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The ground, one- and two-particle stateqbf 1)-dimensional massive sine-Gordon field theory are inves-
tigated within the framework of the Gaussian wave-functional approach. We demonstrate that for a certain
region of model parameter space, the vacuum of the field system is asymmetrical. Furthermore, it is shown that
a two-particle bound state can exist upon the asymmetric vacuum for a part of the aforementioned region. In
addition, for the bosonic equivalent to the massive Schwinger model, the masses of the one-boson and two-
boson bound states agree with the recent second-order results of a fermion-mass perturbation calculation when
the fermion mass is smallS0556-282(199)02010-X]

PACS numbgs): 11.10.Lm, 11.10.St, 11.80.Fv

I. INTRODUCTION In this paper, using the Gaussian wave-functional ap-
proach(GWFA), we intend to investigatél+1)D MSGFT
Massive sine-Gordon field theorgMSGFT) [1] is a  with a zero vacuum anglé=0 at any coupling strength. The
simple generalization of massless sine-Gordon field theoryagrangian is
(SGFT) [2], with a vacuum angl® added in the argument of
the cosine and a mass tem3¢? added in the Lagrangian. It 1 1 ,, m
is well known that SGFT is exactly solvable, and can provide L=50,hx0" dx—5 Moy ——[1~Co8 Bby)]
a good laboratory for quantum field theory. Moreovét, B
+1)-dimensional (1+1)D] SGFT is equivalent to the mas-
sive O(2) nonlinearo model, the massive Thirring model, =
the two-dimensional Coulomb gas, and the continuum limit
of the latticex-y-z spin4 model. Now this theory has re- . , ,
ceived extensive investigatiop3—5]. In the same way, MS-  With #,= &(x), wherem, andm are in mass dimension and
GFT is also an important model. At any or some specithe dlmenS|0nIe52;§% is the coupling parameter. It is always
coupling strength, MSGFT can give a good description forviable to have“=0 [2]. In the case ofmy=0, Eq. (1)
the dynamics of other important systems, such as the ma§escribes SGFT, and whes?—0, Eq.(1) 2descr|bes a free
sive Schwinger model, the Schwinger-Thirring model, thetheory of the squared massi§+m?) (if mg+m?>0). Evi-
two-dimensional lattice Abelian Higgs model, the two- dently, the Lagrangiafil) is invariant under the transforma-
dimensional neutral Yukawa gas, and so [@-9). And tion of ¢—(—¢). We shall be particularly interested in
again, although it is not yet exactly solved owing to theSpontaneous symmetry breakdow8SB and the two-
existence of the mass term, this model possesses its ovticle bound states upon the SSB vacuufim this paper,
field-theoretical peculiaritiefl], some of which will be dis- by SSB, we mean that the energy at a symmetric vacuum
cussed in this paper. Hence it is of general importance tith $=0 is exactly higher than at an asymmetric vacuum
study MSGFT. Early in the 1970s, this theory was analyzedVith ¢#0.) Also, we shall compare our results about the
within the framework of constructive quantum field theory masses of the one-particle and the two-particle bound states
[1]. Up until now, as an equivalent system of the massivevith the ones in the literature.
Schwinger modelin this case, the coupling in MSGFT is We hope to demonstrate qualitatively the existence of
only at a special strengtfthe MSGFT has been investigated SSB in MSGFT. As is known, the classical potential of
for largem? by mass perturbation or some light-cone quan-SGFT is invariant under the transformation ¢f—(¢
tization methods[6,10-13. In order to reveal the phase *2nw/B) (hereaftern is an integer. Hence the classical
structure of the Abelian Higgs model, MSGFT with a finite Vacua of SGFT are infinitely degenerate, and the correspond-
momentum cutoff was treated by the renormalization-grougnd guantized vacua are degenerate liked3]. But for
technique[8] (1994. Obviously, further investigation of MSGFT, the situation is quite different. A simple analysis
MSGFT (especially at any finite value of the couplinig
still necessary and of universal usefulness.

N -

aM¢XaM¢X_U(¢X)! 1)

1Generally, symmetry breakdown also includes the phenomenon
that the energy at a symmetric vacuum with-0 is exactly equal
*Email address: wenfalu@online.sh.cn to the one at an asymmetric vacuum wigl¥ 0. This phenomenon
"Mailing address. is called degeneration in this paper.

0556-2821/99/5A.0)/10502111)/$15.00 59105021-1 ©1999 The American Physical Society



