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Formation of extended topological defects during symmetry breaking phase transitions in O„2…
and O„3… models

G. Holzwarth*
Fachbereich Physik, Universita¨t Siegen, D-57068 Siegen, Germany

~Received 14 January 1999; published 26 April 1999!

The density of extended topological defects created during symmetry breaking phase transitions depends on
the ratio between the correlation length in the symmetric phase nearTc and the winding length of the defects
as determined by the momentaneous effective action after a typical relaxation time. Conservation of winding
number in numerical simulations requires a suitable embedding of the field variables and the appropriate
geometrical implementation of the winding density on the discrete lattice. We define a modified Kibble limit
for the square lattice and obtain defect densities as functions of winding lengths in O~2! and O~3! models. The
latter allows one to observe the formation of disoriented aligned domains within the easy plane. Their extent is
severely limited by the momentaneous defect density during the course of the quench.
@S0556-2821~99!06110-X#
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I. INTRODUCTION

The formation of defects during symmetry breaking pha
transitions has found increasing attention in a variety of
plications ranging from condensed matter systems to cos
logical scenarios@1#. The idea to consider baryons as top
logical defects in anN-component chiral meson fieldF i
constrained byF25const@2# similarly has initiated attempts
to estimate multiplicities of baryon and antibaryon produ
tion in high energy events or heavy ion collisions from t
dynamics of defect formation during the cooling phase of
expanding hot hadronic gas@3,4#. There are strong theoret
cal indications that during this cooling process the ch
O~N! symmetry is spontaneously broken near a critical te
peratureTc , and since the critical temperature is estimated
be of the order of the pion massmp ~@5# and references
therein!, it may appear sufficient to describe this chiral tra
sition in the framework of low-energy effective theory fo
the mesonic fieldsF i @6#. However, perturbative methods fo
the evaluation of the relevant effective potential near
critical temperature are probably not very reliable; the r
eventually played by other degrees of freedom is not re
understood, so at present it is not even clear whether
chiral transition would be first or second order~see, e.g., the
discussion in@7,8#!.

In analogy with phenomena observed in condensed ma
systems there also have been speculations about the sim
neous ocurrence of extended domains with different aver
orientation of the aligned field@‘‘disoriented chiral conden-
sate’’ ~DCC!# which rearrange into a uniform vacuum on
much longer time scale and therefore could manifest th
selves through anomalous branching ratios for the produc
of differently charged mesons@9#. Evidently, the existence o
differently oriented domains and defect formation are in
mately related, especially if the defects are of topologi
type which cannot simply disappear from a field configu
tion by local unwinding.

*Email address: holzwarth@physik.uni-siegen.de
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Depending on the physical system under consideration
nature of the defects is determined by the choice of the m
fold on which the fields live@10#: If the constraintF2

5const is enforced, the fields live on th
(N21)-dimensional sphereSN21, conveniently param-
etrized by angular variables. This embedding can prov
defects with a topologically protected winding number a
thus in case of the chiral field allows to identify them wi
baryons.

Near the phase transition, however, it may be appropr
to relax the constraint and allow allN components ofF to
move independently. Then a EuclideanRN embedding ap-
pears most convenient and in fact, the possible formation
DCC’s in the chiral phase transition has been investigate
this framework@11#. The winding number of a field configu
ration embedded inRN is, however, not topologically con
served: it will undergo discrete changes, if at some spa
time point all field components vanish, i.e., if the fie
configuration moves across the originF2(x)50.

In order to preserve the identification of winding numb
with baryon number it is necessary to insist on the angu
nature of the chiral field, while the additional degree of fre
dom is picked up by the modulusuFu, the scalars field. In
other words, the topologically trivialRN embedding is re-
placed by theR13SN21 manifold with nontrivial homotopy
groupZ. Here the originF50 is excluded as a highly sin
gular branch point where different angular sheets are
together. Any field configuration which moves across t
point, leaves a defect or antidefect of winding number61 at
the spatial position where this happens, which remains c
nected to the rest of the moving field by a string. The spa
structure of string and defect are determined by the dynam
of the classical field. The nontrivial structure of the modul
of F along the string constitutes the ‘‘bag,’’ which interpo
lates from the vacuum value of thes field surrounding the
defect to a~small! value in its center where the angular field
change rapidly from one sheet to the next. For a simple
11)-dimensional O~2! model this has been discussed in d
tail in @12#.
©1999 The American Physical Society22-1
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These considerations naturally pose two questions: H
do different embeddings affect the average multiplicities
defects and antidefects and the possible existence of di
ented domains during the chiral transition? What is the
fluence of the spatial structure of the topological defects~as
determined by the temperature-dependent effective act!
on their production multiplicities and on the possible form
tion of large extended disoriented domains?

