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Formation of extended topological defects during symmetry breaking phase transitions in )
and O(3) models
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The density of extended topological defects created during symmetry breaking phase transitions depends on
the ratio between the correlation length in the symmetric phaseTheand the winding length of the defects
as determined by the momentaneous effective action after a typical relaxation time. Conservation of winding
number in numerical simulations requires a suitable embedding of the field variables and the appropriate
geometrical implementation of the winding density on the discrete lattice. We define a modified Kibble limit
for the square lattice and obtain defect densities as functions of winding lengtig)iar@ Q3) models. The
latter allows one to observe the formation of disoriented aligned domains within the easy plane. Their extent is
severely limited by the momentaneous defect density during the course of the quench.
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[. INTRODUCTION Depending on the physical system under consideration the
nature of the defects is determined by the choice of the mani-
The formation of defects during symmetry breaking phaséold on which the fields live[10]: If the constraint®?
transitions has found increasing attention in a variety of ap—const is enforced, the fields live on the
plications ranging from condensed matter systems to COSMQN — 1)-dimensional sphereSN~2, conveniently param-
logical scenariog1]. The idea to consider baryons as topo- gyized by angular variables. This embedding can provide
logical defects in anN-component chiral meson field;  yofocts with a topologically protected winding number and

. 2_ - - - .
const(alned byb _—pqpst[z] similarly has |n|t|_ated attempts s in case of the chiral field allows to identify them with
to estimate multiplicities of baryon and antibaryon produc—baryons

tion in .high energy event; or he‘.”“’y fon coIIi'sions from the Near the phase transition, however, it may be appropriate
dynamics of defect formation during the cooling phase of an . ' '
o relax the constraint and allow ad\l components ofb to

expanding hot hadronic g48,4]. There are strong theoreti- X ) .
cal indications that during this cooling process the chiralMOV€ independently. Then a Euclide®Y embedding ap-

O(N) symmetry is spontaneously broken near a critical temP&ars most convenient and in fact, the possible formation of
peratureT,., and since the critical temperature is estimated t?CC’S in the chiral phase transition has been investigated in
be of the order of the pion mass, ([5] and references th|§ framework[ll]_. Thg winding number ofaﬂe!d configu-
therein, it may appear sufficient to describe this chiral tran-ration embedded iR" is, however, not topologically con-
sition in the framework of low-energy effective theory for served: it will undergo discrete changes, if at some space-
the mesonic field®; [6]. However, perturbative methods for time point all field components vanish, i.e., if the field
the evaluation of the relevant effective potential near theconfiguration moves across the origl?(x)=0.

critical temperature are probably not very reliable; the role In order to preserve the identification of winding number
eventually played by other degrees of freedom is not reallyith baryon number it is necessary to insist on the angular
understood, so at present it is not even clear whether thigature of the chiral field, while the additional degree of free-
chiral transition would be first or second ordeee, e.g., the dom is picked up by the moduly®|, the scalaw field. In
discussion in7,8]). other words, the topologically triviaBRN embedding is re-

In analogy with phenomena observed in condensed mattgfaced by theR' x SN~ manifold with nontrivial homotopy
systems there also have been speculations about the simulgroup Z. Here the origind =0 is excluded as a highly sin-
neous ocurrence of extended domains with different averaggular branch point where different angular sheets are tied
orientation of the aligned fielft‘disoriented chiral conden- together. Any field configuration which moves across this
sate” (DCC)] which rearrange into a uniform vacuum on a point, leaves a defect or antidefect of winding numiselr at
much longer time scale and therefore could manifest themthe spatial position where this happens, which remains con-
selves through anomalous branching ratios for the productionected to the rest of the moving field by a string. The spatial
of differently charged mesoni8]. Evidently, the existence of structure of string and defect are determined by the dynamics
differently oriented domains and defect formation are inti-of the classical field. The nontrivial structure of the modulus
mately related, especially if the defects are of topologicalof ® along the string constitutes the “bag,” which interpo-
type which cannot simply disappear from a field configura-lates from the vacuum value of the field surrounding the
tion by local unwinding. defect to asmall) value in its center where the angular fields