WEN-FA LU PHYSICAL REVIEW D 59105021

indicates that because of the existence of the mass term, ti®sons. Over the last two decades, the masses of the
classical vacuum of MSGFT is unique¢@t=0 for a negative  Schwinger boson and its bound states have been calculated at
m? with |m?|<mj or for a positivem?, whereas it is located @ good accuracy with the aid of many meth¢d$,26—-3Q,

at ¢#0 for a negativem? with [m?>m2. (In the case of most of which were numerically or analytically completed in
B%=4m, this is compatible with Ref.12]. Note that in the the limit of the strong and/or weak coupling but not at all
caption of Fig. 5 of Ref[12], the word “large” should per- values of the coupll_ng. On the other hand, our results about
haps be the words with the meaning “sufficiently negative,” MSGFT are analytical at any set of values of the model
according to the context theyeAs suggested in Refl12], ~ Parameters. Hence a comparison betv_veen ours and the pthers
SSB is usually believed to be kept by the correspondingn@y be made. This will be done mainly for small fermion
quantized vacuum. Undoubtedly, this phenomenon is interass in Sec. IV. One will see that whegf=4, for the
esting and useful both for electroweak theory and for thdarge mg, i.e., for a small fermion mass parameter, the
above equivalent models. Nevertheless, the investigations §WFA results for the masses of the Schwinger boson and its
MSGFT in the literature were mostly achieved for a smallbound state have good agreement with those in R26-

m? and made no explicit investigations of quantum S&B  30].

our knowledgg In the next section, we shall demonstrate the In the next section, we shall directly give the Gaussian

existence of SSB and give its relevant region in the modegffective potential (GEP of MSGFT and then discuss
parameter space. vacuum structure. As for the procedure of the GWFA, there

There exists a large variety of bound state system$ave been detailed discussions in many references, such as
in nature, but investigation of them is a hard task in quanRefs.[4,19-21,3], and we intend to give no more explana-
tum field theory[14]. For this task, the GWFA is an effective tions in this paper. Section Ill is devoted to the excited states.
and feasible tool in practice and can give qualitatively cor-For both the symmetric and the asymmetric vacua in Sec. Il
rect results about bound states. Up to now, within the framewe shall analyze existence of two-MSG-boson bound states

work of the GWFA, a bound state has been shown to exisgnd calculate the masses of the one-MSG-boson and two-
upon the symmetric vacuum of the following models: theMSG-boson bound states. In Sec. IV, the masses of the one-

(1+1)D :\(¢®— ¢*): model[15], the ¢° theory in (1+1) Schwinger-boson and two-Schwinger-boson bound state in
and (2+1) dimensions[16], the Gross-Neveu modélL7], the massive Schwinger model will be given from the results
SGFT, and the double sine-Gordon mofi8,18. However, 0f MSGFT by employing the equivalence between the two
the GWFA has not established bound states upon the SSBodels and compared with those in Ref89,30. A brief
vacuum of any model as yet. Although thes® theory has ~ conclusion and some discussions will be made at the end of
typically the SSB phenomenon, the interaction between th&his paper.

two particles is repulsive in this case and therefore the two

particles form impossibly a bound state upon the SSB Il. VACUUM STRUCTURE AND STABILITY

vacuum[16]. Perhaps MSGFT can give an example of such
a phenomenon. Section Il will concentrate on it and one will
see that the phenomenon really exists in NSGFT.

This section considers the ground state in the system
In Eqg. (1), we have to maintain a positi\m(z) for avoiding

In the last decade, the GWHAY] has become a powerful &N unbounded-pglow vacuum. Ne\_/ertheless, different_ from
tool to extract the nonperturbative information of many field SGFT, both positive and the neggtmé should be consid-
theoretical model§15-17,20. To be true, there have two ©€'ed in Eq.(1) because the physics of the negative is not
unfavorable facts for the GWFA. One is that the GWEFA €duivalent to the one of the positive. Moreover, as stated in
gives the wrong order of the phase transitionia* theory ~ the 1ast section, the classical vacuum of the syst&jmis
[21,23, and the other is that it is difficult to control the n_1f|n|tezly Qegenzerate2no longer. It S symmetrical for a nega-
approximate accuracy of the GWFA. Nevertheless, endeaVive M* with [m?|<mg or positivem®, and becomes asym-
ors in the last decade have led to a little progress in controlMetrical whenm? is negative enough. In this section, we
ling the accuracy[22]. Moreover, the GWFA predicts cor- intend to investigate the structure and properties of the quan-
rectly the existence of the phase transiti®8,24 which ~ tum vacuum through the GEP. . .
may have second-order featurg23,22, albeit it wrongly In the fixed-time functional Schdinger picture, the
predicts the first order of the transition for sortler1)D ~ Normal-ordered Hamiltonian operator corresponding to Eqg.
guantum field theories. A great deal of the existing work hadl) is
shown that the GWFA is a tractable and helpful nonpertur-
bative tool. It can give a qualitatively correct information
[21] or a precursory study at leaf25,22. In the present NM[H]:L
work, we hope to give further helpful support to the GWFA
through comparing our results with those obtained from the
massive Schwinger model. As mentioned above, the system
(1) at a special coupling strengtiBt=4) is equivalent to

1 1 1 1
ST+ 5 (e ?+ S Mo — 7mgly(M?)