One may hope that for the essential features of de
formation the order of the transition is not very important.
the transition is first order then it would proceed throu
nucleation of bubbles@13#, which in their interior are char-
acterized by an aligned chiral field with nonvanishing av
age value^uFu&5 f 0(Tc) of the chiral field as determine
through the nontrivial minimum of the effective potenti
near Tc . The orientation of the aligned field in differen
bubbles could be considered as random, so the average
tance of their centers can be taken as an initial correla
length j(Tc) at Tc . This length provides the relevant sca
for defect formation, irrespective of its physical size. On t
scale the total volumeV considered can be identified with th
total number of bubble seeds nearTc . Growth and coales-
cence of bubbles then leads to the formation of topolog
defects within a typical formation timet characteristic for
the damping of local fluctuations.

Decisive for the multiplicity of the created defects is t
ratio between their spatial extent, i.e., the ‘‘radius’’
‘‘winding length’’ l W of the defects at the time of their for
mation and the correlation lengthj(Tc). The winding length
is determined by the stabilization mechanism suppl
through the effective action for the average field.

If the winding lengthl W is much smaller than the corre
lation length the defects can be considered as pointlike
the scalej(Tc). Then the purely combinatorial rules@14# of
random lattices apply for their formation, i.e., their avera
densityn is given by the Kibble limit

n5~N11N2!/V5
1

2
~2!2D lD , ~1!

where (N11N2) is the number of defects plus antidefec
D is the space dimension, and the factorlD is the average
ratio of the numbers ofD simplices and vertices in a larg
random lattice, i.e.,l151,l252,l35 24

35 p2, etc.@15#. In this
case the random field fluctuations during the typical timet
get transformed into a rather dense ensemble of defects
antidefects. These may become diluted in the following d
to annihilation processes on a much larger time scale.

If, however, the value of the winding lengthl W is larger
than the average distance of the bubble seeds, then stab
tion dynamics will prevent the formation of pointlike defec
and antidefects inside the volume occupied by large
tended stable defects or antidefects and Eq.~1! has to be
replaced by

n5~N11N2!/V5
1

2 S 2
l W

j D 2D

lD , ~2!
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i.e., before they have a chance to form, point defects
antidefects get instantly~i.e., within time t) eaten by big
stable solitons which carry the net winding number of t
chiral field within the volume occupied by them. The form
tion of these large extended solitons is a direct process w
does not proceed through multiple annihilations of sma
defects.

If for a sudden quench (tQ!t) the effective potential at
T50 is established before any dynamical or dissipat
mechanism can affect the initial random field configurati
then the winding lengthl W(T) nearT50 will be relevant for
the size of the ‘‘cold’’ defects formed. With the relevan
scale still given by the initial correlation length or avera
bubble distancej(Tc) near Tc , the ratio l W(T50)/j(Tc)
will enter into Eq.~2!.

If typical quench times are much larger than the format
time (tQ@t) then the number of initially created defects a
antidefects will be given by Eq.~2! with winding lengthl W
characteristic forT'Tc . Subsequent changes in the defe
multiplicities during the continuation of the quench depe
on the scaling behavior of their winding length: ifl W(T)
decreases with the decreasing temperature@as in three spatia
dimensions wherel W scales likef 0(T)21] then the~initially
small! number of~initially large! defects stays small, so th
multiplicity remains near the ratiol W(Tc)/j(Tc) in ~2!. On
the other hand, ifl W(T) increases during the quench@as in
one spatial dimension wherel W scales like f 0(T)1/2], the
growing defects swallow many of the defect-antidefect pa
so at the end of the slow quench the resulting multiplicit
are the same as for a sudden quench, i.e., determined b
ratio l W(T50)/j(Tc).

