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Vacuum energy cancellation in a nonsupersymmetric string
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We present a nonsupersymmetric orbifold of type II string theory and show that it has a vanishing cosmo-
logical constant at the one and two loop levels. We argue heuristically that the cancellation may persist at
higher loops.@S0556-2821~99!04808-0#
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I. INTRODUCTION

One of the most intriguing and puzzling pieces of data
the ~near-!vanishing of the cosmological constantL @1#. Un-
broken supersymmetry would ensure that perturbative qu
tum corrections to the vacuum energy vanish@in the absence
of a U~1! D term# due to cancellations between bosonic a
fermionic degrees of freedom. However, although b
bosons and fermions appear in the low-energy spectr
they are not related by supersymmetry and this mechan
for cancellingL is not realized.

Because string theory~M theory! is a consistent quantum
theory which incorporates gravity, it is interesting~and nec-
essary! to see how string theory copes with the cosmologi
constant. In a perturbative string framework, because
string couplinggst ~the dilaton! is dynamical, the quantum
vacuum energy constitutes a potential for it. So the issue
turning on a nontrivial string coupling is related to the for
of the vacuum energy in string theory.

In this paper we present a class of perturbative str
models in which supersymmetry is broken at the string sc
but perturbative quantum corrections to the cosmolog
constant cancel. We begin with a simple mechanism
ensures the~trivial! vanishing of the 1-loop vacuum energ
~as well as certain tadpoles and mass renormalizations!. We
then compute the~spin-structure-dependent part of th!
2-loop partition function and demonstrate that it vanish
This requires some analysis of world sheet gauge-fixing c
ditions, modular transformations, and contributions from
boundaries of moduli space. Examination of the general fo
of higher-loop amplitudes suggests that they similarly m
cancel and we next present this argument. We are unab
rigorously generalize our 2-loop calculation to higher loo
at this point because of the complications of higher-ge
moduli space. We hope to be able to make the higher-ge
result more precise by using an operator formalism as
become clearer in the text, though we leave that for fut
work.

In addition we discuss how this model may fit into th
framework @2# relating conformal fixed lines or points i
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quantum field theory to vanishing dilaton potentials or is
lated minima of the dilaton potential in string theory. Th
provides hints as to where to look for more general mod
with vanishingL. In particular we will be interested in mod
els without the tree level Bose-Fermi degeneracy that
have here, as well as models in which the dilaton is sta
lized. We should note in this regard that instead of worki
in four-dimensional~4D! perturbative string theory as we d
here, we could consider the same class of models in
string theory and consider the limit of largegst . If the ap-
propriateD-brane bound states exist in this theory to provi
Kaluza-Klein modes of an M theoretic fourth dimension, o
could obtain in this way 4D M theory vacua with vanishin
cosmological constant and no dilaton~in this way similar to
the scenario of@3#, but here without the need for 3D supe
symmetry!.

We understand that a complementary set of models
been found in the free fermionic description@4#. We would
like to thank Zurab Kakushadze for pointing out~and fixing!
an error in our original model.

II. NON-ABELIAN ORBIFOLDS AND THE 1-LOOP
COSMOLOGICAL CONSTANT

Consider the world sheet path integral formulation of o
bifold compactifications@5#. In general one mods out by
discrete symmetry group of the 10-dimensional string theo
This group involves rotations of the left and right-movin
worldsheet scalarsXL,R

m and fermionscL,R
m as well as shifts

of the scalarsXL,R
m . Here m51, . . . ,10 is a spacetime

SO(9,1) vector index. The worldsheet path integral at
given loop orderh splits up into a sum over different twis
structures, in which the fields are twisted by orbifold gro
elements in going around the various cycles of the genuh
Riemann surfaceSh . These twists must respect the homo
ogy relation

)
i 51

h

aibiai
21bi

2151, ~2.1!
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SHAMIT KACHRU, JASON KUMAR, AND EVA SILVERSTEIN PHYSICAL REVIEW D59 106004
whereai and bi are the canonical 1-cycles onSh . In par-
ticular, at genus 1, one sums over pairs~g,h! of commuting
orbifold space group elementsg andh ~see Fig. 1!.

In considering nonsupersymmetric orbifolds, this sugge
an interesting class of models. Consider orbifolds in wh
no commuting pair of group elements breaks all the sup
symmetry ~i.e., projects out all of the gravitinos!, but in
which the full group does break all the supersymmetry.
the one-loop level, each contribution to the path integral th
effectively preserves some supersymmetry and there
vanishes. This is a formal way of encoding the fact that
spectrum for this type of model will have Bose-Fermi dege
eracy at all mass levels~though no supersymmetry!. So the
one-loop partition function, as well as appropriate tadpo
mass renormalizations, and three-point functions, are un
rected.

We will discuss the following specific model.1 Let us start
with type II string theory compactified on a square torusT6

;(S1)6 at the self-dual radiusR5 l s ~where l s5Aa8 is the
string length scale!. Consider the asymmetric orbifold gene
ated by the elementsf andg:

S1 f g

1 (21,s) (s,21)
2 (21,s) (s,21)
3 (21,s) (s,21)
4 (21,s) (s,21)
5 (s2,0) ~s,s!
6 ~s,s! (0,s2)

(21)FR (21)FL

We have indicated here how each element acts on the
and right moving Ramond-Neveu-Schwarz~RNS! degrees of
freedom of the superstring. Heres refers to a shift byR/2. So
for examplef reflects the left-moving fieldsXL

1 . . . 4,cL
1 . . . 4

and shiftsXR
1 . . . 4 by R/2, XL

5 by R, andX65 1
2 (XL

61XR
6) by

R/2. In addition it includes an action of (21)FR which acts
with a ~21! on all spacetime spinors coming from righ
moving worldsheet degrees of freedom.

1Other similar models can be constructed, some of which do
actually require the group to be non-Abelian to get 1-loop can
lation @6,4,7#.

FIG. 1. Torus twisted by elements~g,h!.
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This can be thought of as discrete torsion@8#: in the right-
moving Ramond sector thef-projection has the opposite sig
from what it would have without the (21)FR action. Simi-
larly the above table indicates the action of the generatog
on the world sheet fields. This orbifold satisfies leve
matching and the necessary conditions derived in@8,9# for
higher-loop modular invariance~we do not know if these
conditions are sufficient!.

There are several features to note about the spectrum
this model. First, it is not supersymmetric. In particularf
projects out all the gravitinos with spacetime spinor quant
numbers coming from the right-movers. Similarlyg projects
out the gravitinos with left-moving spacetime spinor qua
tum numbers. Because of the shifts included in our orbif
action, there are no massless states in twisted sectors,
particular no supersymmetry returns in twisted sectors. S
ond, the model is nonetheless Bose-Fermi degenerate. In
ticular the massless spectrum has 32 bosonic and 32 fe
onic physical states.

In addition to the spectrum of perturbative string sta
there is aD-brane spectrum in this theory which one c
analyze along the lines of@10#. This will be of interest in
placing this example in a more general context in the fi
section.

