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Effective dynamics of hot, soft non-Abelian gauge fields: Color conductivity and logl/«) effects
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Bodeker has recently argued that non-perturbative processes in very high temperature non-Abelian plasmas
(such as electroweak baryon number violation in the very hot early Univarselogarithmically enhanced
over previous estimates and take place at a rate per unit volume of@t@iéin (1/«) for small coupling. We
give a simple physical interpretation of Beker's qualitative and quantitative results in terms of Lenz’s
Law—the fact that conducting media resist changes in the magnetic field—and earlier authors’ calculations of
the color conductivity of such plasmas. In the process, we resolve some confusion in the literature about the
value of the color conductivity and present an independent calculation. We also discuss the issue of whether
the classical effective theory proposed bydB&er has a good continuum limfS0556-282(199)05008-0

PACS numbgs): 11.10.Wx, 05.20.Dd, 05.66k, 11.15—q

[. INTRODUCTION ated with magnetic fluctuations over distance scakes
~1/g°T (to be reviewed momentarily For a long time in
Standard electroweak theory violates baryon number vighe literature, it was assumed that the time sd¢abé non-
non-perturbative processes involving the electroweakperturbative processes was also of ordgfI/ and that the
anomaly! Such processes are exponentially suppressed umiatel” per unit volume was therefore of ordeREt~ a*T*.
der normal conditions, but are unsuppressed at very highwo years ago, we argugd] that damping effects in the
temperatures in the early Universe. Non-perturbative baryoRlasma slow the time scale down tte 1/9*T, giving a rate
number violation is a key ingredient in scenarios for elec-0f I'~1/R°t~a°T* (See also Refg4,5]) More recently,
troweak baryogenesis, which attempt to explain the mattqudeker[G] hqs claimed .that there is an additional logarith-
anti-matter asymmetry of the Universe in terms of the physic suppression of the time scale, so that
ics of the electroweak phase transition. Such scenarios typi-
cally depend orfamong other thingsthe equilibrium rate of t~ 1
baryon number violation in the hot, symmetry-restored phase g*TIn(1/g)’
of electroweak theory. The rate of baryon number
violation—and more generally the rate of any generic nonBodeker has also proposed an effective theory for the rel-
perturbative process in high-temperature non-Abeliarevant distance and time scales in the form of simple stochas-
plasmas—has long been a source of theoretical confusion. it dynamics for the gauge fields. Numerical simulation of
fact, it is only recently becoming clear how the rate scaleghis effective theory would give the non-perturbative numeri-
with the fine structure constant of the relevant gauge in- cal coefficientc of the logarithm:
teractions in the arbitrarily weak coupling limit.
For non-Abelian plasmas at ultra-relativistic temperatures, I=ca®T*In(b/a) (1.2

non-perturbative fluctuations of the gauge field are associ- o
for small @. (No one has yet proposed an explicit way to
calculate the constabtunder the log, and one should expect
. L here to be sub-leading corrections suppressed only by pow-
1
For some reviews of t_electroweak baryon number violation andIerS of 1/Ina.) The goal of the present work is to show that
electroweak baryogenesis, see Réi. - , .
2 ;) _ " : . Bodeker’s results can be reproduced and interpreted through
We use the term “symmetric phase” loosely since, depending on_ . | t based the fact that bl
the details of the Higgs sector, there may not be any sharp transitio uf:ltri]:/ze argument based on the fact that plasmas are con-

between the symmetric and “symmetry-broken” phases of the . )
theory [2]. A sharp transition is in fact required for electroweak Before presenting the essential argument, let us take a

baryogenesis. The analysis of this paper applies directly Whenevé‘pognent to review the physical origin of the length scale
the temperature is sufficiently high that the infrared dynamics of thel/d°T associated with non-perturbative fluctuatiorifor
Higgs is irrelevant at lengths @(1/g2T), which is the case either more formal arguments, s¢€|.) Imagine a fluctuation of the
(a) far above the electroweak phase transition or “crossover,” orgauge field of spatial sizeR and amplitude A. Non-

(b) in the symmetric phase at the transition in cases where there gerturbative means that, for examptpA is not a perturba-

a first-order transition and the transition is not exceedingly weak. tion in the covariant derivativeD=V —igA. So non-

and I'~a®T*In(1/a). (1.9
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perturbative meand=0(1/gR), and hence the enerdy of later see is dominated by excitations with momenta of order
this fluctuation is=0(1/g2R). The probability of such a T- It is important to distingl_Jish between the hard momenta
fluctuation in energy is exponentially suppressed by thef the particles which contribute @,,qand the momentum
Maxwell-Boltzmann factor exp{BE)~ exd —1/(g?RT)] components c_n‘]hard itself (which is bilinear in the fundamen-
unless R=0(1/g%T). Because of entropy effects, non- ta|.fle|d9. It is the_ soft momentum components 0fq
perturbative processes will be dominated by the smallest siz&hich are relevant in the context of EQ.1).
scale for which the probability is unsuppresgsihce there Plasmas are conductors. Hence, for suff_|C|entIy small mo-
are more small-wavelength degrees of freedom than largélentum and frequenciexactly how small will be discussed
wavelength ongs and so the characteristic length scale oflaten, we have
non-perturbative physics iR~ 1/g®T. Static electric fields
are screened by the Debye effect on smaller distance scales,
of order 1gT. For this reason, non-perturbative physics inyhere ¢ is the color analog of conductivity. The Maxwell
the hot plasma is essentially magnetic. More technically, it issquation then becomes
only the transverse degrees of freedom of the gauge field
which are important. DxB=D,E+cE. (2.3

In the next section, we present the simple relationship
between the color conductivity and non-perturbative dynamLet us assume that non-perturbative processes will be slow
ics at leading-log order, and reproducédgéer’s effective €nough(which we will verify a posteriorj that we can ne-
theory for the non-perturbative dynamics. In Sec. Ill, wedlect the time derivative term. Then the Maxwell equation
review the somewhat confusing literature on color conducbecomes simply
tivity and present our own calculation based on the Boltz-
mann equation with a collision term. Finally, in Sec. IV, we

argue that Bdeker's effective theory is ultraviolet |4 A —0 gauge, this is a simple first-order equation of mo-
insensitive—a crucial property for numerical simulations.  ion:

Jhar™= OE, (2.2

DXxB=o¢E. (2.9

Il. THE ESSENTIAL ARGUMENT d
o A=—DxB. (2.5

We now turn to the essence of the argument, which is

quite shorftl. It |s'base'd oln reallz.mglthatdtr:je dynbamL|cs ?f This equation is dissipative and describes the relaxation of
Tagne"cd uqtuatlonj_ In pa_lsme;]s IS slowed down yf_ ﬁjnzlsfluctuations of the soft fields away from equilibrium. The
aw: conducting media resist changes in magnetic field. rHissipation results from interactions of the soft modes with
the context of high temperature baryon number violation,e parq gegrees of freedom, which are accelerated by and
this quall_tatlve explanatllon of the slow time scale for NON-steal energy from the soft fields. Interactions with the hard
pertur.bat'we processes 1S due' to Mocﬁ_ﬁi. Let's make it modes, however, not only provide dissipation for the soft
guantitative. This derivation will be a little fast and loose, modes: they also serve as a source of thermal noise. In the

but its advantage is that the physics is very simple. above analysis, the noise has been implicitly disregarded,
Imagine splitting the gauge field into soft degrees of,, e will need to put it in if we wish to describe equilib-

Lreedom—thosc;,\fassociatedhwith momenta of 9?@’ arr]‘?l, hrium fluctuations. Fortunately, this is simple to do after the
ard degrees of freedom—those associated with much highgs .+ hecause noise and dissipation are intimately related by

moment_ﬁ such a§'| The detaki:s of exactly PTOI\IN thisfg_g:lit S the fluctuation-dissipation theorem. In the language of an
made will not be relevant at the order we shall considBine  otective theory of the soft modes, equilibrium requires a

amplitude of fluctua_tions is non-perturbative_for the softyajicate balance between the soft modes’ excitation from
modes but perturbative for the hard ones. As is well known\parmal noise and their dissipative decay.