If the transition is second order no bubbles appear and
average distance between bubbles should be replaced b
instantaneous correlation lengthj(T). For finite rate of cool-
ing j(T) remains finite nearTc because critical slowing
down prevents response over large distances@16#. On the
other handf 0(T) stays close to zero which~in 3 dimensions!
implies largel W . So also in this case the relevant windin
lengths may exceed the pertinent correlation length of
plasma, so defect multiplicities can be much smaller than
limiting value given by Eq.~1!.

Defect formation is intimately related with the size
DCC domains. If the transition proceeds in a way as to fo
a dense gas of pointlike defects and antidefects accordin
the Kibble limit ~1!, then domains of topologically trivia
mesonic field which fill the remaining space between
different defects consequently have to be small~in units of
j). With increasing ratiol W /j the number of defects create
decreases rapidly according to Eq.~2!, but the chiral field in
the spatial domains separating the defects is correlated du
the large winding length of the defects which ‘‘organize’’ th
field surrounding them. In both limiting cases there seem
be little room for large~in units ofj) domains of aligned but
randomly oriented locally trivial field configurations. The a
tual physical size of these domains, of course, still depe
on the magnitude of the basic length scalej in physical
units; this, naturally, depends on the physical system con
ered and on the order of the transition. For the hot chiral
in the chirally symmetric phase aboveTc numbers forj typi-
2-2
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FORMATION OF EXTENDED TOPOLOGICAL DEFECTS . . . PHYSICAL REVIEW D 59 105022
cally quoted range from 0.5 fm to 1 fm. On a lattice with
lattice constant of that size individual ‘‘cold’’ baryons wi
cover just one lattice unit or less, while on formation nearTc
the ‘‘melted’’ baryons @17# may smoothly extend over
large number of cells. We therefore expect a situation wh
the above considerations about the relevance of the win
length typically apply.

For a discussion of the chiral phase transition in
framework of effective meson fields it is therefore necess
to embed the fields in a manifold which allows for the top
logical protection of winding number, i.e., to use a separat
into angular field variables and one moduluss field. Practi-
cally, in lattice simulations, where topological arguments
longer apply, conserving algorithms have to be used for
updating of configurations during their evolution. We w
describe the results of such simulations for the 1D-O~2!
model in Sec. II, and for the 2D-O~3! model in Sec. III. It is
expected that the bias introduced into the initial configu
tions through explicit chiral symmetry breaking provides a
other efficient mechanism to suppress defect formation@18#.
This effect should be discussed in connection with the e
lution of thes field. We shall concentrate here on the inte
play between winding length and defect densities. Beca
the winding length is mainly determined by the dynamics
the angular field variables we postpone a detailed discus
of features related to the evolution of the moduluss field
and, correspondingly, use unbiased initial configuratio
only.

II. O „2… MODEL IN 1 11 DIMENSIONS

Some of these features can be nicely visualized in
simple O~2! model in 111 dimensions. As discussed abo
we concentrate here on the relation between winding len
and defect density. To define the notation and for comple
ness we repeat some facts discussed in@12# concerning the
topologically trivialR2 vs nontrivialR13S1 embedding. De-
fects arise as stable static solutions for the effective Lagra
ian density taken in the standardF4 form ~summation over
a51,2 andm50,1 understood!

L0~F!5
1

2
]mFa]mFa1

lc

4
~F22 f 2!22HF1 . ~3!

The termHF1 in Eq. ~3! breaks chiral O~2! symmetry ex-
plicitly. In order to keep the minimum of the potential fo
finite H at theH-independent valueF25 f 0

2 we define

f 25 f 0
22

H

lcf 0
. ~4!

In accordance with conclusions from 1-loop renormalizat
group applied to Eq.~3! we will take lc andH as tempera-
ture independent, whilef 0(T) decreases asT rises fromT
50 towardsT5Tc .

The Cartesian componentsF1,2 (2`,F1,2,`) define
the EuclideanR2 embedding of this model, while modulu
field s and the angular variablef (0,s,`,2`,f
,`) related toF i through
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F1~x,t !5s~x,t !cosf~x,t !, F2~x,t !5s~x,t !sinf~x,t !
~5!

define the embedding into theS13R1 manifold. Thes and
p masses corresponding to these fields are

mp
2 5

H

f 0
, ms

252lcf 0
21mp

2 . ~6!

A convenient unit for dimensionful quantities is th
temperature-independent symmetry breakerH of mass di-
mension 2. So, in the following, if numbers are given f
dimensionful quantities, they are to be multiplied by app
priate powers ofH.