change rapidly from one sheet to the next. For a simple (1
+1)-dimensional @) model this has been discussed in de-
*Email address: holzwarth@physik.uni-siegen.de tail in [12].
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These considerations naturally pose two questions: Howe., before they have a chance to form, point defects and
do different embeddings affect the average multiplicities ofantidefects get instantlyi.e., within time 7) eaten by big
defects and antidefects and the possible existence of disomstable solitons which carry the net winding number of the
ented domains during the chiral transition? What is the inchiral field within the volume occupied by them. The forma-
fluence of the spatial structure of the topological deféats tion of these large extended solitons is a direct process which
determined by the temperature-dependent effective actiordoes not proceed through multiple annihilations of smaller
on their production multiplicities and on the possible forma-defects.
tion of large extended disoriented domains? If for a sudden quencht{<r7) the effective potential at

One may hope that for the essential features of defecT=0 is established before any dynamical or dissipative
formation the order of the transition is not very important. If mechanism can affect the initial random field configuration
the transition is first order then it would proceed throughthen the winding length,(T) nearT=0 will be relevant for
nucleation of bubble§13], which in their interior are char- the size of the “cold” defects formed. With the relevant
acterized by an aligned chiral field with nonvanishing aver-scale still given by the initial correlation length or average
age value(|®|)=fy(T.) of the chiral field as determined bubble distance(T.) near T, the ratioly(T=0)/&(T,)
through the nontrivial minimum of the effective potential will enter into Eq.(2).
near T.. The orientation of the aligned field in different  If typical quench times are much larger than the formation
bubbles could be considered as random, so the average digme (to> 7) then the number of initially created defects and
tance of their centers can be taken as an initial correlatiomntidefects will be given by Eq2) with winding lengthl,
length £(T.) at T,. This length provides the relevant scale characteristic folT~T.. Subsequent changes in the defect
for defect formation, irrespective of its physical size. On thismultiplicities during the continuation of the quench depend
scale the total volum¥ considered can be identified with the on the scaling behavior of their winding length: lif,(T)
total number of bubble seeds negr. Growth and coales- decreases with the decreasing temperdtasen three spatial
cence of bubbles then leads to the formation of topologicabtiimensions wheré,, scales likef o(T) "] then the(initially
defects within a typical formation time characteristic for ~smal) number of(initially large) defects stays small, so the
the damping of local fluctuations. multiplicity remains near the ratiby(T.)/&(T.) in (2). On

Decisive for the multiplicity of the created defects is the the other hand, if,,(T) increases during the quengas in
ratio between their spatial extent, i.e., the “radius” or one spatial dimension wherg, scales Iikefo(T)l’z], the
“winding length” |y of the defects at the time of their for- growing defects swallow many of the defect-antidefect pairs,
mation and the correlation leng#{T.). The winding length  so at the end of the slow quench the resulting multiplicities
is determined by the stabilization mechanism suppliecare the same as for a sudden quench, i.e., determined by the
through the effective action for the average field. ratio | (T=0)/&(T,).

If the winding lengthlyy, is much smaller than the corre-  If the transition is second order no bubbles appear and the
lation length the defects can be considered as pointlike oaverage distance between bubbles should be replaced by an
the scale£(T.). Then the purely combinatorial rul¢$4] of  instantaneous correlation lengttiT). For finite rate of cool-
random lattices apply for their formation, i.e., their averageing &£(T) remains finite neafT, because critical slowing
densityn is given by the Kibble limit down prevents response over large distarjd#g. On the

other hand ((T) stays close to zero whigin 3 dimensions
1 implies largel,. So also in this case the relevant winding
n=(N,+N_)/V= 5 (2)"° \p, (1) lengths may exceed the pertinent correlation length of the
plasma, so defect multiplicities can be much smaller than the
limiting value given by Eq(1).
where (N, +N_) is the number of defects plus antidefects, Defect formation is intimately related with the size of
D is the space dimension, and the fackgy is the average DCC domains. If the transition proceeds in a way as to form
ratio of the numbers ob simplices and vertices in a large @ dense gas of pointlike defects and antidefects according to
random lattice, i.eX;=1\,=2\;= 272, etc.[15]. Inthis  the Kibble limit (1), then domains of topologically trivial
case the random field fluctuations during the typical time Mesonic field which fill the remaining space between the
get transformed into a rather dense ensemble of defects afferent defects consequently have to be sriiallunits of
antidefects. These may become diluted in the following duef)- With increasing ratid,/¢ the number of defects created
to annihilation processes on a much larger time scale. ~ decreases rapidly according to Eg), but the chiral field in