[10], the soft modes are also effectively classical—there are To be more specific, note that E€2.5) has the general
a large number of quanta in each mode because of Bo ’
statistics. Now, treating the soft modes classically, start with

the Maxwell equation d
o 5:9=—VV(a), 2.6
DXB=D; E+ Jhaq (2.9

for the soft degrees of freedom, wheBe=Dx A and where whereV/(q) is the potential energy of the degrees of freedom

all covariant derivatives are to be understood as only involvd (Which in our case is the non-Abelian magnetic energy
ing the soft gauge field degrees of freeddlgqis the color ~ 2JxB°). Such systems are common in physics, and a simple

currenf due to the hard degrees of freedom, which we :shal!c"""‘y tgo incorporate thermal noise is to include a random
orce &:

That is fortunate, because trying to make such a split explicityajian gauge field. It should be emphasized that all discussion of
creates a host of difficulties. See RE]. “color” is applicable to the dynamics of, in particular, the &)
“We are using “color” as a descriptive name for some non-electroweak gauge field.
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d correspond to polarizations parallel to the spatial momentum
og;9= ~ VaV(@+<& (2.7 k. We discuss the noise-driven longitudinal dynamics gen-
erated by Eq(2.9) in great detail in Ref{12], but the matter

This is a typical example of a Langevin equation. The sim-S Not directly relevant to the present discussion.
plest possible choice of thermal noise, Gaussian white noise, 1he effective equatiof2.9) turns out to have the wonder-
reproduces the correct equilibrium distribution exgay) if ful property that it is insensitive to how the soft modes are

the noise variance is suitably scaled with the amount of disCUt Off at large momentumWe will discuss this in greater
sipation, depth in Sec. I\). It means that one can ignore the soft/hard

separation that was necessary to write Ejl) but which
(LGDOEGE))=20T & 8(t—t'). (2.8)  Was never specified in detail. It means that Ef9) will be
insensitive to short-distance lattice cut-offs used in numerical
This well-known result can be verified by converting the simulations. Finally, it also means that such simulations will
Langevin equatior(2.7) into a Fokker-Planck equation for not be plagued by lattice artifacts, such as loss of rotational
the probability distribution(See, for example, Chap. 4 of invariance, that were thought to arise in other approahles
Ref.[11].) From Eq.(2.98 andB=DXA, one can immediately see
Why should one believe the noise distribution is sothat the time scale of non-perturbative dynamics is given by
simple? First, the noise can be treated as Gaussian if the soft 1 s
dynamics of interest has a time scale large compared to the ot "A~RTUA, (2.10
decorrelation time of the noise, which is caused by fluctua-
. . . .50 that
tions of the hard modes. Averaging the noise over time
scales small compared to the soft dynamics scale but large o
compared to the noise decorrelation time, the central limit t~R? o~ ATz
theorem implies that the resulting distribution will approach 9

a Gaussian shape. We will see la€ec. Il A) that in our 15 one need only know the color conductivity There
case the relevant decorrelation time for hard fluctuations 'Hias been some confusion in the literatddescribed later

2 -1 : S
1/(g°TIng™~) whereas the time scale for soft dynamics is 4oyt this quantity, but the correct value was first presented

the longer scale 1¢(*T In g~ 1) asserted earlier. Second, if the by Selikhov and Gyulassii3]. The color conductivity is of
theory were linearized, then the fact that the spectrum of thig 4o,

Gaussian noise is white noise would follow rigorously from

the fluctuation-dissipation theorem. More generally, any T

noise spectrumf(w) may be regarded as frequency- T I (lg) (212
independenti.e., white noisg¢at sufficiently small frequency

w providedf(0) is finite and non-zero. So effective theories we will review later how to understand this physically. In-

for long time scales can generally be expected to haveerting Eq.(2.12) into Eq.(2.11) then gives the time scale
Gaussian white noise. Finally, one might wonder why there

could not be some non-linear coupling to the noise, in the 1

form of a functione(q) multiplying the noise ternt in Eq. t~ g*TIn(1/g)" 213

(2.7). Generically, the introduction of suchgdependence

would change the equilibrium distribution produced by Eq.and sol’~ a°T#In(1/«), which has the logarithmic enhance-

(2.7) so that it would not correctly reproduce expgV). ment claimed by Bdeker. Later, we will see that earlier
Based on the above discussion, let us introduce noise as estimateg3] of the time scale as~ 1/(g*T) correspond to

Eq. (2.7). Translating back to our particular systéth5), we  ignoring the effects of collisions on the conductivity. Note

obtain the following effective theory for the soft modes:  that ignoring the time derivative term in E(.3) was justi-

fied since the characteristic time sc&®13) is much greater

(2.1

d than the inverse conductivity * determined by2.12).
o giA= ~DXB+E, (2.99 On a more quantitative level, the color conductivity is
[13P°
(LX) Lt X)) =20 T 6208 S(t—t') S(x—x), 2
(2.9 o~—2 (2.14
Vg

wherei,j anda,b are spatial vector and adjoint color indi-

ces, respectively. Those readers interested in a more technitheremy, is the plasma frequency and

cal derivation of the noise term starting somewhat closer to

first principles should consult Bieker[6]. Yg=a CaTIn(1/g) (219
Astute readers may notice a peculiarity of Eg8.9): it

introduces noise for the longitudinal as well as transverse

modes ofA, whereas the effective theory is only meant to 5The reader of Ref[13] should beware the final equation of that

describe the transverse modé€bhe longitudinal modes are paper, Eq(47). In that equation, the authors replace their result by

the pieces oE which contribute tdD- E and perturbatively something rough and approximate.
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is the damping rate for hard thermal gauge bospg.®  over a timeAt. For small deviations, the change in velocity
Here, C, is the adjoint Casimir, conventionally normalized of a typical particle whose energy is ordemwould then be

as C,=N for the gauge group SW), and “~” means

equality up to relative corrections suppressed by powers of Ap gEAt

In(1/g). That is, no claim is made about discriminating V~FNT' 3.2
In(1/g) from In(2/g).” The only place where the matter con-

tent of the theory enters is in the value of the plasma freand the resulting current would be

guency. For hot electroweak theory with a single Higgs dou-

blet, it is given by J~ngAv~(g°T2At) E, (3.3

wheren~T?2 is the density of hard particles. The current is
dominated by the most prevalent particles in the plasma:
those with momentum of ordér. The current(3.3) grows
indefinitely with the length of time the electric field is ap-
plied. There are two things which can cut off this growth of
the current:(a) collisions, and(b) temporal or spatial oscil-
lation of the electric field. Stick with the collisionless plasma
for a moment and consider oscillations Bf As we have
discussed, the time scale for non-perturbative processes turns
out to be slow. So suppose, for example, that the electric

AR ) i field varies in thez direction asE~Eg cos k2 but not sig-
that context, the time is usually considered a fictitious ad- nificantly in ime. Then current carriers, which have an mms

ditional variable, corresponding in simulations to MonteVelocity of 143, will move from regions of positive, to

Carlo time. Amusingly, the present application provides an__ . : ; :
. ) o regions of negativé&, in a time of order
instance where Monte Carlo time for gauge theories is actu-

ally real time, up to a calculable rescaling. At~k~1L. (3.4)

5+2
m§.=%gzﬂ[1+0<g>], (2.18

wheren; is the number of fermion families. The Langevin
equation(2.9) with the value(2.14 of o precisely repro-
duces the effective theory derived by dizker[6].

It is interesting to note that, if the time is rescaled, the
Langevin equatiorn2.9) is equivalent to the stochastic quan-
tization of three-dimensional Euclidean gauge théoig.