In the EuclideanR2 embedding the static part of Eq.~3!
leads to stable nontopological solitons as long as the ineq
ity

f 0
3 lc

H
.21.28 ~7!

is satisfied. Otherwise, the only stable solution is the triv
ground stateF1[ f 0 , F2[0. This corresponds to approx
mately ms.6.6 mp , as stability condition. For a typica
coupling strengthlc /H560 ~which we use in the following!
this implies mp,1.2. On the other hand, inR13S1, the
winding numberB of topologically nontrivial field configu-
rations with fixed angular boundary conditionsf(6`,t)
52p n6 , (n6 : integer)

B5
1

2pE2`

` ]

]x
f~x,t !dx5n12n2 , ~8!

is topologically conserved. For values off 0(T) below the
limiting value ~7! the angular fieldf of nontrivial static con-
figurations collapses into pointlike defects at some posit
x5x0, while the modulus fields describes a spatially ex
tended ‘‘bag’’ profile satisfying

s92lcs~s22 f 2!1H50 ~9!

with s~x→x0!→10, and s~ uxu→`!→ f 0 .

The radius of this bag scales approximately likep/ms .
Therefore, withf 0 small nearTc , where the stability condi-
tion ~7! is not satisfied and the angular field collapsed to
point defect, the bag radius still is comparable to the angu
winding length l W'p/mp of the soliton, which solves the
static O~2! model ~3!, if the constraintF2[ f 0

2 is enforced,
i.e., if we simply consider a U~1! model on a circleS1.

On the other hand, if the stability condition~7! is satisfied,
the static solutions of the O~2! model in R2 and in R13S1

embedding coincide. Because the modulus field of these c
figurations stays close tof 0, the corresponding angular fiel
essentially also coincides with the soliton of the model co
strained to the circleS1 with s[ f 0.

Statistical ensembles of these stable solutions are
pected at the end of a cooling process that evolves from
initial ensemble of random configurations with correlati
length j. The quench is defined through the variation
2-3
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G. HOLZWARTH PHYSICAL REVIEW D 59 105022
f 0(T) with time. For a numerical simulation the initial con
figurations before the onset of the quench we choose Ga
ian deviates in the field componentsF1,2( i ), at the points
xi5 i j ( i 50, . . . ,NL) of a spatial grid of total lengthL
5NLj with lattice constantj which defines the correlation
length or distance of bubble seeds nearTc . Periodic bound-
ary conditions are imposed by choosingF1,2(0)5F1,2(NL).
From these random values of the Cartesian field compon
the initial configuration of the angular fieldf( i ) is obtained
by taking the shortest path from the angle at pointxi to the
angle at a neighboring pointxi 11. This guarantees that th
absolute value of the increment in the angle from one po
to the next is always less thanp. Due to the periodic bound
ary conditions in the Cartesian field components the diff
ence in the angular fieldf(NL)2f(0) then is an integer
multiple of 2p, which defines the winding numberB of that
particular random initial configuration.

As we discussed above the winding length of nontriv
solutions in different embeddings is similar to the windi
length of the model with the modulus ofF constrained to
F2[ f 0

2(T). The essentials of the relation between def
winding length and defect density therefore can also be
served within the simple U~1! @or nonlinear O~2!# model. As
an example we consider the sudden quench where the
tially prepared configurations are exposed at timet50 to the
effective action with constantf 0(T50). Then, within relax-
ation timet, the configurations evolve into an ensemble
stable defects with winding lengthl W'p/mp5p( f 0 /H)1/2.
In Fig. 1 the average final densityn of defects plus antide
fects averaged over an ensemble of 100 random initial c
figurations selected with total windingB50 on anNL51000
lattice is plotted against the symmetry-breaking massmp .