Our orbifold group elements satisfy the following alg
braic relations:

f g5g f TL
21TR , f TL

q5TL
2qf , gTR

q5TR
2qg, ~2.2!

whereTL denotes a shift byR on XL
1 . . . 4 and TR denotes a

shift by R on XR
1 . . . 4. Clearly alsof commutes withTR andg

commutes withTL .
The first relation in Eq.~2.2! tells us thatf andg do not

commute in the orbifold space group. Therefore at the o
loop level they never both appear as twists~f,g! in the parti-
tion function~i.e., we cannot twist byf on thea-cycle and by
g on theb-cycle!. Furthermore we can check that no com
muting pair of elements break all the supersymmetry. In
der to break the supersymmetry we would need pairs of

form ( f TL
aTR

b ,gTL
cTR

d) or (f TL
ãTR

b̃ , f gTL
c̃TR

d̃), for arbitrary in-

tegersa,b,c,d,ã,b̃,c̃,d̃. ~We could also have the latter form
with f interchanged withg but these are isomorphic.! By
using the relations~2.2! we see that neither pair of elemen
commutes:

~ f TL
aTR

b !~gTL
cTR

d !5~gTL
cTR

d !~ f TL
aTR

b !TL
2c11TR

122b .
~2.3!

So there is no choice of integersa,b,c,dfor which the two
elements commute in the space group of the orbifold. Si
larly

~ f TL
ãTR

b̃ !~ f gTL
c̃TR

d̃ !5~ f gTL
c̃TR

d̃ !~ f TL
ãTR

b̃ !TL
2c̃22ã21TR

122b̃ .

~2.4!

So at the one loop level, there will not be any contribution
the partition function.

ot
l-
4-2
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VACUUM ENERGY CANCELLATION IN A . . . PHYSICAL REVIEW D 59 106004
III. THE 2-LOOP VACUUM ENERGY

At two loops the orbifold algebra itself does not automa
cally ensure the cancellation of the partition function. Let
denote the canonical basis of 1-cycles by 2h-dimensional
vectors ~a1 ,...,ah ; b1 ,...,bh!. At genus two, we run into
twist structures like (1,1;f ,g) around the canonical cycles.

In Fig. 2 we indicate thecuts in the diagram in a given
twist structure—here the fields are twisted in going arou
the b-cycles, as in doing so they pass through the indica
cuts. In particular this diagram involves bothf andg twists,
and therefore has the information about the full supersy
metry breaking of the model. Is there reason to believe
vacuum energy might nonetheless cancel? Heuristically,
following argument suggests that we should indeed expe
cancellation. Consider evaluating the diagram of Fig. 2 n
the factorization limit in which the diagram looks like
propagator tube connecting two tori. Because of the hom
ogy relations, in this twist structure the intermediate state
this propagator is untwisted. The diagram thus become
sum over products of tadpoles of untwisted propagat
states~weighted bye2mT wherem is the mass of the stat
andT gives the length of the tube!. Each term is a tadpole o
the untwisted state in theg-twisted theory times a tadpole o
the untwisted state in thef-twisted theory. The contour de
formation arguments of@11# imply that these tadpoles van
ish. In order to make this rigorous one needs to see explic
that unphysical states decouple properly~which only has to
happen after summing over all twist structures!. In what fol-
lows we will provide an explicit computation of the 2-loo
contribution and verify that it vanishes.

A. Back to 1-loop

In order to appreciate the relevant mechanism, it is wo
returning momentarily to the 1-loop~supersymmetric! con-
tribution (1,f ) ~see Fig. 3!.

This contribution must vanish by supersymmetry, but it
instructive to observe how the spin structure sum works

FIG. 2. Basic twist structure at genus 2.

FIG. 3. One-loop diagram with anf twist on theb cycle.
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this case before going on to our 2-loop diagram. The am
tude is

A15E d2t

~ Im t!2 Tr~qL0q̄L̄0f !, ~3.1!

whereq5e2p i t and L0 and L̄0 are the usual Virasoro zer
mode generators. Let us consider the spin-structure de
dent piece of this amplitude. As explained in@12#, the deter-
minants for the world sheet Dirac operators acting on
RNS fermions are proportional to theta functions. T
u-function is defined~for general genush! by

u@a,b#~zut!5(
n

e@p i ~n1a!tt~n1a!12p i ~n1a!~z1b!#.

~3.2!

HerezPCh/(Zh1tZh) andt is the period matrix of the Rie-
mann surface, defined in terms of the canonical basis of
lomorphic 1-formsv i by raj

v i5d i j and rbj
v i5t i j . The

characteristicsa,b encode the spin structure@13#, i.e., the
boundary conditions of the fermions around thea and b
cycles respectively of the Riemann surface. So for examp
a151/2 ~respectively 0!, the corresponding fermion haspe-
riodic ~respectively antiperiodic! boundary conditions
around thea1 cycle.

The integrand of the 1-loop amplitude~3.1! is propor-
tional to

A1}(
a,b

ha,bu2@a,b#~0ut!u2Fa,b1
1

2G~0ut!, ~3.3!

where ha,b are the phases encoding the Gliozzi-Sche
Olive ~GSO! projection. The firstu2 factor comes from the
left-moving RNS fermionscL

1 . . . 4 and the secondu2 factor
comes from the other four transverse left-moving fermio
cL

5 . . . 8. The symmetry between these two factors will pl
an important role for us. Let us consider first the terms in
sum~3.3! with a51/2. This describes left-moving Ramond
sector states propagating in the loop, as the left-moving
mionscL are periodic around thea-cycle. Because we hav
an f-twist around theb-cycle, half thecL

m are periodic around
the b-cycle and half are antiperiodic around theb-cycle for
each value ofb in the sum. Thus in eacha51/2 term half
the RNS fermions have zero modes, so these terms ide
cally vanish.

Let us now consider the terms witha50, which describe
left-moving Neveu-Schwarz states propagating in the lo
These give

(
b50,1/2

h0,bu2@0,b#~0ut!u2@0,b11/2#~0ut!. ~3.4!

Note that both terms in this sum have the same functio
form „u2@0,1/2#(0ut)u2@0,0#(0ut)…. The only issue left is
then the relative phase between them. The sum overb is
simply the GSO projection on the states propagating aro
the b-cycle. Let us normalizeh0,0 to 1. Thenh0,1/2521.
4-3
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SHAMIT KACHRU, JASON KUMAR, AND EVA SILVERSTEIN PHYSICAL REVIEW D59 106004
This follows from the fact thatin the NS sectorthe GSO
projection operator is 12(21)F. This encodes the fact tha
we must project onto odd fermion number in the superstr
in order to project out the tachyon which would otherwi
come from the vacuum at the21/2 mass level. So our inte
grand is

~121!u2@0,0#u2@0,1/2#50. ~3.5!

B. 2-loops with supersymmetry

In order to proceed to the 2-loop computation, we m
consider various subtleties arising in string loop compu
tions for strings with world sheet supersymmetry.~See for
example@14,15,16# for reviews with some references.! Let
us begin by briefly reviewing some of the issues in the
persymmetric case. We will work in the RNS formulatio
for discussion of the supersymmetric case in Green-Schw
language see for example@17#.

In performing the Polyakov path integral at genush, we
must integrate over all the world sheet fields including
world sheet metricĥ and gravitinox. This infinite dimen-
sional space is reduced to a finite dimensional space
~super-!moduli by dividing out the diffeomorphisms and lo
cal supersymmetry transformations. There are 3h23 com-
plex bosonic modulit and 2h22 complex supermoduliz. At
genush52 we can take the gravitino to have delta-functi
support on the world sheet for even spin structures@18#. ~For
odd spin structures the amplitude vanishes as a result o
integration of fermionic zero modes.!