This change in direction of the electric field felt by the
IIl. COLOR CONDUCTIVITY charge carriers then limits the average current response to a

A. Qualitative description magnitude

We now review why the color conductivity depends on g°T?
coupling as in Eq(2.12, and show how earlier estimates I~—E (3.9
[3-5] of the time scale for non-perturbative processes as
~1/(g*T) correspond to ignoring collision effects. Begin by If we identify the (k-dependentconductivity as
considering the current response to an external electric field
in a collisionlessultra-relativistic plasma. For simplicity of
notation, consider a QED plasma for the moment rather than
a non-Abelian one. If the external field were static and ho-
mogeneous, particles in the plasma with chaggeould re- and takek to be the inverse spatial scatT for non-
spond to the field by a change in momentum perturbative physics, then the time scate for non-

perturbative physic§2.11) would be

2T2

U(k)~gk

(collisionless, (3.6

Ap=gE At (3.9
1 1

t ok g T’ (3.7

8In the literature, the hard thermal “damping rate” is defin@u . . . .
one-loop perturbation theorgs the imaginary part of the pole en- Provided we could indeed ignore the effects of collisions on
ergy for a propagating gauge boson. In particular, it is defined séhe conductivity. This is the qualitative physics behind the
that theamplitudesof plasma waves decay as expft). This isin ~ more formal and quantitative discussions of RESs-5].°
contrast to the standard usage of the “widthi"of a resonancéor The divergence of the conductivit{d.6) ask—0 is cut
example, of the Z boson at zero temperatuvehich is defined so  Off in real physical systems by the effects of collisions, as
that the probability(or equivalently the intensity or particle num- pointed out by Drude in 1900. Let us continue to focus on a
ben associated with the resonance decays as-eKf)( The relation  QED plasma for the moment. A charge accelerated by the
is simplyI'=27y. electric field eventually experiences a collision with other

"It is not clear whether the color conductivity even has meaningP@rticles in the plasma which changes the charged particle’s
except as an approximate concept valid at the level of leading logadirection by a large angle. Such collisions randomize the
rithms. We do not know, for instance, of any directly measurable
(gauge-invariant, non-perturbatjvdefinition of the color conduc-
tvity. % (k) corresponds exactly to the damping coefficientintro-
8See, for example, Chap. 17 of R§t1]. duced in Ref[5].
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a p k=p+q c fects in the plasma turn out to reduce the linggr—0 di-
vergence in Eq(3.9) to a logarithmic one. The result is then
q that'
o, ngt [ my (1)
1 P 2
Tomal~ —5-IN| —=|~g°TIn| =], (3.10
b P/ k'=p—q d small mgl (gZT) g 9

FIG. 1. The dominant scattering processhannel gauge boson where the scalk~g?T of non-perturbative physics has been
exchange. The solid lines represent any sort of hard particles, inised as an infrared cut-off. Using E®.2) and comparing
cluding gauge bosons themselves. The latzls,c,d show our 7 to the collisionless time scalekl/the zero-frequency

convention for naming color indices of the various lines. conductivity o~ g2T?At is then
L . . L 2 -1

direction of the particle and so randomize its contribution to k)~ g-T/k, K= Tsman 31

the current. So the relevant timde determining the conduc- o(k) 0°T Teman, K= Ts_rr}all' (3.1

tivity (3.2) becomes the mean collision timg,4. for large

angle scatterings: Temal WINS by a logarithm fok~ g2T. This means that, in the

small coupling, large logarithm limit, the— 0 value of the
7l ~g*TIn (l) (3.9 conductivity, namelyo~T/In(1/g), is what is relevant to
large my, non-perturbative physics in non-Abelian plasmas.

Some readers may want to know what Feynman dia-

The g* above just comes from the square of the scatteringgrams, in the underlying, fundamental quantum field theory,
matrix element. The logarithm arises because the randomizaorrespond to the color conductivity discussed above. In the
tion of the velocity can occur either through a single large-next section, we formulate a leading-log calculation of the
angle scattering or through the cumulative effect of manyconductivity in terms of the Boltzmann equation. Based on
(individually more probable small-angle scattering$. If (a) the analogy of QCD with scalap®+ ¢* theory (both
Tiarge WETe the relevant mean free time in the non-Abelianhave 3- and 4-point interactions(b) the diagrammatic
case, then the effects of collisions on the conductivifk)  analysis of transport coefficients for the latter theory and its
could safely be ignored when investigating non-perturbativeaquivalence to the Boltzmann equation as explained in Refs.
fluctuations. That is becausg.qe> 1k~ 1/g°T, and so it 19,20, and(c) the fact that, in the gauge theory case, only
would be the collisionless time scaleklinstead ofrjagethat  t-channel scattering processes are relevant at the order of
determinesAt and hencer(k). interest, we believe that the relevant series of Feynman dia-

However, Selikhov and GyulasgyL3] have pointed out grams are the ladder diagrams shown in Fig. 2. This is simi-
that 7j,4e is Not the relevant mean free time in the non-lar to the class of diagrams considered in R&%] for QED.
Abelian case. In the non-Abelian case, even arbitrarily smalbiagrammatic perturbation theory in this form is awkward
angle scatterings can randomize the current, not by randonznd cumbersome, however, and we shall avoid it.
izing the velocity of the current carriers, but by randomizing
their color charge. The crucial difference with QED is that an
exchanged non-Abelian gauge boson, no matter how soft,
carries color and so changes the color charge of the scatter- The original calculation of the color conductivity by Se-
ers, whereas an exchanged photon is neutral. The relevaliffhov and Gyulassy13] was clever but not absolutely con-
time scale for the non-Abelian case is then the mean fredincing. For one thing, it was based on an approximation to
time 7¢mq for any-angle scattering, which is much shorter the evolution of color distribution functions which assumes
than the mean free time for large-angle scattering. Specifthat there is no coupling between the different velocity com-

cally, t-channel gauge boson exchange, shown in Fig. 1ponents of a fluctuatiorfWe shall explain more clearly what
gives a cross sectior such that this means below.The approximation is incorrect in general

but, as we shall see, does not affect the calculation of the
dt color conductivity in particular. Subsequently, Heiselberg
~no~ng* _’V', (3.9 [21] analyzed the quark contribution to the conductivity by
th starting with a Boltzmann equation with an appropriate col-
lision term. He obtained the same dependence on cougling
wheren~T? is the density of particles artgy= —Q? is the  as Selikhov and Gyulassy but a different numerical coeffi-
virtuality of the exchanged gauge boseq. is also known  cient. As we shall later explain, this difference was primarily
as the thermal damping rate of the hard particle carrying thelue to the use of a plausible but inadequate variational an-
current[14,17,18. For ty, below m,2)|~(gT)2, screening ef- satz. Selikhov and Gyulas$22] subsequently published an
alternative derivation of the color conductivity that also

B. Quantitative description

-1
Tsmall

OFor a slightly more detailed but still qualitative summary see,
for example, Sec. lll of Ref.15]. 7j5ciS also known as the “mo- Hagain, for more qualitative detail, see the review in Sec. Il of
mentum relaxation” timgsee, for example, Ref16]). Ref.[15]. For the original work, see Ref14].
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We will describe the hard, perturbative modes of the
theory by a Boltzmann equation. This is well known to re-
produce exactlyat leading order in couplinga large variety
of thermal results obtained by a more fundamental analysis
of diagrammatic perturbation theoty This kinetic descrip-
tion is valid whenever the mean free time is long enough that
the hard particles can be treated as propagating classically
(i.e., on-shel between collisions—a condition to be dis-
cussed momentarily. We will couple the hard particles to a

FIG. 2. The Feynman diagram@ssuming finite-temperature soft electric field, and we will incorporate the semi-hard me-
Feynman rulesthat produce the conductivity due to hard excita- diated scattering processes into the collision term.
tions at leading-log order. Specifically, the ladder diagrams are for The requirement that particles propagate classically be-
the self-energy of the soft fields, whose imaginary part is proporiween collisions means that the de Broglie wavelength and
tional to the conductivity at low frequenciit's wo in A;=0  the collision times must be small compared to the mean free
gauge. The external lines have soft momentugfT) and softer  path and mean free time, respectively. The relevant mean
frequencies, the solid lines correspond to any type of colored parfree time (and path here is Tsman“(ng In)‘l, where here,
ticle with hard momentumT), and the rungs have semi-hard mo- gnd henceforth, we use “In” as shorthand forg’nl The de
mentum @°TIng™*<q<gT). The double lines indicate that the Broglie wavelength of the hard particles is orderT 1/
dominant one-loop contributions to the self-energies have been inx T<mal- The duration of collision mediated by semi-hard

cluded in3the propagato_rs. Th_e analog of the two-loop _chain diagauge bosons is order| G/ o~ 1/q and is small compared
gram of ¢° theory[19,20 is not included because we only integrate 0 Ty When gZT In<g. This requirement means that we

out hard and semi-hard, but not soft, fields to obtain the effective - . . )
theory of interest. Other diagrams relevanigd theory (e.g., non- can only properly account for scatterings with semi-hard mo

; 2 p 2
pinching boxes and chain diagramsave been dropped because Zen<turpr ’Elr_ﬁ_nsf(-:‘_tlth h?VLng g=Tln <1°quth raltthert’ihag_g TI
they do not correspond ttchannel scattering and so should be a=g!'. ) IS will not, oweyer, ,a ectresulls a ga Ing-log
sub-leading in the gauge-theory case. order, which does not distinguish betweeng¢~T) and
In(gT/g?T In).

