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Unconstrained Hamiltonian formulation of SU(2) gluodynamics
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SU(2) Yang-Mills field theory is considered in the framework of the generalized Hamiltonian approach and
the equivalent unconstrained system is obtained using the method of Hamiltonian reduction. A canonical
transformation to a set of adapted coordinates is performed in terms of which the Abelianization of the Gauss
law constraints is trivialized and the pure gauge degrees of freedom drop out from the Hamiltonian after
projection onto the constraint shell. For the remaining gauge invariant fields two representations are introduced
where the three fields which transform as scalars under spatial rotations are separated from the three rotational
fields. An effective low energy nonlinear sigma model type Lagrangian is derived which out of the six physical
fields involves only one of the three scalar fields and two rotational fields summarized in a unit vector. Its
possible relation to the effective Lagrangian proposed recently by Faddeev and Niemi is discussed. Finally the
unconstrained analog of the well-known nonnormalizable ground state wave functional which solves the
Schralinger equation with zero energy is given and analyzed in the strong coupling limit.
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[. INTRODUCTION and then carrying out the projection onto the constraint shell.
The obtained unconstrained system then describes the dy-
One of the main issues in the Hamiltonian formulation of namics of a symmetric second rank tensor under spatial ro-
Yang-Mills theories is to find the projection from the phasetations. The main-axis-transformation of this symmetric ten-
space of canonical variables constrained by the non-Abeliagor allowed us to separate the gauge invariant variables into
Gauss law to the “smaller” phase space of unconstrainedgcalars under ordinary space rotations and into “rotational”
gauge invariant coordinates only. Dealing with the problemdegrees of freedom. In this final form the physical Hamil-
of the elimination of the pure gauge degrees of freedom twdonian can be quantized without operator ordering ambigu-
approaches exist, the perturbative and the nonperturbativiges.
one, with complementary features. The conventional pertur- In this work we shall generalize our approach from non-
bative gauge fixing method works successfully for the de-Abelian Dirac-Yang-Mills mechanic$23] to field theory.
scription of high energy phenomena, but fails in applicationsVe shall give a Hamiltonian formulation of classi&U(2)
in the infrared region. The correct nonperturbative reductioriyang-Mills field theory entirely in terms of gauge invariant
of gauge theoriefl—15|, on the other hand, leads to repre- variables, and separate these into scalars under ordinary
sentations for the unconstrained Yang-Mills systems, whiclspace rotations and into “rotational” degrees of freedom. It
are valid also in the low energy region, but unfortunately upwill be shown that this naturally leads to their identification
to now have been rather complicated for practical calculaas fields with “nonrelativistic spin-2 and spin-0.” Further-
tions. The guideline of these investigations is the search for enore the separation into scalar and rotational degrees of free-
representation of the gauge invariant variables which arelom will turn out to be very well suited for the study of the
suitable for the description of the infrared limit of Yang- infrared limit of unconstrained Yang-Mills theory. We shall
Mills theory. To get such a representation for the uncon-obtain an effective low energy theory involving only two of
strained system we are following the Dirac generalizedhe three rotational fields and one of the three scalar fields,
Hamiltonian formalisn{16—18 using the method of Hamil- and shall discuss its possible relation to the effective soliton
tonian reduction( [19-21] and references thergimstead of Lagrangian proposed recently ig4]. Finally we shall ana-
the conventional gauge fixing approaf®2]. In previous lyze the well-known exact, but nonnormalizable, solution
work [23] it was demonstrated that for the case of the me{25] of the functional Schidinger equation with zero energy
chanics of spatially consta®U(2) Dirac-Yang-Mills fields in the framework of the unconstrained formulationSif(2)
an unconstrained Hamiltonian can be derived which has aang-Mills theory.
simple practical form. The elimination of the gauge degrees The outline of the article is as follows. In Sec. Il we
of freedom has been achieved by performing a canonicgbresent the Hamiltonian reduction &U(2) Yang-Mills
transformation to new adapted coordinates, in terms of whicliield theory. We perform the canonical transformation to a
the Abelianization of the Gauss law constraints is trivialized,new set of adapted coordinates, Abelianize the Gauss law
constraints, and achieve the unconstrained description for
SU(2) Yang-Mills theory. In Sec. Il two representations for
*Permanent address: Thilisi Mathematical Institute, 380093the physical field in terms scalars and rotational degrees are
Thilisi, Georgia. described. Section IV is devoted to the study of the infrared
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limit of unconstrained gluodynamics. In Sec. V the well- variant and form the basis for the unconstrained system. For
known nonnormalizable solution of the functional Schro the case of non-Abelian constrair{s4) it is clearly impos-
dinger equation with zero energy is analyzed in our unconsible to find such a canonical basis only via canonical trans-
strained formulation c8U(2) Yang-Mills theory. Finally, in ~ formation. The way to avoid this difficulty is to replace the
Sec. VI, we give our conclusions. In the Appendix we list set of non-Abelian constraint2.4) by a new set of Abelian
several formulas for nonrelativistic spin-0, spin-1 and spin-2constraints which describe the constraint surface in phase