If, however, the value of the winding lengtly, is larger ~ the spatial domains separating the defects is correlated due to
than the average distance of the bubble seeds, then stabiliZ&€ large winding length of the defects which “organize” the
tion dynamics will prevent the formation of pointlike defects field surrounding them. In both limiting cases there seems to
and antidefects inside the volume occupied by large exbe little room for large(in units of £) domains of aligned but

tended stable defects or antidefects and @g.has to be randomly oriented locally trivial field configurations. The ac-
replaced by tual physical size of these domains, of course, still depends

on the magnitude of the basic length scglen physical
. units; this, naturally, depends on the physical system consid-
<2|ﬂ) N @) ered and on the order of the transition. For the hot chiral gas
3 D in the chirally symmetric phase aboV¥e numbers fofg typi-

N| =

n=(N,+N_)/V=
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cally quoted range from 0.5 fm to 1 fm. On a lattice with a & ,(x,t)=o(x,t)cosd(x,t), P,(x,t)=o(X,t)sinp(x,t)

lattice constant of that size individual “cold” baryons will (5)

cover just one lattice unit or less, while on formation n€ar

the “melted” baryons[l?] may Smooth'y extend over a define the embedding into tf@LX Rl manifold. Theo and

large number of cells. We therefore expect a situation whera@ masses corresponding to these fields are

the above considerations about the relevance of the winding Y

length typically apply. m2=— m2=2\.f2+m2. (6)
For a discussion of the chiral phase transition in the Ty e

framework of effective meson fields it is therefore necessary . . . . . .

to embed the fields in a manifold which allows for the topo-A convenient unit for dimensionful quantities is _the

logical protection of winding number, i.e., to use a separatioﬁempgrature—lndgpendent Symmet.ry breakenf mass di-

into angular field variables and one moduladield. Practi- mension 2. 50, In _t_he following, if number_s are given for

cally, in lattice simulations, where topological arguments nodlmensmnful quantities, they are to be multiplied by appro-

. : iate powers oH.
longer apply, conserving algorithms have to be used for th&"a . 2 . .
updating of configurations during their evolution. We will In the EuclidearR™ embedding the static part of E(B)

describe the results of such simulations for thB-0(2) leads to stable nontopological solitons as long as the inequal-

model in Sec. Il, and for the2-O(3) model in Sec. lll. It is ity

expected that the bias introduced into the initial configura- N

tions through explicit chiral symmetry breaking provides an- fgﬁ% 21.28 7)
other efficient mechanism to suppress defect formdti@i
This effect should be discussed in connection with the evo
lution of the o field. We shall concentrate here on the inter-
play between winding length and defect densities. Becaus ately m,>6.6 m_., as stability condition. For a typical
the winding length is mainly determined by the dynamics Ofcoupling gtrengtlm "H=60 (which we use in the followinyg
the angular field variables we po_stpone a detailed di_scussiomiS implies m_< 1°_2_ On the other hand, IRIxS!, the
of features related to the evolution of the moduladield winding numberB of topologically nontrivial field configu-

and, correspondingly, use unbiased initial configurations oo \vith fixed angular boundary condition(+ ,t)

is satisfied. Otherwise, the only stable solution is the trivial
round stateb,=f,, ®,=0. This corresponds to approxi-

only. =2mn., (n.:integer)
II. O (2) MODEL IN 1 +1 DIMENSIONS 1 (= 9
B: EJ &d)(x,t)dX:nJr—fL, (8)

Some of these features can be nicely visualized in the
simple Q2) model in 1+1 dimensions. As discussed above . logicall q | bel h
we concentrate here on the relation between winding lengtfp {oPologically conserved. For values tf(T) below the

and defect density. To define the notation and for complete-'.miting value(7) the apgular fie[dﬁ of nontrivial static con-
ness we repeat some facts discusseflLE] concerning the figurations collapses into pointlike defects at some position

topologically trivial R? vs nontrivialR1x St embedding. De- X =Xo. While the modulus fieldr describes a spatially ex-

fects arise as stable static solutions for the effective Lagrand&nded “bag” profile satisfying

ian density taken in the standagef* form (summation over " 2_¢2 _

~Neo(0?—2)+H=0 9

a=1,2 andu=0,1 understood o' heolo ) ©

1 N with o(X—Xg)— +0, and o(|x|—»)—f,.
D)==9,,0" D+ — (P2—2)2—Hd,. (3 . . . .

Lo(®) 2 #TaT Ta 4( ) ! @ The radius of this bag scales approximately likém,,.