1 1
_§|0(M2)+ ZM2|1(M2)

2

the massive Schwinger model at the zero charge sector, in m? B? m
which there are only the Schwinger bosdfermion- - —ZNM[cos(,Bd)X)]exp{ - le('\/lz) +—|,
antifermion bound stajeand its bound statd$] (Colemarn). B B
Hence, the MSG bosons g#?=4s are just Schwinger 2
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with the notation standable. As fof (p) and u, its physical meaning will get
transparent in the next sectidBy the way, becaust (¢)
dp Vp?+M? has its Fourier representation in a sense of the tempered dis-
Ih(M?)= | o= ——— tribution [34], the above GEP and the energies of the one-

27 (p2 2yn’ ! X .
(p™+ M%) and two-particle states in the next section can be also calcu-

lated directly as per formulas in Rdf31], for which it is
enough to finish some simple integréls.
Noticing the results of the integrals,

Here,Il,=—i 6/ 5¢, is conjugate to the field operatef,,

J«=[dx the integration in one-dimensional coordinate
space, andVy[ - - -] means normal ordering with respect to
any positive constari¥l (M is with mass dimension and usu-

2
ally called the normal-ordering magsdake as an ansatz the £[|1(M2)_ 1,(M2)]=— im'“_
general Gaussian wave functiorid|19,31 2 47 M?
i 1 and
|1P>—>\P[¢;go,’P,f]= Nt exp i fxpxqsx_ EJ;( y(d’x_ ®x)
’ 1
So(p?) —1o(M?)]= 2 [p?11(u?) — M2 (M?)]
2 4
X fxy( (by_ ‘Py)] , ()]
B MZ_ MZ
with Ny some normalization factor, ang, , ¢, as well asf,, - 87

being the variational parameter functions. Using functional

integration techniquef32,4,33, one can first calculate the one can see that Eqel) and(5) contain no divergences, and
energy [ (W |M[H,]| V), then takep, as a constanp, and  therefore, a further renormalization procedure is not neces-
finally minimize variationally the energy in respect®as  sary. Nevertheless, in order to compute the GEP from Eq.
well asf. ConsequentlyP,=0, the Fourier component 6f,  (4), we have to choose the value afamong the three pos-

is sible values: 0,0, and the nonzero root of Ed5). The
existence of the three possible values is becaw(s® in Eq.

£(0)= Vo2 + 22(0) (5) results from the process of minimizing the energy with
(P)=vp™+ u(e) respect td [ u(¢) in Eq. (5) is the stationary pointand the

and the GEP reads GEP must be the global minimum of the energy density for

the whole range ofu? (0<u?<x) [16,21,24. Therefore,
1 1 for every value ofp, one has to compang(¢)’s at the three
Vig)=5l! o(m?)—1o(M?)]— Z[MZI 1(u?)—M?1(M?)] possible values ot with each other, and only the minimum
among them can be taken as the GEP.
1 1 Obviously, the end point.=0 forcesV(¢) in Eq. (4) to
2 2 2 2 2 be infinite and must be discarded. Moreover, for the other
2 Mol (w9 =1((MH]+ 5 mMpe end pointu— o, one has

B8

cogBe).

2 2

m w2 m
+E

2
1—exp[ - %[llw%—ll(w)]]cowp)] Vel g
(4  This implies that wheB*<8, V(¢)— u?/8m and tends to
infinity for infinite «. Thus, wheng?< 8, one should resort
Here, . takes one of the following three possible values: theto only the nonzero solution of Ed5) for governing the
nonzero root of the gap equation GEP, which renders/(¢) finite. As for the case of3?
>81r, we have

IYE

2_ 2 2 2
me=u(@)=mg+m 28

cogBe¢).

m2 2
V(e)—— 2

For those values o with m? cos(B¢)>0, the end poinju

and the two end points of the ranges@?<o, u?=0 and —o makesV(¢) unbounded from below, and accordingly

u?—oo (the explanation of this point is put off to the next the vacuum is unstable. S8 should be smaller than®

paragraph In the right-hand side of Eq5), u is a function  This constraint of8? is consistent with that in Refi] (the

of the uniform background fieldp, which is the vacuum seventh paragraph on p. 372 in the bpo&nd is a little

expectation of the field operates. Among the minimized similar to that in SGFT2,4] (the possible difference about

results, P, is the average value of the total momentum den-the physical sense of the constraint will be discussed in Sec.

sity operator of the field system, and its null result is under-V). In a word, for computing the GEP, we should use the

M2

2
xeXP{ Bl 1M cos B, (5)
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nonzero root of Eq(5) instead of the valueg?=0 andu?
—oo, and meanwhile, the coupling parame(@f is con-

strained to the range of<98?< 8. (For the SG systems in

condensed matter physics, the constraint can be extended to
B?<16m [35]. Perhaps, the constraifi®<8s could have
some analogous extension for MSG systems in condensed ~

matter physic$)

Furthermore, in order to analyze vacuum structure and

stability, we still need the extremum conditi¢pdV(¢)/d¢

2 2
M+ 7 exp - %[ll(ﬁ)—ll(w)]]sin(ﬂqo>=o
®

PHYSICAL REVIEW D 59 105021

T2_ 52

~5 -mg
moe + tan B¢)=0, (12
and the stability condition
T2 2
1-p2E 0. (13)
8mu

Thus, the calculation of the GEP from the last four equations
or inequality is equivalently carried out at a fixed value of
m?. When one intends to consider the effectsndf, it is
enough to further utilize the original definition Eq8) and

(9). (Of course, in order to define dimensionless quantities,
one can have other choices. For example, one can choose the

and the stability conditior(i.e., the second derivative of parametem? as a unit instead of.,.)