used in the text. space. This Abelianization procedure reduces the problem to
the Abelian case. There are several methods of Abelianiza-
Il. REDUCTION OF GAUGE DEGREES OF FREEDOM tion of constraintdsee e.g[20,21] and references thergin

The degenerate character of the conventional Yang-Mills

. . a A. Canonical transformation and Abelianization
action forSU(2) gauge fieldA? (X)

of the Gauss law constraints

1( 4 ca caww The problem of Abelianization is considerably simplified
S[A]:=~— Zf d*xF, Fo, when studied in terms of coordinates adapted to the action of
the gauge group. The knowledge of t8&J(2) gauge trans-
Ffw;:(;MAi_ayAiJrgeabcAzAi, (2.1 formationsU for the gauge potentiald\,: =A% 7./2 (7,

Pauli matrices

requires the use of the generalized Hamiltonian approach

[16]. From the definition of the canonical momenRf A, A =U(x)
:=dLI(9pAY), Eai=dLId(dpA,;) it follows, that the phase B
space spanned by the variablesd(P§), (Aai,Eai) is re-
stricted by the three primary constrairR§(x)=0. Accord-

A+ 'aaﬂ) U~ (), (2.5

which leave the Yang-Mills actioii2.1) invariant, directly
ing to the Dirac procedure in this case the evolution of th romts us with the choice of adapted coordinates by using

. e . he following point transformation to the new set of Lagrang-
system is governed by the total Hamiltonian containing thret?an coordinatesq. (j=1.2,3) and the six element®,
arbitrary functionsk ;(x): j 14 ik

=Qy (i,k=1,2,3) of the positive definite symmetric<3
. matrix Q:
HT::f d3X E(E§i+B§i(A))

1
A4i(9,Q):=0,(q)Qxi— 29 €ab(O(0)3;07(q))pc

0( 3 Eai T 9€apAbiEci) + Na(X)P3(x) |, (2.2) (2.6)

where O(q)is an orthogonal X3 matrix parametrized by

(A) =€ (3 1 A i - ) ;
where Byi(A):=€ij(djAact 20€ancijAc) IS the non theq; . In the following we shall show that in terms of these
Abelian magnetic field. From the conservation of the primary

. AP . i . variables the non-Abelian Gauss law constraif@®s)) only
g)vxrllst‘:[g?snttri%t_so in time one obtains the non-Abelian Gaussdepend on the; and their conjugate momenta and after

Abelianization becomg;=0. The unconstrained variabl€s
D _ and their conjugat® are gauge invariant, i.e. commute with

Pat=iEai* 0andniEa =0. @3 the Gauss Ia{/v,gand reprgese%t the basic variables for all ob-
Although the total Hamiltoniar(2.2) depends on the arbi- servable quantitie$The transformatioli2.6) induces a point
trary functionsh ;(x) it is possible to extract the dynamical
variables which have uniquely predictable dynamics. Fur-
thermore they can be chosen to be free of any constraints.y, the strong coupling limit the representatighé) reduces to the
Such an extracted system with predictable dynamics withouo-called polar representation for arbitrary quadratic matrices for

constraints is called unconstrained. which the decomposition can be proven to be well-defined and
The non-Abelian character of the secondary constraints,unique (see for exampld26]). In the general case we have the
additional second term which takes into account the inhomogeneity
{Pa(x), Pp(Y)}=geancPc(X) S(X=Y), (2.4 of the gauge transformation and E8.6) has to be regarded as a set