The region wheremp is less thanp is essentially charac
terized by a linear rise of the densityn as expected from Eq
~2! for D51. Beyond this value the winding length becom
comparable to the lattice constantj and we observe the onse

FIG. 1. Defect plus antidefect densityn5(N11N2)/NL aver-
aged over an ensemble of 100 random initial configurations on
NL51000 lattice after a sudden quench as function of inverse w
ing length mp for the nonlinear O~2! model. The squares in th
lower left corner show the same observable for the linear O~2!
model inR2 embedding.
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of saturation withn slowly converging towards the Kibble
limit ~1! of n50.25~for D51). A peculiar feature is that the
increase in the number of finally surviving defects and a
tidefects with decreasing winding length proceeds in qu
well-defined plateaus which are very robust against detail
the evolution algorithm. Note that the absolute number
defects in the ensemble underlying Fig. 1 is rather large: e
in the sudden decrease ofn just belowmp52.9 a total aver-
age number of 0.053105 defects are eaten by a tiny increa
of the winding length, while in the region (2.1<mp<2.8)
mainly empty space in between defects is reduced. E
dently, this is an indication of a lattice effect: as we ha
noted, ifmp drops belowp the defects start to grow beyon
one lattice unit. As expected, for very small values ofmp the
average density is again rather smooth. Altogether, we m
conclude that the experiment confirms the expectation
pressed in Eq.~2!.

The squares connected by a full line in the left low
corner of Fig. 1 show average defect densities as calcul
in the unconstrained O~2! model in EuclideanR2 manifold.
The theoretical limit of defect stability here~for lc560) is
close tomp'1.2. However, in the finite lattice calculatio
the defects disappear already nearmp'0.6. Beyond that
value the resulting defect densities are zero, while in
region of stability the average densities closely follow t
linear rise as obtained in the U~1! model. Irrespective of the
stability condition, for the unconstrained O~2! model embed-
ded inR13S1, the defect densities are similar to those of t
U~1! model for all values ofmp . However, in the region of
instability where Eq.~7! is violated, average multiplicities in
R13S1 embedding slightly exceed the U~1! results due to
the smaller size of the radial bag~depending on the choice o
lc) @cf. Eq. ~6!#.

Relations between winding lengthl W of defects and for-
mation of DCC domains cannot be addressed within the O~2!
model, because the strength of the symmetry breaker ne
sary for finite l W prevents local alignment in random dire
tions. Outside the range of the defects the anglef stabilizes
always at multiples of 2p. We therefore turn to the O~3!
model whose additional freedom allows to at least disc
partial aspects of DCC formation.

III. NONLINEAR O „3… MODEL IN 2 11 DIMENSIONS

Corresponding to our discussion of the constrained O~2!
model we consider in this section only that version of t
O~3! model where the modulus ofF is constrained to a fixed
value f 0. In two spatial dimensionsf 0 is of mass dimension
1/2, so we use appropriate powers off 0

2 as units for all di-

mensionful quantities. Then the fieldsF are unit vectorsF̂
which live on the sphereS2 and conveniently are param
etrized by two anglesu andf:

F1~x,t !5 cosf~x,t !sinu~x,t !,

F2~x,t !5 sinf~x,t !sinu~x,t !,

F3~x,t !5 cosu~x,t !. ~10!

n
-

2-4
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If F̂ converges towards a fixed unit vector, saye3̂, for spatial
infinity on R2 ~sufficiently fast for the energy to converge!
then the configuration space for smooth fields is disc
nected due to the nontriviality of the second homotopy gro
p2(S2)5Z. Individual configurations then are characteriz
by the winding numberB and local winding densityr:

B5E r d2x, ~11!

r[
1

8p
e i j F̂•~] iF̂3] jF̂! ~12!

~summation over spatial indicesi , j understood!.
We consider the effective energy functional

E@F̂#5E S 1

2
] iF̂•] iF̂1l2 r21

1

2l2
~F̂2ê3!2D d2x.

~13!

Evidently, l serves to scale the spatial extension of sta
solutions, as it can be eliminated byx→lx. Both terms inE,
the r2 ~‘‘Skyrme’’ ! term and the explicitly symmetry
breaking last term, are necessary to stabilize solitons~the
‘‘baby skyrmions’’ @19#! with fixed winding lengthl W}l.
For our present purpose to study the relation betweenl W and
average defect densities created in a symmetry breaking
sition it is therefore sufficient to impose the quench throu
an appropriate time dependence ofl.

