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Effective dynamics of hot, soft non-Abelian gauge fields: Color conductivity and log„1/a… effects

Peter Arnold
Department of Physics, University of Virginia, Charlottesville, Virginia 22901

Dam T. Son
Center for Theoretical Physics, Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 0

Laurence G. Yaffe
Department of Physics, University of Washington, Seattle, Washington 98195

~Received 2 October 1998; published 23 April 1999!

Bödeker has recently argued that non-perturbative processes in very high temperature non-Abelian plasmas
~such as electroweak baryon number violation in the very hot early Universe! are logarithmically enhanced
over previous estimates and take place at a rate per unit volume of ordera5T4 ln (1/a) for small coupling. We
give a simple physical interpretation of Bo¨deker’s qualitative and quantitative results in terms of Lenz’s
Law—the fact that conducting media resist changes in the magnetic field—and earlier authors’ calculations of
the color conductivity of such plasmas. In the process, we resolve some confusion in the literature about the
value of the color conductivity and present an independent calculation. We also discuss the issue of whether
the classical effective theory proposed by Bo¨deker has a good continuum limit.@S0556-2821~99!05008-0#

PACS number~s!: 11.10.Wx, 05.20.Dd, 05.60.2k, 11.15.2q
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I. INTRODUCTION

Standard electroweak theory violates baryon number
non-perturbative processes involving the electrowe
anomaly.1 Such processes are exponentially suppressed
der normal conditions, but are unsuppressed at very h
temperatures in the early Universe. Non-perturbative bar
number violation is a key ingredient in scenarios for ele
troweak baryogenesis, which attempt to explain the ma
anti-matter asymmetry of the Universe in terms of the ph
ics of the electroweak phase transition. Such scenarios t
cally depend on~among other things! the equilibrium rate of
baryon number violation in the hot, symmetry-restored ph
of electroweak theory.2 The rate of baryon numbe
violation—and more generally the rate of any generic n
perturbative process in high-temperature non-Abel
plasmas—has long been a source of theoretical confusio
fact, it is only recently becoming clear how the rate sca
with the fine structure constanta of the relevant gauge in
teractions in the arbitrarily weak coupling limit.

For non-Abelian plasmas at ultra-relativistic temperatur
non-perturbative fluctuations of the gauge field are ass

1For some reviews of electroweak baryon number violation a
electroweak baryogenesis, see Ref.@1#.

2We use the term ‘‘symmetric phase’’ loosely since, depending
the details of the Higgs sector, there may not be any sharp trans
between the symmetric and ‘‘symmetry-broken’’ phases of
theory @2#. A sharp transition is in fact required for electrowea
baryogenesis. The analysis of this paper applies directly when
the temperature is sufficiently high that the infrared dynamics of
Higgs is irrelevant at lengths ofO(1/g2T), which is the case eithe
~a! far above the electroweak phase transition or ‘‘crossover,’’
~b! in the symmetric phase at the transition in cases where the
a first-order transition and the transition is not exceedingly wea
0556-2821/99/59~10!/105020~17!/$15.00 59 1050
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ated with magnetic fluctuations over distance scalesR
;1/g2T ~to be reviewed momentarily!. For a long time in
the literature, it was assumed that the time scalet of non-
perturbative processes was also of order 1/g2T, and that the
rateG per unit volume was therefore of order 1/R3t;a4T4.
Two years ago, we argued@3# that damping effects in the
plasma slow the time scale down tot;1/g4T, giving a rate
of G;1/R3t;a5T4. ~See also Refs.@4,5#.! More recently,
Bödeker@6# has claimed that there is an additional logarit
mic suppression of the time scale, so that

t;
1

g4Tln~1/g!
, and G;a5T4 ln ~1/a!. ~1.1!

Bödeker has also proposed an effective theory for the
evant distance and time scales in the form of simple stoch
tic dynamics for the gauge fields. Numerical simulation
this effective theory would give the non-perturbative nume
cal coefficientc of the logarithm:

G.c a5T4 ln ~b/a! ~1.2!

for small a. ~No one has yet proposed an explicit way
calculate the constantb under the log, and one should expe
there to be sub-leading corrections suppressed only by p
ers of 1/ lna.! The goal of the present work is to show th
Bödeker’s results can be reproduced and interpreted thro
a simple argument based on the fact that plasmas are
ductive.

Before presenting the essential argument, let us tak
moment to review the physical origin of the length sca
1/g2T associated with non-perturbative fluctuations.~For
more formal arguments, see@7#.! Imagine a fluctuation of the
gauge field of spatial sizeR and amplitude A. Non-
perturbative means that, for example,gA is not a perturba-
tion in the covariant derivativeD5“2 igA. So non-
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perturbative meansA*O(1/gR), and hence the energyE of
this fluctuation is*O(1/g2R). The probability of such a
fluctuation in energy is exponentially suppressed by
Maxwell-Boltzmann factor exp(2bE); exp@21/(g2RT)#
unless R*O(1/g2T). Because of entropy effects, non
perturbative processes will be dominated by the smallest
scale for which the probability is unsuppressed~since there
are more small-wavelength degrees of freedom than la
wavelength ones!, and so the characteristic length scale
non-perturbative physics isR;1/g2T. Static electric fields
are screened by the Debye effect on smaller distance sc
of order 1/gT. For this reason, non-perturbative physics
the hot plasma is essentially magnetic. More technically,
only the transverse degrees of freedom of the gauge
which are important.

In the next section, we present the simple relations
between the color conductivity and non-perturbative dyna
ics at leading-log order, and reproduce Bo¨deker’s effective
theory for the non-perturbative dynamics. In Sec. III, w
review the somewhat confusing literature on color cond
tivity and present our own calculation based on the Bo
mann equation with a collision term. Finally, in Sec. IV, w
argue that Bo¨deker’s effective theory is ultraviole
insensitive—a crucial property for numerical simulations.

II. THE ESSENTIAL ARGUMENT

We now turn to the essence of the argument, which
quite short. It is based on realizing that the dynamics
magnetic fluctuations in plasmas is slowed down by Len
law: conducting media resist changes in magnetic field
the context of high temperature baryon number violati
this qualitative explanation of the slow time scale for no
perturbative processes is due to Moore@8#. Let’s make it
quantitative. This derivation will be a little fast and loos
but its advantage is that the physics is very simple.

Imagine splitting the gauge field into soft degrees
freedom—those associated with momenta of orderg2T, and
hard degrees of freedom—those associated with much hi
momenta such asT. The details of exactly how this split i
made will not be relevant at the order we shall consider.3 The
amplitude of fluctuations is non-perturbative for the s
modes but perturbative for the hard ones. As is well kno
@10#, the soft modes are also effectively classical—there
a large number of quanta in each mode because of B
statistics. Now, treating the soft modes classically, start w
the Maxwell equation

D3B5Dt E1Jhard ~2.1!

for the soft degrees of freedom, whereB5D3A and where
all covariant derivatives are to be understood as only invo
ing the soft gauge field degrees of freedom.Jhard is the color
current4 due to the hard degrees of freedom, which we sh

3That is fortunate, because trying to make such a split exp
creates a host of difficulties. See Ref.@9#.

4We are using ‘‘color’’ as a descriptive name for some no
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later see is dominated by excitations with momenta of or
T. It is important to distinguish between the hard mome
of the particles which contribute toJhard and the momentum
components ofJhard itself ~which is bilinear in the fundamen
tal fields!. It is the soft momentum components ofJhard
which are relevant in the context of Eq.~2.1!.

Plasmas are conductors. Hence, for sufficiently small m
mentum and frequency~exactly how small will be discusse
later!, we have

Jhard5sE, ~2.2!

wheres is the color analog of conductivity. The Maxwe
equation then becomes

D3B5Dt E1sE. ~2.3!

Let us assume that non-perturbative processes will be s
enough~which we will verify a posteriori! that we can ne-
glect the time derivative term. Then the Maxwell equati
becomes simply

D3B5sE. ~2.4!

In A050 gauge, this is a simple first-order equation of m
tion:

s
d

dt
A52D3B. ~2.5!

This equation is dissipative and describes the relaxatio
fluctuations of the soft fields away from equilibrium. Th
dissipation results from interactions of the soft modes w
the hard degrees of freedom, which are accelerated by
steal energy from the soft fields. Interactions with the ha
modes, however, not only provide dissipation for the s
modes; they also serve as a source of thermal noise. In
above analysis, the noise has been implicitly disregard
and we will need to put it in if we wish to describe equilib
rium fluctuations. Fortunately, this is simple to do after t
fact because noise and dissipation are intimately related
the fluctuation-dissipation theorem. In the language of
effective theory of the soft modes, equilibrium requires
delicate balance between the soft modes’ excitation fr
thermal noise and their dissipative decay.