We will review the supersymmetric cancellation at
loops. As explained for example in@16,19,14#, the type II
string path integral can be written as

E
SMh

dm0E @dB dC dX#e2S )
r 51

6h26

~h r ,B! )
a51

4h24

d„~ha ,B!….

~3.6!

HereB,C denote theb,b andc,g ghosts, where~b,c! are the
spin-~2,21! conformal ghosts and~b,g! are the spin-~3/2,
21/2! superconformal ghosts.X denotes the matter fields an
h r andha are Beltrami differentials relating the metric an
gravitino to the moduli and supermoduli~in essence, they
determine the way in which superdiffeomorphism invarian
is gauge-fixed!. In components,

~h r ,B!5E h rz̄
z bzz1E h rz̄

1bz11E h rz
z̄ bz̄z̄1E h rz

2b z̄2 ,

~3.7!

~ha ,B!5E haz̄
z bzz1E haz̄

1 bz11E haz
z̄ bz̄z̄1E haz

2 b z̄2 .

~3.8!

As explained, e.g., in@20,16#, we can write the path integra
measure on supermoduli space in terms of a fixed mea
on moduli space

dm05dm@sdet~h,F!#21@sdet~F,F!#1/2. ~3.9!
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Heredm is a fixed measure on the supermoduli spaceSMh ,
integrated over a fixed domain independent of the beltra
differentials. F contains the 3h23 holomorphic and 3h
23 antiholomorphic 2-differentials~b ghost zero mode wave
functions! and the 2h22 holomorphic and 2h22 antiholo-
morphic 3/2-differentials~b ghost zero modes!.

After choosing delta-function support for the world she
gravitinos, and integrating out the supermoduli, one obtain
correlation function of picture changing operators@19#

:efTFªc]j1
1

2
efcm]Xm2

1

4
]he2fb2

1

4
]~he2fb!

~3.10!

and other ghost insertions

(
a,b,twists

E dm@sdet~h,F!#21@sdet~F,F!#1/2@dX#@dB#

3@dC#e2S~ ĥ,b!6h26j~x0! )
a51

2h22

:efTF~za!:

3 )
a52h23

4h24

:ef̄T̄F~za!: j̄~ ȳ0!. ~3.11!

The superconformal ghostsb5]je2f, g5hef are defined
in terms of spin-0 and spin-1 fermionsj,h and a scalarf
@11#. The spin-0 fermionj has a zero mode on the surfac
which is absorbed by the insertion ofj(x0) in Eq. ~3.11!.
There is an anomaly in the ghost number U~1! current which
requires insertions of operators with total ghost numberh
22 to get a nonvanishing result. The correlation functio
~3.11! can be evaluated using the formulas derived in, e
@21,22#.

We will now fix the gauge for the gravitinos by making
definite choice of pointsz1,2. As explained in@14#, the
choice of points must be taken in such a way that the ga
slice chosen is transverse to the gauge transformation
must also respect modular invariance of the amplitu
@19,14#. Ultimately, we will be interested in a gauge choic
for which z1 ,z2→Dg , whereDg is a divisor corresponding
to an odd spin structureg, that is a point where a holomor
phic 1/2-differential has a zero. As explained in@14#, this
choice~which amounts to putting the insertions at one of t
branch points in a hyperelliptic description of the surfac!
satisfies transversality. It was argued in@23,24# that despite
earlier worries@14#, this choice is also consistent with modu
lar invariance. The modular invariance is not manifest in
description in terms ofu-functions, as the calculation of cor
relation functions on the Riemann surface@21# involve a
choice of reference spin structured. Having to choose a spin
structure naively appears to violate modular invariance. H
we chosen a different reference spin structured8, we would
have shifted the arguments of our theta functions by e
mentsn1mt of the Jacobian lattice. Such a shift introduc
a t-dependent phase multiplying theu-function—the
u-functions transform as sections of line bundles over
Jacobian torus. These phases must cancel out of the pro
4-4
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VACUUM ENERGY CANCELLATION IN A . . . PHYSICAL REVIEW D 59 106004
defined integrand, and in@23# this was demonstrated explic
itly for certain ~nonvanishing! 2-loop contributions.

We need to consider the~left-moving! spin-structure-
dependent pieces of the correlation function, the poles a
ing from the spin-structure-independent local behavior of
picture changing correlator, and the behavior of the deter
nant ~3.9! in this gauge. According to@19# we have the fol-
lowing contributions to the spin-structure-dependent pie
of the 2-loop partition function. The matter part ofTF con-
tributes

(
d

^dug&
u@d#4~0!u@d#~z12z2!

u@d#~z11z222Dg!
. ~3.12!

Here d[(a,b) encodes the spin structure of the vario
contributions and̂dug&5e4p i (ag22bg1) encodes the Gliozzi-
Scherk-Olive~GSO! phases@25#. Here the arguments(p
2(q in terms ofp and q which are sets of points on th
Rieman surface is shorthand for the Jacobi vector(*p0

p v i

2(*p0

q v i .

Let us first, following @23#, take z11z252Dg , that is
place z11z2 at a divisor corresponding to the canonic
class, without settingz15z2 . The contribution~3.12! then
simplifies to

(
d

^dug&u@d#3~0!u@d#~z12z2!54u@g#4~z12Dg!,

~3.13!

where in the last step we have used a Riemann identity.
Riemann vanishing theorem then implies that this vanis
identically as a function ofz1 @23#. Thus in this case what
ever poles arise asz1→z2 , the identical zero from the spin
structure sum cancels it.

Now turning to the ghost piece of the correlation functi
of picture-changing operators, one obtains contributions
morphic to Eq.~3.13! as well as

v i~z1!
u@d#5~0!] iu@d#~2z222Dg!

u2@d#~z11z222Dg!
. ~3.14!

Herev i are the canonical basis of holomorphic one-forms
the Riemann surface, satisfying*ai

v j5d i j and *bi
v j5t i j

wheret is the period matrix for the surface. Again simplify
ing this by first takingz11z252Dg we obtain

(
d

^dug&]z1
„u@d#3~0!u@d#~z12z2!…

54]z1
„u@g#4~z12Dg!…. ~3.15!

Because the right-hand side of this expression is a deriva
of 0 ~by the Riemann vanishing theorem!, it vanishes identi-
cally. Again any poles from the picture changing opera
product expansions~OPEs! are irrelevant@23#.
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C. „Non-…superstring perturbation theory

In an orbifold model, one can consider separately diff
ent twist structures, and analyze the fundamental domai
the modular group that preserves a given twist structure
general there are an infinite number of contributions com
from different choices of bosonic shifts. In Sec. IV we w
analyze the twist structure of Fig. 2~with no additional
bosonic shifts! and see that the resulting modular group a
freely ont. In this situation, the choice of a branch point f
z1,2 is manifestly modular invariant; the possible obstructi
to modular invariance discussed in@19,14# does not arise, as
there are no orbifold points in the moduli space. We a
analyze in Sec. IV the boundary contributions and see
they vanish. One can show that with arbitrary addition
shifts ~respecting the homology relation of the Riemann s
face! there are still no orbifold points in the moduli space

We will analyze the twist structure (1,1,f ,g) ~it will later
be shown why this is the only twist structure which needs
be analyzed!. The f twist affects the characteristics of som
of the u functions ~arising from twisted fields! by shifting
them by~0,0,1/2,0!—we shall denote this as a shift by1

2 L. k
will be defined asg1(0,0,0,1/2), and we chooseg such that
both g andk are odd.

The correlation function of the matter part of the pictu
changing operators breaks into two contributions. The te
involving ^c i]Xi(z1)c i]Xi(z2)& with i 55, . . . ,10give

(
d

^kud&
u@d#~0!2u@d1 1

2 L#~0!2u@d#~z12z2!

u@d#~z11z222Dg!