started from the Boltzmann equation with a collision term 1. The Boltzmann (Waldmann-Snider) equation
[23]. Unfortunately, the collision term they used did not ac- To introduce the Boltzmann equation we will use. let's
count for quantum statistics of the hard particles and, as a d '

result, they were unable to obtain a final answer withoutStart by ignoring the details of color and the non-Abelian

making some very rough approximations along the Way. nature of the prpblem(We will return to the non-Abelian
Indirectly, therefore, Bdeker's[6] results seem to be the ;:niztreegt]g?;niﬁre”yézlﬁﬁgihfzr ngorﬁgeggréha;r\alcievgeigea
first complete(albeit ters¢ quantitative analysis of the color q P

conductivity, even though that is not the language he use%QED plasm&f Sghematically, the Bolt;mann equation for
We present here our own direct derivation of the conductiv—he local distributiom(x,p,t) of hard particles is of the form

ity, based on the collision term approach, which will be more q
familiar to some reader&@nd so perhaps more comforting an_ —C[n] (3.12
than Baleker's methods. dt '

There are three scales relevant to understanding the con-
ductivity at leading-log order. Following Bleker, we will whereC[n] is a collision term describing the net loss, due to
label them aga) the hard scale, corresponding to momentumsemi-hard scattering, of hard particles with momentpm
T, and characteristic of the charges which carry the current,
(b) the soft scale, corresponding to momentgf, charac-
teristic of the non-perturbative electric fjelds that the hard 13-, 5, explicit discussion of the relationship between diagram-
charge carrers respond to, afwl the semi-hardscale, COr~ matic perturbation theory and the Boltzmann equation in scalar
responding to moment in the rangeg®T<q=gT, which  tneory, see Ref20]. For kinetic theory descriptions of gauge theo-
(at leading-log orderis the momentum scale of thehannel  ries, including the extraction of “hard thermal loops” from colli-
gauge bosons that mediate color randomization of the hargionless kinetic theory, see Refg4,25.
charge carriers. Remember that the logarithm in the conduc-;

tivity Is a Iogarzlthm of the, plasma frequency SC_@ﬁ OVEr  (ific time orderings of Fig. 1 and to estimate the energy difference

the soft scaley T _If we tried to go bey_"”d leading-log or- AE between the initial and intermediate states. The duration is then

der, then the distinction between semi-hard and s_oft wouldqer 1AE. Alternatively, one may consider a Feynman diagram

blur, because soft gauge bosons can also mediate Colofpresenting two successive collisions of a particle and verify the

randomizing processes. requirement that a typical particle will be sufficiently on-shell be-
tween collisions that no errofat the desired ordgris made by
treating the collisions separately.

4One way to estimate the scattering duration is to consider spe-

25ych as the approximation made in and just above(Es). of BKinetic theory for QED plasmas has, of course, a long history.
Ref.[22]. See for example Ref26].
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The total time derivative can be rewritten in terms of a con-there is then no way to describe spin 1/2 particles with spin,
vective derivative and the force exerted by the soft fields asay, in thex direction in terms of definite numbers. of

dn : .
az(at+x-vx+ p-Vyn

=din+v-V,n+g(E+vXxB)-V,n, (3.13
whereE andB are to be understood as sdffhe difference
between this and Rieker's approach6] is that Baleker
starts with a collisionless Boltzmann equatiotin(dt=0)
but includes coupling to dynamical semi-hard fields in Eq.
(3.13.]

The collision term is dominated by-22 collisions and
has the forn®

C[n]: J'p,kk’|Mpp/*}kk/|2[npnp/(li nk)(li nk/)

—nNi (1£np)(1+£ng) ] (3.14a

=n,Z_—(1xnyZ,, (3.14b

whereM « 1S the matrix element for the collision, and

pp’ —K

particles with spin in thet z direction. In fact, the problem
goes back to the physics of dilute gases of molecules with
spins that, between collisions, precess in an external mag-
netic field; the generalization of the Boltzmann equation
which solved that problem is known as the Waldmann-
Snider equatioft’ We need the appropriate generalization to
the problem at hand.

In preparation, let us review the incorporation of color
into the collisionless part3.13 of the Boltzmann equation,
which is relatively well known[31]. We will give a quick
summary, rather than starting from first principles. The first
thing to note is that number operators for particles are of the
form ala,, in terms of creation and annihilation operatdts.
Since botha anda' carry color indices, we see thatis a

matrix and transforms under color &R if the hard par-
ticles are in the representatid®. To generalize the convec-
tive derivative in Eq{(3.13 to the non-Abelian case, gauge-
invariance then requires the derivativés and V, to be
replaced by gauge-covariant derivativ@sand D, acting in

the RX R representation. That is,

the 1+ n are final-state Bose enhancement or Fermi blocking

factors, depending on whether the hard particles are bosons

(+) or fermions (). The first term ofC[n] in Eq.(3.19) is
a loss term, representing scattering out of momentum ptate

d,n—D,n=49,n—ig[A,,n], (3.1

whereA , is the soft gauge field expressed in terms of gen-

and the second term is a gain term, representing scatterirgjators of the representatioRl of the hard particles. The

into statep. Coefficients of the loss and gain terrds,, have
been introduced for later convenience. In equilibriu®in]
vanishes.

third term in Eq.(3.13—the electromagnetic force term—
could be color contracted as eithg,Vn] or {E,V,n},
with E expressed in terms of generators7®f The fact that

We have not included the coupling of the soft electromag™, and so alsaln/dt, are Hermitian rules out the commuta-

netic fields to the spin of the hard particles in E§.13.
There are a number of independent reasons for thjsthe

small-angle scatterings that determine the conductivity are

insensitive to the spins of the colliding particlgd) such
terms vanish when one linearizes the Boltzmann equatio
[25], as we shall eventually do, and) for hard massless

tor. So the non-Abelian Boltzmann equation is

(Di+v-Dy n+ 39 {(E+VXB);,V,n}=—C[n],
(3.1

n
where we have yet to specify the collision te@fn]. In the

quarks, at least, the spin dynamics is made trivial by conserappendix, we discuss how to generalize the collision term

vation of helicity. See Refd.25,27,28 for a discussion of
including spin effects in the Boltzmann equation.

We must now face the one subtlety in this derivation,
which is how to incorporate color into the collision term. It is
easy to put flavor indices into a collision term if all distribu-
tion functionsn are diagonal in flavor: one must simply use
the specific matrix elements for flavoesb to collide and
produce flavorg,d and then sum appropriately over flavor
indices. The problem is more subtle for color, however,
since, as we will review, the distribution functions that de-

scribe color fluctuations are not diagonal in color space. The

need to deal with a non-diagonal distributioris a problem

(3.14. (The result is substantively equivalent to one derived
by Botermans and Malflidt32] in the context of one-boson
exchange processes in nuclear mateHere, we will just

try to make the result plausible. It is fairly easy to guess how
to contract all the color indices in E3.14) otherthan the
one whose net loss is being descrilfgtht is, other than the
one associated with). Refer to Fig. 12°

For a review, see Ref30].

More technically, the localized number densities,p) corre-

that has arisen previously in applications involving massivespond to expectations of the Wigner opera@is, ,a, - > Wherek

particles with spin: if one quantizes spin in thelirection,

1%0ur notation isf ,= [ d>p/(27r)*] for momentum integrals and
[,=Jd3 for position integrals. With this convention, transition
matrix elementdVl should be understood to have non-relativistic
rather than covariant normalization.

is the Fourier transform variable conjugatex@and should be re-
garded as small compared po

1%Botermans and Malfliet, however, absorb theSReerm in Eq.
(3.19 by redefining their flavor states to diagonalize the effective
Hamiltonian.