To be more specific, note that Eq.~2.5! has the genera
form

s
d

dt
q52“qV~q!, ~2.6!

whereV(q) is the potential energy of the degrees of freedo
q ~which in our case is the non-Abelian magnetic ener
1
2 *xB

2). Such systems are common in physics, and a sim
way to incorporate thermal noise is to include a rand
force z:

it

-

Abelian gauge field. It should be emphasized that all discussio
‘‘color’’ is applicable to the dynamics of, in particular, the SU~2!
electroweak gauge field.
0-2
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EFFECTIVE DYNAMICS OF HOT, SOFT NON-ABELIAN . . . PHYSICAL REVIEW D 59 105020
s
d

dt
q52“qV~q!1z. ~2.7!

This is a typical example of a Langevin equation. The si
plest possible choice of thermal noise, Gaussian white no
reproduces the correct equilibrium distribution exp(2bV) if
the noise variance is suitably scaled with the amount of
sipation,

^z i~ t !z j~ t8!&52s T d i j d~ t2t8!. ~2.8!

This well-known result can be verified by converting t
Langevin equation~2.7! into a Fokker-Planck equation fo
the probability distribution.~See, for example, Chap. 4 o
Ref. @11#.!

Why should one believe the noise distribution is
simple? First, the noise can be treated as Gaussian if the
dynamics of interest has a time scale large compared to
decorrelation time of the noise, which is caused by fluct
tions of the hard modes. Averaging the noise over ti
scales small compared to the soft dynamics scale but l
compared to the noise decorrelation time, the central li
theorem implies that the resulting distribution will approa
a Gaussian shape. We will see later~Sec. III A! that in our
case the relevant decorrelation time for hard fluctuation
1/(g2T ln g21) whereas the time scale for soft dynamics
the longer scale 1/(g4T ln g21) asserted earlier. Second, if th
theory were linearized, then the fact that the spectrum of
Gaussian noise is white noise would follow rigorously fro
the fluctuation-dissipation theorem. More generally, a
noise spectrum f (v) may be regarded as frequenc
independent~i.e., white noise! at sufficiently small frequency
v providedf (0) is finite and non-zero. So effective theori
for long time scales can generally be expected to h
Gaussian white noise. Finally, one might wonder why th
could not be some non-linear coupling to the noise, in
form of a functione(q) multiplying the noise termz in Eq.
~2.7!. Generically, the introduction of such aq-dependence
would change the equilibrium distribution produced by E
~2.7! so that it would not correctly reproduce exp(2bV).

Based on the above discussion, let us introduce noise
Eq. ~2.7!. Translating back to our particular system~2.5!, we
obtain the following effective theory for the soft modes:

s
d

dt
A52D3B1z, ~2.9a!

^z i
a~ t,x! z j

b~ t8,x8!&52s T dabd i j d~ t2t8! d~x2x8!,

~2.9b!

where i , j anda,b are spatial vector and adjoint color ind
ces, respectively. Those readers interested in a more te
cal derivation of the noise term starting somewhat close
first principles should consult Bo¨deker@6#.

Astute readers may notice a peculiarity of Eq.~2.9!: it
introduces noise for the longitudinal as well as transve
modes ofA, whereas the effective theory is only meant
describe the transverse modes.~The longitudinal modes are
the pieces ofE which contribute toD•E and perturbatively
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correspond to polarizations parallel to the spatial momen
k.! We discuss the noise-driven longitudinal dynamics g
erated by Eq.~2.9! in great detail in Ref.@12#, but the matter
is not directly relevant to the present discussion.

The effective equation~2.9! turns out to have the wonder
ful property that it is insensitive to how the soft modes a
cut off at large momentum.~We will discuss this in greate
depth in Sec. IV.! It means that one can ignore the soft/ha
separation that was necessary to write Eq.~2.1! but which
was never specified in detail. It means that Eq.~2.9! will be
insensitive to short-distance lattice cut-offs used in numer
simulations. Finally, it also means that such simulations w
not be plagued by lattice artifacts, such as loss of rotatio
invariance, that were thought to arise in other approaches@5#.

From Eq.~2.9a! andB5D3A, one can immediately se
that the time scale of non-perturbative dynamics is given

s t21A;R22A, ~2.10!

so that

t;R2 s;
s

g4T2 . ~2.11!

Thus, one need only know the color conductivitys. There
has been some confusion in the literature~described later!
about this quantity, but the correct value was first presen
by Selikhov and Gyulassy@13#. The color conductivity is of
order

s;
T

ln ~1/g!
. ~2.12!

We will review later how to understand this physically. In
serting Eq.~2.12! into Eq. ~2.11! then gives the time scale

t;
1

g4T ln~1/g!
, ~2.13!

and soG;a5T4 ln(1/a), which has the logarithmic enhance
ment claimed by Bo¨deker. Later, we will see that earlie
estimates@3# of the time scale ast;1/(g4T) correspond to
ignoring the effects of collisions on the conductivity. No
that ignoring the time derivative term in Eq.~2.3! was justi-
fied since the characteristic time scale~2.13! is much greater
than the inverse conductivitys21 determined by~2.12!.

On a more quantitative level, the color conductivity
@13#5

s'
mpl

2

gg
, ~2.14!

wherempl is the plasma frequency and

gg'a CAT ln~1/g! ~2.15!

5The reader of Ref.@13# should beware the final equation of th
paper, Eq.~47!. In that equation, the authors replace their result
something rough and approximate.
0-3
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PETER ARNOLD, DAM T. SON, AND LAURENCE G. YAFFE PHYSICAL REVIEW D59 105020
is the damping rate for hard thermal gauge bosons@14#.6

Here,CA is the adjoint Casimir, conventionally normalize
as CA5N for the gauge group SU(N), and ‘‘' ’’ means
equality up to relative corrections suppressed by power
ln(1/g). That is, no claim is made about discriminatin
ln(1/g) from ln(2/g).7 The only place where the matter co
tent of the theory enters is in the value of the plasma
quency. For hot electroweak theory with a single Higgs d
blet, it is given by

mpl
2 5

~512nf!

18
g2T2 @11O~g!#, ~2.16!

wherenf is the number of fermion families. The Langev
equation~2.9! with the value~2.14! of s precisely repro-
duces the effective theory derived by Bo¨deker@6#.

It is interesting to note that, if the time is rescaled, t
Langevin equation~2.9! is equivalent to the stochastic qua
tization of three-dimensional Euclidean gauge theory.8 In
that context, the timet is usually considered a fictitious ad
ditional variable, corresponding in simulations to Mon
Carlo time. Amusingly, the present application provides
instance where Monte Carlo time for gauge theories is a
ally real time, up to a calculable rescaling.

III. COLOR CONDUCTIVITY

A. Qualitative description

We now review why the color conductivity depends
coupling as in Eq.~2.12!, and show how earlier estimate
@3–5# of the time scale for non-perturbative processes at
;1/(g4T) correspond to ignoring collision effects. Begin b
considering the current response to an external electric
in a collisionlessultra-relativistic plasma. For simplicity o
notation, consider a QED plasma for the moment rather t
a non-Abelian one. If the external field were static and h
mogeneous, particles in the plasma with chargeg would re-
spond to the field by a change in momentum

Dp5gE Dt ~3.1!

6In the literature, the hard thermal ‘‘damping rate’’ is defined~in
one-loop perturbation theory! as the imaginary part of the pole en
ergy for a propagating gauge boson. In particular, it is defined
that theamplitudesof plasma waves decay as exp(2gt). This is in
contrast to the standard usage of the ‘‘width’’G of a resonance~for
example, of the Z boson at zero temperature!, which is defined so
that the probability~or equivalently the intensity or particle num
ber! associated with the resonance decays as exp(2Gt). The relation
is simply G52g.

7It is not clear whether the color conductivity even has mean
except as an approximate concept valid at the level of leading lo
rithms. We do not know, for instance, of any directly measura
~gauge-invariant, non-perturbative! definition of the color conduc-
tivity.

8See, for example, Chap. 17 of Ref.@11#.
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over a timeDt. For small deviations, the change in veloci
of a typical particle whose energy is orderT would then be

Dv;
Dp

p0
;

gE Dt

T
, ~3.2!

and the resulting current would be

J;n g Dv;~g2T2Dt ! E, ~3.3!

wheren;T3 is the density of hard particles. The current
dominated by the most prevalent particles in the plasm
those with momentum of orderT. The current~3.3! grows
indefinitely with the length of time the electric field is ap
plied. There are two things which can cut off this growth
the current:~a! collisions, and~b! temporal or spatial oscil-
lation of the electric field. Stick with the collisionless plasm
for a moment and consider oscillations ofE. As we have
discussed, the time scale for non-perturbative processes
out to be slow. So suppose, for example, that the elec
field varies in thez direction asE;E0 cos (kz) but not sig-
nificantly in time. Then current carriers, which have an rmz
velocity of 1/A3, will move from regions of positiveEz to
regions of negativeEz in a time of order

Dt;k21. ~3.4!