3S pi
mv i~z1!pj

mv j~z2!
1

E~z1 ,z2!

1
6

E~z1 ,z2!2 ]z1
]z2

logE~z1 ,z2! Ddet„Fa
3/2~zb!….

~3.16!

Upon settingz11z252Dg we can cancel the denominato
against one factor in the numerator to get

(
d

^kud&u@d#~0!u@d#~z12z2!uFd1
1

2
LG~0!2

54u@k#S 1

2
~z12z2! D uFk1

1

2
LG S 1

2
~z12z2! D

~3.17!

for the spin-dependent piece of this correlator. Becausek is
an odd spin structure, this vanishes like (z12z2)2. As z1
→z2 the determinant factor~3.9! produces another zero
plugging in the delta functionha we obtain

@sdet~h,F!#21}det~ha ,Fb
3/2!5det„Fb

3/2~za!….
~3.18!

Here Fb
3/2, b51,2 form a basis of holomorphic 3/2

differentials. As theza approach each other, the determina
~3.18! goes to zero, so all in all Eq.~3.16! has a (z12z2)3
4-5
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multiplying the prime forms. However, since the prim
forms are yielding poles asz1→z2 , it remains to check tha
there are no finite pieces in Eq.~3.16!.

Note thatE(z1 ,z2) goes likez12z2 asz1→z2 . Thus, the
terms proportional to 1/E(z1 ,z2)2 times the loop momenta
clearly vanish in the limit, since there is only a second or
pole from the prime forms which cannot cancel the th
order zero we found from the spin structure sum and
superdeterminant. This leaves the term which goes
@1/E(z1 ,z2)2#]z'

]z2
logE(z1,z2). Using the fact that

E(z1 ,z2) has a Taylor expansion of the form

E~z1 ,z2!; (
n50

`

cn~z12z2!2n11 ~3.19!

asz1→z2 , one sees that this combination of prime forms h
an expansion

1

E~z1 ,z2!2 ]z1
]z2

logE~z1 ,z2!; (
n522

`

dn~z12z2!2n.

~3.20!

On the other hand, the determinant factor is anodd function
of z12z2 with an expansion of the form

det„Fa
3/2~zb!…; (

m50

`

em~z12z2!2m11 ~3.21!

while the sum over spin structures~3.17! is an even function
with a second order zero atz15z2 . From these facts, it is
easy to see that the full expression~3.16! has an expansion o
the form

(
j 50

`

f j~z12z2!2 j 21 ~3.22!

asz1→z2 .
Examining Eq.~3.22!, we see that there are no finite co

tributions asz1→z2 and there is a~gauge artifact! pole as
z1→z2 ; in fact this pole receives contributions from the va
ous matter and ghost correlators proportional to the matte
ghost central charges, and hence cancels once all of the t
are taken into account~sincectot5cmatter1cghost50!. We
will see this explicitly once we compute the remaining m
ter and ghost contributions.
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The second type of matter correlator arises from contra
ing thec i]Xi(z1)c i]Xi(z2) with i 51, . . . ,4.This leads to a
contribution

(
d

^kud&

u@d#~0!3uFd1
1

2
LG~0!uFd1

1

2
LG~z12z2!

u@d#~z11z222Dg!

3S pi
mv i~z1!pj

mv j~z2!
1

E~z1 ,z2!2

1
4

E~z1 ,z2!2 ]z1
]z2

logE~z1 ,z2! D
3det„Fa

3/2~zb!…. ~3.23!

Choosingz11z252Dg , the spin sum in Eq.~3.23! sim-
plifies to

(
d

^kud&u@d#~0!2uFd1
1

2
LG~0!uFd1

1

2
LG~z12z2!

~3.24!

which, after applying a Riemann identity, becomes

4u@k#S 1

2
~z12z2! D 2

uFk1
1

2
LG S 1

2
~z12z2! D 2

.

~3.25!

So in fact after summing over spin structures this looks
same as the spin sum of the first type of matter contribut
~3.17!. Again, it vanishes like (z12z2)2 asz1→z2 .

Now, the argument for the cancellation proceeds as it
for the first type of matter contribution. The terms involvin
only the 1/E(z1 ,z2)2 multiplying loop momenta only have a
second order pole, which cannot cancel the third order z
coming from the determinant times the spin structure s
~3.25!. The terms involving higher inverse powers of th
prime forms lead to a simple pole~which cancels after sum
ming over matter and ghosts, as it is proportional to the to
central charge! and no finite contributions.

Next, let us consider the terms in the correlator of pictu
changing operators coming from the ghost part of the wo
sheet supercurrent. These terms take the form
note
K 2
1

4
c]j~z1!~2]he2fb1h]e2fb1he2f]b!~z2!L 1 K 2

1

4
~2]he2fb1h]e2fb1he2f]b!~z1!c]j~z2!L . ~3.26!

There are three types of terms that arise@19#. We are in the twist structure (1,1,f ,g). As in the matter sector, thef twist
affects the characteristics of theu-functions arising in the world sheet correlation functions and determinants. We will de
the shift in the characteristic, which is~0,0,1/2,0!, as 1

2 L. The first type of contribution is
4-6
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(
d

^kud&

u@d#~0!3uFd1
1

2
LG~0!2u@d#~2z222Dg!uS z12z21( w23D D
u@d#~z11z222Dg!2E~z1 ,z2!3

3det„Fa~zb!…
) E~z1 ,w!

) E~z2 ,w!

]z1
logS ) E~z1 ,w!

E~z1 ,z2!5s~z1!
D 1~z1↔z2!. ~3.27!

The second is

(
d

^kud&

u@d#~0!3uFd1
1

2
LG~0!2v i~z1!] iu@d#~2z222Dg!uS z12z21( w23D D

u@d#~z11z222Dg!2E~z1 ,z2!3 det„Fa~zb!…
) E~z1 ,w!

) E~z2 ,w!

1~z1↔z2!.

~3.28!

The third is

(
d

^kud&

u@d#~0!3uFd1
1

2
LG~0!2u@d#~2z222Dg!v i~z1!] iuS z12z21( w23D D

u@d#~z11z222Dg!2E~z1 ,z2!3 detFa~zb!
) E~z1 ,w!

) E~z2 ,w!

1~z1↔z2!.

