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„111…-dimensional massive sine-Gordon field theory and the Gaussian
wave-functional approach
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The ground, one- and two-particle states of~111!-dimensional massive sine-Gordon field theory are inves-
tigated within the framework of the Gaussian wave-functional approach. We demonstrate that for a certain
region of model parameter space, the vacuum of the field system is asymmetrical. Furthermore, it is shown that
a two-particle bound state can exist upon the asymmetric vacuum for a part of the aforementioned region. In
addition, for the bosonic equivalent to the massive Schwinger model, the masses of the one-boson and two-
boson bound states agree with the recent second-order results of a fermion-mass perturbation calculation when
the fermion mass is small.@S0556-2821~99!02010-X#

PACS number~s!: 11.10.Lm, 11.10.St, 11.80.Fv
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I. INTRODUCTION

Massive sine-Gordon field theory~MSGFT! @1# is a
simple generalization of massless sine-Gordon field the
~SGFT! @2#, with a vacuum angleu added in the argument o
the cosine and a mass termm0

2f2 added in the Lagrangian. I
is well known that SGFT is exactly solvable, and can prov
a good laboratory for quantum field theory. Moreover,~1
11!-dimensional@~111!D# SGFT is equivalent to the mas
sive O(2) nonlinears model, the massive Thirring mode
the two-dimensional Coulomb gas, and the continuum li
of the latticex-y-z spin-12 model. Now this theory has re
ceived extensive investigations@3–5#. In the same way, MS-
GFT is also an important model. At any or some spec
coupling strength, MSGFT can give a good description
the dynamics of other important systems, such as the m
sive Schwinger model, the Schwinger-Thirring model, t
two-dimensional lattice Abelian Higgs model, the tw
dimensional neutral Yukawa gas, and so on@6–9#. And
again, although it is not yet exactly solved owing to t
existence of the mass term, this model possesses its
field-theoretical peculiarities@1#, some of which will be dis-
cussed in this paper. Hence it is of general importance
study MSGFT. Early in the 1970s, this theory was analyz
within the framework of constructive quantum field theo
@1#. Up until now, as an equivalent system of the mass
Schwinger model~in this case, the coupling in MSGFT i
only at a special strength!, the MSGFT has been investigate
for largem0

2 by mass perturbation or some light-cone qua
tization methods@6,10–12#. In order to reveal the phas
structure of the Abelian Higgs model, MSGFT with a fini
momentum cutoff was treated by the renormalization-gro
technique @8# ~1994!. Obviously, further investigation o
MSGFT ~especially at any finite value of the coupling! is
still necessary and of universal usefulness.

*Email address: wenfalu@online.sh.cn
†Mailing address.
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In this paper, using the Gaussian wave-functional
proach~GWFA!, we intend to investigate~111!D MSGFT
with a zero vacuum angleu50 at any coupling strength. Th
Lagrangian is

L5
1

2
]mfx]

mfx2
1

2
m0

2fx
22

m2

b2
@12cos~bfx!#

[
1

2
]mfx]

mfx2U~fx!, ~1!

with fx[f(x), wherem0 andm are in mass dimension an
the dimensionlessb is the coupling parameter. It is alway
viable to haveb2>0 @2#. In the case ofm050, Eq. ~1!
describes SGFT, and whenb2→0, Eq. ~1! describes a free
theory of the squared mass (m0

21m2) ~if m0
21m2.0). Evi-

dently, the Lagrangian~1! is invariant under the transforma
tion of f→(2f). We shall be particularly interested i
spontaneous symmetry breakdown~SSB! and the two-
particle bound states upon the SSB vacuum.1 ~In this paper,
by SSB, we mean that the energy at a symmetric vacu
with f50 is exactly higher than at an asymmetric vacuu
with fÞ0.! Also, we shall compare our results about t
masses of the one-particle and the two-particle bound st
with the ones in the literature.

We hope to demonstrate qualitatively the existence
SSB in MSGFT. As is known, the classical potential
SGFT is invariant under the transformation off→(f
12np/b) ~hereaftern is an integer!. Hence the classica
vacua of SGFT are infinitely degenerate, and the correspo
ing quantized vacua are degenerate likewise@3,13#. But for
MSGFT, the situation is quite different. A simple analys

1Generally, symmetry breakdown also includes the phenome
that the energy at a symmetric vacuum withf50 is exactly equal
to the one at an asymmetric vacuum withfÞ0. This phenomenon
is called degeneration in this paper.
©1999 The American Physical Society21-1
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indicates that because of the existence of the mass term
classical vacuum of MSGFT is unique atf50 for a negative
m2 with um2u,m0

2 or for a positivem2, whereas it is located
at fÞ0 for a negativem2 with um2u.m0

2. ~In the case of
b254p, this is compatible with Ref.@12#. Note that in the
caption of Fig. 5 of Ref.@12#, the word ‘‘large’’ should per-
haps be the words with the meaning ‘‘sufficiently negative
according to the context there.! As suggested in Ref.@12#,
SSB is usually believed to be kept by the correspond
quantized vacuum. Undoubtedly, this phenomenon is in
esting and useful both for electroweak theory and for
above equivalent models. Nevertheless, the investigation
MSGFT in the literature were mostly achieved for a sm
m2 and made no explicit investigations of quantum SSB~to
our knowledge!. In the next section, we shall demonstrate t
existence of SSB and give its relevant region in the mo
parameter space.