20we make no particular distinction between upper and lower
color indices.
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— 2. The linearized Boltzmann equation

a_ * bb cc dd
= M- —Mapcd,: (1N 1+n , , . . . .
= Jpre abed T abedpr (1M (1=n) We will now linearize the Boltzmann equation, since the

(8.17  fluctuations in the hard particles induced by soft fields are
small (as parameterized by powers of the couplingrite
a. M ¢ ,.dd bt v = =
+a: oKk’ M;bcd abcdﬂﬁc nkr (1i np’)bb- nda= neq 6%+ 5naa, (3.23)
3.1
(19 wherengis the equilibrium distribution and is colorless. The

Here and henceforth, there will always be an implied Sum_!mearlzatmn of the Boltzmann equation given by &8.16

mation over the types and spins of the particles associated
with p’ (quarks, anti-quarks, gauge bosons, Higgs,) eln.

terms ofZ. , the correct collision term then turns out to be (Dy+V-Dy) dn+g E.Vddneq: —48C[6n], (3.29
p
Cln]=3{ny,Z_-}—3{1%n,,Z,} —i [ReZ,ny], where 6C is the linearization of Eq(3.19. The equilibrium

self-energy must be colorleg¢proportional to5*?), and so
_ the linearization of the self-energy term &C vanishes:
where all commutators are in color space a&his the self-

energy of the hard particléson-relativistically normalized [ ReX,n]=[d(ReX),Neql +[REZ g, 6N]=0.
Equation(3.19 assumes that Re can be treated as small (3.29
compared to tree-level energies, which is indeed true for hard _ o ) _

excitations. The linearization of the loss and gaid.() pieces of the

The appearance of the self-energy term is easy to undegollision ir!tt_agral may be _simplified by re.calling that sr_nall—
stand, although it will disappear when we linearize the Bolt-2ngle collisions will dominate the physics. The dominant

zmann equation. Time evolution of observables, ignoringnomentum transfeq lies betweerg™T andgT, and is small
dissipation, is given by compared to the momenta of the colliding hard particles. So,

to leading order in coupling, we can replaggs=n, 4 and
dA N =Ny _q by ny andn,, . The result of linearizing the col-
a:i [Her, Al (3.20 Iisio_n term (3.19%3in this small momentum-transfer approxi-
mation is thef?

and the real part of the self-energy contributes to the effec-
tive Hamiltonian. The loss and gain terms are related to the
imaginary part of the self-energy, and a simple mnemonic
(although hardly a real derivatipfor the appearance of anti- —CaATR (TS, 8ny) ny(1£n,)}, (3.29
commutators in those terms is to consider the time evolution

of an observable with a non-Hermitian effective Hamil- where heregland henceforthwe have dropped the subscript

6C[5n]=%f, M2 {te [T (T4, .1 e (1)
p'q

tonian: “eq” from the equilibrium distributionngq. The matrices
{T%} are color generators for the representaiinM is the
A()=UT(t) A(O)U, U(t)=e Met, and Ho=R+il t-channel matrix element of Fig. 1 stripped of color genera-

(3.21) tors, Mabcd=MT%°T%d,; andty is the normalization con-
stant defined by

so that b b
tr(T&TR) =t 62°, (3.27

d_A:{| AM+i [RA] (3.22  Wwhich isC, for the adjoint representation and, with conven-
dt tional normalization} for the fundamental.

This is the same sort of structure that appears in the collisiom————
term. AS.aIrEadX mengpned, the real argument for Bcl9 22The collision term in Eq(3.26 is the same as th&C, given by
Is given in the Appendix. Selikhov and Gyulassy in E@6) of Ref.[22] (originally derived by

If the final-state statistical factors are ignored, so tharSeIikhov[ZS]) except for the statistical factors of+n.
1+=n—1, then Eq.(3.19 has exactly the form of the rela-

tivistic collision term presented in Ref27]?* for spin (as
opposed to colgrdegrees of freedom.

Z3We have swept under the rug the fact that the matrix element
depends on the self-energly of the exchanged gauge boson, which
in turn depends on the distribution functiomsOne should consider
fluctuations of these distribution functions as well, but, at linear
order in én, these variations do not contribute & because the
2I5pecifically, Eq.(26) of Sec. B IV 3 of Ref[27]. loss and gain terms cancel.
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Note that the expressidf3.26) for SC vanishes for color The linearized Boltzmann equation given by E(24) and
neutral fluctuations, i.e., whe#n is proportional to the iden- (3.26) then becomes
tity. To treat such fluctuations, one must expand-n, 4
and n,;=n,_4 to higher order inq than we have done,
which leads to suppression by more powersgof(An ex-
ample is the difference between the inverse momentum re-
laxation time riq, and the color relaxation timegp, dis- —ic, tnff, | MI{ONE Ny (1 n,)
cussed earlier. p'q

For comparison taSC (3.26), note that the hard thermal
damping rate defined from the imaginary part of the self-
energy in equilibrium is, to leading order in coupliffy,

dn
[(D{+v-Dy) 6N]*+g E"‘.vd—p

—5N§, ny(1=np)}, (3.3D)

where the covariant derivative3,, now act in the adjoint
representation. Comparison with E@.28 shows that the
first term above is justy, 5NS, where vy is the thermal
damping rate of hard gauge bosons. The color current result-
ing from SN2 is

1d
YRTY d_np( fp’q | M|?Crtrs [Ny Ny (1) (1£ny0)

—N N (1£ny) (1£ np,)]]

JazgtRf ON? v, (3.32
p
_- 2
) fp,q [ MI*Crtr: [Ny (120 (1EN0) Now let us finally turn to the matrix elementt. At small
B momentum transfers, the classic Coulomb scattering ampli-
Fn N (1£n,)] tude may be written in the form
~1f | M|?Crtr Ny (1£n;) (3.28 d*Q ser o |?
2 /. R IR Npr (L=Npr), ' =g | 5=3%|V.,—=V,
2 Pq fq|M| g f(zﬂ_)4 V,u Q2 VI/
where in the last step we have used the small momentum- X2wd(Q-V)2wd(Q’-V) (no screening
transfer limit(valid at leading order in couplingAs always, (3.33

there is an implicit summation over the particle type and spin

associated W|t}p, in Eq (328) Note that the coefficient of WhereQ:(qo’q) andV:(l]\/)_ However, as discussed ear-
on in the first term of Eq.(3.26 for 6C is, up to color |ier, the conductivity is dominated by momentum transfgrs
factors, just the thermal damping rae; . small enough that plasma screening effects are important. In
The representatio® X R we have been ascribing to fluc- particular, the momentum range of relevance at leading-log
tuationsén is reducible and a bit over-general for our needs.order isg?T<q<gT. In this regime, longitudinal forces are
There is only one irreducible component &< R which ~ Debye screened, and hard particles only interact through
contributes to the conductivity—the adjoint representationtransversémagneti¢ forces. The abové*"” should therefore
There are a number of ways to see this. First, the color cure replaced by the transverse projection operator q'q’,

rentJ is given by and the transverse self-enerfly should be resummed into
the propagator of the exchanged gauge boson:
a=g | tr(T3 6 3.2 d*Q | (&;—aqiqy)
gfp r(Tx 6np) Vp (3.29 f |M|2%94f oo 2” o
q (2m)" Q%+ IH(Q)
(with implicit summation over particle type and spimndJ X2mwS(qo—0-V) 2m8(do—q- V'),
only receives contributions from the pieces &f propor- (3.34

tional to the generator$?. Alternatively, on the left-hand
side of the Boltzmann equatiofB.24), the driving term  where the~ sign indicates we have now made approxima-
E-v(dn/dp) is in the adjoint representation. We may thustions valid only at the leading-log level. The full one-loop

specializesn to fluctuations of the form result forI1+(Q) is well known[33,24], but we shall see in
a moment that we need only itg<<q limit. In that domain,
SNp=T2 SN2, (339 tis simply
H+(Q)=ioo(q) w (3.39

2The overall factor of 1/2 arises because the damping rate ig\/here
defined in the literature as the decay rate for the quantum- 2
mechanical amplitude of an excitation rather than the decay rate for oo(q)= 371'mpl (3.36
the number density of an excitation. See footnote 6. 4q
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is the collisionless conductivity discussed earlier. As alsovhere(- - -), indicates angular averaging over This pre-
discussed earlier, the collisionless approximation is in factisely reproduces the result that dzker derived by another
only valid for g?T In <q rather tharg®T<(q. (Diagrammati- method[6].
cally, the breakdown fog?T=<q=g?T In appears as a failure It is the second term in Eq3.41h that was dropped in
of the one-loop approximation tH. ) So our current ap- the original analysis of Selikhov and Gyulasgl3]. It is
proximations are really only valid fay®T In <q<gT. As we  relevant to some aspects of color dynamics, a prime example
shall see shortly, this will not affect the result for E§.34  (noted by Balekey being the conservatio ,J*=0 re-
at leading-log order. quired of the hard currenl”zBmé(V*‘W(v))v by the effec-
Given these approximations, thg integration in Eq. tive Maxwell equatiorD ,F#”=J" for the soft fields. From
(3.39 is dominated byqgy~q?% oo(q)<q, justifying the Eq. (3.413, this conservation requirdsC[ W]),=0, which
smallq, approximation. Performing thg, and angular inte- is indeed satisfied by Eq3.41b.

grations first, one obtains The fact(SC[W]),=0 can be rephrased to say that the
symmetric operatosC has zero modes: it annihilates any-
- 3202  (v-v')? dq thing that is independent of. (This can be rephrased in
a | M|*~ 3m§| T-—(vv)? q° (337 praket notation in v-space as (constSC|W)

=(W|SC|consy=0 for anyW.)