I (W M H,]| W) with respect to the relevant variational pa-

rameterf must be positivé4,21,24 at u(¢))

m2 82 2
1- Sﬁ ex _ﬁZ[Il(Mz)_Il(MZ)]

I2(u?)cog Be)>0.
@)

When B2<8m, Eq. (5) always has a nonzero solution
(which is different from SGFT, where no solutions can exist
for some values 0B ¢ [4]), and accordingly we can define a

parameter with mass dimension

2
po=pu*(¢=0)=mg+m? eXP( - %[Il(ﬂg)_ll(Mz)] ,
8

which is positive(independent of the sign ah?), and is
physical mass squared when the vacuum is symmétee
the next section When m?<0, uo<mjy; otherwise, ug
>my. In Egs.(4), (5), (6), and inequality(7), we can elimi-
natem? in favor Of,u,é with the help of the definitiori8). For

Now we can compute the GEP of MSGFT. It is difficult
to solve analytically Eqs(10)—(12) and the inequality(13),
and hence we have to appeal to a numerical method for tack-
ling them. If there exists a SSB phenomenon, analysis of the
vacuum structure indeed amounts to the determination of the
boundary between the symmetric and asymmetric vacua in

the model parameter spag?-m3. In order to obtain the

boundary, one can search for the points in the spﬁie&% at
each of which the value of the GEP for the asymmetric
vacuum +#0) is exactly equal to that for the symmetric
vacuum. When one executes the numerical computation, an
additional point to be noticed is that for some values of the
parameter$32,m3} there exist two roots of Eq11) and one

of them should be chosen so as to minimiz&p) in Eq.

(10).

The numerical results indicate thé) when m3<2 (an
approximate valug the vacuum is symmetricafii) for any
m3>2, there is a critical value of the coupling paramegt
at which the vacuum is degenerate and located at either
=0 or ¢#0. When ?<p2 the vacuum is symmetrical,

convenience of numerical computation, we define the fo"whereas wherﬁ2>,8§, the symmetry of the vacuum is bro-

lowing dimensionless quantities:

o _V(e)=V(e=0) ~ p -~ My
V(@)_ /_Lg ’ M= /»LO, mO_ Lo (9)

Then, we can rewrite the GEP as

- 1 1)\ . m . 1.
V(so):(g—ﬁ (Mz—l)—S—;ln(Mz)Jr Emgzpz,
(10
the gap
pP=mg+(1-md)(n?)F " cog Be), (1)

the extremum condition

2To determine this point needs some further investigation.

ken. Collecting all the above, we depict tﬁé—ﬁz parameter
space in Fig. 1. The allowed region of the parameters at any
fixed uo forms a semi-infinite strip{ma>0,0< B%<8},

and in this strip, the long-dashed curve represents the critical
couplingﬂﬁ. (The dotted and short-dashed curve are relevant
to bound states and will be explained in the next sectilin.
Fig. 1, domain | corresponds to the symmetric vacuum, and
domains Il and Ill correspond to the asymmetric vacuum.
From this figure, one can see that with the increasmpfthe
domain | gets more and more narrow. That is to say, the
more negativem? is, the wider the domain oB? for the
asymmetric vacuum is. For an illustrative purpose, we plot
the GEP in Figs. 2 and 3 fan3=1.5 andmj= 20, respec-
tively. For the Iatterﬁ§~3.0265772.(Note that the GWFA
value ofﬁg could not predict an exact value of the critical
point when a phase transition negf is considered, and
perhaps the value @2 and some relevant information could
be changed by some better approximate approach. The dis-
cussion relevant to this point will be deferred to Sec) V.
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FIG. 3. Similar to Fig. 2 but ifm3=20. In this figure, curves
FIG. 1. Theﬁz-ﬁ% parameter space for the massive sine-Gordorfrom the highest to the lowest are drawn f8f=1.44, 2.25, 3,
field theory in 1+1 dimensions, which is plotted from Eq&.0)— ~3.03, 4.0, and 4.84, respectively.
(13). The vacuum is symmetric in domain I, and is asymmetric both
in domain Il without a bound state and in domain Il with a bound
state. The short-dashed curve corresponds toBegs€0 and the
dot-dashed curve to the vacuumeaj=0.75.

and failed likewise. Of course, wherm3 tends to zero, the
GWFA can well give the effective potential f@#¢ €[(2n
— D7, (2n+ 1) 7] (in the case om?>0) [4], and the vacua

~5 , are degenerate, which is a special case of dynamical symme-
Thus, we see that whemg>2, there really exists an asym- v preakdown. Thus, in Fig. 1, the left, linear boundary of
metric vacuum within the framework of the GWFA. That is

: ~2__ 2 -
to say, for MSGFT, the classical double-well potential canthe domain | ny=0, 0=p"<8) corresponds to the spe

cause a SSB in quantum theory. This is usually believed, jusg'i?rllgrygamlr%aeltﬁgg;rg?trg;bﬁ;kgﬂ\g; V:tCl(JeL;Tﬁ Wrgiﬂt‘ %?ntﬁs
as pointed out in Ref[12]. When 82< 16/, this is also y y P