Discretizing the spatial coordinates to a two-dimensio
lattice, the limitl!1 will produce defects which are poin
like on the scale of the lattice constant, whilel@1 will
create smooth density distributions which extend over m
lattice units. A characteristic problem arises in numeri
simulations on a discrete lattice if the spatial extent of s
tons is of the order of a few lattice constants or even le
this implies that differences in the anglesu andf between
neighboring lattice points may be of the order ofp. In that
case the definition~12! for the winding densityr no longer
applies. It is only for infinitesimally small differentials tha
the surface elementdV on S2 which is the image of the
elementary lattice celld2x is given bydV54pr d2x. But it
is essential to maintain also for finite lattice constants
geometrical meaning ofdV as the surface area which th
image of the unit lattice cell cuts out fromS2. This can be
readily implemented by defining 2pr as the~oriented! area
of the spherical triangle which is cut out onS2 by the three

geodesics which connect the end points of threeF̂ vectors
attached to three corners of an elementary lattice cell. T

works for arbitrary relative orientations of theseF̂ vectors
and allows even to detect one complete soliton inside
10502
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elementary lattice cell.1 Clearly, this definition reduces to Eq
~12! in the continuum limit. Periodic boundary condition

~which compactifyR2 to a torus!, or F̂→ê3 ~which compac-
tifies R2 to S2) then lead to integer values of the total win
ing numberB obtained by summing up all oriented spheric
triangles.

The topological considerations which guarantee conse
tion of B for continuous fields do not hold on the discre

lattice, becauseF̂ vectors attached to neighboring points o
the lattice can differ arbitrarily. However,B conservation can
easily be reimplemented into the evolution of the configu
tions by allowing in each updating step only configuration2

which conserveB. In fact, this is a convenient way to com
pare evolutions which conserveB with others that allow for
local unwinding of defects@20#. So it is also not necessary t
introduce specific types of potentials~see, e.g.,@21#! into Eq.
~13! to avoid the ‘‘exceptional’’ configurations@22# as door-
ways for unwinding.

For the first term in Eq.~13! there is no similar compul-
sory extension to finite lattice constants because it is no
geometrical nature. So, as usual we just interpret it as nea
neighbor interaction.

Having thus defined the implementation of the model~13!
on a discrete lattice which conserves those features esse
for our present purpose, it remains to specify the initial co
figurations before the onset of the quench. Again we po
pone here the question of any possible bias which may e
in these initial sets due to explicit symmetry breaking. I

stead we choose a uniformly random set ofF̂ vectors on all

interior lattice points. Only on the boundaries we imposeF̂

5ê3, i.e., u50 with randomf.
In the following sense this initial random set realizes t

maximal average number of defects which can be accom
dated on this square lattice: First it should be noted that
definition of our map~which maps a triangle formed by tw
adjoining orthogonal lattice links and the diagonal conne
ing their end points onto the interior of thesmallerof the two
complementary spherical triangles formed by the cor
sponding geodesics onS2) the image triangle covers alway
lessthan half of the sphere, and thus by definition does
contain a defect. So, this is different from the Kibble mech
nism which allows for defects inside elementary triangles
considering an additional lattice point inside the triang
However, if we add the~oriented! areas covered by the tw
adjoining images of both triangles which make up the
ementary square lattice cell then it may happen that this s

1In other words, we use a triangulation of the plane in terms of
triangles formed by two adjoining lattice links and one diagonal
each square lattice cell. Depending on the choice of the diagon
the unit cell the area covered by the image of that cell onS2 may
differ by 64p, i.e., the winding number may differ by61. How-
ever, for the ensemble average, this is not relevant.

2Practically, in a local updating procedure this requires to con
the sum ofr only in the local vicinity of the points which are
affected by the update.
2-5
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covers more than half of the sphere, and by definition
then may count that as one defect inside this elemen
lattice cell. In fact, ifl is very small, such a configuratio
will rapidly evolve into a configuration where the sum
these two spherical triangles~which represent the image o
the lattice cell! is close to 4p. We may call this the Kibble
limit for the square lattice. It differs from the triangular lim
~1! by a factor 1/4~in two dimensions!, which we interpret as
a difference in the definition of the correlation lengthj by a
factor of two for uniformly random configurations on th
vertices of a square lattice, as compared to the orig
Kibble counting which uses one additional point with ra
dom field asignment inside each of the two triangles wh
constitute the elementary square lattice cell. We consider
identification ofj with the lattice constant for a random a
signment of field vectors to each vertex of the square lat
as the natural definition of the correlation length.

This basic setup opens a wide variety of dynamical s
ations for systematic investigation. As just one example
shall discuss here only the case of a linear quench in
scale parameterl

l5l i1
l f2l i

tQ
t ~0<t<tQ! ~14!