The logarithmic integral is cut off bg T on one sidgabove o
which the un-approximated integrand starts to fall more rap- 3. The conductivity
idly) and the soft scalg®T or the inverse collision time To solve the linearized Boltzmann equati@41) for the
92T In on the other side—it does not matter which. The re-w at leading-log order, Bieker[6] argues that the covariant
sult at leading-log order is derivative terms are together ordgfT W and so can be
ignored compared to the collision term, which is order
, 322% o (vV')? ¥gW~ (g°T Ing~ %) W. This approximation is actually flawed
fq | M|~ 3m2 In(g )m' (338 pecause of the zero mode 6€. We analyze this flaw in the
Pl approximation in Ref[12] and show that it does not affect
At this point, we have all the elements we need. To pro-the tran;verse dynamics. nge, we shall instead simply.con-
ceed, it is convenient to follow Bteker[6] and otherg34]  tinue with the naive approximation. Dropping the covariant
and combine the different color distribution functioasl2 ~ derivative terms from the Boltzmann equation gives simply

for different particles and differerip| by noticing that the

currentJ depends only on the combination E-v~46C[W]. (3.43
g 41|p|2d|p| Next note that’C maps ever{odd functions ofv into even
WAX,V,t)= 33, %e f (2m)? tr ON*(x,p,t), (odd) functions ofv. (In contrast, thes- D, operator that we
P spin

dropped does ngtSinceE-v is odd inv, the solutionW to
(339 Eq. (3.43 must be odd as well. But for odd functions wof
the form (3.41b of 6C simplifies to SC[W]=yyW.?> The

where we have integrated ovgs| but notv=p. Integrate ¢, tion is then

and sum both sides of the Boltzmann equati@r81) simi-
larly. Then, making use of the value

E-v
2_9 + 9
Mpi=37 tyEpe J'ptR np(1=ny) (3.40
spin which inserted into Eq(3.42 generates a current
and of the fact that the resuB.38) for [ | M|? depends only ,
on angles, and comparing to the adjoint representation ex- My
pressiony, of the hard thermal damping rai@.28), one JNTQE' (3.49
obtains
_ This is Selikhov and Gyulassy’s leading-log res@t14) for
D+v-D,) W=—E-v=—§C[W], 3.41 - :
(D 2 (W] ( 3 the conductivity[We show in Ref[12] that a more careful
4 (V)2 analysis of the Boltzmann equati¢8.41) reveals that thé&
SCIW](V) = y4 W(V)— — : W(v') , above should really be the transverse projectioft ¢f
T\ V1—(v-Vv') y
(3.41b
ZThis is gratifyingly simpler than the leading-log collision terms
and one obtains for most transport phenomena, wh€ereduces to a
2 linear differential operatdr35] and the linearized Boltzmann equa-
J:3mp|<VW(V)>Va (3.42 tion must be solved either numerically or approximately.
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4. Variational methods rescale the fieldé&. and couplingg (hiding in the definition

We are now in a position to understand the problem withOf the field strengthto absorbg=T ' by
the estimate of the color conductivity made by Heiselberg in 12 —y
Ref. [21]. Heiselberg uses a variational method to approxi- A-TYA, g—T 5. (4.3
mately solve the Boltzmann equation. The variational ansatz . .
he uses is one that works stunningly well for the diffusion of | "€ Partition function is then
global or Abelian charges. Using the imagery of QED, one
imagin_e_s t_he Iine_:ar_response (_)f_ the system as a_sim_ple boost f [DA] ex _E J' Faga | (4.4)
of equilibrium distributed positive charges moving in one 4 ) Y
direction and of negative charges moving in the other, with
the boost velocities depending on the charges of the pafrom Eq.(4.3) or (4.4), the gauge field can now be seen to

ticles: have scaling dimension §AA]= %, and the coupling constant
has dimensiofig]=%. There are no other relevant teritis
1 n the sense of mass dimensjothat could be added to the
n=—————=n"——u;-p, (3.46 action which are gauge and parity invariant. So the
eflo Pzl dep dimension3 couplingg is theonly relevant parameter of this

theory. Now suppose we modify or integrate ¢ata gauge-

wherei is a flavor index. Equatiort3.46 is Heiselberg's invariant mannerultraviolet degrees of freedom associated
ansatz, with the velocity; to be determined variationally.  with an arbitrarily large momentum scale We then poten-

When deriving the conductivity, we found it convenient tially need to modify Eq(4.4) to
to combine all particles together and work withinstead of
éon. If one instead follows through the argument of Sec. 1 aca
Il B 3 with the original Boltzmann equatiof8.31) for on, f [DA]exp —4 ZJ'XFijFii , (4.5
one finds that
whereZ is a renormalization constant. However, it follows
by dimensional analysis that the perturbative expansiaf of
must be in powers of?/ A, which vanishes for\ — .

Now let us turn to Bdeker's effective theory2.9), which
at leading-log order. For color diffusion, Heiselberg’s ansatave write in the generic form
(3.46 misses the mark by a factor ff|. The actual linear

oL —— .
n ) v (3.47

response(3.47 cannot be interpreted as simple boosts of d 5
fluids corresponding to different charges. ‘Tth_ SA v+ (4.69
IV. ULTRAVIOLET INSENSITIVITY (LX) x"))=20T 5(t—t") 8(x—x"), o

We will now elaborate on our earlier claim that @zker’s
effective theory(2.9) of the soft modes has the wonderful suppressing color and vector indices. By rescaling fields and
property that it is insensitive to how the soft modes are cutoupling as before, and also rescaling time by
off in the ultraviolet. Equivalently, but more technically, the
effective theory does not require any ultraviolet t—ot, 4.7
renormalization—it is ultraviolet finite.

As preparation, let us ignore the dynamics for a momenbne can put this in the form
and remember that the equilibrium properties of the classical

theory are described by the partition function d A o 48
FriAr T ¢ (4.83

Z=f [DA]e™#” (4.) . ' .
(LX) 4t x"))=268(t—t") S(x—x"). (4.8b

where ]
Once again, the theory appears to depend on only one pa-

rameter: the dimensioh-couplingg. The essential point to
V:%f BZ:‘;‘f FOFS (4.2 understand is that no other relevant terms can be added to
X X this equation—that is, more complicated time dependence
(which survives when the cutoff scale— ) cannot be gen-
is the potential energy associated with the magnetic fielderated for the long-distance modes when one modifies or
This is nothing other than the partition function for three-integrates out short-distance physics. This has been proven in
dimensional Euclidean gauge theory, and three-dimensional general analysis of the renormalizability of purely dissipa-
gauge theory is ultraviolet finite. One way to see this is totive stochastic field equations by Zinn-Justin and Zwanziger
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[36].2° They analyze the problem by first finding a path- o Lt
integral representation of the stochastic equation, and then
using dimensional analysis and various Becchi-Rouet-Stora
(BRS symmetries to determine the allowed relevant terms.
When translated back into a stochastic equation, the result is
that no more-complicated time dependence can be generated
and that a renormalized version of daker’s effective theory
will take the form

\/

to
FIG. 3. The Schwinger-Keldysh closed-time-path contour.