. . . o of partial differential equations for theg variables. The uniqueness
is the main obstacle for the corresponding projection o theq regularity of the suggested transformati@ré) depends on the

unconstrained phase space. For Abelian constraint§oyndary conditions imposed. In the present work the uniqueness

v, ({¥,, Vs=0) the projection to the reduced phase and regularity of the change of coordinates is assumed as a reason-
space can be simply achieved in the following two stepsaple conjecture without search for the appropriate boundary condi-

One performs a canonical transformation to new variablegons.

such that part of the new momenB, coincide with the 2The freedom to use other canonical variables in the uncon-
constraints¥,. After the projection onto the constraint strained phase space corresponds to another fixation of the six vari-
shell, i.e. putting in all expressior?,=0, the coordinates ablesQ in the representatiof2.6). This observation clarifies the
canonically conjugate to the, drop out from the physical connection with the conventional gauge fixing method. We shall
guantities. The remaining canonical pairs are then gauge irgiscuss this point in forthcoming publicatiofsee also Ref5]).
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canonical transformation linear in the new canonical modaw constraints, the construction of the unconstrained Hamil-

mentaP;, andp; . Using the corresponding generating func- tonian system is straightforward. In all expressions we can

tional depending on the old momenta and the new coordisimply putp,=0. In particular, the Hamiltonian in terms of

nates, the unconstrained canonical variabf@sandP can be repre-
sented by the sum of three terms

FS[E;QvQ]’:fdSZEai(Z)Aai(q(Z)-Q(Z))- (2.7

H[Q,P]=%f d3x Tr(P)2+Tr(BZ(Q))+;EZ(Q,P)}.

one can obtain the new canonical momeptand P;, 2.17
oF3 1 - The first term is the conventional quadratic “kinetic” part
Pi(X):= 8q;(x) EQ”(D‘(Q)O Bri. (28 and the second the “magnetic potential” term which is the
trace of the square of the non-Abelian magnetic field
P (X) oF s 1(ETO+OTE) (2.9
ik(X):= == iK - . g
| SQi(x) 2 I Bsk3=€k|m( a|Qsm+§€schb|Qcm)- (2.18
Here - . L
It is intersting that after the elimination of the pure gauge
i .+, .90(q) degrees of freedom the magnetic field strength tensor is the
Qji(q):=5Tr O'(q) aq Ji] (210 commutator of the covariant derivativeg2.1) F;
. =[Di(Q),D;(Q)]. _ o _
with the 3x 3 matrix generators 08O(3), (J))mn=i €min. The third, nonl_ocal term in the Hamﬂtome(ﬂ_.l?} is the
and the corresponding covariant derivatgQ) in the ad- ~ Square of the antisymmetric part of the electric fiedlL2),
joint representation Es:=(1/2)eg;;E;;, after projection onto the constraint sur-
face. It is given as the solution of the system of differential
(Di(Q))mn*=mndi 19 (I mnQxi - (211 equation%
A straightforward calculation based on the linear relations *Dis(Q)Es=4gS,, (2.19

(2.8) and (2.9) between the old and the new momenta leads . ] ]
to the following expression for the field strengtis; in  With the derivative* D,5(Q) defined in Eq(2.13. Note that

gence terms with the spin density part of the Noetherian
E.i=Oa( @) [Pyi+ geyis™ D;|1(Q)[3| —(Q )11 angular momentunt; (x) := €A, jEak, after transformation

(2.12  tothe new variables and projection onto the constraint $hell.