FIG. 2. Correlation function~15! C(r )/C(0) for fast (tQ510)
~dashed line! and slow (tQ5200) ~full line! quench nearl'3.
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with l i@1 andl f!1. Starting from the initial random se
at the beginning of the quench a large value ofl i attempts to
establish long range order with very small values of the lo
winding densityr. Whenl approaches values aoundl'3
to 1, individual defects start to be formed out of this more
less organized low-density soup. Near the end of suc
quench, for very smalll we expext an ensemble ofN1

defects andN2 antidefects each essentially localized on
single lattice cell. Fort.tQ the evolution can still be contin
ued withl5l f to allow for final stabilization of the defect
formed, or for possible mutual annihilations on a mu
longer time scale.

After the onset of the quench ordering of the configu
tions proceeds within typical relaxation timest and the ex-
tent to which the ordering can spread before the local def
appear is governed by the ratiot/tQ , which is the appropri-
ate measure for the quench velocity. For a fast quench
expect the final defect density to be close to our modifi
Kibble limit discussed above, because most of the initial r
dom ~incomplete! winding will directly evolve into complete
local 4p winding. For slow quenches the random windin
will have time to be smoothed away into large areas of l
winding density, before finally a few defects and antidefe
reappear.

This naturally provides the appropriate setting to inves
gate formation and size of DCC domains. There is, howev
a severe limitation to this discussion, also within the mo
~13!: The stabilization mechanism of the baby skyrmio
relies on a strong symmetry breaker, the last term in
~13!. This term prevents formation of large areas of align
but randomly oriented field configurations if we consider t

complete field vectorsF̂. In the spatial domains outside th
range of the topological defects the field will essentially
aligned inê3 direction. Still, a partial aspect of DCC forma
tion can be studied: In the so called ‘‘easy plane’’ orthogo
to ê3, the field componentsF1 and F2 can freely align in
random directions and the partial correlation function

C~ u221u!5^cosf~1!cosf~2!1 sinf~1!sinf~2!&
~15!

~where the arguments 1,2 stand for two arbitrary latt
FIG. 3. F field projected into~and renormalized in! the easy plane for~a! fast (tQ510) and~b! slow (tQ5200) quench nearl'3.
2-6
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FIG. 4. Winding densityr during ~a! fast (tQ510) and~b! slow (tQ5200) quench nearl'3.
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points! provides the information about the size of align
domains. It should, however, be noted that the aligning fo
in the easy plane due to the first term in Eq.~13! ~the nearest
neighbor interaction! is active only in areas where sinuÓ0.
This means that the formation of DCC domains can only
studied during the early parts of the quench where
strength of the symmetry breaker is not yet sufficient to fo
small localized defects with strictly aligned~in ê3 direction!
domains in between. As soon as these local defects ap
~aroundl,3) the disoriented aligned areas in the easy pl
begin to rerandomize due to thermal fluctuations. So,
formation of DCC domains is closely connected to small
nonvanishing winding density, which by itself is an intere
ing aspect.

In the following we describe some results of numeric
simulations on a 51351 lattice with an ensemble of rando
initial configurations which, however, have been selected
to satisfyB50. Of course, other values ofB can be selected
to study a possible influence of the total winding numb
The algorithm conservesB as discussed above. For illustr
tion we present two intermediate steps in the evolution
one specific arbitrary configuration during a fast quen
(tQ510 time steps! and a slow quench (tQ5200 time steps!.

The first set shows the situation shortly beforel(t)
crosses the value ofl'3, i.e., just before localized defec
begin to form. The corresponding correlation functions~15!
in Fig. 2 indicate that the ordering in the easy plane h
hardly progressed beyond one lattice unit during the
quench, while it extends beyond five lattice units after
10502
e

e
e

ear
e
e
t
-

l

s

.

f
h

s
st
e

slow quench. This becomes very evident if we look~in Figs.
3! at the fieldF projected into the easy plane and normaliz
to unity in the easy plane~i.e., the components of the arrow
in the plot simply are cosf and sinf). This provides an
instant view of DCC domains and defects and it shows t
for the fast quench a high density of nascent defects lea
no space for large aligned domains while during the sl
quench a well-developed DCC pattern emerges. The co
sponding winding density distributionsr display a rough
surface@Fig. 4~a!# versus essentially smooth areas of lo
density with few emerging local spikes@Fig. 4~b!#. Finally,
Fig. 5 shows the resulting ensemble of defects shortly a
the end of the quench wherel has reached its final value o
l f50.1 and the local defects have stabilized. Counting
final number of defects and antidefects which evolve fro
this particular initial configuration we findN15N2546 for
the fast (tQ510) quench andN15N2515 for the slow
(tQ5200) quench.