There exists a large variety of bound state syste
in nature, but investigation of them is a hard task in qu
tum field theory@14#. For this task, the GWFA is an effectiv
and feasible tool in practice and can give qualitatively c
rect results about bound states. Up to now, within the fram
work of the GWFA, a bound state has been shown to e
upon the symmetric vacuum of the following models: t
~111!D :l(f62f4): model @15#, the f6 theory in ~111!
and ~211! dimensions@16#, the Gross-Neveu model@17#,
SGFT, and the double sine-Gordon model@13,18#. However,
the GWFA has not established bound states upon the
vacuum of any model as yet. Although thelf6 theory has
typically the SSB phenomenon, the interaction between
two particles is repulsive in this case and therefore the
particles form impossibly a bound state upon the S
vacuum@16#. Perhaps MSGFT can give an example of su
a phenomenon. Section III will concentrate on it and one w
see that the phenomenon really exists in NSGFT.

In the last decade, the GWFA@19# has become a powerfu
tool to extract the nonperturbative information of many fie
theoretical models@15–17,20#. To be true, there have tw
unfavorable facts for the GWFA. One is that the GWF
gives the wrong order of the phase transition inlf4 theory
@21,23#, and the other is that it is difficult to control th
approximate accuracy of the GWFA. Nevertheless, ende
ors in the last decade have led to a little progress in cont
ling the accuracy.@22#. Moreover, the GWFA predicts cor
rectly the existence of the phase transition@23,24# which
may have second-order features@23,22#, albeit it wrongly
predicts the first order of the transition for some~111!D
quantum field theories. A great deal of the existing work h
shown that the GWFA is a tractable and helpful nonpert
bative tool. It can give a qualitatively correct informatio
@21# or a precursory study at least@25,22#. In the present
work, we hope to give further helpful support to the GWF
through comparing our results with those obtained from
massive Schwinger model. As mentioned above, the sys
~1! at a special coupling strength (b254p) is equivalent to
the massive Schwinger model at the zero charge secto
which there are only the Schwinger boson~fermion-
antifermion bound state! and its bound states@6# ~Coleman!.
Hence, the MSG bosons atb254p are just Schwinger
10502
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bosons. Over the last two decades, the masses of
Schwinger boson and its bound states have been calculat
a good accuracy with the aid of many methods@11,26–30#,
most of which were numerically or analytically completed
the limit of the strong and/or weak coupling but not at
values of the coupling. On the other hand, our results ab
MSGFT are analytical at any set of values of the mo
parameters. Hence a comparison between ours and the o
may be made. This will be done mainly for small fermio
mass in Sec. IV. One will see that whenb254p, for the
large m0

2, i.e., for a small fermion mass parameter, t
GWFA results for the masses of the Schwinger boson and
bound state have good agreement with those in Refs.@26–
30#.

In the next section, we shall directly give the Gauss
effective potential ~GEP! of MSGFT and then discus
vacuum structure. As for the procedure of the GWFA, th
have been detailed discussions in many references, suc
Refs.@4,19–21,31#, and we intend to give no more explan
tions in this paper. Section III is devoted to the excited sta
For both the symmetric and the asymmetric vacua in Sec
we shall analyze existence of two-MSG-boson bound sta
and calculate the masses of the one-MSG-boson and
MSG-boson bound states. In Sec. IV, the masses of the
Schwinger-boson and two-Schwinger-boson bound stat
the massive Schwinger model will be given from the resu
of MSGFT by employing the equivalence between the t
models and compared with those in Refs.@29,30#. A brief
conclusion and some discussions will be made at the en
this paper.

II. VACUUM STRUCTURE AND STABILITY

This section considers the ground state in the system~1!.
In Eq. ~1!, we have to maintain a positivem0

2 for avoiding
an unbounded-below vacuum. Nevertheless, different fr
SGFT, both positive and the negativem2 should be consid-
ered in Eq.~1! because the physics of the negative is n
equivalent to the one of the positive. Moreover, as stated
the last section, the classical vacuum of the system~1! is
infinitely degenerate no longer. It is symmetrical for a neg
tive m2 with um2u,m0

2 or positivem2, and becomes asym
metrical whenm2 is negative enough. In this section, w
intend to investigate the structure and properties of the qu
tum vacuum through the GEP.

In the fixed-time functional Schro¨dinger picture, the
normal-ordered Hamiltonian operator corresponding to
~1! is

NM@H#5E
x
F1

2
Px

21
1

2
~]xfx!

21
1

2
m0

2fx
22

1

4
m0

2I 1~M2!

2
1

2
I 0~M2!1

1

4
M2I 1~M2!

2
m2

b2
NM@cos~bfx!#expH 2

b2

4
I 1~M2!J 1

m2

b2G ,

~2!
1-2
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~111!-DIMENSIONAL MASSIVE SINE-GORDON FIELD . . . PHYSICAL REVIEW D59 105021
with the notation

I n~M2!5E dp

2p

Ap21M2

~p21M2!n
.

Here,Px[2 i d/dfx is conjugate to the field operatorfx ,
*x[*dx the integration in one-dimensional coordina
space, andNM@•••# means normal ordering with respect
any positive constantM ~M is with mass dimension and usu
ally called the normal-ordering mass!. Take as an ansatz th
general Gaussian wave functional@4,19,31#

uC&→C@f;w,P, f #5Nf expH i E
x
Pxfx2

1

2Ex,y
~fx2wx!