The solutionE of the differential equation2.19 can be

* 71 . . .
Here *D ™ - is the inverse of the matrix operator expanded in a ¥ seriesE;=3"_,E™. The zeroth order

*Dig(Q):= —i(Dn(Q)Imik. (213 termis
and EQ= v €im(PQ)im. (2.21)
1 with y;.:=Q— &y Tr(Q), and the first order term is deter-
Sk(X) = €k|m(PQ)|m_§5|Pk|- (2149  mined as

. . . 1 .
Using the representation@.6) and (2.12 one can easily EM ==y [ (rotE),— ¢Py] (2.22
convince oneself that the variabl&andP make no contri- g

bution to the Gauss law constrain.3) .
&3 from the zeroth order term. The higher terms are then ob-

O,= _goas(q)Q;jl(Q)pj =0. (2.15 tained by the simple recurrence relations

Here and in Eq(2.12 we assume that the matr is in-
vertible. The equivalent set of Abelian constraints is

p,=0. (2.16

They are Abelian due to the canonical nature of the new'
variables.

SWe remark that for the solution of this equation we need to
impose boundary conditions only on the physical varialflesn
contrast to Eq(2.6) for which boundary conditions only for the
nphysical variables; are needed.

“Note that the presence of this divergence term destroysdf®)
algebra of densities due to the presence of Schwinger terms
{Si(%),S(¥)} = €k Sk(X) 8(x—y) + €ijsPsk(X)(7§5(X_Y)E 0
2.2
After having rewritten the model in terms of the new ca- but maintains the value of spin and its algebra if one neglects the
nonical coordinates and after the Abelianization of the Gaussurface terms.

B. The Hamiltonian in terms of unconstrained fields
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+1) 1, - with the matrices
By 7a (0B ™). (2.23

(S)[?,’;(Sj):=(5i|5}“52+5{“5{‘53]-)—(mHn), (3.9
One easily recognizes in these expressions the conventional
definition of the covariant curl operatid@7] in terms of the  which describe th& Q(3) rotations of a 3-dimensional sec-

covariant derivative ond rank tensor field
ourl S(e;.€;):=(VeSe) (Ve Siei), Qi=Rit(©) R ©) Qi (35

calculated in the basig ::(Yl/z)ii‘?i andy; i =(e,&) With 1t i \well known that any symmetric second rank tensor can
the corresponding connectidrye;=T5;&, e.g. be decomposed into its irreducible components, one spin-0

0 and the five components of a spin-2 field by extraction of its

Eij’=curl S(e;,g)). (2.24  trace[28]. On the other hand it can be diagonalized via a
main-axis-transformation, which corresponds to a separation

1Il. THE UNCONSTRAINED HAMILTONIAN of the diagonal fields, which are invariant under rotations,

IN TERMS OF SCALAR AND ROTATIONAL from the rotational degrees of freedom. In the fOIIOWing
DEGREES OF FREEDOM paragraphs we shall investigate both representations and

their relation to each other.

In the previous section we have obtained the uncon-
strained Hamiltonian system in terms of physical fields rep-
resented by a positive definite symmetric mat@xThe ini-
tial gauge fieldsA; transformed as vectors under spatial
rotations. We now would like to study the transformation As shown in the preceeding paragraph the six independent
properties of the corresponding reduced matrix figldFor ~ elements of the matrix fiel@ can be represented as a mix-
systems possessing some rigid symmetry it is well known tdure of fields with nonrelativistic spin-2 and spin-0. In order
be very useful for practical calculations to pass to a coordito put the theory into a more transparent form explicitly
nate basis such that a subset of the variables is invariashowing its rotational invariance, it is useful to perform a
under the action of the symmetry group. In this section wecanonical transformation to the corresponding spin-2 and
shall therefore carry out the explicit separation of the rota-spin-0 fields as new variables. To achieve this let us decom-
tional degrees of freedom, which vary under rotations, frompose the symmetric matri® into the irreducible representa-

B. The unconstrained Hamiltonian in terms
of spin-2 and spin-0 fields

the scalars. tions of theSQ(3) group
i ; ; ] 1 1
A. Transformation properties of the unconstrained fields 0= — YA OTA+ — B (x)] 36
under space rotations Qi () J2 AT J3 SUUE 3.6

In order to search for a parametrization of the uncon-
strained variables in Yang-Mills theory adapted to the actiorivith the field® proportional to the trace @ as spin-0 field
of the group of spatial rotations we shall study the corre-2nd the 5-dimensional spin-2 vect¥(x) with components
sponding transformation properties of the fi€d The total ~ Ya labeled by its value of spin along the axis, A= =2,

Noetherian angular momentum vector f81U(2) gluody- +1,0° | is the 3x3 unit matrix and the five traceless 3
namics is X3 basis matrice3 5 are listed in the Appendix.

