in particula’vV’ describes a boson if
of the theta functions coming from the fermion determinants undethe original state was fermionic in spacetime and vice versa.
such a modular transformation; these lead to a change of spin strutdere S, _ refers to a would-be spacetime supercurrent with
ture but do not change the orbifold twist structure. eigenvaluest1 and undef and —1 underg. The cyclea; is
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the a-cycle on the handle with thecut. Without theg cut,  dual field theory implies a minimum of the bulk vacuum
one can deform the contour integral around the rest of thenergy with respect to thg,;. Consequently, stability of the
Riemann surface and turn the fermion loop into a boson loogpacetime background for arbitrary dilaton vacuum expecta-
(or vice versawith a cancelling sign. With thg-cut, how-  tion value(VEV) {(¢) (which is implied by the existence of a
ever, one is left with a remainder contribution of the form nonsupersymmetric fixed line as abpweould imply that
there is nog; dependent vacuum energy.
2 3£ dx fﬁ dy(S, _(X)S:_(y)). (6.2) Nonsupersymmetric theories with vanishiggunction at
ay ay leading order in M but nonzeroB-functions at subleading
orders[2,33,39 should provide a concrete testing ground for
The direct calculation of this contribution could be doneideas relating the holographic principl84] to the cosmo-
at genus 2 in a similar way to the partition function calcula-logical constan{35]. In particular, one would generically
tion we presented in the previous sectigosing the corre-  expect perturbative contributions to the cosmological con-
lation functions off 21]). As before it would be hard to then stant(dilaton tadpolg which are relatedvia a possibly non-
generalize this computation to higher genus precisely, due tgivial map) to beta functions in the boundary field theory. In
our lack of explicit understanding of the moduli spde®d  perturbative string theory these contributions come in generi-
the problem of choosing a consistent gauge slice for theally at the order of the supersymmetry breaking scale,
world sheet gravitinp It would be nice to understand if there which is the string scale in these models. In general, the
is some simple topological reason that this remainder mus&dS-CFT correspondence relates perturbative string correc-

vanish at arbitrary genus. tions to 1N corrections in the boundary QFT. Therefore the
perturbative string corrections should be encoded in the
VII. RELATION TO AdS-CFT CORRESPONDENCE boundary theory in a way consistent with the holographic

reduction in the number of degrees of freedom.

There has been a great deal of recent work on the fasci- pyjities between field theory fixed linéshich exists to
natlng conjgctures rellatlng confprma! field t'heones in vari-g|| orders in 1N) and nonsupersymmetric string backgrounds
ous dimensions to string theory in anti—de SitidS) back- 5y have different consequences in the different AdS-
grounds [30,31. It was argued in[2] that certain giites. In the orbifolds Ad$< (S°/T'), the duality would im-
nonsupersymmetric instances of this correspondence coulgy hat the effectiveen-dimensionatosmological constant
lead 1o th? dlscc_)ve.ry of honsupersymmetric string bac.k'vanishes. In the Iargg\z(MN limit, we expect from Eq(7.1)
grounds with yanlshlng cosmological constant. 'The predIC’[hat the AdS and orbifolded sphere also each become flat.
tions of new fixed lines at the level of the 'e_?‘d'”g_ large- However, in this limit the spacetime theory regains super-
theory based on the correspon_def@]_s/vere ver|f|e_d dlre_ctly symmetry away from the fixed loci df, so this does not
through remarkable cancellations in perturbative d|agram§/ield a nonsupersymmetric theory in the bulk of spacetime
[32] in a host of models that could be constructed quite sys- However, there are cases where the lagémit could ’
tematically[33]. Here, we review and elaborate on the ideayieId a non,supersymmetric theory in bulk with vanishing

of extending predictions of the correspondence to fihlte- cosmological constant. Consider for instance dualities be-

fixed lines, and explain how the class of orbifolds we havetWeen type 1B strings on Ad 82><(T6/F) and confor-