Evolving N550 randomly chosen~but selected forB
50) initial configurations through the quench~14! leads to
an ensemble of defects and antidefects for each quench
tQ as shown in Fig. 6. The modified Kibble limit as dis
cussed above for the square lattice isN11N2→(50
350)/16'156. The boundary conditions (u50) reduce this
value to about 144 for this lattice size. For the sudd
quench (tQ50) the measured numbers approach a m
value of only about 133 due to a few instant annihilation
For increasing quench time the defect numbers drop t
mean value of about 32 neartQ5200 as indicated by the ful
FIG. 5. Final winding densityr after ~a! fast (tQ510) and~b! slow (tQ5200) quench atl50.1. The resulting~anti!defect numbers are
N15N2546 andN15N2515 in cases~a! and ~b!, respectively.
2-7
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G. HOLZWARTH PHYSICAL REVIEW D 59 105022
line in Fig. 6 which connects the mean values for the diff
ent quench times. The root mean square deviation from
average values decreases from aboutD'10 for the sudden
quench toD'5 neartQ5200. Of course, these details d
pend on the specific choice of the quench mechanism u
here. For applications to specific physical situations the
propriate temperature dependence of the effective action
temporal structure of the quench has to implemented.

IV. CONCLUSION

The purpose of this paper is to study the influence of
spatial extent of topological defects on their formation d
ing a dynamical quench in a symmetry breaking phase t
sition. Apart from the combinatorial factors of the Kibb
mechanism it is the ratio of the momentaneous magnitud
the winding lengthl W ~as determined by the temperatu
dependent effective classical Lagrangian! to the correlation
length j nearTc which is essential for the resulting mult
plicities of defects and antidefects. This leads to a cru
role of the quench time on the scale of the relaxation timt
typically needed for defect formation. If during the early pa
of the quench the winding length is large on the scale oj,
the resulting defect multiplicities are much reduced as co
pared to the combinatorial Kibble limit for pointlike defect

As illustration we presented numerical simulations in t
nonlinear 1D-O~2! and 2D-O~3! models which are charac

FIG. 6. Final defect plus antidefect multiplicities for differe
quench timestQ ; their average values are connected by the
line.
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terized by a topologically conserved winding numberB, in
view of applications where this number corresponds to
physically relevant observable. For the lattice simulation i
essential to implement the geometrical meaning of the wi
ing density for the discrete map. Then boundary conditio
on angular variables still serve to enforce integer values
B, although topological arguments forB conservation no
longer apply. However, by explicit control during the evol
tion B-violating steps can be excluded. If conservation ofB
is an important feature of the physical system under disc
sion, like baryon number conservation in chiral meson fi
models, extensions to the linear versions of O~N! models
have to include the additional degree of freedom in the fo
of a modulus variable in anSN213R1 embedding. For com-
parison we have briefly discussed the topologically triv
R2-embedding of the linear O~2! model. Unfortunately, in
these low-dimensional models, the winding length of defe
is closely tied to explicit symmetry breaking. This leads to
dramatic difference between Euclidean and angular emb
ding if the symmetry breaking is sufficiently strong to des
bilize nontrivial configurations. The same feature also ha
pers the investigation of DCC domains in these lo
dimensional models. It is only in the easy plane of the O~3!
model where partial aspects of randomly oriented alignm
can be observed. It has been argued that the bias introd
into the ensemble of initial configurations~for T.Tc) by
explicit symmetry breaking causes another drastic reduc
of defect multiplicities. This interesting aspect has be
omitted here, again for the same reason that the symm
breakers simultaneously have to serve as stabilizers for
defects.

Of course, the real challenge is the formation of 3D-O~4!
skyrmions as a nonperturbative model of how baryo
emerge in the cooling of the hot meson soup. In that mo
stabilization of defects and explicit symmetry breaki
through small mesonic masses are almost unrelated. Th
fore all the interesting features concerning winding leng
formation of DCC domains, effects of the modulus fie
baryon number conservation, bias in the initial ensemble,
can be studied quite independently with the same meth
used here for baby skyrmions.
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