The momentaP,(x) and P4 (x) canonical conjugate to

3 Al the fieldsYA(x) and®(x) are the components of the corre-
Ii:'fijkj d°x| EajAakt XiEal pol (3.1  sponding expansion for the variable
After elimination of the gauge degrees of freedom it reduces 1 1
to Pi(x)= EPA(x)Tf}Jr ﬁpq)(x)hj . (3.7
Ii=f d3Xeijk((PQ)jk+xk Tr(Pd;Q)), (3.2 For the magnetic field we obtain the expansion
where surface terms have been neglected.

Under infinitisimal rotations in 3-dimensional spa@; SEverywhere in the article 3-dimensional vectors are topped by an
= wjjX; , generated by formul#3.2), the physical fieldQ arrow and their Cartesian and spherical components are labeled by
transforms as small Latin and Greek letters respectively, while the 5-dimensional

spin-2 vectors are written in boldface and their “spherical” com-
8,Qi = €smmi Qi 1 sy = ®mn(S™MQ): ponents labeled by capital Latin letters. For the lowering and raising
: ! ! of the indices of 5-dimensional vectors the metric tenggg=

+ orbital part transf. (3.3 (—1)8a g is used.
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1 1 1 with the well-known 5-dimensional spin2-functions[28]
Bij(x) = EHA(X)T{?JrEha(x)JﬁJr ﬁb(x)lij , related to the X 3 orthogonal matriR(w) via
38 Das(®)=3Tr(R(@)TAR (0)Te). (3189

ith th . . .
with the components The transformation rulg3.17) is in accordance with Eq.

(3.9.
HA==Ec§\2§yWYB+ 9 i*YA_q)YA . (39 ~ Note that for a complete investigation of the transforma-
2 \/5 \/5 tion properties of the reduced matrix figunder the whole

Poincaregroup one should also include the Lorentz transfor-
2 mations. But we shall limit ourselves here to the isolation of

IPYC+ \/;%q), (310  the scalars under spatial rotations and can @it terms of
“nonrelativistic spin-0 and spin-2 fields” in accordance with

the conclusions obtained in the wofR]. The study of the

.=i(%Y2_¢z)’ (3.11) nonlinear representations of the whole Poincgreup in

1
=—d@D
ha'_z daBC

' J3 terms of the unconstrained variables will be the subject of
further investigation.
in terms of the structure constamézgy and df}B)C of the
algebra of the spin-1 matricely, (= =1,0) and thespin-2 C. Separation of scalar and rotational degrees of freedom

matrices T,, listed in the Appendix, and another five-

dimensional vector In this paragraph we would like to introduce a parametri-

zation of the 5-dimensiona¥ field in terms of three Euler
*Y p:=d2) YBYC (3.12  angles and two variables which are invariant under spatial
rotations. The transformation propertg.17) prompts us

with constantsi(2 . given explicitly in the Appendix. Finally ~With the parametrization
\;vgn?gtgg;dtrggr:;%%%i?SHam|Iton|an in terms of spin-2 and Y A(X) =D ag(x(X))MB(x), (3.19

1 R in terms of the three Euler angleg=(¢,6,#) and some
H[P,Y,Pgy,®]:= Ef d3x(P?(x) + E2(x) + P2,(x) + H3(x) 5-vectorM. The special choice

+ﬁz(x)+b2(x)), (3.13 M(p,a)=p —%sina,o,co&x,o,—isina

2
with expression$3.9) for the magnetic field components and V2 (3.20
the antisymmetric parE of the electric field given by Egs.
(2.21) — (2.23, expressingQ andP in terms ofY, ® andP, corresponds to the main-axis-transformation of the original
P Via Egs.(3.6) and(3.7). In order to discuss the transfor- symmetric 3< 3 matrix field Q(x),
mation properties of the spin-2 field$ under spatial rota-
tions we rewrite the angular momentum vedt®r?) in terms Q(X)=RT(x(X))Quiag#1(X), b2(X), 3(X))R(x (X)),
of the fieldsY,P and®,Pq, 3.2)
B 3 A with the D(x) related toR(y) via Eq. (3.18 and the rota-
'i_Sﬂ“Lfiikf d°x X (Pod @ +PadY?), (314 {ional invariant variable®,p, o related to the diagonal ele-
ments¢; via®

with the spin part

. BUA 1 2 2
S=i(J)a Y Pg. (3.15 ¢1::ﬁ®+ 3P Co a-l—?