This change in direction of the electric field felt by th
charge carriers then limits the average current response
magnitude

J;
g2T2

k
E. ~3.5!

If we identify the (k-dependent! conductivity as

s~k!;
g2T2

k
~collisionless!, ~3.6!

and takek to be the inverse spatial scaleg2T for non-
perturbative physics, then the time scalet for non-
perturbative physics~2.11! would be

t;
1

g2k
;

1

g4T
, ~3.7!

provided we could indeed ignore the effects of collisions
the conductivity. This is the qualitative physics behind t
more formal and quantitative discussions of Refs.@3–5#.9

The divergence of the conductivity~3.6! as k→0 is cut
off in real physical systems by the effects of collisions,
pointed out by Drude in 1900. Let us continue to focus o
QED plasma for the moment. A charge accelerated by
electric field eventually experiences a collision with oth
particles in the plasma which changes the charged partic
direction by a large angle. Such collisions randomize

o

g
a-
e

9s(k) corresponds exactly to the damping coefficientg intro-
duced in Ref.@5#.
0-4
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EFFECTIVE DYNAMICS OF HOT, SOFT NON-ABELIAN . . . PHYSICAL REVIEW D 59 105020
direction of the particle and so randomize its contribution
the current. So the relevant timeDt determining the conduc
tivity ~3.2! becomes the mean collision timet large for large
angle scatterings:

t large
21 ;g4T ln S T

mpl
D . ~3.8!

The g4 above just comes from the square of the scatter
matrix element. The logarithm arises because the random
tion of the velocity can occur either through a single larg
angle scattering or through the cumulative effect of ma
~individually more probable! small-angle scatterings.10 If
t large were the relevant mean free time in the non-Abel
case, then the effects of collisions on the conductivitys(k)
could safely be ignored when investigating non-perturba
fluctuations. That is becauset large@1/k;1/g2T, and so it
would be the collisionless time scale 1/k instead oft large that
determinesDt and hences(k).

However, Selikhov and Gyulassy@13# have pointed out
that t large is not the relevant mean free time in the no
Abelian case. In the non-Abelian case, even arbitrarily sm
angle scatterings can randomize the current, not by rand
izing the velocity of the current carriers, but by randomizi
their color charge. The crucial difference with QED is that
exchanged non-Abelian gauge boson, no matter how s
carries color and so changes the color charge of the sca
ers, whereas an exchanged photon is neutral. The rele
time scale for the non-Abelian case is then the mean
time tsmall for any-angle scattering, which is much short
than the mean free time for large-angle scattering. Spe
cally, t-channel gauge boson exchange, shown in Fig
gives a cross sectionŝ such that

tsmall
21 ;nŝ;ng4E dtM

tM
2

, ~3.9!

wheren;T3 is the density of particles andtM52Q2 is the
virtuality of the exchanged gauge boson.tsmall

21 is also known
as the thermal damping rate of the hard particle carrying
current@14,17,18#. For tM below mpl

2 ;(gT)2, screening ef-

10For a slightly more detailed but still qualitative summary se
for example, Sec. III of Ref.@15#. t large is also known as the ‘‘mo-
mentum relaxation’’ time~see, for example, Ref.@16#!.

FIG. 1. The dominant scattering process:t-channel gauge boso
exchange. The solid lines represent any sort of hard particles
cluding gauge bosons themselves. The labelsa,b,c,d show our
convention for naming color indices of the various lines.
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fects in the plasma turn out to reduce the lineartM→0 di-
vergence in Eq.~3.9! to a logarithmic one. The result is the
that11

tsmall
21 ;

ng4

mpl
2

ln S mpl

g2T
D ;g2T ln S 1

gD , ~3.10!

where the scalek;g2T of non-perturbative physics has bee
used as an infrared cut-off. Using Eq.~3.2! and comparing
tsmall to the collisionless time scale 1/k, the zero-frequency
conductivitys;g2T2Dt is then

s~k!;H g2T/k, k*tsmall
21 ,

g2T tsmall, k&tsmall
21 .

~3.11!

tsmall wins by a logarithm fork;g2T. This means that, in the
small coupling, large logarithm limit, thek→0 value of the
conductivity, namelys;T/ ln(1/g), is what is relevant to
non-perturbative physics in non-Abelian plasmas.

Some readers may want to know what Feynman d
grams, in the underlying, fundamental quantum field theo
correspond to the color conductivity discussed above. In
next section, we formulate a leading-log calculation of t
conductivity in terms of the Boltzmann equation. Based
~a! the analogy of QCD with scalarf31f4 theory ~both
have 3- and 4-point interactions!, ~b! the diagrammatic
analysis of transport coefficients for the latter theory and
equivalence to the Boltzmann equation as explained in R
@19,20#, and~c! the fact that, in the gauge theory case, on
t-channel scattering processes are relevant at the orde
interest, we believe that the relevant series of Feynman
grams are the ladder diagrams shown in Fig. 2. This is si
lar to the class of diagrams considered in Ref.@17# for QED.
Diagrammatic perturbation theory in this form is awkwa
and cumbersome, however, and we shall avoid it.

B. Quantitative description

The original calculation of the color conductivity by Se
likhov and Gyulassy@13# was clever but not absolutely con
vincing. For one thing, it was based on an approximation
the evolution of color distribution functions which assum
that there is no coupling between the different velocity co
ponents of a fluctuation.~We shall explain more clearly wha
this means below.! The approximation is incorrect in gener
but, as we shall see, does not affect the calculation of
color conductivity in particular. Subsequently, Heiselbe
@21# analyzed the quark contribution to the conductivity
starting with a Boltzmann equation with an appropriate c
lision term. He obtained the same dependence on coupling
as Selikhov and Gyulassy but a different numerical coe
cient. As we shall later explain, this difference was primar
due to the use of a plausible but inadequate variational
satz. Selikhov and Gyulassy@22# subsequently published a
alternative derivation of the color conductivity that als

,
11Again, for more qualitative detail, see the review in Sec. III

Ref. @15#. For the original work, see Ref.@14#.
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started from the Boltzmann equation with a collision te
@23#. Unfortunately, the collision term they used did not a
count for quantum statistics of the hard particles and, a
result, they were unable to obtain a final answer with
making some very rough approximations along the wa12

Indirectly, therefore, Bo¨deker’s @6# results seem to be th
first complete~albeit terse! quantitative analysis of the colo
conductivity, even though that is not the language he u
We present here our own direct derivation of the conduc
ity, based on the collision term approach, which will be mo
familiar to some readers~and so perhaps more comforting!
than Bödeker’s methods.

There are three scales relevant to understanding the
ductivity at leading-log order. Following Bo¨deker, we will
label them as~a! the hard scale, corresponding to momentu
T, and characteristic of the charges which carry the curr
~b! the soft scale, corresponding to momentumg2T, charac-
teristic of the non-perturbative electric fields that the ha
charge carriers respond to, and~c! the semi-hardscale, cor-
responding to momentaq in the rangeg2T!q&gT, which
~at leading-log order! is the momentum scale of thet-channel
gauge bosons that mediate color randomization of the h
charge carriers. Remember that the logarithm in the cond
tivity is a logarithm of the plasma frequency scalegT over
the soft scaleg2T. If we tried to go beyond leading-log or
der, then the distinction between semi-hard and soft wo
blur, because soft gauge bosons can also mediate c
randomizing processes.

12Such as the approximation made in and just above Eq.~15! of
Ref. @22#.

FIG. 2. The Feynman diagrams~assuming finite-temperatur
Feynman rules! that produce the conductivity due to hard excit
tions at leading-log order. Specifically, the ladder diagrams are
the self-energy of the soft fields, whose imaginary part is prop
tional to the conductivity at low frequency~it’s vs in A050
gauge!. The external lines have soft momentum (g2T) and softer
frequencies, the solid lines correspond to any type of colored
ticle with hard momentum (T), and the rungs have semi-hard m
mentum (g2Tlng21!q!gT). The double lines indicate that th
dominant one-loop contributions to the self-energies have been
cluded in the propagators. The analog of the two-loop chain
gram off3 theory@19,20# is not included because we only integra
out hard and semi-hard, but not soft, fields to obtain the effec
theory of interest. Other diagrams relevant tof3 theory ~e.g., non-
pinching boxes and chain diagrams! have been dropped becau
they do not correspond tot-channel scattering and so should
sub-leading in the gauge-theory case.
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We will describe the hard, perturbative modes of t
theory by a Boltzmann equation. This is well known to r
produce exactly~at leading order in coupling! a large variety
of thermal results obtained by a more fundamental anal
of diagrammatic perturbation theory.13 This kinetic descrip-
tion is valid whenever the mean free time is long enough t
the hard particles can be treated as propagating classi
~i.e., on-shell! between collisions—a condition to be dis
cussed momentarily. We will couple the hard particles to
soft electric field, and we will incorporate the semi-hard m
diated scattering processes into the collision term.