3 f xy~fy2wy!J , ~3!

with Nf some normalization factor, andPx , wx as well asf xy
being the variational parameter functions. Using functio
integration techniques@32,4,33#, one can first calculate th
energy*x^CuN@Hx#uC&, then takewx as a constantw, and
finally minimize variationally the energy in respect toP as
well asf. Consequently,Px50, the Fourier component off xy
is

f ~p!5Ap21m2~w!

and the GEP reads

V~w!5
1

2
@ I 0~m2!2I 0~M2!#2

1

4
@m2I 1~m2!2M2I 1~M2!#

1
1

4
m0

2@ I 1~m2!2I 1~M2!#1
1

2
m0

2w2

1
m2

b2 F12expH 2
b2

4
@ I 1~m2!2I 1~M2!#J cos~bw!G .

~4!

Here,m takes one of the following three possible values:
nonzero root of the gap equation

m25m2~w!5m0
21m2

3expH 2
b2

4
@ I 1~m2!2I 1~M2!#J cos~bw!, ~5!

and the two end points of the range 0<m2,`, m250 and
m2→` ~the explanation of this point is put off to the ne
paragraph!. In the right-hand side of Eq.~5!, m is a function
of the uniform background fieldw, which is the vacuum
expectation of the field operatorf. Among the minimized
results,Px is the average value of the total momentum de
sity operator of the field system, and its null result is und
10502
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standable. As forf (p) andm, its physical meaning will get
transparent in the next section.@By the way, becauseU(f)
has its Fourier representation in a sense of the tempered
tribution @34#, the above GEP and the energies of the o
and two-particle states in the next section can be also ca
lated directly as per formulas in Ref.@31#, for which it is
enough to finish some simple integrals.#

Noticing the results of the integrals,

1

2
@ I 1~m2!2I 1~M2!#52

1

4p
ln

m2

M2

and

1

2
@ I 0~m2!2I 0~M2!#2

1

4
@m2I 1~m2!2M2I 1~M2!#

5
m22M2

8p
,

one can see that Eqs.~4! and~5! contain no divergences, an
therefore, a further renormalization procedure is not nec
sary. Nevertheless, in order to compute the GEP from
~4!, we have to choose the value ofm among the three pos
sible values: 0,̀ , and the nonzero root of Eq.~5!. The
existence of the three possible values is becausem(w) in Eq.
~5! results from the process of minimizing the energy w
respect tof @m(w) in Eq. ~5! is the stationary point# and the
GEP must be the global minimum of the energy density
the whole range ofm2 (0<m2,`) @16,21,24#. Therefore,
for every value ofw, one has to compareV(w)’s at the three
possible values ofm with each other, and only the minimum
among them can be taken as the GEP.

Obviously, the end pointm50 forcesV(w) in Eq. ~4! to
be infinite and must be discarded. Moreover, for the ot
end pointm→`, one has

V~w!→
m2

8p
2

m2

b2S m2

M2D b2/8p

cos~bw!.

This implies that whenb2,8p, V(w)→m2/8p and tends to
infinity for infinite m. Thus, whenb2,8p, one should resort
to only the nonzero solution of Eq.~5! for governing the
GEP, which rendersV(w) finite. As for the case ofb2

.8p, we have

V~w!→2
m2

b2S m2

M2D b2/8p

cos~bw!.

For those values ofw with m2 cos(bw).0, the end pointm
→` makesV(w) unbounded from below, and according
the vacuum is unstable. Sob2 should be smaller than 8p.
This constraint ofb2 is consistent with that in Ref.@1# ~the
seventh paragraph on p. 372 in the book!, and is a little
similar to that in SGFT@2,4# ~the possible difference abou
the physical sense of the constraint will be discussed in S
V!. In a word, for computing the GEP, we should use t
1-3
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WEN-FA LU PHYSICAL REVIEW D 59 105021
nonzero root of Eq.~5! instead of the valuesm250 andm2

→`, and meanwhile, the coupling parameterb2 is con-
strained to the range of 0<b2,8p. ~For the SG systems in
condensed matter physics, the constraint can be extend
b2,16p @35#. Perhaps, the constraintb2,8p could have
some analogous extension for MSG systems in conden
matter physics.2!

Furthermore, in order to analyze vacuum structure a
stability, we still need the extremum condition@dV(w)/dw
50#

m0
2w1

m2

b
expH 2

b2

4
@ I 1~m2!2I 1~M2!#J sin~bw!50

~6!

and the stability condition„i.e., the second derivative o
*x^CuN@Hx#uC& with respect to the relevant variational p
rameterf must be positive@4,21,24# at m(w)…

12
m2b2

8
expH 2

b2

4
@ I 1~m2!2I 1~M2!#J I 2~m2!cos~bw!.0.

~7!

When b2,8p, Eq. ~5! always has a nonzero solutio
~which is different from SGFT, where no solutions can ex
for some values ofbw @4#!, and accordingly we can define
parameter with mass dimension

m0
2[m2~w50!5m0

21m2 expH 2
b2

4
@ I 1~m0

2!2I 1~M2!#J ,

~8!

which is positive~independent of the sign ofm2), and is
physical mass squared when the vacuum is symmetric~see
the next section!. When m2,0, m0,m0; otherwise, m0
.m0. In Eqs.~4!, ~5!, ~6!, and inequality~7!, we can elimi-
natem2 in favor of m0

2 with the help of the definition~8!. For
convenience of numerical computation, we define the
lowing dimensionless quantities:

Ṽ~w![
V~w!2V~w50!

m0
2

, m̃[
m

m0
, m̃0[

m0

m0
. ~9!