~3.29!
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Settingz11z252Dg and doing the spin structure sum w
find for the spin-structure-dependent pieces of contributi
~3.27! and ~3.29!:

(
d

^kud&u@d#~0!uFd1
1

2
LG~0!2u@d#~2z222Dg!

5u@k#~z22Dg!2uFk1
1

2
LG~z22Dg!2

;~z12z2!21c4~z12z2!41¯ ~3.30!

for some constantc4 where in the last line we expanded th
result in a Taylor expansion aroundz15z2 . For contribution
~3.28! we get

(
d

^kud&u@d#~0!uFd1
1

2
LG~0!2v i~z1!] iu@d#~2z222Dg!

5]z1
Xu@k#S 1

2
~z12z2! D 2

uFk1
1

2
LG S 1

2
~z12z2! D 2C

;~z12z2!1b3~z12z2!31¯ . ~3.31!

As for the matter contributions, although the spin stru
ture sums give vanishing contributions, they multiply sing
larities arising from the prime formsE(z1 ,z2) and we must
analyze the potential finite terms in the Taylor expansi
Let us consider first Eq.~3.27!. There are two types of con
tributions here. After doing the spin structure sum as ab
the first takes the form
10600
s
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25
]1E~z1 ,z2!

E~z1 ,z2!4 @z12
2 1c4z12

4 1¯#@z121e3z12
3 1¯#

3
) E~z1 ,w!

) E~z2 ,w!

1~z1↔z2!, ~3.32!

where we denotez12z2 by z12. Here the second facto
comes from the spin structure sum, the third from the Tay
expansion of the determinant aboutz15z2 ~wheree3 is some
constant!. We should emphasize what is meant here
(z1↔z2). We are computing a correlation function of pictu
changing operators. The ghost piece of this correlator has
form ~3.26!. So for example the second term in Eq.~3.26!
corresponds to the term denotedz1↔z2 in Eq. ~3.32!. So in
particular the second term involves interchanging the ope
tors in the ghost correlator, without changingz1 to z2 in the
determinant factor. The first and fourth factors involving t
prime forms encode the physical poles and zeroes of
correlator. The leading singularity from the prime forms he
comes from the 1/z12

4 term in the expansion of the prim
form factors. Therefore only the leading term in the Tay
expansion of the spin structure sum and determinant fac
potentially survive~so we can ignore the terms proportion
to c4 or e3 , which give fifth-order zeros!. Similarly expand-
ing the prime formsE(z1 ,z2) gives a subleading term with
4-7
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only a 1/z12
2 pole, which is cancelled by the third order ze

coming from the leading piece of the spin structure s
times determinant.

Putting the factors together, we see that the leading p
is a simple pole inz12. The first three factors in Eq.~3.32!
are the same in the term withz1↔z2 . When we include the
term with z1↔z2 , they multiply the prime form factor
@PE(z1 ,w)/PE(z2 ,w)#1@PE(z2 ,w)/PE(z1 ,w)#. This is
even underz1↔z2 . In our Taylor expansion it therefore be
comes of the formO(1)1 f 2z12

2 1..., andonly the first term
contributes. Therefore in Taylor expanding the contribut
~3.32!, we get a pole piece plus higher order terms wh
vanish in the limit z1→z2 . In particular, no finite pieces
survive. What is the interpretation of the pole piece? It
proportional to the ghost central charge, and precisely c
cels the pole piece coming from the matter contribution.

The second type of contribution in Eq.~3.27! takes the
form

1

E~z1 ,z2!3 @z12
2 1¯#@z121¯#

3
) E~z1 ,w!

) E~z2 ,w!

]1 logS ) E~z1 ,w!

s~z1!
D ,

~3.33!

where the¯ denote terms which vanish automatically
z1→z2 . The leading pole from the prime forms here is c
bic. Before including thez1↔z2 term there is a finite piece
obtained by multiplying this times the third order zero o
tained from the spin structure sum and determinant fact
The spin structure sum is even under the interchange oz1
andz2 in this case, and as discussed above the determi
factor is the same in both terms. The factor 1/E(z1 ,z2)3 does
change sign between the two terms, however. So when
add the (z1↔z2) term the contribution cancels.

Let us now consider the contribution~3.28!. This gives a
contribution of the form

1

E~z1 ,z2!
@z121¯#@z121¯#

3S ) E~z1 ,w!

) ~z2 ,w!

1
) E~z2 ,w!

) E~z1 ,w!
D .

~3.34!
Here similarly to the above analysis we took into account
relative sign of the two contributions in Eq.~3.26! and in-
cluded thez1↔z2 contribution. The last factor here is eve
under interchange ofz1 andz2 , so its Taylor expansion is o
the form 11h2z12

2 1¯ for some constanth2 . The leading
contribution here is a simple pole, and there is no finite c
tribution.

Unlike the previous simple poles we have encounter
the pole encountered here does not cancel with the o
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matter and ghost contributions@it is not one of the pieces
which would have contributed to thec/z4 pole in the opera-
tor product expansion~OPE! of picture changing operator
before accounting for spin structure sums and determin
factors#. However, on general grounds we expect such ga
artifact poles to constitute total derivatives on moduli spa
Otherwise the invariance of the path integral on gauge s
would be lost. In this case, we can argue for that conclus
as follows. The pole we are discussing receives a 1/z1
2z2)3 contribution from the prime forms which is softene
to 1/(z12z2)2 by the theta function zero~and then to a
simple pole by the determinant factor!. In the OPE of picture
changing operators, the 1/(z12z2)2 divergence is multiplied
by the stress-energy tensor, which gives a derivative w
respect to the metric and therefore the moduli. The term
are finding is part of this total derivative. In the gauge w
have chosen, it is the only nonvanishing piece~the other
pieces vanish even before integration over the moduli spa!.
However, since there cannot be gauge artifact poles, we
pect it to integrate to zero~which one can argue for by ana
lyzing the boundary contributions, as we will do later!.

Finally let us consider the last ghost contribution~3.29!.
This contribution takes the form

1

E~z1 ,z2!3 @z12
2 1¯#@z121¯#

) E~z1 ,w!

) E~z2 ,w!

1~z1↔z2!.

~3.35!

In this contribution before including thez1↔z2 contribution
there is a potential finite term from the third order pole m
tiplying a third order zero inz12. Here again, in the limit
z1→z2 every factor except the first is the same in the tw
terms. The first factor 1/E(z1 ,z2)3 has the opposite sign in
the two terms. Thus again after including thez1↔z2 term the
contribution cancels.

IV. BOUNDARY CONTRIBUTIONS

In the previous section, we studied the two loop diagr
with twists byf andg going around theb1,2 cycles, i.e., with
twist structure (1,1,f ,g). We saw that the computation yield
a vanishing integrandif we make a very specific choice o
insertion points for the picture-changing operators:efTF :.
Since the answer should be independent of the choice
these insertion points, this seems to imply that the two lo
vacuum energy vanishes.

However, under a change of the choice of inserti
points, it can be shown that the computation changes b
total derivative@19,26#

E
F
]v, ~4.1!

whereF is the appropriate fundamental domain of integ
tion for the computation. Therefore, one must worry abo
contributions arising at the boundary ofF @14#.
4-8
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A. The fundamental domain

What is the fundamental domainF for this computation?
At genus two, the Teichmuller space is given very explici
in terms of the Siegel upper half space of 232 matrices:

H25$t232 : t tr5t, Im t.0%.

t is the period matrix of the genus two surface. The modu
group at genus two isG5Sp(4,Z). The moduli space can
then be constructed by taking the quotient ofH2 by G. One
must also remove the modular orbit of the diagonal matric

For our computation, on the other hand, we have tw
(1,1,f ,g) about the (a1 ,a2 ,b1 ,b2) cycles of the surface
Therefore, we need to integrate the correlator of the pic
changing operators overF5H2 /G̃, whereG̃ is the subgroup
of Sp~4,Z! which preserves the twist structure (1,1,f ,g).