The requirement that particles propagate classically
tween collisions means that the de Broglie wavelength
the collision times must be small compared to the mean
path and mean free time, respectively. The relevant m
free time ~and path! here istsmall;(g2T ln)21, where here,
and henceforth, we use ‘‘ln’’ as shorthand for lng21. The de
Broglie wavelength of the hard particles is order 1T
!tsmall. The duration of collisions14 mediated by semi-hard
gauge bosons is order 1/uq6q0u;1/q and is small compared
to tsmall when g2T ln !q. This requirement means that w
can only properly account for scatterings with semi-hard m
mentum transferq having g2T ln !q&gT rather thang2T
!q&gT. This will not, however, affect results at leading-lo
order, which does not distinguish between ln(gT/g2T) and
ln(gT/g2T ln).

1. The Boltzmann (Waldmann-Snider) equation

To introduce the Boltzmann equation we will use, le
start by ignoring the details of color and the non-Abeli
nature of the problem.~We will return to the non-Abelian
case momentarily.! Pretend, for the moment, that we we
interested in the Boltzmann equation for hard particles i
QED plasma.15 Schematically, the Boltzmann equation fo
the local distributionn(x,p,t) of hard particles is of the form

dn

dt
52C@n#, ~3.12!

whereC@n# is a collision term describing the net loss, due
semi-hard scattering, of hard particles with momentump.

13For an explicit discussion of the relationship between diagra
matic perturbation theory and the Boltzmann equation in sc
theory, see Ref.@20#. For kinetic theory descriptions of gauge the
ries, including the extraction of ‘‘hard thermal loops’’ from colli
sionless kinetic theory, see Refs.@24,25#.

14One way to estimate the scattering duration is to consider s
cific time orderings of Fig. 1 and to estimate the energy differen
DE between the initial and intermediate states. The duration is t
order 1/DE. Alternatively, one may consider a Feynman diagra
representing two successive collisions of a particle and verify
requirement that a typical particle will be sufficiently on-shell b
tween collisions that no error~at the desired order! is made by
treating the collisions separately.

15Kinetic theory for QED plasmas has, of course, a long histo
See for example Ref.@26#.
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The total time derivative can be rewritten in terms of a co
vective derivative and the force exerted by the soft fields

dn

dt
[~] t1 ẋ•“x1ṗ•“p! n

5] tn1v•“x n1g~E1v3B!•“p n, ~3.13!

whereE andB are to be understood as soft.@The difference
between this and Bo¨deker’s approach@6# is that Bödeker
starts with a collisionless Boltzmann equation (dn/dt50)
but includes coupling to dynamical semi-hard fields in E
~3.13!.#

The collision term is dominated by 2→2 collisions and
has the form16

C@n#5E
p8kk8

uMpp8→kk8u
2@npnp8~16nk!~16nk8!

2nknk8~16np!~16np8!# ~3.14a!

[np I22~16np! I1 , ~3.14b!

whereMpp8→kk8 is the matrix element for the collision, an
the 16n are final-state Bose enhancement or Fermi block
factors, depending on whether the hard particles are bo
(1) or fermions (2). The first term ofC@n# in Eq. ~3.14! is
a loss term, representing scattering out of momentum stap,
and the second term is a gain term, representing scatte
into statep. Coefficients of the loss and gain terms,I7 , have
been introduced for later convenience. In equilibrium,C@n#
vanishes.

We have not included the coupling of the soft electrom
netic fields to the spin of the hard particles in Eq.~3.13!.
There are a number of independent reasons for this:~a! the
small-angle scatterings that determine the conductivity
insensitive to the spins of the colliding particles,~b! such
terms vanish when one linearizes the Boltzmann equa
@25#, as we shall eventually do, and~c! for hard massless
quarks, at least, the spin dynamics is made trivial by con
vation of helicity. See Refs.@25,27,28# for a discussion of
including spin effects in the Boltzmann equation.

We must now face the one subtlety in this derivatio
which is how to incorporate color into the collision term. It
easy to put flavor indices into a collision term if all distrib
tion functionsn are diagonal in flavor: one must simply us
the specific matrix elements for flavorsa,b to collide and
produce flavorsc,d and then sum appropriately over flav
indices. The problem is more subtle for color, howev
since, as we will review, the distribution functions that d
scribe color fluctuations are not diagonal in color space. T
need to deal with a non-diagonal distributionn is a problem
that has arisen previously in applications involving mass
particles with spin: if one quantizes spin in thez direction,

16Our notation is*p[*@d3p/(2p)3# for momentum integrals and
*x[*d3x for position integrals. With this convention, transitio
matrix elementsM should be understood to have non-relativis
rather than covariant normalization.
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there is then no way to describe spin 1/2 particles with sp
say, in thex direction in terms of definite numbersn6 of
particles with spin in the6z direction. In fact, the problem
goes back to the physics of dilute gases of molecules w
spins that, between collisions, precess in an external m
netic field; the generalization of the Boltzmann equati
which solved that problem is known as the Waldman
Snider equation.17 We need the appropriate generalization
the problem at hand.

In preparation, let us review the incorporation of col
into the collisionless part~3.13! of the Boltzmann equation
which is relatively well known@31#. We will give a quick
summary, rather than starting from first principles. The fi
thing to note is that number operators for particles are of
form ap

†ap in terms of creation and annihilation operators18

Since botha and a† carry color indices, we see thatn is a
matrix and transforms under color asR3R̄ if the hard par-
ticles are in the representationR. To generalize the convec
tive derivative in Eq.~3.13! to the non-Abelian case, gauge
invariance then requires the derivatives] t and “x to be
replaced by gauge-covariant derivativesDt andDx acting in
the R3R̄ representation. That is,

]mn→Dmn5]mn2 ig @Am ,n#, ~3.15!

whereAm is the soft gauge field expressed in terms of ge
erators of the representationR of the hard particles. The
third term in Eq.~3.13!—the electromagnetic force term—
could be color contracted as either@E,¹pn# or $E,¹pn%,
with E expressed in terms of generators ofR. The fact that
n, and so alsodn/dt, are Hermitian rules out the commuta
tor. So the non-Abelian Boltzmann equation is

~Dt1v•Dx! n1 1
2 g $~E1v3B! i ,“pi

n%52C@n#,
~3.16!

where we have yet to specify the collision termC@n#. In the
Appendix, we discuss how to generalize the collision te
~3.14!. ~The result is substantively equivalent to one deriv
by Botermans and Malfliet@32# in the context of one-boson
exchange processes in nuclear matter.19! Here, we will just
try to make the result plausible. It is fairly easy to guess h
to contract all the color indices in Eq.~3.14! other than the
one whose net loss is being described~that is, other than the
one associated withp). Refer to Fig. 1:20

17For a review, see Ref.@30#.
18More technically, the localized number densitiesn(x,p) corre-

spond to expectations of the Wigner operatorsap1k/2
† ap2k/2 wherek

is the Fourier transform variable conjugate tox and should be re-
garded as small compared top.

19Botermans and Malfliet, however, absorb the ReS term in Eq.
~3.19! by redefining their flavor states to diagonalize the effect
Hamiltonian.

20We make no particular distinction between upper and low
color indices.
0-7
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I2
aā5E

p8kk8
Māb̄c̄d̄

* Mabcdnp8
b̄b

~16nk!cc̄ ~16nk8!
dd̄,

~3.17!

I1
aā5E

p8kk8
Māb̄c̄d̄

* Mabcdnk
cc̄ nk8

dd̄
~16np8!

b̄b.

~3.18!

Here and henceforth, there will always be an implied su
mation over the types and spins of the particles associ
with p8 ~quarks, anti-quarks, gauge bosons, Higgs, etc.!. In
terms ofI6 , the correct collision term then turns out to b

C@n#5 1
2 $np ,I2%2 1

2 $16np ,I1%2 i @ReS̄,np#,
~3.19!

where all commutators are in color space andS̄ is the self-
energy of the hard particles~non-relativistically normalized!.
Equation~3.19! assumes that ReS̄ can be treated as sma
compared to tree-level energies, which is indeed true for h
excitations.