_ _ Therefore, withf, small nearT., where the stability condi-

The termH®, in Eq. (3) breaks chiral @) symmetry ex-  tion (7) is not satisfied and the angular field collapsed to a

plicitly. In order to keep the minimum of the potential for point defect, the bag radius still is comparable to the angular

finite H at theH-independent valué?=f3 we define winding lengthl\,~m/m, of the soliton, which solves the
static 32) model (3), if the constraint(DZEfg is enforced,
f2of2_ H 4) i.e., if we simply consider a (1) model on a circlest.
O A\cfo On the other hand, if the stability conditig®) is satisfied,

the static solutions of the @) model inR? and inR*x St
In accordance with conclusions from 1-loop renormalizationembedding coincide. Because the modulus field of these con-
group applied to Eq(3) we will take A, andH as tempera- figurations stays close tfy, the corresponding angular field
ture independent, whilé,(T) decreases a¥ rises fromT  essentially also coincides with the soliton of the model con-
=0 towardsT=T,. strained to the circl&® with o=f,,.

The Cartesian componend,; , (—»<®, ,<x) define Statistical ensembles of these stable solutions are ex-
the EuclidearR? embedding of this model, while modulus pected at the end of a cooling process that evolves from an
field o and the angular variablep (0<o<w,—<g¢ initial ensemble of random configurations with correlation
<) related tod; through length £&. The quench is defined through the variation of
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025 ' - ' - ' - of saturation withn slowly converging towards the Kibble
. _O_O_OMW*”"""M limit (1) of n=0.25(for D=1). A peculiar feature is that the
/,,A»e“‘*'” increase in the number of finally surviving defects and an-
ozr //) ] tidefects with decreasing winding length proceeds in quite
4 well-defined plateaus which are very robust against details of

the evolution algorithm. Note that the absolute number of
, defects in the ensemble underlying Fig. 1 is rather large: e.g.,
p in the sudden decrease fust belowm_=2.9 a total aver-

; age number of 0.08 10° defects are eaten by a tiny increase
T o l of the winding length, while in the region (2<Im_<?2.8)
#° mainly empty space in between defects is reduced. Evi-
& dently, this is an indication of a lattice effect: as we have

el %@éb | noted, ifm_ drops belowr the defects start to grow beyond

015 H E

one lattice unit. As expected, for very small valuesrof the
average density is again rather smooth. Altogether, we may
0 1 2 3 4 5 6 7 conclude that the experiment confirms the expectation ex-

FIG. 1. Defect plus antidefect density=(N, +N_)/N_ aver- pressed in Eq(2).

aged over an ensemble of 100 random initial configurations on an The squ_ares connected by a full line ',n_ the left lower
N, = 1000 lattice after a sudden quench as function of inverse wind0rner of Fig. 1 show average defect densities as calculated

. . . 2 .
ing lengthm, for the nonlinear @) model. The squares in the IN the unconstrained @) model in EuclidearR”™ manifold.

lower left corner show the same observable for the lineg?)O The theoretical limit of defeqt Stab“ity_ her(éo_r \=60) iS_
model inR? embedding. close tom_~1.2. However, in the finite lattice calculation

the defects disappear already near~0.6. Beyond that
fo(T) with time. For a numerical simulation the initial con- value the resulting defect densities are zero, while in the
figurations before the onset of the quench we choose Gausgegion of stability the average densities closely follow the
ian deviates in the field componends, (i), at the points |inear rise as obtained in the(l) model. Irrespective of the
xi=i & (i=0,... N_) of a spatial grid of total length.  stability condition, for the unconstrained 2 model embed-
=N_¢ with lattice constant which defines the correlation ded inR'x St, the defect densities are similar to those of the
length or distance of bubble seeds n&ar Periodic bound-  U(1) model for all values ofm,.. However, in the region of
ary conditions are imposed by choositig (0)=®, (N;). instability where Eq(7) is violated, average multiplicities in
From these random values of the Cartesian field componentg! x S! embedding slightly exceed the(l) results due to
the initial configuration of the angular field(i) is obtained  the smaller size of the radial badepending on the choice of
by taking the shortest path from the angle at pointo the )\ ) [cf. Eq. (6)].
angle at a neighboring poing . ;. This guarantees that the  Relations between winding lengtl, of defects and for-
absolute value of the increment in the angle from one poinination of DCC domains cannot be addressed within tf® O
to the next is always less than Due to the periodic bound- model, because the strength of the symmetry breaker neces-
ary conditions in the Cartesian field components the differsary for finitel,, prevents local alignment in random direc-
ence in the angular fieldd(N_)— ¢(0) then is an integer tions. Outside the range of the defects the argyistabilizes
multiple of 277, which defines the winding numbe&rof that  always at multiples of Z. We therefore turn to the @)