Here the three X5 matricesJ; are the elements of the

so(3) algebra. They are shown explicitly in the Appendix. 1 \/5
Thel; generate the transformation of the 5-dimensional vec- Pri=—=>0+

tor Y under infinitisimal rotations in 3-dimensional space V3 3
5Xi:Eijka)ka

5wYA:wk{YAvSk}:_lw(‘]k)ABYB- (3.16 8Similar variables have been used as density and deformation
. . . variables in the collective model of Bohr in nuclear phydi29]
For finite spatial rotationR(w) we therefore have and as a parametrization for the square of the eigenvalues of the
, rotational invariant part of the gauge field B30] in the represen-
Ya=Dag(®)Ys, (3.17 tation proposed ifh8].
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1 2 &i(X) : o
¢3:=ﬁ¢ + \@p cosa. (3.22 Pi(x) ‘=m (cyclic permutation # j # 2,28)

As mentioned in the first part of the paper, the ma@Xs  \ here theg, are theSO(3) left-invariant Killing vectors in
symmetric positive definite. The variables are therefore terms of Euler angleg; = (1, 6, ¢)
i y Uy 3

positive
_ E(X):= M0, )Py, (3.29
¢i=0, i=1,2,3, (3.23
with the matrix
and the domain of definition for the variablasand p can
correspondingly be taken as sing/sinh, cosy, —sinygcotd
- M(0,y):=| —cosylsing, sinyg,  cosycotd
0<p<\2®, as< 3 (3.24 0, 0, 1
(3.30

The main-axis transformation of the symmetric second rankrhe ¢ describe the Noetherian spin density part of formula
tensor fieldQ therefore induces a parametrization of the f|ve(3.2)' S=e€i(PQ)ji. in the “intrinsic frame,” S= Rﬁﬁ.

spin-2 fieldsY” in terms of the three rotational degrees of ) _ > L T
freedom, the Euler angleg = (i, 6, &), which describe the The antlsymrr_]etnc parE of _the ele_ctn(_: field appearing in
orientation of the “intrinsic frame,” and the two invariangs (€ unconstrained Hamiltonia@.17) is given by the follow-
and a represented by the 5-vectd. As the three scalars N9 _€xpansion in a ¥ series, analogous to Eq&2.21)-
under spatial rotations we can hence use eithet, and the (2.23:

spin-0 field®, or the three fieldsp; (i=1,2,3). w
In the following we shall use the main-axis representation E=RI 2 cm (3.31)
(3.2). The momentar; andp,., canonical conjugate to the R =
diagonal elementg; and the Euler angleg;, can easily be )
found using the generating function with the zeroth order term

£0:=— (cycl. permut.i#j#k), (3.32

i+ o

the first order term given fron§ (¥ via

FB[d’iaXi;P]::f d*x Tr(QP)

_ f &3 TrH(R™(x)Qqiag #)R(X)P)

1 1 - N
(1, _ = 0y, — 0y.)—=.
(325) gl g ¢]+¢k[((vxlg( )k (kag< )]) '—'I]l
as (3.33
with cyclic permutations of #j #k, and the higher order
m,(X) = IF3 :Tr(PRTZiR), tgrms of the expansion determined via the recurrence rela-
dehi(X) tions
dF4 IR (n+1) 1 1 an o(n
Py.(X) 500 Tr F” R[PQ QP]). i g ¢>,—+¢k(( &M= (Vi &™)
(3.26 (3.39

— . . . — Here the components of the covariant derivatiVgs in the
Here «; are the diagonal matrices with the elements)(, P 5%