The appearance of the self-energy term is easy to un
stand, although it will disappear when we linearize the Bo
zmann equation. Time evolution of observables, ignor
dissipation, is given by

dA

dt
5 i @Heff ,A#, ~3.20!

and the real part of the self-energy contributes to the ef
tive Hamiltonian. The loss and gain terms are related to
imaginary part of the self-energy, and a simple mnemo
~although hardly a real derivation! for the appearance of ant
commutators in those terms is to consider the time evolu
of an observable with a non-Hermitian effective Ham
tonian:

A~ t !5U†~ t ! A~0! U, U~ t !5e2 iH efft, and Heff5R1 i I ,

~3.21!

so that

dA

dt
5$I ,A%1 i @R,A#. ~3.22!

This is the same sort of structure that appears in the collis
term. As already mentioned, the real argument for Eq.~3.19!
is given in the Appendix.

If the final-state statistical factors are ignored, so t
16n→1, then Eq.~3.19! has exactly the form of the rela
tivistic collision term presented in Ref.@27#21 for spin ~as
opposed to color! degrees of freedom.

21Specifically, Eq.~26! of Sec. B IV 3 of Ref.@27#.
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2. The linearized Boltzmann equation

We will now linearize the Boltzmann equation, since t
fluctuations in the hard particles induced by soft fields
small ~as parameterized by powers of the coupling!. Write

naā5neqdaā1dnaā, ~3.23!

whereneq is the equilibrium distribution and is colorless. Th
linearization of the Boltzmann equation given by Eq.~3.16!
is

~Dt1v•Dx! dn1g E•v
dneq

dp
52dC@dn#, ~3.24!

wheredC is the linearization of Eq.~3.19!. The equilibrium
self-energy must be colorless~proportional todaā), and so
the linearization of the self-energy term indC vanishes:

d@ReS,n#5@d~ReS!,neq#1@ReSeq,dn#50.
~3.25!

The linearization of the loss and gain (I6) pieces of the
collision integral may be simplified by recalling that sma
angle collisions will dominate the physics. The domina
momentum transferq lies betweeng2T andgT, and is small
compared to the momenta of the colliding hard particles.
to leading order in coupling, we can replacesnk5np1q and
nk85np82q by np andnp8 . The result of linearizing the col-
lision term ~3.19! in this small momentum-transfer approx
mation is then22,23

dC@dn#5 1
2 E

p8q
uMu2 $tR8†TR

a ,@TR
a ,dnp#‡ np8~16np8!

2CATR
c tr~TR8

c dnp8! np~16np!%, ~3.26!

where here~and henceforth! we have dropped the subscrip
‘‘eq’’ from the equilibrium distributionneq. The matrices
$TR

a % are color generators for the representationR; M is the
t-channel matrix element of Fig. 1 stripped of color gene
tors, Mabcd5MTR

acTR8
bd ; and tR is the normalization con-

stant defined by

tr~TR
a TR

b !5tR dab, ~3.27!

which isCA for the adjoint representation and, with conve
tional normalization,12 for the fundamental.

22The collision term in Eq.~3.26! is the same as theDC2 given by
Selikhov and Gyulassy in Eq.~6! of Ref. @22# ~originally derived by
Selikhov @23#! except for the statistical factors of 16n.

23We have swept under the rug the fact that the matrix elem
depends on the self-energyP of the exchanged gauge boson, whic
in turn depends on the distribution functionsn. One should consider
fluctuations of these distribution functions as well, but, at line
order in dn, these variations do not contribute todC because the
loss and gain terms cancel.
0-8
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Note that the expression~3.26! for dC vanishes for color
neutral fluctuations, i.e., whendn is proportional to the iden-
tity. To treat such fluctuations, one must expandnk5np1q
and nk85np2q to higher order inq than we have done
which leads to suppression by more powers ofg. ~An ex-
ample is the difference between the inverse momentum
laxation timet large

21 and the color relaxation timetsmall
21 dis-

cussed earlier.!
For comparison todC ~3.26!, note that the hard therma

damping rate defined from the imaginary part of the se
energy in equilibrium is, to leading order in coupling,24

gR5
1

2

d

dnp
H E

p8q
uMu2 CR tR8 @np np8 ~16nk! ~16nk8!

2nk nk8 ~16np! ~16np8!#J
5

1

2 E
p8q

uMu2 CR tR8 @np8 ~16nk! ~16nk8!

7nk nk8 ~16np8!#

.
1

2 E
p8q

uMu2 CR tR8 np8 ~16np8!, ~3.28!

where in the last step we have used the small moment
transfer limit~valid at leading order in coupling!. As always,
there is an implicit summation over the particle type and s
associated withp8 in Eq. ~3.28!. Note that the coefficient o
dn in the first term of Eq.~3.26! for dC is, up to color
factors, just the thermal damping rategR .

The representationR3R̄ we have been ascribing to fluc
tuationsdn is reducible and a bit over-general for our nee
There is only one irreducible component ofR3R̄ which
contributes to the conductivity—the adjoint representati
There are a number of ways to see this. First, the color
rent J is given by

Ja5gE
p

tr~TR
a dnp! vp ~3.29!

~with implicit summation over particle type and spin!, andJ
only receives contributions from the pieces ofdn propor-
tional to the generatorsTa. Alternatively, on the left-hand
side of the Boltzmann equation~3.24!, the driving term
E•v (dn/dp) is in the adjoint representation. We may th
specializedn to fluctuations of the form

dnR5TR
a dNa. ~3.30!

24The overall factor of 1/2 arises because the damping rat
defined in the literature as the decay rate for the quant
mechanical amplitude of an excitation rather than the decay rate
the number density of an excitation. See footnote 6.
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The linearized Boltzmann equation given by Eqs.~3.24! and
~3.26! then becomes

@~Dt1v•Dx! dN#a1g Ea
•v

dn

dp

5 1
2 CA tR8E

p8q
uMu2$dNp

a np8~16np8!

2dNp8
a np~16np!%, ~3.31!

where the covariant derivativesDm now act in the adjoint
representation. Comparison with Eq.~3.28! shows that the
first term above is justgg dNp

a , where gg is the thermal
damping rate of hard gauge bosons. The color current res
ing from dNa is

Ja5g tRE
p
dNa v. ~3.32!

Now let us finally turn to the matrix elementM. At small
momentum transfers, the classic Coulomb scattering am
tude may be written in the form

E
q
uMu25g4E d4Q

~2p!4 UVm

dmn

Q2
Vn8U2

32pd~Q•V! 2pd~Q8•V! ~no screening!,

~3.33!

whereQ5(q0 ,q) andV5(1,v). However, as discussed ea
lier, the conductivity is dominated by momentum transferq
small enough that plasma screening effects are importan
particular, the momentum range of relevance at leading-
order isg2T!q!gT. In this regime, longitudinal forces ar
Debye screened, and hard particles only interact thro
transverse~magnetic! forces. The abovedmn should therefore
be replaced by the transverse projection operatord i j 2qiqj ,
and the transverse self-energyPT should be resummed into
the propagator of the exchanged gauge boson:

E
q

uMu2'g4E d4Q

~2p!4 Uv i

~d i j 2qiqj !

Q21PT~Q!
v jU2

32pd~q02q•v! 2pd~q02q•v8!,

~3.34!

where the' sign indicates we have now made approxim
tions valid only at the leading-log level. The full one-loo
result forPT(Q) is well known @33,24#, but we shall see in
a moment that we need only itsq0!q limit. In that domain,
it is simply

PT~Q!' is0~q! v ~3.35!

where

s0~q![
3pmpl

2

4q
~3.36!

is
-
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is the collisionless conductivity discussed earlier. As a
discussed earlier, the collisionless approximation is in f
only valid for g2T ln !q rather thang2T!q. ~Diagrammati-
cally, the breakdown forg2T&q&g2T ln appears as a failure
of the one-loop approximation toPT . ! So our current ap-
proximations are really only valid forg2T ln !q!gT. As we
shall see shortly, this will not affect the result for Eq.~3.34!
at leading-log order.

Given these approximations, theq integration in Eq.
~3.34! is dominated byq0;q2/s0(q)!q, justifying the
smallq0 approximation. Performing theq0 and angular inte-
grations first, one obtains

E
q

uMu2'
32a2

3mpl
2

~v•v8!2

A12~v•v8!2E dq

q
. ~3.37!

The logarithmic integral is cut off bygT on one side~above
which the un-approximated integrand starts to fall more r
idly! and the soft scaleg2T or the inverse collision time
g2T ln on the other side—it does not matter which. The
sult at leading-log order is

E
q

uMu2'
32a2

3mpl
2

ln~g21!
~v•v8!2

A12~v•v8!2
. ~3.38!