In the Schwinger—Keldysh formalism, one considers time
evolution along a time contour, denot€dn Fig. 3, running
d s from some initial timet=t, to t= + o and then returning to
ZA=— —Va+¢, (4.99 to- Correspondingly, the propagator is defined &(X,y)
dt” A =(Tc(p(X) #(y))), where 7. denotes contour ordering.
Since bothx andy may lie on either the upper or the lower
(St X)Lt x"))y=2Z; 6(t—1") 8(x—x"), (4.90  portion of the contour, the propagatB. may be separated
into 4 different components,
whereVy is the renormalized potential azg is a new renor-
malization constant. We already know that the potential ig G11(X,y)=(Z(d(X) d(y))), 1 G1AX,y)=(d(y)P(X)),
not renormalized. Ar;d just as befoi®&, must have a pertur-
bative expansion ig“/A and so generates no relevant cor- i ={T(
rection to the equation. This demonstrates whyd&er's ' Galxy) (60 4(y)), 1G2x.Y) (7(¢(x)¢(y)(2,1)
equation is insensitive to the ultraviolet.

If one imposes a gauge-invariant lattice cutoff ondBk- where7 denotes anti-time-ordering. From E@\1) it is ap-

er's effective theory, in order to perform numerical simula- y,rent that the four components @ satisfy the relation
tions, this ultraviolet insensitivity implies that physical quan-

tities such as the topologi iti [ ini
_ S t p g|(_:al transition rate will have a finite Gy1+ Gop=G ot Gy (A2)
continuum limit as the lattice spacing is sent to zero.

It is also useful to introduce retarded and advanced propaga-
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which are related to the components@¢ in the following
ways:

APPENDIX: THE COLLISION TERM y
In this appendix we review the derivation of the Boltz- Gr=G11~G12= G2~ G2,
mann equation from first principles. We will work up from
the simplest case of a single-componeiittheory, to multi- Ga=G1o—Go=G11— Gy (A4)

component scalar theories, and then to gauge theories. We
will discuss scalar QED first and finally derive the Boltz- The retarded and advanced propagators are the boundary val-
mann equation for the case of primary interest, non-Abeliarues of the Euclidean time-ordered propagator when the
gauge theory. While the treatment of a simgié theory, or  imaginary(Matsubara frequencyi w,, is analytically contin-
QED, may be easily found in the literatufgee for example ued to just above, or just below, the real frequency axis.
[26]), the appropriate generalizations for multi-component or - For a free scalar field with Lagrangiabh=73(d, $)?
non-Abelian theories are much less well-known. —1im?¢2, the Fourier transforms of the propagator compo-
nents are

1. Single-componentg* theory

Our starting point is the Schwinger—Keldysh closed-time- 7 _

path (CTP) formalism [37,38. Since both the Schwinger- Gu(p)= p3— 2+ wp[np A(Po— wp)
Keldysh CTP formalism and the derivation of the Boltzmann
equation from it can be found in the literature, the exposition +Nn_p 8(pot wp)], (A53)
here will be rather concise. For more details, see 2.

~ -1 i

GoAP)= 55— [Ny 8(po— wp)

po wp 2_je Wp
26For a review, see Chap. 16 and 17, and especially Sec. 17.5.2, of

Ref.[11]. +n_,3(pot wp)], (A5b)
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~ i
Gp)=— w_p[np 5(p0_w7p)

+(1+n_p) 8(pot wp)], (A5c)
~ i
Gop)=— w_[(l+ Np) 8(Po— )
P
+n_, 8(pot+ wp)], (A5d)

where n, is the occupation number. The retarded and ad-

vanced propagators are

_t Bap)=
(p0+ie)2—wr23 A(p)

(Po—i€)?—w)

(AB)

To compute the propagator for an interacting scala
theory, it is useful to introduce the self-energyx,y) which
is related to the propagator by the equations

(= d5—m?) Ge(x.y)

= 7y S(x—y)+ chzic(x,Z) Ge(zy), (A7)
(—35—m?) Ge(x,y)

=y S(X—y)+ fcdec(X,Z)Ec(Z,y), (A8)

where 7, equals+1 if x is on the upper part of the contour,
and—1 whenx is on the lower part. As with the propagator,
the self-energy may be decomposed into 4 compon&nts,
312, 251, andX,,. If one forms 2x2 matrices from the
components of5¢ and3,

|

(—z—m?) G(X,y) =03 d(Xx—Yy)+ f dz2(x,2) o3G(zy),
(A10)

G1AX,y)
GoAX,Y)

le(X!y)
25dX,Y)

Gui(X,y)

Gxy)= ( Goi(X,Y)

211(X,y)
21(%,Y)

then Eqgs(A7) and (A8) become

ﬂsz( (A9)

(_ai_mz) G(X’y)20'3 5(X—y)+ f dz qX,Z) g3 E(Z'y)l
(A11)

where [dz now means ordinary spacetime integration and
o3 is the usual Pauli matrigout has nothing to do with spin
herg. Using Eq.(A10) [or (Al11)] one can show that the
identity (A2) for the propagator implies a corresponding
identity for the self-energy,

211+222:212+221. (A12)
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One can also introduce retarded and advanced self-
energies in a manner similar to E@4),

2R2211_212:221_222

Sa=21 2= 211~ 201 (AL13)

It can be easily shown thaBg 5 are related toXg 5 by
GR,A=(G61—ER,A)_1, whereG, is the corresponding free
retarded or advanced propagator.

Let us now turn to the derivation of the Boltzmann equa-
tion. Subtracting Eq(A7) from Eq. (A8), one obtains

(32— 32) Gelxy) = fcdz[edx,z)zc(z,y)

_Ec(X,Z) GC(Zay)]' (A14)

r

Up to this point, we have not made any approximation. Now
we will assume that the overall evolution of the system oc-
curs on a time scale much larger than the typical wavelength
of a particle. In terms of the propagat@i(x,y), this means
that it varies much more slowly as a function of the average
position X+ y)/2 than with the separation—y. Having this

in mind, let us change variables in E&14) from x, y, z to
new variablesX, s ands’, where

=X+ > =X S =X+ S ! Al5
X=X+5, y=X=35, z=X+5-s. (ALY
Equation(A14) becomes
M—M&—%Gc(X,S)
—Jd’G )t % ol s xS s
~ e S| Ge T’S c _?’S_S
selx+ T s o x- 2 s
c 2 'S c E,S s'||.
(A16)

Since G and 2 vary slowly as a function ofX, one can
replace the first argument i@ and2, on the right-hand side
of Eq. (A16) by X. The (12) component of Eq(A16) then

reads

XE &;;Glz(x,s)= f ds'[G11(X,s") Z1x(X,5—8")
—G1AX,8") T X,5—58")
—311(X,8") Gy X,5—8")
+214X,s") Goy(X,5—5")].
(A17)

Fourier transforming with respect to the relative separation,

G(X,p)=Sds e 'PSG(X,s), etc., converts Eq(A17) to
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—2i p”%élz:ilz(én"' G~ G (S11+35),

(A18)
1 2
where, for the simplicity of notation, we have omitted the
arguments of5 andS, which are now alwaysX,p). Making
use of Eqs(A2) and(A12) allows this result to be written in FIG. 4. The leading contribution tB,,.
the form
088 TS B B3, - B in? dp'dk
—2ip*d, G12=215G21— G122 51 (AL19) 21 wp,p)=— > (27 205 20020 Ny Nk

Finally, to obtain the Boltzmann equation from E419),
we make the following ansatz for the propagat@sg and
GZl: 27

X(1+ nk/) 2’775((1)p+ wp/—wk—wk,),

S (o) i\2 dp’dk i)
w , = — — n ’
21 @p:P 2 ) (2m)8 20, 20,20 P

~ i
G X,p)=——[ 8(po— wp) Np(X)
o P wp[ (po P p( X(l+ nk) Ny 27T($((1)p+ wp,—wk—wk,),

+6(pot wp) (I+n_p(X))],  (A20) (A23)
i wherek’=p+p’ —k. Substituting Eq(A23) into Eq.(A22),
Gu(X,p)=— w—[ 8(Po— wp) (L+np(X)) one obtains the Boltzmann equation
P
2 '
+8(po+wp) N_p(X)]. (A21) (3-8, np=)\—f dp’ dk
2J) (2m)8 2020y 202wy

In other words, one assumes ti@has the same form as the
free propagator, except that the distribution function is now
an arbitrary function of bothX and p. By comparing the X[np, Np, (1+np) (1+np)
coefficient of §(py— wy), one derives from EqA19) that

X2m S wpt 0y — 0 — wyr)