It is easy to see that the allowed matrices are the ones
act on the homology (a1 ,a2 ,b1 ,b2) like

S a b 0 0

c d 0 0

x y 1 0

z w 0 1

D . ~4.2!

Denoting the 232 blocks as (C
A

D
B) we must impose

AtrC5CtrA, BtrD5DtrB, AtrD2CtrB51 ~4.3!

which is just the requirement that Eq.~4.2! is in Sp~4,Z!.
This further restricts the allowed matrices~4.2! to be of the
form

S 1 0 0 0

0 1 0 0

x y 1 0

y w 0 1

D . ~4.4!

Now, if (C
A

D
B) acts on the homology, then the action o

the period matrixt is given by (B
D

A
C)—in other words,

t→~Dt1C!~Bt1A!21. ~4.5!

So from the allowed actions on the homology~4.4!, we see
that the identifications to be made on the period matrices

S t1 t12

t12 t2
D→S t11x t121y

t121y t21w D . ~4.6!

In addition, positivity of Imt requires that

Im t1,2.0, ~ Im t12!
2,Im t1 Im t2 . ~4.7!

The constraints~4.6! and ~4.7! together yield the correc
fundamental domainF,H2 for our computation.t1,2 live on
strips with real part between (21/2,1/2) and positive imagi-
nary part, whilet12 has real part between~21/2,1/2! and
imaginary part bounded above and below by the second
equality in Eq.~4.7!. Also, we must recall that in describin
10600
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the moduli space of Riemann surfaces in terms ofH2 , we
had to delete the modular orbit of diagonal matrices, yield
an additional boundary att12→0.

B. The boundaries

Now that we have determinedF, we can look for bound-
aries where the total derivative~4.1! might give a contribu-
tion after integration by parts. There are in fact three bou
aries inF. We will examine each of these boundaries in tu
and argue that no boundary contribution exists.

~1! t1 or t2→ i`. In this limit, one of the handles degen
erates to a semicircle glued on to the ‘‘fat’’ handle at tw
points ~i.e., a homology cycle collapses! ~see Fig. 4!. It was
argued in@14# that in such a limit, no boundary contributio
exists in theories without physical tachyons. Our theory h
no physical tachyons, so we will receive no contributi
from this boundary.

~2! t12→0. In this limit, the genus two surface degene
ates into two tori connected by a very long, thin tube~see
Fig. 5!. Only massless physical states propagate in this t
@14#, and in this limit the genus two vacuum amplitude
related to a sum of products of one loop tadpoles for
massless states.

The relevant one loop tadpoles are computed on tori w
twists (1,f ) or (1,g) around the~a,b! cycles. Now, thef and
g twist alone preserved54,N52 supersymmetry. So, ther
are no one loop tadpoles for states in thef or g twisted
theory. This implies that the genus two diagram vanishes
this limit.

~3! Im t1,2→0 or (Imt12)
2→(Im t1)(Im t2). To see the

vanishing in this limit, we recall that the integrand for th
vacuum amplitude contains a factor ofe2S(X), i.e., the action
for map from the genus two surface to spacetime. The
evant maps~given thef andg twists about theb cycles of the
surface! wind around theX5 andX6 directions of spacetime
This yields a contribution to the action which goes like

FIG. 4. Picture of boundary~1!.

FIG. 5. Picture of boundary~2!.
4-9
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S.
R2

a8 H Im t11Im t2

Im t1 Im t22~ Im t12!
2J , ~4.8!

whereR is the radius of theX5 andX6 circles@27,28#. Now,
positivity of Imt comes to the rescue: If Imt1→0 at fixed
Im t2, then the second inequality in Eq.~4.7! implies thatS
→`; if Im t1,2→0, one can prove that the denominator
Eq. ~4.8! vanishes as the square of the numerator~once again
using positivity of Imt!, so S→`; if Im t1,2 are fixed and
(Im t12)

2 approaches Imt1 Im t2, it is obvious that the action
diverges.

The upshot is that thee2S(X) in the integrand vanishe
quickly enough at this boundary to rule out any contrib
tions.

C. Cases with shifts

In additional to the amplitude (1,1,f ,g) which knows
about the supersymmetry breaking at genus two, there
other genus 2 amplitudes with (1,1,f ,g) twists on the world
sheet fermions around the (a1 ,a2 ,b1 ,b2) cycles but with
additional shifts acting on the bosonic fields. In fact we sh
in Sec. V that this is~up to modular transformations! the full
set of supersymmetry breaking diagrams that we need
consider at genus two.

In each twist structure we will find that the spin-structu
dependent part of the vacuum amplitude vanishes. T
leaves the issue of possible boundary contributions. A
summing over the various twist structures, we know the
nus two vacuum energy can be written as an integral o
M2 , the moduli space of genus two Riemann surfaces.
possible boundary contributions~after we compactifyM2!
will come from boundaries of type~1! and ~2! in Sec. IV B
~where a handle collapses or the surface degenerates into
surfaces of lower genus connected by a long, thin tub!.
Hence, if we can argue that with arbitrary twist and sh
structures on thea,b cycles the vacuum amplitude vanish
at boundaries of type~1! and ~2!, we will be done.

As we will discuss in Sec. V, up to additional shifts o
various cycles the possible structures~which break all of the
supersymmetry! are basically (1,1,f ,g), ( f ,g,g, f ) and
( f , f g, f g, f ) ~up to possible exchanges of the role off and
g!. Since we could use modular transformation to relate th
to (1,1,f ,g) twist structure on the fermions, the spin
structure dependent piece of the amplitude vanishes in e
of these cases. In addition, each of these vanishes at bo
aries of type~1! because there are no physical tachyons. T
leaves the analysis of boundary~2!.

Any amplitude with (1,1,f ,g) twists on the fermions, re
gardless of additional shifts, vanishes at boundary~2! be-
cause it can be written as a product of tadpoles in theN
52 supersymmetricf andg orbifolds ~as in Sec. IV B!. On
the other hand, the amplitude with twist (f ,g,g, f ) would
naively yield a product of one loop tadpoles in a nonsup
symmetric theory. However, it turns out that the state pro
gating on the tube between the first and second handle m
be a massive state because it must be twisted to be em
from the ‘‘subtorus’’ with ~f,g! twist on its ~a,b! cycles.
Since only massive states can run in the tube, there is
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contribution at the boundary of moduli space~where the tube
becomes infinitely long!. A similar discussion applies to th
( f , f g, f g, f ) twist structure with arbitrary shifts.

V. TWISTS AT GENUS h>2

A priori on a genush Riemann surface, one needs
consider any combination of twists on the various cyc
ai ,bi for i 51, . . . ,h consistent with the relation

a1b1a1
21b1

21
¯ahbhah

21bh
2151. ~5.1!

In this section, we will argue that in fact using modul
transformations one can greatly reduce the kinds of tw
structures that one needs to consider.