particular random initial configuration. model whose additional freedom allows to at least discuss
As we discussed above the winding length of nontrivialpartial aspects of DCC formation.

solutions in different embeddings is similar to the winding
length of the model with the modulus @ constrained to
(DZEfS(T). The essentials of the relation between defect
winding length and defect density therefore can also be ob- Corresponding to our discussion of the constraingd) O
served within the simple (1) [or nonlinear @2)] model. As  model we consider in this section only that version of the
an example we consider the sudden quench where the in®(3) model where the modulus df is constrained to a fixed
tially prepared configurations are exposed at tim® to the  valuef. In two spatial dimension$, is of mass dimension
effective action with constarft,(T=0). Then, within relax-  1/2, so we use appropriate powersféfas units for all di-
ation time 7, the configurations evolve into an enseml/azle of z
stable defects with winding lengtly~m/m,.=m(fo/H)™ i e’ on ine spheré&? and conveniently are param-
In Fig. 1 the average final densityof defects plus antide- etrized by two angle® and &:
fects averaged over an ensemble of 100 random initial con- '
figurations selected with total windirg=0 on anN, =1000
lattice is plotted against the symmetry-breaking mass

The region wheren . is less thanr is essentially charac-

0

[1l. NONLINEAR O (3) MODEL IN 2 +1 DIMENSIONS

mensionful quantities. Then the fields are unit vectorsb

®,(x,t)= cosgp(x,t)sind(x,t),

terized by a linear rise of the densityas expected from Eq. Do(x,t)= sing(x,t)sind(x,t),
(2) for D=1. Beyond this value the winding length becomes
comparable to the lattice constanhand we observe the onset D,(x,t)= cosh(x,t). (10
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elementary lattice cefl Clearly, this definition reduces to Eq.

If o converges towards a fixed unit vector, ﬁyfor spatial ) 4 = = Ut -
(12) in the continuum limit. Periodic boundary conditions

infinity on R? (sufficiently fast for the energy to conveige N
then the configuration space for smooth fields is discon{which compactifyR? to a torus, or ®— e, (which compac-
nected due to the nontriviality of the second homotopy groupifies R? to S?) then lead to integer values of the total wind-
m,(S?)=2Z. Individual configurations then are characterizeding numberB obtained by summing up all oriented spherical
by the winding numbeB and local winding density: triangles.
The topological considerations which guarantee conserva-
tion of B for continuous fields do not hold on the discrete

B:f p d?x, (11) lattice, becaus@ vectors attached to neighboring points on
the lattice can differ arbitrarily. HoweveB conservation can
easily be reimplemented into the evolution of the configura-
tions by allowing in each updating step only configuratfons
N ~ ~ which conserveB. In fact, this is a convenient way to com-
p= géij‘b (DX ;D) (120 pare evolutions which consen&with others that allow for
local unwinding of defectf20]. So it is also not necessary to
introduce specific types of potentidksee, e.g.[21]) into Eq.
(13) to avoid the “exceptional” configuration®2] as door-
ways for unwinding.