Then, we can rewrite the GEP as

Ṽ~w!5S 1

8p
2

1

b2D ~m̃221!2
m̃0

2

8p
ln~m̃2!1

1

2
m̃0

2w2,

~10!

the gap

m̃25m̃0
21~12m̃0

2!~m̃2!b2/8p cos~bw!, ~11!

the extremum condition

2To determine this point needs some further investigation.
10502
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m̃0
2w1

m̃22m̃0
2

b
tan~bw!50, ~12!

and the stability condition

12b2
m̃22m̃0

2

8pm̃2
.0. ~13!

Thus, the calculation of the GEP from the last four equatio
or inequality is equivalently carried out at a fixed value
m2. When one intends to consider the effects ofm2, it is
enough to further utilize the original definition Eqs.~8! and
~9!. ~Of course, in order to define dimensionless quantiti
one can have other choices. For example, one can choos
parameterm0

2 as a unit instead ofm0.!
Now we can compute the GEP of MSGFT. It is difficu

to solve analytically Eqs.~10!–~12! and the inequality~13!,
and hence we have to appeal to a numerical method for t
ling them. If there exists a SSB phenomenon, analysis of
vacuum structure indeed amounts to the determination of
boundary between the symmetric and asymmetric vacu
the model parameter spaceb2-m̃0

2. In order to obtain the

boundary, one can search for the points in the spaceb2-m̃0
2 at

each of which the value of the GEP for the asymmet
vacuum (wÞ0) is exactly equal to that for the symmetr
vacuum. When one executes the numerical computation
additional point to be noticed is that for some values of
parameters$b2,m̃0

2% there exist two roots of Eq.~11! and one

of them should be chosen so as to minimizeṼ(w) in Eq.
~10!.

The numerical results indicate that~i! when m̃0
2,2 ~an

approximate value!, the vacuum is symmetrical;~ii ! for any
m̃0

2.2, there is a critical value of the coupling parameterbc
2 ,

at which the vacuum is degenerate and located at eithew
50 or wÞ0. When b2,bc

2 the vacuum is symmetrical
whereas whenb2.bc

2 , the symmetry of the vacuum is bro

ken. Collecting all the above, we depict them̃0
2-b2 parameter

space in Fig. 1. The allowed region of the parameters at
fixed m0 forms a semi-infinite strip$m̃0

2.0,0<b2,8p%,
and in this strip, the long-dashed curve represents the cri
couplingbc

2 . ~The dotted and short-dashed curve are relev
to bound states and will be explained in the next section.! In
Fig. 1, domain I corresponds to the symmetric vacuum, a
domains II and III correspond to the asymmetric vacuu
From this figure, one can see that with the increase ofm̃0 the
domain I gets more and more narrow. That is to say,
more negativem2 is, the wider the domain ofb2 for the
asymmetric vacuum is. For an illustrative purpose, we p
the GEP in Figs. 2 and 3 form̃0

251.5 andm̃0
2520, respec-

tively. For the latter,bc
2'3.0265772.~Note that the GWFA

value of bc
2 could not predict an exact value of the critic

point when a phase transition nearbc
2 is considered, and

perhaps the value ofbc
2 and some relevant information coul

be changed by some better approximate approach. The
cussion relevant to this point will be deferred to Sec. V!
1-4
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Thus, we see that whenm̃0
2.2, there really exists an asym

metric vacuum within the framework of the GWFA. That
to say, for MSGFT, the classical double-well potential c
cause a SSB in quantum theory. This is usually believed,
as pointed out in Ref.@12#. When b2,16/p, this is also
compatible with Ref.@1# ~p. 382!.

About the asymmetrical vacuum of MSGFT, we ha
more to say. Fro¨hlich @1# pointed out that form2 large
enough and positive,f→(2f) symmetry is presumably dy
namically broken. This implies that for a sufficiently sma
m̃0

2, the vacuum can be asymmetrical. Nevertheless, u
the above GWFA results, we failed to find a very small b
nonzero value ofm̃0

2 ~with b2,8p) which can lead to a
dynamic symmetry breakdown.~In order to consider it, we
also chosem0

2 as a unit to perform the numerical calculatio

FIG. 1. Theb2-m̃0
2 parameter space for the massive sine-Gord

field theory in 111 dimensions, which is plotted from Eqs.~10!–
~13!. The vacuum is symmetric in domain I, and is asymmetric b
in domain II without a bound state and in domain III with a bou
state. The short-dashed curve corresponds to cos(bw0)50 and the
dot-dashed curve to the vacuum atw050.75.

FIG. 2. The reduced GEP of the massive sine-Gordon fi

theory in 111 dimensions for the case ofm̃0
251.5. Only one-half of

the symmetric potential is shown. In this figure, curves from the
to the right are drawn forb250.0004, 0.25, 1, and 25, respe
tively.
10502
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and failed likewise.! Of course, whenm̃0
2 tends to zero, the

GWFA can well give the effective potential forbwP@(2n
2 1

2 )p,(2n1 1
2 )p# ~in the case ofm2.0) @4#, and the vacua

are degenerate, which is a special case of dynamical sym
try breakdown. Thus, in Fig. 1, the left, linear boundary
the domain I (m̃0

250, 0>b2,8p) corresponds to the spe
cial dynamical-symmetry-breakdown vacuum, which can
either symmetrical or asymmetrical at each point of t
boundary.