: - boundary.
compatible with Ref[1] (p. 382. " . i
About the asymmetrical vacuum of MSGFT, we havetiOr’?‘%d't'OS:rl]lzjr;']veef\]f\/ei?gosgnggt'%?otge;ygq(rg)egx dr?s)tora
more to say. Frolich [1] pointed out that form? large -~ v a e as- ’

2 2
enough and positivep— (— ¢) symmetry is presumably dy- Mo=>1 meansn“<0, and thus the above symmetry-vacuum
namically broken. This implies that for a sufficiently small domain withm3>1 in Fig. 1 shows the occurrence of a

m2, the vacuum can be asymmetrical. Nevertheless, usingymmetry restoration phenomenon, because the correspond-
the above GWFA results, we failed to find a very small butiNd classical vacuum can be spontaneously symmetry bro-

nonzero value ofm3 (with 2<8s) which can lead to a ken.

dynamic symmetry breakdowsin order to consider it, we In this section, we have obtained the vacuum structure of
y y2 y ol . '~ MSGFT. The ground state wave functional is the best trial
also choseng as a unit to perform the numerical calculation

Gaussian functional?’[ ¢; ¢, P,f] in Eq. (3) with P,=0,
. ®x=¢q, and the Fourier component of,, is f(p)
v =p?+ 1%(¢,). Hereg, is a constant satisfied by E@), at

12 which the GEP is lowest and the vacuum is located. In ad-
dition, there is a constraint g82, that is, 0< 8°<8r. In the
next section, we shall discuss the excited states upon the

di ground state. For convenience, we (igg) to represent the
ground state wave functional hereafter.

6 L

Ill. BOUND STATES

3l In this section, we investigate the one- and two-particle
excited states. Following Ref$15,16,19,31,3B one can
manufacture the annihilation and creation operators with re-

0 ()] spect to the vacuum stafe):

0 1 2 3 4 5
o : 1 \Y2r )

FIG. 2. The reduced GEP of theN massive sine-Gordon field Ai(p)= F) f e—le[ f(p)(dy— o) + S0

theory in 1+1 dimensions for the case of2=1.5. Only one-half of 7t (p) X bx

the symmetric potential is shown. In this figure, curves from the left (14)

to the right are drawn fo;82=0.0004, 0.25, 1, and 25, respec-
tively. and
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1 12 S which is the energy of one particle with a momentpnT his
Al(p)= (m) f DX £(P)(px— o) — 5o, is the physical sense ¢{p), which has previously appeared
P X X (15) in the last section. Obviously(¢g) is mg, the physical
mass of a particle according to the relevant vacuum. Thus,
It is evident that A¢(p)|eo)=0 and the commutator within the fr'amework of the GWFA, the single-particle mass
[A«(p),Al(p’)]=58(p—p’). Then one has the one-particle Of MSGFT is
state

o\ B28m
— AT m
and theS-wave two-particle state

+ A further analysis tells us that for both the asymmetric and
2)= f dp=(p)AT(P)AT(=p)l¢o), (17 the symmetric vacuang increases with the increase w8
or m?; for the symmetric vacuumyg also increases when
where % (p) is the Fourier transformation of th&wave g2 increases, but for the asymmetric vacuum, things get a

function of the two—_particle system. little complicated, which here we intend to discuss no longer.
For the one-particle state, one can find Now we turn to discuss the two-particle state. From Ref.
(AIN[H]I1) [33], the two-particle energyn,=(2|H|2)/(2|2)— [, W(®o)
" . . .
m, = — | Wgy)= m, (18) can b_e_calculated dasxpressed in terms of the dimensionless
(1[1) x quantities

2
2 f d"b[2<5>]2f(5>—(ﬂzllem[ﬁz(soo)—ﬁwé][ f dToE(B)/f(B)}
m,= , (20
| dws e

with My=m, /g, P=p/po, andf(p)=Vp2+ n(¢o). The The mass of the bound statg, can be calculated within

two terms in this expression can be regarded as the kineti®'e framework of the GWFA15,16,13. Minimizing the en-

energy of the two constituent particles and their interactingergy m, with respect ta (p) yields the equation fom,:

energy, respectively. Obviously, the interacting energy is

closely related td m3—u?(¢o)]. When u?(¢po)<mz, the B - dp

interacting energy is positive, and the two particles repel @[“ (‘PO)_mO]f 2/% ——=—=1. (2]

o & . fe(p)[2f(p) —m;]

each other and cannot combine into a bound state, while for

1?(@o)>m3, the interacting energy is negative, and the two

particles attract each other and may form a bound state.
Analyzing Eqg. (11), one can find that for symmetry

vacuum (py=0), i.e., for domain | |n Fig. 1, whemy<1,
w?(@o)>m3, and when my>1, u?(go)<m; for

symmetry-broken vacuumg#0), i.e., for domains Il and

Il in Fig. 1, if cos(Bgy)>0, then u?(po)<md, and if

Whenu?(@,) <m3 this equation has no solution but one can
obtain the scattering phase shiff83,5. When u2(¢o)
>m3, Eq. (21) has a solution withm,<2u (), andm, in
this equation timesu is just the mass of the bound state
my, . Finishing the integration in Eq21) leads to

~ ~ 2 mz 1 1+m?
cosB¢p)<0, then u?(@g)>ma. It is worthwhile noticing ab:ﬂ_ 10 tan1 b_ 7 ,
that the case of cogf,)<O0 does exist whem3 is less than 8 w?(¢o) 1—m?2 1-m2 4
about 9.5 or wherB? is greater than some vall,(ﬁ for any 22

Iargermo, which is involved in domain Il in Fig. 1. In Fig.