For the first term in Eq(13) there is no similar compul-
sory extension to finite lattice constants because it is not of
L L geometrical nature. So, as usual we just interpret it as nearest

s NP R I neighbor interaction.
qe]= f (Eai‘b GPTAT pTE o (Pmeg)” dx Having thus defined the implementation of the mod@®
(13)  on adiscrete lattice which conserves those features essential

for our present purpose, it remains to specify the initial con-
figurations before the onset of the quench. Again we post-

Evidently, A serves to scale the spatial extension of stabl?on€ here the question of any possible bias which may exist
solutions, as it can be eliminated ky>\x. Both terms ing, " these initial sets due to explicit symmetry breaking. In-
the p2 (“Skyrme”) term and the explicity symmetry- stead we choose a uniformly random setlof/ectors on all
breaking last term, are necessary to stabilize solitdhe jnterior lattice points. Only on the boundaries we impdse
“baby skyrmions” [19]) with fixed winding lengthlyX\. —o. ie. 6=0 with randome

. —C3, LLE.,, U= .
For our present purpose to study the relation betvigeand In the following sense this initial random set realizes the

average defect densities_ (_:reated. in a symmetry breaking traPﬁaximal average number of defects which can be accommo-
sition it is therefore sufficient to impose the quench throughdated on this square lattice: First it should be noted that by

an appropriate time dependencg)\of . . Pefinition of our mapwhich maps a triangle formed by two
I'Dlscretlz[ng. the spa.tlal coordinates to a tV.Vo'd'mens‘.'onaadjoining orthogonal lattice links and the diagonal connect-

Igttlce, the limith <1 will proo!uce defects which are p?'”t' ing their end points onto the interior of tisenallerof the two

like on the scale of thg Ia_ttlcg constant, white>1 will complementary spherical triangles formed by the corre-

create smooth density distributions which extend over man)éponding geodesics @) the image triangle covers always

lattice units. A characteristic problem arises in numericalIessthan half of the sphere, and thus by definition does not

tsmul_aﬂo;w?hon add|scrfeteflatt|<|:ett|_f the spz;ma: extent of TOl"gontain a defect. So, this is different from the Kibble mecha-
ons 1S or the order of a 1ew 1atice constants or even 1€SSyiq, ywhich allows for defects inside elementary triangles by
this implies that differences in the anglésand ¢ between

) ) . ) considering an additional lattice point inside the triangle.
neighboring lattice points may be of the orderf In that However, if we add theoriented areas covered by the two
case the definitiori12) for the winding densityp no longer adjoining’ images of both triangles which make up the el-
applies. It is only for infinitesimally small differentials that ementary square lattice cell then it may happen that this sum
the surface elemerdQ on S? which is the image of the

elementary lattice ceti®x is given bydQ=4mp d?x. But it

is essential to maintain also for finite lattice constants the

geometrical meaning ofl) as the surface area which the YIn other words, we use a triangulation of the plane in terms of the
image of the unit lattice cell cuts out fro®f. This can be triangles formed by two adjoining lattice links and one diagonal in
readily implemented by defining72 as the(oriented area each square lattice cell. Depending on the choice of the diagonal in

of the spherical trianale which is cut out &8 by the three the unit cell the area covered by the image of that celSémmay
P 9 y differ by =44, i.e., the winding number may differ by 1. How-

geodesics which connect the end points of thdeeectors  ever, for the ensemble average, this is not relevant.
attached to three corners of an elementary lattice cell. This 2practically

(summation over spatial indicesj understooyl
We consider the effective energy functional

_ . . _ ~ in a local updating procedure this requires to control
works for arbitrary relative orientations of thede vectors  the sum ofp only in the local vicinity of the points which are
and allows even to detect one complete soliton inside onaffected by the update.
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FIG. 2. Correlation functior{15) C(r)/C(0) for fast o= 10)
(dashed lingand slow (o=200) (full line) quench neak ~3.
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with \;>1 and\;<1. Starting from the initial random set,
at the beginning of the quench a large valué pattempts to
establish long range order with very small values of the local
winding densityp. When\ approaches values aound-3

to 1, individual defects start to be formed out of this more or
less organized low-density soup. Near the end of such a
quench, for very smalh we expext an ensemble &,
defects and\N_ antidefects each essentially localized on a
single lattice cell. Fot>t,, the evolution can still be contin-
ued withA =\ to allow for final stabilization of the defects
formed, or for possible mutual annihilations on a much
longer time scale.