At this point, we have all the elements we need. To p
ceed, it is convenient to follow Bo¨deker@6# and others@34#
and combine the different color distribution functionsdNa

for different particles and differentupu by noticing that the
currentJ depends only on the combination

Wa~x,v,t ![
g

3mpl
2 (

type
spin

E 4pupu2dupu

~2p!3
tR dNa~x,p,t !,

~3.39!

where we have integrated overupu but not v[p̂. Integrate
and sum both sides of the Boltzmann equation~3.31! simi-
larly. Then, making use of the value

mpl
2 5

g2

3T (
type
spin

E
p
tR np~16np! ~3.40!

and of the fact that the result~3.38! for *quMu2 depends only
on angles, and comparing to the adjoint representation
pressiongg of the hard thermal damping rate~3.28!, one
obtains

~Dt1v•Dx! W2E•v52dC@W#, ~3.41a!

dC@W#~v!5ggFW~v!2
4

pK ~v•v8!2

A12~v•v8!2
W~v8!L

v8
G ,

~3.41b!

and

J53mpl
2 ^vW~v!&v , ~3.42!
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where^•••&v indicates angular averaging overv. This pre-
cisely reproduces the result that Bo¨deker derived by anothe
method@6#.

It is the second term in Eq.~3.41b! that was dropped in
the original analysis of Selikhov and Gyulassy@13#. It is
relevant to some aspects of color dynamics, a prime exam
~noted by Bo¨deker! being the conservationDmJm50 re-
quired of the hard currentJm53mpl

2 ^VmW(v)&v by the effec-
tive Maxwell equationDmFmn5Jn for the soft fields. From
Eq. ~3.41a!, this conservation requires^dC@W#&v50, which
is indeed satisfied by Eq.~3.41b!.

The fact ^dC@W#&v50 can be rephrased to say that t
symmetric operatordC has zero modes: it annihilates an
thing that is independent ofv. ~This can be rephrased i
bra-ket notation in v-space as ^constudCuW&
5^WudCuconst&50 for anyW.!

3. The conductivity

To solve the linearized Boltzmann equation~3.41! for the
W at leading-log order, Bo¨deker@6# argues that the covarian
derivative terms are together orderg2T W and so can be
ignored compared to the collision term, which is ord
ggW;(g2T ln g21) W. This approximation is actually flawed
because of the zero mode ofdC. We analyze this flaw in the
approximation in Ref.@12# and show that it does not affec
the transverse dynamics. Here, we shall instead simply c
tinue with the naive approximation. Dropping the covaria
derivative terms from the Boltzmann equation gives simp

E•v'dC@W#. ~3.43!

Next note thatdC maps even~odd! functions ofv into even
~odd! functions ofv. ~In contrast, thev•Dx operator that we
dropped does not.! SinceE•v is odd inv, the solutionW to
Eq. ~3.43! must be odd as well. But for odd functions ofv,
the form ~3.41b! of dC simplifies todC@W#5ggW.25 The
solution is then

W'
E•v

gg
, ~3.44!

which inserted into Eq.~3.42! generates a current

J'
mpl

2

gg
E. ~3.45!

This is Selikhov and Gyulassy’s leading-log result~2.14! for
the conductivity.@We show in Ref.@12# that a more careful
analysis of the Boltzmann equation~3.41! reveals that theE
above should really be the transverse projection ofE.#

25This is gratifyingly simpler than the leading-log collision term
one obtains for most transport phenomena, wheredC reduces to a
linear differential operator@35# and the linearized Boltzmann equa
tion must be solved either numerically or approximately.
0-10
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4. Variational methods

We are now in a position to understand the problem w
the estimate of the color conductivity made by Heiselberg
Ref. @21#. Heiselberg uses a variational method to appro
mately solve the Boltzmann equation. The variational ans
he uses is one that works stunningly well for the diffusion
global or Abelian charges. Using the imagery of QED, o
imagines the linear response of the system as a simple b
of equilibrium distributed positive charges moving in o
direction and of negative charges moving in the other, w
the boost velocities depending on the charges of the
ticles:

ni5
1

eb~ep2ui•p!71
.ni

eq2
dn

dep
ui•p, ~3.46!

where i is a flavor index. Equation~3.46! is Heiselberg’s
ansatz, with the velocityui to be determined variationally.

When deriving the conductivity, we found it convenie
to combine all particles together and work withW instead of
dn. If one instead follows through the argument of Se
III B 3 with the original Boltzmann equation~3.31! for dn,
one finds that

dn}
dn

dep
E•v ~3.47!

at leading-log order. For color diffusion, Heiselberg’s ans
~3.46! misses the mark by a factor ofupu. The actual linear
response~3.47! cannot be interpreted as simple boosts
fluids corresponding to different charges.

IV. ULTRAVIOLET INSENSITIVITY

We will now elaborate on our earlier claim that Bo¨deker’s
effective theory~2.9! of the soft modes has the wonderf
property that it is insensitive to how the soft modes are
off in the ultraviolet. Equivalently, but more technically, th
effective theory does not require any ultraviol
renormalization—it is ultraviolet finite.

As preparation, let us ignore the dynamics for a mom
and remember that the equilibrium properties of the class
theory are described by the partition function

Z5E @DA# e2bV ~4.1!

where

V5 1
2 E

x
B25 1

4 E
x
Fi j

a Fi j
a ~4.2!

is the potential energy associated with the magnetic fi
This is nothing other than the partition function for thre
dimensional Euclidean gauge theory, and three-dimensi
gauge theory is ultraviolet finite. One way to see this is
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rescale the fieldsA and couplingg ~hiding in the definition
of the field strength! to absorbb5T21 by

A→T1/2A, g→T21/2g. ~4.3!

The partition function is then

E @DA# expS 2
1

4 E
x
Fi j

a Fi j
a D . ~4.4!

From Eq.~4.3! or ~4.4!, the gauge field can now be seen
have scaling dimension of@A#5 1

2 , and the coupling constan
has dimension@g#5 1

2 . There are no other relevant terms~in
the sense of mass dimension! that could be added to th
action which are gauge and parity invariant. So t
dimension-12 couplingg is theonly relevant parameter of this
theory. Now suppose we modify or integrate out~in a gauge-
invariant manner! ultraviolet degrees of freedom associat
with an arbitrarily large momentum scaleL. We then poten-
tially need to modify Eq.~4.4! to

E @DA# expS 2
1

4
ZE

x
Fi j

a Fi j
a D , ~4.5!

whereZ is a renormalization constant. However, it follow
by dimensional analysis that the perturbative expansion oZ
must be in powers ofg2/L, which vanishes forL→`.

Now let us turn to Bo¨deker’s effective theory~2.9!, which
we write in the generic form

s
d

dt
A52

d

dA
V1z, ~4.6a!

^z~ t,x!z~ t8,x8!&52sT d~ t2t8! d~x2x8!,
~4.6b!

suppressing color and vector indices. By rescaling fields
coupling as before, and also rescaling time by

t→st, ~4.7!

one can put this in the form

d

dt
A52

d

dA
V1z, ~4.8a!

^z~ t,x!z~ t8,x8!&52d~ t2t8! d~x2x8!. ~4.8b!

Once again, the theory appears to depend on only one
rameter: the dimension-1

2 couplingg. The essential point to
understand is that no other relevant terms can be adde
this equation—that is, more complicated time depende
~which survives when the cutoff scaleL→`) cannot be gen-
erated for the long-distance modes when one modifies
integrates out short-distance physics. This has been prove
a general analysis of the renormalizability of purely dissip
tive stochastic field equations by Zinn-Justin and Zwanzi
0-11
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@36#.26 They analyze the problem by first finding a pat
integral representation of the stochastic equation, and
using dimensional analysis and various Becchi-Rouet-S
~BRS! symmetries to determine the allowed relevant term
When translated back into a stochastic equation, the resu
that no more-complicated time dependence can be gene
and that a renormalized version of Bo¨deker’s effective theory
will take the form

Zt

d

dt
A52

d

dA
VR1z, ~4.9a!

^z~ t,x!z~ t8,x8!&52Zt d~ t2t8! d~x2x8!, ~4.9b!

whereVR is the renormalized potential andZt is a new renor-
malization constant. We already know that the potentia
not renormalized. And, just as before,Zt must have a pertur
bative expansion ing2/L and so generates no relevant co
rection to the equation. This demonstrates why Bo¨deker’s
equation is insensitive to the ultraviolet.