1, the short-dashed curve corresponds to the critical case ®fith the reduced massi,=m,/2u (o). Whenmz<1, the
cosByee)=0. Thus, for the symmetry vacuum with,>1  vacuum is symmetricu(¢o) is unity, and the last equation

or for the asymmetry vacuum with cgkg,)>0 (domain 1)) is enough to give the reduced mass of the bound state in the
the two- partlcle states can be ]USt the Scatterlng One%ymmetnc vacuum. For some Va|uesmg we g|Ve the de-
whereas for the symmetry vacuum withy<1 or for the pendence of the reduced mass upon the coupling congtant
asymmetry vacuum with co8{)<0 (domain lll), there can  in Fig. 4. This figure indicates that the reduced mass of the
exist the two-particle bound states. bound state decreases with an increasg®fand increases
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FIG. 4. The dependence of the reduced mass of the bound state FIG. 6. The dependence of the reduced mass of the bound state
in the symmetric vacuum upo@? for some values of3. In this  in the asymmetric vacuuna,=0.75 uponm3.
figure, curves from the lowest to the highest are drawn r~ft§r
=0.05, 0.2, 0.4, 0.6, and 0.8, respectively. dotted curve in Fig. 1 falls down on the short-dashed curve,
_ which means thamj acts as the coefficient of the free term
with an increase om%. [Note that for the symmetry vacuum in the Lagrangian. On the other hand, if the binding between

case, Eq(22) can give vanishing or even negatimg, if the  two particles is slightly tighter, the reduced mass decreases
curves in Fig. 4 are not artificially cut off @#?=8x.] Fora  with the increase ofnj, which means tham3 acts as the
given asymmetric vacuum, one can calculate the reducecoefficient of the cosine interaction term in the Lagrangian,

mass of the bound state through E@)—(13) and(22). In and stays at the fixed value 0.76 or so for largg: The
this case, a vacuum located at a differegtcorresponds to a monotonous decrease df, upon ﬁ]S is understandable be-

different curve in domain Il of Fig. 1(Of course, so it does ~ 0 2.
cause (X mg) plays the role ofm</ug in the reduced ex-

in domain 1) For instance, the vacuum al,=0.75 corre- g e
sponds to the dotted curve in domain Ill. Vacua at otpgr  Pression(11). These results indicate that from E@2) the
bound state in an asymmetric vacuum never becomes ul-

correspond to other similar curves. Fog=0.75, we depict

the dependence of the reduced mass of bound state ghon fratightly bound. _ _ _
in Fig. 5 and upon~nz in Fig. 6. From Fig. 5, the reduced In this section, we have obtained the single-particle mass
. o . . . y

f the bound state d i the | 2, of of MSGFT, and shown that for both the symmetric and the
mass ot the bound state decreases with the increage, ot asymmetric vacua, there exist two-particle bound states.
which is similar to that for the symmetric vacuum, but is

|  fixed at 4 | val(®76 bef Moreover, we have also given the bound-state mass. Next,
almost fixed at some not-too-small val(@76 or s before we shall compare the above masses upon the symmetric

B’ arrives at the limit 8. The dependence upomj is  vacuum with the ones in the literature.

slightly complex from Fig. 6. When two particles are not

tightly bound, the reduced mass of the bound state increases IV. SCHWINGER BOSON AND ITS BOUND STATE
with the increase ofm2, and approaches the value(tivo-

free-particle casewhen m3 rises at such a value that the As pointed out in the Introduction, thd+1)D MSGFT

equation (1) with B2=4s is equivalent to the massive
~ Schwinger model at the zero charge sector. The Lagrangian

mmb of the latter i5[1,6,9,11,12,2F(Carroll et al.)
1 L=
09 | ] £=_ZFMVFM +l/lx[’yﬂ(la,u,_eA,u)_mf]{rllX! (23)
0s | with F,,=d,A,—d,A,. The normal-ordering Hamiltonian
) corresponding to Eq.23) with normal-ordering masey; is
equal to Eq(2) with the normal-ordering mass,. The cor-
o7l respondence between the parameters in Bgsand (23) is
2 eZ
= 2_9aY
08 , , , [32 mo=—, m 2e’mym, (24
4 8 12 16
FIG. 5. The dependence of the reduced mass of the bound stav¢herey is the Euler constant. Equatié®3) is (1+1)D QED
in the asymmetric vacuunp,=0.75 upons?. with a massive fermion, and is obtained by inserting an ad-
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ditional mass ternm; ¢ in the Lagrangian of the Schwinger Mg
model[37]. The Schwinger model was exactly solvigY], 12
and shares some nontrivial properties with QCD such as non-
trivial vacuum, quark trapping, and so on. It is equivalent to
a massive free-scalar-field theory with the boson nrags