—(1+ npl) (1+ ”pz) Np, npl, (A24)
i

(V- 3y) np=g[§12(wp,p) (1+ np)—iu(wp,p) Npl. which coincides with the result one would derive naively
o o
(A22) from kinetic theory.
One can see the Boltzmann equation emerging. Indeed, the 2. The multi-component case
term G/pr)ilz(lJr n,) is the *“gain” term and The extension of the derivation in the previous subsection

—(i/2w,)S 510, is the “loss” term in the collision integral. © the case of a multi-component scalar field is straightfor-

To produce the conventional form of the Boltzmann equaard. Let the field be?, wherea is some isospin index. The
tion, we need to compute the leading-order contribution td?ropagator and self-energy components become matrices,
the self-energy. There is no one-loop contributiorStg or G12=||G12!|- etc., but everything in .the prgcedlng discussion
S,1. The first non-zero contribution comes from the two- up to (and including Eq. (A17) remains valid. However, Eq,

. : : . (A18) is not correct since the components ®fand > no
Ioopfduggram(ﬁg. 4. Using the explicit propagators), longer commute. Instead, one rewriFt)es E4L7) as
one finds,

(95— 3%) G15= 3 ({G11+ G2, 312t +[G11— G2, 315

2I\We are assuming that the dispersion relation of quasi-particle ~{Zut22.Gia —[Z1— 222,62
excitations is adequately approximated by the zero-temperature dis- (A25)
persion relation. In a weakly-coupled high-temperature theory, this
is always the case for typicéhard excitations which are relativis- The anti-commutator terms can be simplified by using Egs.
tic. If A\n??is not small compared to the zero-temperature physicalA2) and(A12) to produce
mass, then softnon-relativisti excitations will have significant 5 o .
corrections to their dispersion relation. Nevertheless, the error in the (95— 5y) G1o= 3 ({Ga1, %12t = {221,612}
description of these excitations does not affect the leading behavior
of many quantities, such as the conductivity, which are dominantly +[G11— G2, 2 12|~ [211— 2 2,G12)).
sensitive to hard excitationg¢An improved treatment, which cor- (A26)
rectly describes soft as well as hard excitations, is needed for the
bulk viscosity. Se¢20] for a discussion of the construction of such To progress further, we make the following ansatz for the
an improved “effective” kinetic theory. propagator:
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i
Gi‘?(x.p>=—w—:[a<po—wp) n2(X) g.ww,%
p L. .

+ 8(po+ wp) (82°+n4(X))], g 5> P
This gives

ab — I_W — b ab S :
Gzl(Xyp) wp[a(po wp) (5& +np (X)) 212(D)=_iezj ((2:177q)4(Zp_q)M(2p_q)V
+8(Po+ wp) NPH(X)]. (A27) X D43(q) G p—q) (A31)
12

whereD*” is the photon propagator. Typical scatterings be-
tween bosons have small momentum exchange, so we will
assume that the internal photon momentgns small. The
soft photon propagatob(q) is obtained by summing the
bubble diagrams: or equivalently, introducing the photon
self-energyll. II has four components and is related to the
i photon propagator through the equati¢sse Eq(A10) with

(at+v.(9X) np:m({zlz(wp!p)!(1+np)} E_)H andm:O]
i 0°D =113 D15~ 111,D5y,

Physically,nsb(X) is the density matriXin isospin spaceof
the momentunp excitations. The ansafA27) immediately
implies thatG,,— G,; is proportional to52°, and this in turn
implies the same fo6,,— G,,. Therefore, the first commu-
tator term in Eq.(A26) vanishes and the kinetic equation
becomes

_{EZl(wp vp) vnp}

—[211(@p,p) =2 ) wp,P),Np]). 9°D =115, D1~ 11Dy 1. (A32)

(A28) e have suppressed the Lorentz indices here for notational

simplicity in Eg. (A32). [In fact, the longitudinal and trans-

This has the same form as E&.19 in the main text if one verse parts ob andIl satisfy Eqs(A32) separately. Solv-

identifies ing for D45, one finds
T=2 S D), To=sSp(ayp). (A29 D) Mz (A33)
—— 7  ~12 p I} + 7 <21 p? [} 1 q = .
2wp 2wp (07— T119)(q%+ 1) + 113,115
and As in the scalar case, the photon self-enefbatisfies the
identity (A12) and the retarded and advanced self-energies
ReS — 1 s s ITRA can be introduced in a manner similar to E413).
€ _4_%( 1~ 22) It is easy to show that o?—1I1;1)(q%+11,y)+ 11,115,
. . =(g%—TlIg)(g°—1,), and therefore
12! - —VYRU12VY AT R 12-
— (0°—TIR)(q*~ I p)
The quantity>, = (1/2w,) 2 has a simple physical meaning: (A34)

it is the correction to the energy of an excitation with mo- ) )
mentump (in other words, it is the self-energy in the non- | N€ photon self-energhl;; is determined by the scalar one-
relativistic normalization It is straightforward to find the |0OP diagram, which gives
explicit form of Z.. at the leadindtwo-loop) level, and show
that one obtains Eq$3.17) and(3.18 discussed in the main AV ) — a2

, 145 (q)=—ie
text. Let us, however, move on to the case of gauge theories.

!

dp
) (2p"+q)“(2p'+0q)”

7T4

X ! I+ .
3. Gauge theories Gi1Ap’) Gau(p'+q) (A35)

The approach of the previous subsection can be carrie@/@ now insert the ansafanalogous to Eq(A21)] for the
over to the gauge theory case without substantial modificaPropagator of the complex scalg”®
tion. We consider scalar QED first, and will find the Boltz-
mann equation describing the kinetics of the hard scalar par-

ticles. The basic equation remains E422). However, the  28rhe comments of footnote 27 equally apply to this gauge theory
computation of the scalar self-ener@y is slightly more  case. Since we are interested in a kinetic description for hard exci-
complicated than in the* case. For scalar QED, the leading tations in the plasma, neglecting background-field dependent cor-
contribution to the self-energ¥ ., comes from the one-loop rections to the dispersion relations of excitations is sufficient for our
diagram: purposes. See Refl28,29 for discussions of more general cases.
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~ i _
G(p)=— w—[np (Po— wp) +(1+n_p) 8(po+ wp)].
P
(A36)
Here, n, and?p are distribution functions of particles and

anti-particles, respectively. Substituting this into E435),
one finds

!

i@ =ie? (200 (20" )"

(2
X[Npr+q(14N)+Npr (140,01,
(A37)

Inserting Egs.(A34), (A36), and (A37) in the scalar self-
energy(A31) yields

dp’ dqg

(2m)° 20y 20y 2wy 14

212(wpvp):_i94f

X(2m)é(wp+ wpr— wp_ g~ @pr 1)
x|(2p—a),(2p'+a),Dk"(a)|?
X[(1+np)Np_gNpr1q
+(1+Np) Np_gNpr gl (A38)

The other off-diagonal self-energy componens;, may be

PHYSICAL REVIEW [39 105020

dp’ dk

(2m)° 202w 202w

(d¢+Vv-3dy) np:f |Mpp’akk’|2

X (2m) (wp+ 0y — 0 — wyr)
X{(1+np) N [(1+ng) Ny
+(1+ny) nel=ny (1+ny)

X[Ngr (1+n)+ng (1+n)]},  (A39)
where we have introducell=p—q, k'=p’+q, and the
scattering amplitud® ppgkk,Eez(p+p’)ﬂ(k+k’)vD’F’gV(q).
This has the same form as the naive Boltzmann equation,
with the exception that the scattering amplitude is to be com-
puted using the resummed propagag(q) for the ex-
changed photon instead of the bare photon propagator.
Finally, combining our treatment of multi-component sca-
lar theory with that of QED, one may write down the Bolt-
zmann equation for a non-Abelian gauge theory. The distri-

bution functions become matricaaﬁb with respect to group
indices?® The Boltzmann equation has the form shown in
Eq. (A28). The loss and gain terni&. andZ, , which come
from one-loop contributions to the self-energgomputed
with a soft resummed gauge boson propagatare trivial
generalizations of EqA38). The final results are given in
Egs.(3.16—(3.19 of the main text.

computed completely analogously. Inserting the expressions

for 21, andX,; into Eq. (A22) yields the scalar QED Bolt-
zmann equation,

2°To simplify the discussion, we assume that distribution func-
tions are trivial with respect to polarization.
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