Additionally, we want to mention the symmetry restor
tion by quantum effects@3,36,24#. From Eqs.~8! and ~9!,
m̃0

2.1 meansm2,0, and thus the above symmetry-vacuu

domain with m̃0
2.1 in Fig. 1 shows the occurrence of

symmetry restoration phenomenon, because the corresp
ing classical vacuum can be spontaneously symmetry
ken.

In this section, we have obtained the vacuum structure
MSGFT. The ground state wave functional is the best t
Gaussian functionalC@f;w,P, f # in Eq. ~3! with Px50,
wx5w0, and the Fourier component off xy is f (p)
5Ap21m2(w0). Herew0 is a constant satisfied by Eq.~6!, at
which the GEP is lowest and the vacuum is located. In
dition, there is a constraint ofb2, that is, 0<b2,8p. In the
next section, we shall discuss the excited states upon
ground state. For convenience, we useuw0& to represent the
ground state wave functional hereafter.

III. BOUND STATES

In this section, we investigate the one- and two-parti
excited states. Following Refs.@15,16,19,31,33#, one can
manufacture the annihilation and creation operators with
spect to the vacuum stateuw0&:

Af~p!5S 1

4p f ~p! D
1/2E

x
e2 ipxF f ~p!~fx2w0!1

d

dfx
G
~14!

and

n

h

d

ft

FIG. 3. Similar to Fig. 2 but inm̃0
2520. In this figure, curves

from the highest to the lowest are drawn forb251.44, 2.25,bc

'3.03, 4.0, and 4.84, respectively.
1-5
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Af
†~p!5S 1

4p f ~p! D
1/2E

x
eipxF f ~p!~fx2w0!2

d

dfx
G .

~15!

It is evident that Af(p)uw0&50 and the commutato
@Af(p),Af

†(p8)#5d(p2p8). Then one has the one-partic
state

u1&5Af
†~p!uw0& ~16!

and theS-wave two-particle state

u2&5E dp S~p!Af
†~p!Af

†~2p!uw0&, ~17!

where S(p) is the Fourier transformation of theS-wave
function of the two-particle system.

For the one-particle state, one can find

m15
^1uNM@H#u1&

^1u1&
2E

x
V~w0!5Ap21m2~w0!, ~18!
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which is the energy of one particle with a momentump. This
is the physical sense off (p), which has previously appeare
in the last section. Obviously,m(w0) is mR, the physical
mass of a particle according to the relevant vacuum. Th
within the framework of the GWFA, the single-particle ma
of MSGFT is

mR
25m0

21m2S mR
2

M2D b2/8p

cos~bw0!. ~19!

A further analysis tells us that for both the asymmetric a
the symmetric vacua,mR increases with the increase ofm0

2

or m2; for the symmetric vacuum,mR also increases when
b2 increases, but for the asymmetric vacuum, things ge
little complicated, which here we intend to discuss no long

Now we turn to discuss the two-particle state. From R
@33#, the two-particle energym25^2uHu2&/^2u2&2*xV(w0)
can be calculated as~expressed in terms of the dimensionle
quantities!
m̃25

2E dp̃@S~ p̃!#2f ~ p̃!2~b2/16p!@m̃2~w0!2m̃0
2#F E dp̃ S~ p̃!/ f ~ p̃!G2

E dp̃@S~ p̃!#2

, ~20!
an

te

the

t
the
with m̃2[m2 /m0 , p̃[p/m0, and f ( p̃)[Ap̃21m̃2(w0). The
two terms in this expression can be regarded as the kin
energy of the two constituent particles and their interact
energy, respectively. Obviously, the interacting energy
closely related to@m̃0

22m̃2(w0)#. When m̃2(w0),m̃0
2, the

interacting energy is positive, and the two particles re
each other and cannot combine into a bound state, while
m̃2(w0).m̃0

2, the interacting energy is negative, and the t
particles attract each other and may form a bound state.

Analyzing Eq. ~11!, one can find that for symmetr
vacuum (w050), i.e., for domain I in Fig. 1, whenm̃0,1,
m̃2(w0).m̃0

2, and when m̃0.1, m̃2(w0),m̃0
2; for a

symmetry-broken vacuum (w0Þ0), i.e., for domains II and
III in Fig. 1, if cos(bw0).0, then m̃2(w0),m̃0

2, and if

cos(bw0),0, then m̃2(w0).m̃0
2. It is worthwhile noticing

that the case of cos(bw0),0 does exist whenm̃0
2 is less than

about 9.5 or whenb2 is greater than some valuebb
2 for any

largerm̃0
2 , which is involved in domain III in Fig. 1. In Fig.

1, the short-dashed curve corresponds to the critical cas
cos(bbw0)50. Thus, for the symmetry vacuum withm̃0.1
or for the asymmetry vacuum with cos(bw0).0 ~domain II!
the two-particle states can be just the scattering on
whereas for the symmetry vacuum withm̃0,1 or for the
asymmetry vacuum with cos(bw0),0 ~domain III!, there can
exist the two-particle bound states.
tic
g
s

l
or

of

s,

The mass of the bound statemb can be calculated within
the framework of the GWFA@15,16,13#. Minimizing the en-
ergy m̃2 with respect toS( p̃) yields the equation form̃2:

b2

16p
@m̃2~w0!2m̃0

2#E dp̃

f 2~ p̃!@2 f ~ p̃!2m̃2#
51. ~21!