After the onset of the quench ordering of the configura-
tions proceeds within typical relaxation timesand the ex-
tent to which the ordering can spread before the local defects
appear is governed by the ratiéty, which is the appropri-
ate measure for the quench velocity. For a fast quench we
expect the final defect density to be close to our modified

covers more than half of the sphere, and by definition wecjpble limit discussed above, because most of the initial ran-
then may count that as one defect inside this elementanjom (incomplete winding will directly evolve into complete

lattice cell. In fact, ifA is very small, such a configuration |ocal 47 winding. For slow quenches the random winding
will rapidly evolve into a configuration where the sum of || have time to be smoothed away into large areas of low
these two spherical triangléwhich represent the image of winding density, before finally a few defects and antidefects

the lattice cell is close to 4r. We may call this the Kibble
limit for the square lattice. It differs from the triangular limit

reappear.
This naturally provides the appropriate setting to investi-

(1) by a factor 1/4iin two dimensiong which we interpretas  gate formation and size of DCC domains. There is, however,

a difference in the definition of the correlation lengtlby a

a severe limitation to this discussion, also within the model

factor of two for uniformly random configurations on the (13): The stabilization mechanism of the baby skyrmions
vertices of a square lattice, as compared to the originalelies on a strong symmetry breaker, the last term in Eq.
Kibble counting which uses one additional point with ran-(13). This term prevents formation of large areas of aligned

dom field asignment inside each of the two triangles whichyyt randoml
constitute the elementary square lattice cell. We consider th
identification of¢ with the lattice constant for a random as-
signment of field vectors to each vertex of the square lattice
as the natural definition of the correlation length.

y oriented field configurations if we consider the
e -

complete field vector®. In the spatial domains outside the
range of the topological defects the field will essentially be

aligned iné3 direction. Still, a partial aspect of DCC forma-

This basic setup opens a wide variety of dynamical situ-tiorj can be studied: In the so called “easy plane” orthogonal
ations for systematic investigation. As just one example wdo €3, the field component®; and ®, can freely align in
shall discuss here only the case of a linear quench in theandom directions and the partial correlation function

scale parametex

A=\

)\:)\|+

C(]2—1|)=(cos¢p(1)cosp(2)+ sing(1)sinp(2))
(15

(where the arguments 1,2 stand for two arbitrary lattice
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0) the measured numbers approach a mean

in Fig. 2 indicate that the ordering in the easy plane hawalue of only about 133 due to a few instant annihilations.

200) quench.
Evolving A’=50 randomly choserfbut selected forB

0) initial configurations through the quenéb4) leads to

tion we present two intermediate steps in the evolution ofan ensemble of defects and antidefects for each quench time

one specific arbitrary configuration during a fast quenchtg as shown in Fig. 6. The modified Kibble limit as dis-
200) quench ax

X 50)/16~156. The boundary condition®€ 0) reduce this

crosses the value of~3, i.e., just before localized defects value to about 144 for this lattice size. For the sudden

quench a well-developed DCC pattern emerges. The corre-

domains in between. As soon as these local defects appegponding winding density distributions display a rough

(around\ < 3) the disoriented aligned areas in the easy plansurface[Fig. 4@)] versus essentially smooth areas of low

begin to rerandomize due to thermal fluctuations. So, thélensity with few emerging local spikg&ig. 4(b)]. Finally,
N¢+=0.1 and the local defects have stabilized. Counting the

In the following we describe some results of numericalfinal number of defects and antidefects which evolve from

simulations on a 5% 51 lattice with an ensemble of random this particular initial configuration we finil

to unity in the easy plané.e., the components of the arrows
initial configurations which, however, have been selected athe fast (o=10) quench and\,

in the plot simply are cog and sing). This provides an
cussed above for the square lattice N, +N_—(50

quench (g

40

S
4P

i

<

30
30

IR

.:
EGEE N
AR

(LB,
ASABRKKEN
RPN
R

small localized defects with strictly alignéah e; direction

200 time steps

The first set shows the situation shortly befoxét)

QRS BRI S
R DR RS
z X
XSRS
RESOAREC TR, S

X UUXXXHKIXXXE
B AKXXKARKRIX
ST KRR

FIG. 4. Winding density during (a) fast (tg=10) and(b) slow (to=200) quench neax~3.
N_=15 in caseda) and(b), respectively.

0. Of course, other values & can be selected (tg

to study a possible influence of the total winding number.