= 8, 6.;. Together with the off-diagonal matricies(),,  direction of the vector field;(x) =Rid,
=|€im| they form an orthogonal basis for symmetric matri-

ces, shown explicitly in the Appendix. The original physical (Vx,E)p=Xi&+ &g, (3.39
momentaP;, can then be expressed in terms of the new
canonical variables as are determined by the connection depending only on the Eu-
ler angles
3 1 3
POO=RT(0| 2 mox)ast> 2 Pas|R(X), Pa:=(RXR)ap. (3:36
S= S=

(3.27 Note that the connectioR®;, can be written in the form
with [Pa=1(3%)ap(M ~HieXixk. (3.37
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using the matrixM given in terms of the Euler angleg
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tion of the low energy properties @&U(2) field theory a

=(4,6,¢) in Eq. (3.30, which expresses the dual nature of thorough understanding of the properties of the leading order
the Killing vectors¢; in Eq. (3.30, and the Maurer-Cartan g2 term in Eq.(3.41)

one-formsw; defined by

RAR =:0J;, o;=i(M Hydx. (3.39

The source term&, in Eq. (3.33, finally, are given as
= 3T35P2— 31 35Pi— 5Py
(3.39

1=y — )+ 3 Xy —
+3X,P3+(2—3),

and its cyclic permutationg, and = ;.

Vool ¢11=0°1 #1865+ ¢35+ 43451, (4.2

containing no derivatives, is crucial. The stationary points of

the potential term4.2) are
d1=d,=0, ¢5—arbitrary, 4.3

and its cyclic permutations. Analyzing the second order de-

rivatives of the potential at the stationary points one can

conclude that they form a continous line of degenerate abso-

The unconstrained Hamiltonian therefore takes the formlute minima at zero energy. In other words the potential has

3 5_2 1
! &2
f (2 2% G-d0? 22V
(3.40
where the potential terrif
3
VIgx1=2, Vil:x] (3.4

is the sum of

(T 1o po— h1) — Xop1)?
+ (M ya(dh3— h1) — Xzhr)?
+(Thaa¢st Tapho— gboba)?,

Vl[d)vX] =

(3.42

and its cyclic permutations. We see that through the main
axis transformation of the symmetric second rank tensor fiel

Q the rotational degrees of freedom, the Euler anglesd
their canonical conjugate momenpg, have been isolate

from the scalars under spatial rotations and appear in th
unconstrained Hamiltonian only via the three Killing vector

fields &, the connection$’, and the derivative vectors, .

IV. THE INFRARED LIMIT OF UNCONSTRAINED SU(2)
GLUODYNAMICS

A. The strong coupling limit of the theory
From the expressiofB.40 for the unconstrained Hamil-

a “valley” of zero energy minima along the liné,= ¢,
=0. They are the unconstrained analogs of the toron solu-
tions [35] representing constant Abelian field configurations
with vanishing magnetic field in the strong coupling limit.
The special pointp,= ¢,= ¢p3=0 corresponds to the ordi-
nary perturbative minimum.

In terms of the variableg, ® and « the homogeneous
potential(4.2) reads

2

3
Vhomi= % c1>4+ 4 2®p3cos (4.4)

showing that thex parametrizes the strength of the coupling
between the spin-0 and spin-2 fields. The valley of minima is
given byp=2®, a=0, ® arbitrary, and the perturbative
vacuum byp=®=a=0.

For the investigation of configurations of higher energy it
is necessary to include the part of the kinetic term in Eq.
(4.1 containing the angular momentum variablgs Since
he singular points of this term just correspond to the abso-
ute minima of the potential there will a competition between

g an attractive and a repulsive force. At the balance point we

hall have a local minimum corresponding to a classical con-
iguration with higher energy.