Whenm̃2(w0),m̃0
2 this equation has no solution but one c

obtain the scattering phase shifts@33,5#. When m̃2(w0)
.m̃0

2, Eq. ~21! has a solution withm̃2,2m̃(w0), andm̃2 in
this equation timesm0 is just the mass of the bound sta
mb . Finishing the integration in Eq.~21! leads to

m̃b5
b2

8p
S 12

m̃0
2

m̃2~w0!
D F 1

A12m̃b
2

tan21A11m̃b
2

12m̃b
2
2

p

4G ,

~22!

with the reduced massm̃b[mb/2m(w0). When m̃0
2,1, the

vacuum is symmetric,m̃(w0) is unity, and the last equation
is enough to give the reduced mass of the bound state in
symmetric vacuum. For some values ofm̃0

2, we give the de-
pendence of the reduced mass upon the coupling constanb2

in Fig. 4. This figure indicates that the reduced mass of
bound state decreases with an increase ofb2, and increases
1-6
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with an increase ofm̃0
2. @Note that for the symmetry vacuum

case, Eq.~22! can give vanishing or even negativem̃b if the
curves in Fig. 4 are not artificially cut off atb258p.# For a
given asymmetric vacuum, one can calculate the redu
mass of the bound state through Eqs.~10!–~13! and~22!. In
this case, a vacuum located at a differentw0 corresponds to a
different curve in domain III of Fig. 1.~Of course, so it does
in domain II.! For instance, the vacuum atw050.75 corre-
sponds to the dotted curve in domain III. Vacua at otherw0
correspond to other similar curves. Forw050.75, we depict
the dependence of the reduced mass of bound state upob2

in Fig. 5 and uponm̃0
2 in Fig. 6. From Fig. 5, the reduce

mass of the bound state decreases with the increase ob2,
which is similar to that for the symmetric vacuum, but
almost fixed at some not-too-small value~0.76 or so! before
b2 arrives at the limit 8p. The dependence uponm̃0

2 is
slightly complex from Fig. 6. When two particles are n
tightly bound, the reduced mass of the bound state incre
with the increase ofm̃0

2, and approaches the value 1~two-

free-particle case! when m̃0
2 rises at such a value that th

FIG. 4. The dependence of the reduced mass of the bound

in the symmetric vacuum uponb2 for some values ofm̃0
2. In this

figure, curves from the lowest to the highest are drawn form̃0
2

50.05, 0.2, 0.4, 0.6, and 0.8, respectively.

FIG. 5. The dependence of the reduced mass of the bound
in the asymmetric vacuumw050.75 uponb2.
10502
ed

es

dotted curve in Fig. 1 falls down on the short-dashed cur
which means thatm̃0

2 acts as the coefficient of the free ter
in the Lagrangian. On the other hand, if the binding betwe
two particles is slightly tighter, the reduced mass decrea
with the increase ofm̃0

2, which means thatm̃0
2 acts as the

coefficient of the cosine interaction term in the Lagrangia
and stays at the fixed value 0.76 or so for largerm̃0

2. The

monotonous decrease ofm̃b upon m̃0
2 is understandable be

cause (12m̃0
2) plays the role ofm2/m0

2 in the reduced ex-
pression~11!. These results indicate that from Eq.~22! the
bound state in an asymmetric vacuum never becomes
tratightly bound.

In this section, we have obtained the single-particle m
of MSGFT, and shown that for both the symmetric and t
asymmetric vacua, there exist two-particle bound sta
Moreover, we have also given the bound-state mass. N
we shall compare the above masses upon the symm
vacuum with the ones in the literature.

IV. SCHWINGER BOSON AND ITS BOUND STATE

As pointed out in the Introduction, the~111!D MSGFT
equation ~1! with b254p is equivalent to the massiv
Schwinger model at the zero charge sector. The Lagran
of the latter is@1,6,9,11,12,27# ~Carroll et al.!

L52
1

4
FmnFmn1c̄x@gm~ i ]m2eAm!2mf #cx , ~23!

with Fmn5]mAn2]nAm . The normal-ordering Hamiltonian
corresponding to Eq.~23! with normal-ordering massmf is
equal to Eq.~2! with the normal-ordering massm0. The cor-
respondence between the parameters in Eqs.~1! and ~23! is

m0
25

e2

p
, m252egm0mf , ~24!

whereg is the Euler constant. Equation~23! is ~111!D QED
with a massive fermion, and is obtained by inserting an

ate

ate

FIG. 6. The dependence of the reduced mass of the bound

in the asymmetric vacuumw050.75 uponm̃0
2.
1-7
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ditional mass termmf c̄c in the Lagrangian of the Schwinge
model @37#. The Schwinger model was exactly solved@37#,
and shares some nontrivial properties with QCD such as n
trivial vacuum, quark trapping, and so on. It is equivalent
a massive free-scalar-field theory with the boson massm0.
For the particle spectrum of this model, there exist no sing
fermion states but a free boson which is a fermio
antifermion bound state~usually called a Schwinger boson!.
Having an additional mass term, the massive Schwin
model has a Schwinger boson and its various excited sta
In view of those aspects of the Schwinger model, most
vestigations of the massive Schwinger model were invol
in tackling the confinement and particle spectrum of it, a
mainly in small-mf effects. To our knowledge, except for
lattice study~not including those on light cone!, only Refs.
@26,28# gave the masses of the Schwinger boson and
bound state for a finitemf . In this section, we shall give th
masses of the Schwinger boson and two-Schwinger-bo
bound state from the symmetric-vacuum results in the
section, and compare them with the recent results in R
@29,30#. As for the vacuum structure, ifmf in Eq. ~23! is
greater than zero ormf is small, there exists no asymmetr
vacua according to the results in Sec. II@mf.0 impliesm2

.0, and hencem̃0
2,1 from Eq.~8!#.