FIG. 5. Final winding density after (a) fast (to=10) and(b) slow (tq

studied during the early parts of the quench where théor the fast quench a high density of nascent defects leaves
N,=N_=46 andN,

strength of the symmetry breaker is not yet sufficient to formno space for large aligned domains while during the slow
hardly progressed beyond one lattice unit during the fasFor increasing quench time the defect numbers drop to a

domains. It should, however, be noted that the aligning force3) at the field® projected into the easy plane and normalized
quench, while it extends beyond five lattice units after themean value of about 32 nety

in the easy plane due to the first term in Etp) (the nearest

neighbor interactionis active only in areas where sig0.
formation of DCC domains is closely connected to small butFig. 5 shows the resulting ensemble of defects shortly after

pointy provides the information about the size of alignedslow quench. This becomes very evident if we IdokFigs.
This means that the formation of DCC domains can only benstant view of DCC domains and defects and it shows that
nonvanishing winding density, which by itself is an interest-the end of the quench whekehas reached its final value of

The algorithm conserveB as discussed above. For illustra-
begin to form. The corresponding correlation functighs)

(to=10 time steppsand a slow quenchtg

ing aspect.
to satisfyB
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terized by a topologically conserved winding numliBzrin
view of applications where this number corresponds to a
physically relevant observable. For the lattice simulation it is
essential to implement the geometrical meaning of the wind-
ing density for the discrete map. Then boundary conditions
on angular variables still serve to enforce integer values for
B, although topological arguments fd& conservation no
longer apply. However, by explicit control during the evolu-
tion B-violating steps can be excluded. If conservatiorBof

is an important feature of the physical system under discus-
sion, like baryon number conservation in chiral meson field
models, extensions to the linear versions aiN® models
have to include the additional degree of freedom in the form
of a modulus variable in aB"~1x R! embedding. For com-

100 parison we have briefly discussed the topologically trivial
FIG. 6. Final defect plus antidefect multiplicities for different R?>-embedding of the linear @) model. Unfortunately, in
quench timegy; their average values are connected by the fullthese low-dimensional models, the winding length of defects
line. is closely tied to explicit symmetry breaking. This leads to a

dramatic difference between Euclidean and angular embed-
line in Fig. 6 which connects the mean values for the differ-ding if the symmetry breaking is sufficiently strong to desta-
ent quench times. The root mean square deviation from theilize nontrivial configurations. The same feature also ham-
average values decreases from abbet10 for the sudden pers the investigation of DCC domains in these low-
quench toA~5 neart,=200. Of course, these details de- dimensional models. It is only in the easy plane of th&O
pend on the specific choice of the quench mechanism usatiodel where partial aspects of randomly oriented alignment
here. For applications to specific physical situations the apean be observed. It has been argued that the bias introduced
propriate temperature dependence of the effective action aridto the ensemble of initial configuratior(for T>T.) by

tQ

temporal structure of the quench has to implemented. explicit symmetry breaking causes another drastic reduction
of defect multiplicities. This interesting aspect has been
V. CONCLUSION omitted here, again for the same reason that the symmetry

) . ) breakers simultaneously have to serve as stabilizers for the
The purpose of this paper is to study the influence of thgjefects.

spatial extent of topological defects on their formation dur-  of course, the real challenge is the formation &f-8(4)

ing a dynamical quench in a symmetry breaking phase transkyrmions as a nonperturbative model of how baryons
sition. Apart from the combinatorial factors of the Kibble emerge in the Coo”ng Of the hot meson Soup_ In that mode|
mechanism it is the ratio of the momentaneous magnitude oftapilization of defects and explicit symmetry breaking
the winding lengthly, (as determined by the temperature through small mesonic masses are almost unrelated. There-
dependent effective classical Lagrangiam the correlation  fore all the interesting features concerning winding length,
length & near T, which is essential for the resulting multi- formation of DCC domains, effects of the modulus field,
plicities of defects and antidefects. This leads to a cruciabaryon number conservation, bias in the initial ensemble, all

role of the quench time on the scale of the relaxation time can be studied quite independent|y with the same methods
typically needed for defect formation. If during the early partysed here for baby skyrmions.

of the quench the winding length is large on the scal&,of
the resulting defect multiplicities are much reduced as com-
pared to the combinatorial Kibble limit for pointlike defects.

As illustration we presented numerical simulations in the The author would like to thank J. Klomfass, J. Dziarmaga,
nonlinear D-0(2) and 2D-0O(3) models which are charac- and B.A. Ivanov for interesting discussions.
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