If one imposes a gauge-invariant lattice cutoff on Bo¨dek-
er’s effective theory, in order to perform numerical simu
tions, this ultraviolet insensitivity implies that physical qua
tities such as the topological transition rate will have a fin
continuum limit as the lattice spacing is sent to zero.
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APPENDIX: THE COLLISION TERM

In this appendix we review the derivation of the Bolt
mann equation from first principles. We will work up from
the simplest case of a single-componentf4 theory, to multi-
component scalar theories, and then to gauge theories
will discuss scalar QED first and finally derive the Bolt
mann equation for the case of primary interest, non-Abe
gauge theory. While the treatment of a simplef4 theory, or
QED, may be easily found in the literature~see for example
@26#!, the appropriate generalizations for multi-component
non-Abelian theories are much less well-known.

1. Single-componentf4 theory

Our starting point is the Schwinger–Keldysh closed-tim
path ~CTP! formalism @37,38#. Since both the Schwinger
Keldysh CTP formalism and the derivation of the Boltzma
equation from it can be found in the literature, the exposit
here will be rather concise. For more details, see Ref.@26#.

26For a review, see Chap. 16 and 17, and especially Sec. 17.5
Ref. @11#.
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In the Schwinger–Keldysh formalism, one considers tim
evolution along a time contour, denotedC in Fig. 3, running
from some initial timet5t0 to t51` and then returning to
t0. Correspondingly, the propagator is defined asi GC(x,y)
5^TC„f(x)f(y)…&, where TC denotes contour ordering
Since bothx andy may lie on either the upper or the lowe
portion of the contour, the propagatorGC may be separated
into 4 different components,

i G11~x,y!5^T„f~x!f~y!…&, i G12~x,y!5^f~y!f~x!&,

i G21~x,y!5^f~x!f~y!&, i G22~x,y!5^T̄„f~x!f~y!…&,
~A1!

whereT̄ denotes anti-time-ordering. From Eq.~A1! it is ap-
parent that the four components ofGC satisfy the relation

G111G225G121G21. ~A2!

It is also useful to introduce retarded and advanced propa
tors,

i GR~x,y!5u~x02y0!^@f~x!,f~y!#&,

i GA~x,y!52u~y02x0!^@f~x!,f~y!#&,
~A3!

which are related to the components ofGC in the following
ways:

GR5G112G125G212G22,

GA5G122G225G112G21. ~A4!

The retarded and advanced propagators are the boundary
ues of the Euclidean time-ordered propagator when
imaginary~Matsubara! frequencyivn is analytically contin-
ued to just above, or just below, the real frequency axis.

For a free scalar field with LagrangianL5 1
2 (]mf)2

2 1
2 m2f2, the Fourier transforms of the propagator comp

nents are

G̃11~p!5
1

p0
22vp

21 i e
2

ip

vp
@np d~p02vp!

1n2p d~p01vp!#, ~A5a!

G̃22~p!5
21

p0
22vp

22 i e
2

ip

vp
@np d~p02vp!

1n2p d~p01vp!#, ~A5b!
of

FIG. 3. The Schwinger-Keldysh closed-time-path contour.
0-12
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G̃12~p!52
ip

vp
@np d~p02v2p!

1~11n2p! d~p01vp!#, ~A5c!

G̃21~p!52
ip

vp
@~11np! d~p02v2p!

1n2p d~p01vp!#, ~A5d!

where np is the occupation number. The retarded and
vanced propagators are

G̃R~p!5
1

~p01 i e!22vp
2

, G̃A~p!5
1

~p02 i e!22vp
2

.

~A6!

To compute the propagator for an interacting sca
theory, it is useful to introduce the self-energyS(x,y) which
is related to the propagator by the equations

~2]x
22m2! GC~x,y!

5hx d~x2y!1E
C
dzSC~x,z! GC~z,y!, ~A7!

~2]y
22m2! GC~x,y!

5hy d~x2y!1E
C
dz GC~x,z! SC~z,y!, ~A8!

wherehx equals11 if x is on the upper part of the contou
and21 whenx is on the lower part. As with the propagato
the self-energy may be decomposed into 4 components,S11,
S12, S21, and S22. If one forms 232 matrices from the
components ofGC andSC ,

G~x,y![S G11~x,y! G12~x,y!

G21~x,y! G22~x,y!
D ,

S~x,y![S S11~x,y! S12~x,y!

S21~x,y! S22~x,y!
D , ~A9!

then Eqs.~A7! and ~A8! become

~2]x
22m2! G~x,y!5s3 d~x2y!1E dzS~x,z! s3 G~z,y!,

~A10!

~2]y
22m2! G~x,y!5s3 d~x2y!1E dz G~x,z! s3 S~z,y!,

~A11!

where *dz now means ordinary spacetime integration a
s3 is the usual Pauli matrix~but has nothing to do with spin
here!. Using Eq. ~A10! @or ~A11!# one can show that the
identity ~A2! for the propagator implies a correspondin
identity for the self-energy,

S111S225S121S21. ~A12!
10502
-

r

d

One can also introduce retarded and advanced s
energies in a manner similar to Eq.~A4!,

SR5S112S125S212S22

SA5S122S225S112S21. ~A13!

It can be easily shown thatGR,A are related toSR,A by
GR,A5(G0

212SR,A)21, whereG0 is the corresponding free
retarded or advanced propagator.

Let us now turn to the derivation of the Boltzmann equ
tion. Subtracting Eq.~A7! from Eq. ~A8!, one obtains

~]x
22]y

2! GC~x,y!5E
C
dz@GC~x,z! SC~z,y!

2SC~x,z! GC~z,y!#. ~A14!

Up to this point, we have not made any approximation. N
we will assume that the overall evolution of the system o
curs on a time scale much larger than the typical wavelen
of a particle. In terms of the propagatorG(x,y), this means
that it varies much more slowly as a function of the avera
position (x1y)/2 than with the separationx2y. Having this
in mind, let us change variables in Eq.~A14! from x, y, z to
new variablesX, s ands8, where

x5X1
s

2
, y5X2

s

2
, z5X1

s

2
2s8. ~A15!

Equation~A14! becomes

2
]

]Xm

]

]sm
GC~X,s!

5E
C
ds8FGCS X1

s2s8

2
,s8D SCS X2

s8

2
,s2s8D

2SCS X1
s2s8

2
,s8D GCS X2

s8

2
,s2s8D G .

~A16!

Since G and S vary slowly as a function ofX, one can
replace the first argument inG andS on the right-hand side
of Eq. ~A16! by X. The ~12! component of Eq.~A16! then
reads

2
]

]Xm

]

]sm
G12~X,s!5E ds8@G11~X,s8! S12~X,s2s8!

2G12~X,s8! S22~X,s2s8!

2S11~X,s8! G12~X,s2s8!

1S12~X,s8! G22~X,s2s8!#.

~A17!

Fourier transforming with respect to the relative separati
G̃(X,p)[*ds e2 ips G(X,s), etc., converts Eq.~A17! to
0-13
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22ipm]mG̃125S̃12~G̃111G̃22!2G̃12~S̃111S̃22!,
~A18!

where, for the simplicity of notation, we have omitted t
arguments ofG̃ andS̃ which are now always (X,p). Making
use of Eqs.~A2! and~A12! allows this result to be written in
the form

22ipm]m G̃125S̃12G̃212G̃12 S̃21. ~A19!

Finally, to obtain the Boltzmann equation from Eq.~A19!,
we make the following ansatz for the propagatorsG12 and
G21: 27

G̃12~X,p!52
ip

vp
@ d~p02vp! np~X!

1d~p01vp! „11n2p~X!…#, ~A20!

G̃21~X,p!52
ip

vp
@ d~p02vp! „11np~X!…

1d~p01vp! n2p~X!#. ~A21!

In other words, one assumes thatG̃ has the same form as th
free propagator, except that the distribution function is n
an arbitrary function of bothX and p. By comparing the
coefficient ofd(p02vp), one derives from Eq.~A19! that

~] t1v•]x! np5
i

2vp
@S̃12~vp ,p! ~11np!2S̃21~vp ,p! np#.

~A22!