We first consider the Schwinger boson. From Eq.~19!,
one can have the Schwinger boson massms upon a symmet-
ric vacuum (w050) ~taking M5m0)

m̃s5egm̃f1Ae2gm̃f
211, ~25!

with m̃s5ms /m0 andm̃f5mf /m0. Whenm̃f is infinitesimal,
we obtain, from the last equation,

m̃s
25112egm̃f12e2gm̃f

21O~m̃f
3!. ~26!

Performing the fermion-mass perturbation technique for
massive Schwinger model in the ‘‘near’’ light-front coord
nate system, Ref.@29# gave the Schwinger boson mass
second order ofmf . We find that the first two terms on th
right-hand side of the last equation are identical to the c
responding terms in Eq.~3.16! of Ref. @29#, and the only
difference is that the constant factor in themf

2 term is 2e2g

for our result bute2g for Eq. ~3.16! in Ref. @29#. More re-
cently, Ref.@30# also gave almost the identical result of th
Schwinger boson mass up to second order ofmf with that in
Ref. @29#. Thus, for an infinitesimalmf , our result of the
Schwinger boson mass is in good agreement with the one
Refs.@29,30#. For an illustration, a plot of our result and th
results in Refs.@29,30# is shown in Fig. 7. In this figure, the
results in Refs.@29,30# are represented by dashed curves a
coincide with each other. This figure indicates that with t
increase ofm̃f , our result~solid curve! is more and more
higher than the dashed curve, while for smallm̃f,0.2, the
solid curve nearly coincides with the dashed curve.
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Now we are in a position to discuss the two-Schwing
boson bound state. From Eq.~22!, we gain the mass of the
two-Schwinger-boson state upon the symmetric vacu
msb:

m̃sb5
m̃f

2

2m̃s
F 1

A12m̃sb
2

tan21A11m̃sb
2

12m̃sb
2

2
p

4G , ~27!

with the reduced massm̃sb[msb/2ms . From Eqs.~26! and
~27!, we depictm̃sb with respect to the small reduced fe
mion massm̃f in Fig. 8 ~the solid curve!. In this figure, the
dashed curve is the corresponding result in Ref.@30# to sec-
ond order of the fermion massmf . This figure demonstrate
that for a smallm̃f the result from the GWFA agrees ver
well with the second-order result of fermion-mass pertur
tion in Ref. @30#.

According to Refs.@26–30#, the mass-perturbation resul
are in good agreement with analytical or numerical on

FIG. 7. The comparison of the Schwinger boson mass, Eq.~26!
~solid curve!, with the corresponding second-order results in Re
@29,30# ~dashed curve!.

FIG. 8. The dependence of the reduced mass of the t

Schwinger-boson bound state in the symmetric vacuumm̃bs upon

the reduced massm̃f . The dashed curve is the corresponding res
in Ref. @30#.
1-8
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from many other techniques. Therefore, we can say that f
small massmf , the GWFA gives the masses of Schwing
boson and two Schwinger-boson bound state with good
curacy.

By the way, for finite fermion mass, the massm̃s from Eq.
~25! is nearly linear in terms ofm̃f . We notice that in Ref.
@26#, the result of the mass of the Schwinger boson is als
linear one in terms of themf . For any given value ofmf ,
there exist infinitely many results from Ref.@26#. For ex-
ample, form̃f52.0, besides the results in Figs. 2 and 3, R
@26# gave the other four values of the Schwinger boson m
4.78, 5.97, 6.9, and 7.70. For this casem̃f52.0, Eq. ~25!

gives m̃s57.262, which is between the last two values 6
and 7.7. The relative error is 6% or so.

V. CONCLUSION

In this paper, we investigated MSGFT with the GWFA
~111! dimensions. We discussed the ground, one-, and t
particle states. For the ground state, we demonstrated
existence of the asymmetric vacuum, obtained the constr
of the couplingb2,8p, and gave the parameter regions
the symmetric and the asymmetric vacua~Fig. 1!. For the
one-particle state, the implicit formula~19! is obtained for
the mass of a single MSG particle. As for the two-partic
state, we show that the two-particle bound state can e
upon an asymmetric vacuum. We also give the bound-s
mass formula~22! as well as the model parameter regions
the bound states upon the symmetric and the asymm
vacua, and discuss the dependence of the bound-state m
upon the model parametersb2 andm̃0

2. Finally, the masses o
the Schwinger boson and the two-Schwinger-boson bo
state in the massive Schwinger model are calculated acc
ing to Eqs.~19! and ~22!, and are in good agreement wit
those in the recent literature@29,30# ~Figs. 7 and 8! when the
fermion massmf is small.