For the particle spectrum of this model, there exist no single-
fermion states but a free boson which is a fermion-
antifermion bound stat@usually called a Schwinger bosopn
Having an additional mass term, the massive Schwinger
model has a Schwinger boson and its various excited states.
In view of those aspects of the Schwinger model, most in-
vestigations of the massive Schwinger model were involved
in tackling the confinement and particle spectrum of it, and 0 . . . .
mainly in smallm; effects. To our knowledge, except for a 0.0 0.2 0.4 0.6 0.8 1.0
lattice study(not including those on light comeonly Refs. ] )

[26,28 gave the masses of the Schwinger boson and its FIG. 7. The comparison of the Schwinger boson mass(Z4).
bound state for a finiten; . In this section, we shall give the (solid curve, with the corresponding second-order results in Refs.
masses of the Schwinger boson and two-Schwinger-bosdf2:3d (dashed curve

bound state from the symmetric-vacuum results in the last
section, and compare them with the recent results in Refs.
[29,30. As for the vacuum structure, ifi; in Eq. (23) is
greater than zero amn; is small, there exists no asymmetric
vacua according to the results in Sec[ ;>0 impliesm? Msp:

>0, and hencen3<1 from Eq.(8)].

2 2
We first consider the Schwinger boson. From ELp), ~ my 1 tan- ! 1+mg, o )
one can have the Schwinger boson magsipon a symmet- Msp="~~ = an -7 @

2 4
ric vacuum (po=0) (taking M =my) 2Ms| \1-mZ, 1=ms,

mi

Now we are in a position to discuss the two-Schwinger-
oson bound state. From E2), we gain the mass of the
two-Schwinger-boson state upon the symmetric vacuum

with the reduced massi,,=m/2ms. From Egs.(26) and
m=e’"m;+ \Ve>’m?+1, (25)  (27), we depictmg, with respect to the small reduced fer-
mion massm; in Fig. 8 (the solid curvé In this figure, the

s ~ - dashed curve is the corresponding result in R&@)] to sec-
with mg=mg/mgy andm¢=m;/my. Whenm is infinitesimal,  ond order of the fermion mass; . This figure demonstrates

we obtain, from the last equation, that for a smallm; the result from the GWFA agrees very
well with the second-order result of fermion-mass perturba-
~, ~ 92 ~3 tion in Ref.[30].
ms=1+2e"m+2e”m; +O(my). (26) According to Refs[26—30, the mass-perturbation results
are in good agreement with analytical or numerical ones

Performing the fermion-mass perturbation technique for the &
massive Schwinger model in the “near” light-front coordi-
nate system, Ref29] gave the Schwinger boson mass to
second order ofm;. We find that the first two terms on the
right-hand side of the last equation are identical to the cor-
responding terms in Eq:3.16 of Ref. [29], and the only
difference is that the constant factor in thg term is 2227

for our result bute?” for Eq. (3.16 in Ref.[29]. More re-
cently, Ref.[30] also gave almost the identical result of the
Schwinger boson mass up to second ordempfvith that in

Ref. [29]. Thus, for an infinitesimam;, our result of the
Schwinger boson mass is in good agreement with the ones in

sb

Refs.[29,30. For an illustration, a plot of our result and the ].
results in Refs[29,3( is shown in Fig. 7. In this figure, the 0 : : . : my
results in Refs[29,3( are represented by dashed curves and 00 02 04 0.6 08 1.0

coincide with each other. This figure indicates that with the £ 8. The dependence of the reduced mass of the two-

increase ofm¢, our result(solid curve is more and more  schwinger-boson bound state in the symmetric vacuyg upon

higher than the dashed curve, while for smali<0.2, the  the reduced mass®; . The dashed curve is the corresponding result
solid curve nearly coincides with the dashed curve. in Ref.[30].
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from many other techniques. Therefore, we can say that for axample. Simon and Griffiths gave a rigorous theorem that
small massam;, the GWFA gives the masses of Schwinger for the (1+1)D \ ¢* field theory in the presence of an exter-
boson and two Schwinger-boson bound state with good amal field B#0, the vacuum of it is uniqué¢38]. Further,
curacy. Chang proved that the occurrence of the first-order phase
By the way, for finite fermion mass, the massfrom Eq.  transition in the (1+1)D A ¢* field theory violates the
(25) is nearly linear in terms oﬁf_ We notice that in Ref. Simon-Griffiths theorem, but a second-order phase transition
[26], the result of the mass of the Schwinger boson is also &an be compatible with this theorefi@3]. As is known, the
linear one in terms of then;. For any given value ofn;, = GWFA predicts just a first-order phase transition in this
there exist infinitely many results from Rdf26]. For ex- theory[23,21], and a second-order phase transition can occur