discussed in this paper may be realizations. . mally invariant quantum mechanical systes®me super-
groTuizsC?]rar\(\a/Zipno?ﬁ:qcﬁzczfmgn 4D CFTs and string bac ymmetric instances of.such dualities were conjectured in
[30]). In these cases, going through the analogous arguments
o we would be talking about the effectiieur-dimensional
Qexpansion»expansion in(g%MN)‘l’z, (7.1 cosmological constant. In the lardélimit, AdS,x S°—R*
while the size of the®/T" remainsfixed (it does not decom-
pactify). Thus, if we break supersymmetry on the internal
(7.2 space we might be able to find examples of the AdS-CFT
correspondence which predict vanishing 4D cosmological
constant in a bulk nonsupersymmetric theory. This provides
In cases where one hasiansupersymmetriixed line(to all  a strong motivation for understanding conformally invariant
orders in 1N as well asgN) realized on branes in string quantum mechanical systems with “fixed linesttorre-
theory, we would obtain by this correspondence a stable norsponding to the spacetintg,). In particular, at least naively
supersymmetric string vacuum which exists at arbitrary val-a quantum mechanical model which is classically conformal

1
gs; expansion-expansion |ng$M=N X

ues of the couplings;. will not develop ag-function since there are no ultraviolet
The equation of motion for the dilatay,,=e? is divergencegthough one may need to worry about IR prob-
lems.
oV We have two comments about trying to find models in
_~\1/2 _ v -
(=970, (V(—9)9""d,¢)= 9’ 73 this way via the AdS-CFT correspondence.

(1) The AdS X S? geometries of interest arise as the near
whereV(¢) is the dilaton potential and is the AdS metric.  horizon limits of Reissner-Nordstrom black holes. In nonsu-
Thus one finds that, according to the AdS conformal fieldpersymmetric situations, where, of the compactification is
theory (CFT) correspondence, a conformal fixed point in thetypically small, it can be very difficult to find stable black
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holes of this sort by wrapping branes. In part this is becausstructure: it will vanish point-by-point on all twist structures

one often finds a 4D effective Lagrangian of the form if one also acts on the gauge-fixing choice with the relevant
modular transformations This vanishing integrand reflects
Ezf d*x OF L FE/+ 0 ha, b+, (7.4 the exceptionally simple spectrum of our theori@ose-
Fermi degeneracy, ejc.

whereF is the field strength for the (@) gauge field under In more g.enerallexam?lehs tr;i;csmg?_trcome out OJ honsu-
which the Reissner-Nordstrom black hole carries charge, ariErsymmetric versions of the ) correspondence as
& is some scalar field. Then, the equation of motion dor 2P0Ve, we would expect E¢7.6) to hold (since the confor-

becomes mal quantum mechanics has a fixed line, and the dilaton

VEV is arbitrary). However, there is no reason to expect Eq.
*9,¢~F , F* (7.5  (7.7) to hold in general examples. It would be nice to find an
example where, €.gA 1.40p Vanishes but not point-by-point
(as in Atkin-Lehner symmetr{/36]).
It would be very interesting to find similar models with a

and this forcesp to have a nontrivial profile in the black hole
solution which breaks the AdS isometry.

_In order to get arognd_problems Qf stataalllf[y_and of themore realistic low energy spectrum. In addition, we could
existence of scalars with _Ilnear couplingsHo, it is useful . potentially find nonsupersymmetric models in 4D with no
to start with models containing very few scalars. Asymmetncd.I ton by finding 3D string models satisfying our conditions
orbifolds are one natural source of such models. Starting o o" %Y 9 9 9
with configurations of wrapped branes invariant under th nd takinggse—e.
orbifold group, one can obtain Reissner-Nordstrom black
holes in asymmetric orbifolds such as the one we have stud-
ied here. One can then predict vanishing cosmological con- ACKNOWLEDGMENTS
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