For our considerations, we do not need to worry ab
twists that preserve some of the spacetime supersymmet
genush ~for instance, twists only byf around various cycles!.
The real concern will be sets of twists around different cyc
which break the full spacetime supersymmetry. We will no
show that, up to inducing shifts on the world sheet boso
around some cycles, oneonly has to considerf andg twists
on thebh21 andbh cycles with no twists on any other cycle
Any twist which breaks all of the spacetime supersymme
can be brought to this canonical (1, . . . ,1,f ,g) form by
modular transformations.

Since in this section we will be ignoring the possib
shifts on bosons around various cycles~we are only inter-
ested in thef,g action on fermions!, we can use relations like

f 25g251, f g5g f ~5.2!

which are true for the action on fermions~but only true in the
full model up to shifts in the space group!.

A. Genush52

We will show that all twists of interest can be taken to t
(1, . . . ,f ,g) form in several steps. First, consider genus t
surfaces. The modular group Sp~4,Z! is generated by

Da1
5S 1 0 0 0

0 1 0 0

1 0 1 0

0 0 0 1

D , Da2
5S 1 0 0 0

0 1 0 0

0 0 1 0

0 1 0 1

D ,

~5.3!

Db1
5S 1 0 1 0

0 1 0 0

0 0 1 0

0 0 0 1

D , Db2
5S 0 1 0 1

0 1 0 0

0 0 1 0

0 0 0 1

D ,

~5.4!

Da
1
21a2

5S 1 0 0 0

0 1 0 0

21 1 1 0

1 21 0 1

D , ~5.5!
4-10
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FIG. 6. One sums over states in the chann
between thef andg twisted handles.
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which are simply the Dehn twists about the various cycles
the genus two surface, acting on the homolo
(a1 ,a2 ,b1 ,b2).2

We now consider genush52 twists which are not of the
canonical (1,1,f ,g) form but which break all the supersym
metry.

~1! First, take the cases where no ‘‘subtorus’’ has twi
which break the full supersymmetry@i.e., no f,g twists on
dual ~a,b! cycles#. Then, by using SL(2,Z),Sp(4,Z) trans-
formations which act on the (a1 ,b1) and (a2 ,b2) cycles, one
can arrange to have twists only on theb cycles, so the twist
structure is~1,1,* ,* !. Then the only cases we need to wor
about are (1,1,f , f g) and (1,1,g, f g). One can easily see tha
(1,1,f , f g) is mapped byDb1

to ( f ,1,f , f g) and then by

Da
1
21a2

to ( f ,1,1,g). That in turn is SL~2,Z! equivalent to

(1,1,f ,g). A similar manipulation works for the (1,1,g, f g)
case.

~2! Second, consider the case where thereare twists on
some ‘‘subtorus’’ that break the full supersymmetry. E
amples are ~f,g,g,f! and ~f,fg,fg,f!. Now, for instance,
~f,g,g,f! can be mapped byDa

1
21a2

to ~f,g,g,f! which is

equivalent@using SL~2,Z! transformations on both subtori# to
(1,1,f ,g). One can similarly reduce~f,fg,fg,f! and other
analogous structures to the canonical form.@Recall that in
this discussion we are ignoring extra bosonic shifts that m
the twist structures considered here consistent with
~5.1!#.

So, we find thatall supersymmetry breaking twists at g
nush52 can be mapped by the modular group to (1,1,f ,g)
~up to shifts on world sheet bosons!. This is important be-
cause our vanishing ath52 was for the spin structure de
pendent part of precisely this twist structure, and is indep
dent of any shifts on world sheet bosons.

B. Genush>2

We now argue that at arbitrary genus, one can reduce
supersymmetry breaking twist structures to (1, . . . ,1,f ,g)
using modular transformations. We will need to use th
important facts:~1! Among the elements of Sp(2h,Z) there
are matrices that allow one to permute the different ‘‘su
tori’’ ~sets of conjugatea, b cycles! of the genush surface;
~2! in order to satisfy Eq.~5.1!, there must exist aneven
number of ‘‘subtori’’ with twists on the (ai ,bi) cycles that
break all the supersymmetry.~3! using Sp(4,Z),Sp(2h,Z)
one can map

~1,1,f , f !→~1,1,f ,1!, ~5.6!

2There are also inhomogeneous terms that shift the character
of the theta functions coming from the fermion determinants un
such a modular transformation; these lead to a change of spin s
ture but do not change the orbifold twist structure.
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i.e., one can group like twists on neighboringb cycles onto a
singleb cycle.

Putting together ourh52 result with facts~1!–~3! above,
we see that at genush.2 the only twist structure we need t
consider is (1,1, . . . ,1,f ,g). To prove this, we simply work
on genus 2 subsurfaces@using Sp~4,Z! subgroups of the
modular group# to reduce everything tof or g twists on b
cycles, and then use~1! and~3! to simplify to a singlef and
g twist.

VI. COMMENTS ON HIGHER LOOP VANISHING

Once we have put the twists on our genush surfaceSh
into the canonical (1, . . . ,1,f ,g) form, we can provide a
rough physical argument for the vanishing. This section
very heuristic; it would be nice to make these argume
more precise.

The argument involves supersymmetry. One can think
Sh in terms of a genush21 surfaceSh21 ~with a g projec-
tion on one cycle! connected to an extra handle~holding the
f projection! by a nondegenerate tube~on which massive or
massless string states may propagate! ~see Fig. 6!.

This suggests that one rewrite the diagram as

Ss ~s tadpole onSh21!3e2MsT

3~s tadpole on f -projected handle!, ~6.1!

where the sum runs over possible intermediate phys
statess of massMs , and the tube has lengthT. In this way of
thinking about it, the diagram vanishes because even
massive string states, the tadpoles at genush21 in the g
projected theory and at genus one in thef projected theory
should vanish~as those theories are both 4DN52 super-
symmetric!.

Toward a „perturbative… symmetry argument

The world sheet arguments for the perturbative vanish
of the cosmological constant in supersymmetric string th
ries used contour deformations of the spacetime super
rents crucially@29,19,15#. Thus one could see the constrai
of spacetime supersymmetry through world sheet curren
gebra.

In our theory, of course, the spacetime supercurrents
projected out, which is to say that they have monodro
around the twist fields in the orbifold. On the Riemann s
face with a given twist structure@as in Fig. 6#, these opera-
tors pick up phases upon traversing the cuts in the diagr

Let us consider the argument of@29# in this context. One
splits open one handle of the surface~say the handle with the
f-cut!, and rewrites the propagating stateV asra fS12V8 for
some operatorV8. ~So in particularV8 describes a boson i
the original state was fermionic in spacetime and vice ver!
HereS12 refers to a would-be spacetime supercurrent w
eigenvalues11 and underf and21 underg. The cycleaf is

ics
r
c-
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the a-cycle on the handle with thef cut. Without theg cut,
one can deform the contour integral around the rest of
Riemann surface and turn the fermion loop into a boson l
~or vice versa! with a cancelling sign. With theg-cut, how-
ever, one is left with a remainder contribution of the form

2 R
af

dx R
ag

dy^S12~x!S12~y!&. ~6.2!