Before closing the paper, we want to give a further d
cussion of Figs. 1 and 3. Figure 1 is just the phase diagram
the vacuum. In this figure, with continuous variations inb2

and m̃0
2, a symmetric phase of the vacuum can transit

long-dashed boundary to an asymmetric phase. This imp
the occurrence of a phase transition. Furthermore, Fig.
an explicit illustration of the GEP withm̃0

2520, and it indi-
cates that the vacuum average value of the field operatow0
changes discontinuously from zero to nonzero whenb2 in-
creases gradually. That is to say, the GWFA predicts a fi
order phase transition in MSGFT. Nevertheless, it could
inadvisable to conclude that a true first-order phase trans
occurs in MSGFT. As mentioned in Sec. II, some GWF
information related to the phase transition may be chan
by a better approximation method. The GWFA is a sim
nonperturbative approach. Although it is effective and use
for investigating many problems or phenomena, we sho
not expect too much of it, particularly when we are co
cerned with a phase transition. In fact, for a few~111!D
field theories, the GWFA predicts the wrong order of t
phase transition. We take thelf4 field theory as the first
10502
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example. Simon and Griffiths gave a rigorous theorem t
for the ~111!D lf4 field theory in the presence of an exte
nal field BÞ0, the vacuum of it is unique@38#. Further,
Chang proved that the occurrence of the first-order ph
transition in the ~111!D lf4 field theory violates the
Simon-Griffiths theorem, but a second-order phase transi
can be compatible with this theorem@23#. As is known, the
GWFA predicts just a first-order phase transition in th
theory@23,21#, and a second-order phase transition can oc
in the ~111!D lf4 field theory@23,39#. That is to say, the
GWFA predicts correctly the existence of the phase tran
tion in the~111!D lf4 field theory, and predicts incorrectl
just the nature of the phase transition. Another example is
~111!D f6 field theory. The GWFA predicts a first-orde
phase transition in this theory@16#. But a coupled-cluster-
method investigation indicated that for the region where
two-particle bound state exists, a first-order phase transi
can occur in the~111!D f6 field theory; nevertheless, th
critical curve is different from the corresponding one in t
GWFA result@40#. Additionally, for the region where a two
particle bound state disappears, no first-order phase tra
tions exist, but a second-order phase transition is believe
occur in the~111!D f6 field theory@40#. In view of these
situations of the above two theories, we feel that the Sim
Griffiths theorem could perhaps have an effect on the ot
~111!D field theories to some extent. Therefore, we conj
ture that for~111!D MSGFT, the GWFA predicts correctly
the existence of a phase transition, but could make a mis
in predicting the critical boundary and the nature of the tra
sition, perhaps which will be similar to those in the~111!D
f6 field theory. In order to get a definite conclusion, som
better approximate methods should be used@22,39,40#. We
believe that after considering the higher order correction
the GEP@22,39,40#, one may obtain different figures from
Figs. 1 and 3, but the asymmetric vacuum would still ex
In a general, when a classical vacuum in 111 dimensions is
spontaneously symmetry broken for some region of
model parameters, quantum effects are not sufficient to m
the vacuum completely symmetrical for all values of t
model parameters. The existence of the asymmetric vac
should be reasonable.

Besides, in Fig. 1, whenm̃0
2 tends to zero, the symmetri

phase of the vacuum becomes a dynamical-symme
breakdown phase. This perhaps implies the existence
phase transition. In fact, Ref.@1# ~the end paragraph on p
407 in the book! pointed out that there may be a phase tra
sition ~and long-range order! if m0 is small enough. Addi-
tionally, as mentioned in Sec. II, the constraint ofb2,8p
in MSGFT is the same as in the SGFT. It is well known th
b258p is a critical point at which the Kosterlitz-Thoules
transition occurs in the SG system@41#. However, when
m̃0

2Þ0, b258p could not suggest that the Kosterlitz
Thouless transition and the zero-mass phase could not e
for m50 cannot give either the local or the global minimu
of the energy density but infinity~see Sec. II!. As a matter of
fact, the disappearance of the massless Kosterlitz-Thou
phase has been shown in Ref.@8# ~1994!. By the way, if one
uses the GWFA with a finite momentum cutoff@42,18#
1-9
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~Zhang et al.!, it is possible to have a satisfactory unde
standing about the problems discussed in this paragraph

In conclusion, the results in this paper are qualitativ
correct and are necessary and helpful for further invest
tions of MSGFT at least. The GWFA results about t
ground state of MSGFT are useful for the Yukawa gas a
the lattice Abelian Higgs model, and meanwhile discussi
about other properties or phenomena of the mas
Schwinger model with the GWFA will be also interestin
and useful.
to
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@1# J. Fröhlich, Phys. Rev. Lett.34, 833 ~1975!; in Renormaliza-
tion Theory, edited by G. Velo and A. S. Wightman~Reidel,
Dortrecht, 1976!, p. 371.

@2# S. Coleman, Phys. Rev. D11, 2088~1975!.
@3# R. Rajaraman,Solitons and Instantons—an Introduction

Solitons and Instantons in Quantum Field Theory~North-
Holland, Amsterdam, 1987!.

@4# R. Ingermanson, Nucl. Phys.B266, 620 ~1986!.
@5# W. F. Lu, B. W. Xu, and Y. M. Zhang, Phys. Lett. B309, 119

~1993!.
@6# S. Coleman, R. Jackiw, and L. Susskind, Ann. Phys.~N.Y.! 93,

267 ~1975!; S. Coleman,ibid. 101, 239 ~1976!.
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Mattingly, U. Ritschel, and P. M. Stevenson, Phys. Rev. D45,
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