ample, form;= 2.0, besides the results in Figs. 2 and 3, Refin the (1+1)D A ¢* field theory[23,39. That is to say, the
[26] gave the other four values of the Schwinger boson mas$3WFA predicts correctly the existence of the phase transi-
4.78, 5.97, 6.9, and 7.70. For this casg=2.0, Eq.(25  tonin the(1+1)D \ ¢* field theory,_ and predicts mcorrec_tly
ngSt the nature of the phase transition. Another example is the
(1+1)D ¢° field theory. The GWFA predicts a first-order
phase transition in this theofy16]. But a coupled-cluster-
method investigation indicated that for the region where the
V. CONCLUSION two-particle bound state exists, a first-order phase transition
) ) _ ) ~ can occur in the1+1)D ¢° field theory; nevertheless, the
In this paper, we investigated MSGFT with the GWFA in critical curve is different from the corresponding one in the
(1+1) dimensions. We discussed the ground, one-, and tWogWFA result[40]. Additionally, for the region where a two-
particle states. For the ground state, we demonstrated therticle bound state disappears, no first-order phase transi-
existence of the asymmetric vacuum, obtained the constraiffons exist, but a second-order phase transition is believed to
of the coupling8”<8m, and gave the parameter regions of gccur in the(1+1)D ¢° field theory[40]. In view of these
the symmetric and the asymmetric vaolig. 1). For the  sjtyations of the above two theories, we feel that the Simon-
one-particle state, the implicit formulel9) is obtained for  Griffiths theorem could perhaps have an effect on the other
the mass of a single MSG particle. As for the two-particle(1+1)D field theories to some extent. Therefore, we conjec-
state, we show that the two-particle bound state can exisfjre that for(1+1)D MSGFT, the GWFA predicts correctly
upon an asymmetric vacuum. We also give the bound-staige existence of a phase transition, but could make a mistake
mass formuld22) as well as the model parameter regions ofin predicting the critical boundary and the nature of the tran-
the bound states upon the symmetric and the asymmetrigition, perhaps which will be similar to those in tte+1)D
vacua, and discuss the dependence of the bound-state masggsfield theory. In order to get a definite conclusion, some
upon the model parametefg andmg. Finally, the masses of better approximate methods should be ug22139,4Q. We
the Schwinger boson and the two-Schwinger-boson bounbelieve that after considering the higher order correction of
state in the massive Schwinger model are calculated accorthe GEP[22,39,4Q, one may obtain different figures from
ing to Egs.(19) and (22), and are in good agreement with Figs. 1 and 3, but the asymmetric vacuum would still exist.
those in the recent literatuf29,30 (Figs. 7 and 8when the  In a general, when a classical vacuum ihIldimensions is
fermion massamn; is small. spontaneously symmetry broken for some region of the
Before closing the paper, we want to give a further dis-model parameters, quantum effects are not sufficient to make
cussion of Figs. 1 and 3. Figure 1 is just the phase diagram dhe vacuum completely symmetrical for all values of the
the vacuum. In this figure, with continuous variationsdh  model parameters. The existence of the asymmetric vacuum

and m, a symmetric phase of the vacuum can transit theshould be reasonable.

long-dashed boundary to an asymmetric phase. This implies Besides, in Fig. 1, whemé tends to zero, the symmetric
the occurrence of a phase transition. Furthermore, Fig. 3 iphase of the vacuum becomes a dynamical-symmetry-
an explicit illustration of the GEP witmZ=20, and it indi-  breakdown phase. This perhaps implies the existence of a
cates that the vacuum average value of the field opegagor Phase transition. In fact, Refl] (the end paragraph on p.
changes discontinuously from zero to nonzero wigdrin- 407 in the bookpointed out that there may be a phase tran-
creases gradually. That is to say, the GWFA predicts a firstSition (and long-range ordgiif m, is small enough. Addi-
order phase transition in MSGFT. Nevertheless, it could bdionally, as mentioned in Sec. II, the confstramt/ﬁ<87r
inadvisable to conclude that a true first-order phase transitiolt MSGFT is the same as in the SGFT. Itis well known that
occurs in MSGFT. As mentioned in Sec. I, some GWFAB“=8m is a critical point at which the Kosterlitz-Thouless
information related to the phase transition may be changeffansition occurs in the SG systefd1]. However, when

by a better approximation method. The GWFA is a simplemS#O, B?=8x could not suggest that the Kosterlitz-
nonperturbative approach. Although it is effective and usefullThouless transition and the zero-mass phase could not exist,
for investigating many problems or phenomena, we shouldor =0 cannot give either the local or the global minimum
not expect too much of it, particularly when we are con-of the energy density but infinitisee Sec. )l As a matter of
cerned with a phase transition. In fact, for a féd#+1)D  fact, the disappearance of the massless Kosterlitz-Thouless
field theories, the GWFA predicts the wrong order of thephase has been shown in Rigg] (1994). By the way, if one
phase transition. We take theg? field theory as the first uses the GWFA with a finite momentum cutdi42,18

gives ms=7.262, which is between the last two values 6.
and 7.7. The relative error is 6% or so.
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