The direct calculation of this contribution could be do
at genus 2 in a similar way to the partition function calcu
tion we presented in the previous sections~using the corre-
lation functions of@21#!. As before it would be hard to the
generalize this computation to higher genus precisely, du
our lack of explicit understanding of the moduli space~and
the problem of choosing a consistent gauge slice for
world sheet gravitino!. It would be nice to understand if ther
is some simple topological reason that this remainder m
vanish at arbitrary genus.

VII. RELATION TO AdS-CFT CORRESPONDENCE

There has been a great deal of recent work on the fa
nating conjectures relating conformal field theories in va
ous dimensions to string theory in anti–de Sitter~AdS! back-
grounds @30,31#. It was argued in @2# that certain
nonsupersymmetric instances of this correspondence c
lead to the discovery of nonsupersymmetric string ba
grounds with vanishing cosmological constant. The pred
tions of new fixed lines at the level of the leading largeN
theory based on the correspondence@2# were verified directly
through remarkable cancellations in perturbative diagra
@32# in a host of models that could be constructed quite s
tematically@33#. Here, we review and elaborate on the id
of extending predictions of the correspondence to finiteN
fixed lines, and explain how the class of orbifolds we ha
discussed in this paper may be realizations.

The correspondences between 4D CFTs and string b
grounds have~in the ’t Hooft limit!

a8

R2 expansion→expansion in~gY M
2 N!21/2, ~7.1!

gst expansion→expansion ingY M
2 5

1

N
. ~7.2!

In cases where one has anonsupersymmetricfixed line~to all
orders in 1/N as well asgY M

2 N! realized on branes in strin
theory, we would obtain by this correspondence a stable n
supersymmetric string vacuum which exists at arbitrary v
ues of the couplinggst .

The equation of motion for the dilatongst5ef is

~2g!1/2]m„A~2g!gmn]nf…52
]V

]f
, ~7.3!

whereV(f) is the dilaton potential andg is the AdS metric.
Thus one finds that, according to the AdS conformal fi
theory~CFT! correspondence, a conformal fixed point in t
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dual field theory implies a minimum of the bulk vacuu
energy with respect to thegst . Consequently, stability of the
spacetime background for arbitrary dilaton vacuum expe
tion value~VEV! ^f& ~which is implied by the existence of
nonsupersymmetric fixed line as above! would imply that
there is nogst dependent vacuum energy.

Nonsupersymmetric theories with vanishingb-function at
leading order in 1/N but nonzerob-functions at subleading
orders@2,33,32# should provide a concrete testing ground f
ideas relating the holographic principle@34# to the cosmo-
logical constant@35#. In particular, one would generically
expect perturbative contributions to the cosmological c
stant~dilaton tadpole!, which are related~via a possibly non-
trivial map! to beta functions in the boundary field theory.
perturbative string theory these contributions come in gen
cally at the order of the supersymmetry breaking sca
which is the string scale in these models. In general,
AdS-CFT correspondence relates perturbative string cor
tions to 1/N corrections in the boundary QFT. Therefore t
perturbative string corrections should be encoded in
boundary theory in a way consistent with the holograp
reduction in the number of degrees of freedom.

Dualities between field theory fixed lines~which exists to
all orders in 1/N! and nonsupersymmetric string backgroun
would have different consequences in the different AdSd du-
alities. In the orbifolds AdS53(S5/G), the duality would im-
ply that the effectiveten-dimensionalcosmological constan
vanishes. In the largegY M

2 N limit, we expect from Eq.~7.1!
that the AdS and orbifolded sphere also each become
However, in this limit the spacetime theory regains sup
symmetry away from the fixed loci ofG, so this does not
yield a nonsupersymmetric theory in the bulk of spacetim

However, there are cases where the largeN limit could
yield a nonsupersymmetric theory in bulk with vanishin
cosmological constant. Consider for instance dualities
tween type II B strings on AdS23S23(T6/G) and confor-
mally invariant quantum mechanical systems~some super-
symmetric instances of such dualities were conjectured
@30#!. In these cases, going through the analogous argum
we would be talking about the effectivefour-dimensional
cosmological constant. In the largeN limit, AdS23S2→R4

while the size of theT6/G remainsfixed~it does not decom-
pactify!. Thus, if we break supersymmetry on the intern
space we might be able to find examples of the AdS-C
correspondence which predict vanishing 4D cosmolog
constant in a bulk nonsupersymmetric theory. This provid
a strong motivation for understanding conformally invaria
quantum mechanical systems with ‘‘fixed lines’’~corre-
sponding to the spacetimegst!. In particular, at least naively
a quantum mechanical model which is classically conform
will not develop ab-function since there are no ultraviole
divergences~though one may need to worry about IR pro
lems!.

We have two comments about trying to find models
this way via the AdS-CFT correspondence.

~1! The AdS23S2 geometries of interest arise as the ne
horizon limits of Reissner-Nordstrom black holes. In nons
persymmetric situations, wherep1 of the compactification is
typically small, it can be very difficult to find stable blac
4-12
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holes of this sort by wrapping branes. In part this is beca
one often finds a 4D effective Lagrangian of the form

L5E d4x fFmnFmn1]mf]mf1¯ , ~7.4!

whereF is the field strength for the U~1! gauge field under
which the Reissner-Nordstrom black hole carries charge,
f is some scalar field. Then, the equation of motion forf
becomes

]m]mf;FmnFmn ~7.5!

and this forcesf to have a nontrivial profile in the black hol
solution which breaks the AdS isometry.

In order to get around problems of stability and of t
existence of scalars with linear couplings toF2, it is useful
to start with models containing very few scalars. Asymme
orbifolds are one natural source of such models. Star
with configurations of wrapped branes invariant under
orbifold group, one can obtain Reissner-Nordstrom bla
holes in asymmetric orbifolds such as the one we have s
ied here. One can then predict vanishing cosmological c
stant based on the conformally invariant family of quantu
mechanical systems living on the boundary of the ne
horizon geometry, as in the argument above. It is intrigu
that this rather indirect argument relates the problem of
ing moduli to the cosmological constant problem. It wou
be nice to understand the constraints more systematical

~2! The orbifold we have been discussing not only has

L1-loop5L2-loop5¯50 ~7.6!

but also has

L1-loop5E d2mi0, L2-loop5E d6mi0, . . . . ~7.7!

That is, the vacuum amplitudes vanishpoint by pointon the
moduli space of Riemann surfaces~within a particular twist
in

s.

h
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structure: it will vanish point-by-point on all twist structure
if one also acts on the gauge-fixing choice with the relev
modular transformations!. This vanishing integrand reflect
the exceptionally simple spectrum of our theories~Bose-
Fermi degeneracy, etc.!.

In more general examples that might come out of non
persymmetric versions of the AdS-CFT correspondence
above, we would expect Eq.~7.6! to hold ~since the confor-
mal quantum mechanics has a fixed line, and the dila
VEV is arbitrary!. However, there is no reason to expect E
~7.7! to hold in general examples. It would be nice to find
example where, e.g.,L1-loop vanishes but not point-by-poin
~as in Atkin-Lehner symmetry@36#!.

It would be very interesting to find similar models with
more realistic low energy spectrum. In addition, we cou
potentially find nonsupersymmetric models in 4D with n
dilaton by finding 3D string models satisfying our conditio
and takinggst→`.
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