One can see the Boltzmann equation emerging. Indeed
term (i /2vp)S̃12(11np) is the ‘‘gain’’ term and
2( i /2vp)S̃21np is the ‘‘loss’’ term in the collision integral.
To produce the conventional form of the Boltzmann eq
tion, we need to compute the leading-order contribution
the self-energy. There is no one-loop contribution toS̃12 or
S̃21. The first non-zero contribution comes from the tw
loop diagram~Fig. 4!. Using the explicit propagators~A5!,
one finds,

27We are assuming that the dispersion relation of quasi-par
excitations is adequately approximated by the zero-temperature
persion relation. In a weakly-coupled high-temperature theory,
is always the case for typical~hard! excitations which are relativis
tic. If ln2/3 is not small compared to the zero-temperature phys
mass, then soft~non-relativistic! excitations will have significant
corrections to their dispersion relation. Nevertheless, the error in
description of these excitations does not affect the leading beha
of many quantities, such as the conductivity, which are domina
sensitive to hard excitations.~An improved treatment, which cor
rectly describes soft as well as hard excitations, is needed for
bulk viscosity. See@20# for a discussion of the construction of suc
an improved ‘‘effective’’ kinetic theory.!
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he

-
o

S̃12~vp ,p!52
il2

2 E dp8dk

~2p!6 2vp82vk2vk8

np8 nk

3~11nk8! 2pd~vp1vp82vk2vk8!,

S̃21~vp ,p!52
il2

2 E dp8dk

~2p!6 2vp82vk2vk8

~11np8!

3~11nk! nk8 2pd~vp1vp82vk2vk8!,

~A23!

wherek8[p1p82k. Substituting Eq.~A23! into Eq.~A22!,
one obtains the Boltzmann equation

~] t1v•]x! np5
l2

2 E dp8 dk

~2p!6 2vp2vp82vk2vk8

32pd~vp1vp82vk2vk8!

3@np1
np2

~11np3
! ~11np!

2~11np1
! ~11np2

! np3
np#, ~A24!

which coincides with the result one would derive naive
from kinetic theory.

2. The multi-component case

The extension of the derivation in the previous subsect
to the case of a multi-component scalar field is straightf
ward. Let the field befa, wherea is some isospin index. The
propagator and self-energy components become matr
G125uuG12

abuu, etc., but everything in the preceding discussi
up to ~and including! Eq. ~A17! remains valid. However, Eq
~A18! is not correct since the components ofG and S no
longer commute. Instead, one rewrites Eq.~A17! as

~]x
22]y

2! G125
1
2 ~$G111G22,S12%1@G112G22,S12#

2$S111S22,G12%2@S112S22,G12# !.

~A25!

The anti-commutator terms can be simplified by using E
~A2! and ~A12! to produce

~]x
22]y

2! G125
1
2 ~$G21,S12%2$S21,G12%

1@G112G22,S12#2@S112S22,G12# !.

~A26!

To progress further, we make the following ansatz for t
propagator:

le
is-
is
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FIG. 4. The leading contribution toS12.
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G12
ab~X,p!52

ip

vp
@d~p02vp! np

ab~X!

1d~p01vp! „dab1n2p
ba ~X!…#,

G21
ab~X,p!52

ip

vp
@d~p02vp! „dab1np

ab~X!…

1d~p01vp! n2p
ba ~X!#. ~A27!

Physically,np
ab(X) is the density matrix~in isospin space! of

the momentump excitations. The ansatz~A27! immediately
implies thatG122G21 is proportional todab, and this in turn
implies the same forG112G22. Therefore, the first commu
tator term in Eq.~A26! vanishes and the kinetic equatio
becomes

~] t1v•]x! np5
i

4vp
„$S12~vp ,p!,~11np!%

2$S21~vp ,p!,np%

2@S11~vp ,p!2S22~vp ,p!,np#….

~A28!

This has the same form as Eq.~3.19! in the main text if one
identifies

I25
i

2vp
S12~vp ,p!, I15

i

2vp
S21~vp ,p!, ~A29!

and

ReS̄5
1

4vp
~S112S22!

5
1

4vp
~SR1SA!5

1

2vp
ReSR~vp ,p!. ~A30!

The quantityS̄[(1/2vp)SR has a simple physical meaning
it is the correction to the energy of an excitation with m
mentump ~in other words, it is the self-energy in the no
relativistic normalization!. It is straightforward to find the
explicit form ofI6 at the leading~two-loop! level, and show
that one obtains Eqs.~3.17! and~3.18! discussed in the main
text. Let us, however, move on to the case of gauge theo

3. Gauge theories

The approach of the previous subsection can be car
over to the gauge theory case without substantial modifi
tion. We consider scalar QED first, and will find the Bolt
mann equation describing the kinetics of the hard scalar
ticles. The basic equation remains Eq.~A22!. However, the
computation of the scalar self-energyS is slightly more
complicated than in thef4 case. For scalar QED, the leadin
contribution to the self-energyS12 comes from the one-loop
diagram:
10502
s.

d
a-

r-

This gives

S̃12~p!52 ie2E d4q

~2p!4 ~2p2q!m~2p2q!n

3D12
mn~q! G̃12~p2q! ~A31!

whereDmn is the photon propagator. Typical scatterings b
tween bosons have small momentum exchange, so we
assume that the internal photon momentumq is small. The
soft photon propagatorD(q) is obtained by summing the
bubble diagrams: or equivalently, introducing the phot
self-energyP. P has four components and is related to t
photon propagator through the equations@see Eq.~A10! with
S→P andm50#

q2D125P11D122P12D22,

q2D225P21D122P22D2221. ~A32!

We have suppressed the Lorentz indices here for notati
simplicity in Eq. ~A32!. @In fact, the longitudinal and trans
verse parts ofD andP satisfy Eqs.~A32! separately.# Solv-
ing for D12, one finds

D12~q!5
P12

~q22P11!~q21P22!1P12P21

. ~A33!

As in the scalar case, the photon self-energyP satisfies the
identity ~A12! and the retarded and advanced self-energ
PR,A can be introduced in a manner similar to Eq.~A13!.
It is easy to show that (q22P11)(q

21P22)1P12P21
5(q22PR)(q22PA), and therefore

D12~q!5
P12

~q22PR!~q22PA!
5DR P12DA5uDRu2 P12.

~A34!

The photon self-energyP12 is determined by the scalar one
loop diagram, which gives

P12
mn~q!52 ie2E dp8

~2p!4
~2p81q!m~2p81q!n

3G12~p8! G21~p81q!. ~A35!

We now insert the ansatz@analogous to Eq.~A21!# for the
propagator of the complex scalarf,28

28The comments of footnote 27 equally apply to this gauge the
case. Since we are interested in a kinetic description for hard e
tations in the plasma, neglecting background-field dependent
rections to the dispersion relations of excitations is sufficient for
purposes. See Refs.@28,29# for discussions of more general case
0-15
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G̃12~p!52
ip

vp
@np d~p02vp!1~11n̄2p! d~p01vp!#.

~A36!

Here, np and n̄p are distribution functions of particles an
anti-particles, respectively. Substituting this into Eq.~A35!,
one finds

P12
mn~q!5 ie2E dp8

~2p!3
~2p81q!m~2p81q!n

3@np81q ~11np8!1n̄p81q ~11n̄p8!#.

~A37!

Inserting Eqs.~A34!, ~A36!, and ~A37! in the scalar self-
energy~A31! yields

S12~vp ,p!52 ie4E dp8 dq

~2p!6 2vp82vp2q2vp81q

3~2p!d~vp1vp82vp2q2vp81q!

3u~2p2q!m~2p81q!nDR
mn~q!u2

3@~11np8! np2q np81q

1~11n̄p8! np2q n̄p81q#. ~A38!

The other off-diagonal self-energy component,S21, may be
computed completely analogously. Inserting the express
for S12 andS21 into Eq. ~A22! yields the scalar QED Bolt-
zmann equation,
rt
.

8

ni-

,
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ns

~] t1v•]x! np5E dp8 dk

~2p!6 2vp2vp82vk2vk

uMpp8→kk8u
2

3~2p!d~vp1vp82vk2vk8!

3$~11np! nk @~11np8! nk8

1~11n̄p8! n̄k8#2np ~11nk!

3@np8 ~11nk8!1n̄p8 ~11n̄k8!#%, ~A39!

where we have introducedk[p2q, k8[p81q, and the
scattering amplitudeMpp8→kk8[e2(p1p8)m(k1k8)nDR

mn(q).
This has the same form as the naive Boltzmann equat
with the exception that the scattering amplitude is to be co
puted using the resummed propagatorDR(q) for the ex-
changed photon instead of the bare photon propagator.

Finally, combining our treatment of multi-component sc
lar theory with that of QED, one may write down the Bol
zmann equation for a non-Abelian gauge theory. The dis

bution functions become matricesnk
ab̄ with respect to group

indices.29 The Boltzmann equation has the form shown
Eq. ~A28!. The loss and gain termsI2 andI1 , which come
from one-loop contributions to the self-energy~computed
with a soft resummed gauge boson propagator!, are trivial
generalizations of Eq.~A38!. The final results are given in
Eqs.~3.16!–~3.19! of the main text.

29To simplify the discussion, we assume that distribution fun
tions are trivial with respect to polarization.
o.
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