B. Nonlinear sigma model type effective action as the infrared
limit of the unconstrained system

We would like to find in this paragraph the effective clas-
sical field theory to which the unconstrained theory reduces
in the limit of infinite coupling constary, if we assume that
the classical system spontaneously chooses one of the clas-

tonian one can analyze the classical system in the strongjcal zero energy minima of the leading orggrpart(4.2) of

coupling limit up to orderO(1/g). Using the leading order
(3.33 of the £ we obtain the Hamiltonian

+V[é,x]]-
4.1

i3] @ 5, ot 3 0 S

cycl. i k

the potential(3.41). As discussed in the proceeding section
these classical minima include apart from the perturbative
vacuum, where all fields vanish, also field configurations
with one scalar field attaining arbitrary values. Let us there-
fore put without loss of generalityexplicitly breaking the
cyclic symmetry

¢1= =0 (4.5

For spatially constant fields the integrand of this expression

reduces to the Hamiltonian &U(2) Yang-Mills mechanics
considered in previous worR3]. For the further investiga-

such that the potentig#.2) vanishes. In this case the part of
the potential(3.41) containing derivatives takes the form
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Vignon= 63007 (P215(x))2+ (T30 + ([a5(x))? i I, dam balr), 1=, (412
(2300024 (P40 Y2+ (P (x)2] +[(Xy )2
+(Xa¢p3) 2]+ 2p3(X) [ 331(X) X1 b3
%5000 X bol. 4.6 L g5)=a7 [ drgdn) (413

Introducing the unit vector

Minimizing its total energyk,

with respect to¢s(r) we find the classical solutiogs(r)
ni(¢,0):=Rs(,0), (4.7  =0. There is no scale in the classical theory. Only in a
guantum investigation a mass scale such as a nonvanishing

pointing along the 3-axis of the “intrinsic frame,” one can value for the condensa(®|f¢>§|0) may appear, which might

write be related to the string tension of flux tubes directed along
9, . 2 ) ) the unit-vector fielcﬁ(t,i). The singular hedgehog configu-

Vinhom= $3(X)*(din)“+ (di3)“— (N;id; p3) rations of such string-like directed flux tubes might then be

—(niﬁiﬂj)t9j(¢§)- 4.8 associated with the glueballs. The pure quantum object

(0| $3|0) might be realized as a squeezed gluon condensate
Concerning the contribution from the nonlocal term in this[31]. Note that for the case of a spatially constant conden-
phase, we obtain for the leading part of the electric fields sate,

EO= g lds, EQ=—¢&1ps. (4.9 (0] $3|0y=:2m?=const., (4.14

Since the third componer#t{” and P are singular in the the quantum effective action corresponding to E4;11)

limit ¢,,¢,—0, it is necessary to hawig—0. The assump- should reduce to the lowest order term of the effective soli-
tion of a definite value o3 is in accordance with the fact ton Lagangian discussed very recently by Faddeev and Ni-
that the potential is symmetric around the 3-axis for sripall  emi[24]

and ¢,, such that the intrinsic angular momentydmis con-

served in the neighborhood of this configuration. Hence we R o 3 > 5
obtain the following effective Hamiltonian up to order Leln]=m fd X(d,M)*. (4.19
O(1/9)
1 1 As discussed if24], for the stability of these knots further-
H “:_f d3x 77§+ _2(§§+§§)+(07, ¢3)2+¢§((}ﬁ)2 more a higher order Skyrmlon-lllfe Eerm in the derivative
o2 &3 ' I expansion of the unit-vector field(t,x) is necessary. To
obtain it from the corresponding higher order terms in the
—(n;9, ¢3)2_(niainj)aj(¢:2s)} (4.10  strong coupling expansion of the unconstrained Hamiltonian
(3.40 is under present investigation.

First steps towards a quantum treatment of the uncon-

After the inverse Lagrangian transformation we obtain thegyained formulation obtained in the preceding paragraphs
corresponding nonlinear sigma model type effective Lasi pe undertaken in the next section.

grangian for the unit vectar(t,x) coupled to the scalar field

$3(t,x) V. QUANTUM GROUND STATE WAVE FUNCTIONAL
1 AND THE CLASSICAL CONFIGURATION
Led ¢3.n1= 5 f X[ (9,$3)°+ B3(3,1) 7+ (M4, b)? OF LOWEST ENERGY
In this section we shall give the unconstrained analog of
+ni(&inj)aj(¢§)]. (4.11) the well-known nonnormalizable ground-state wave func-

tional which solves the Schdinger equation with zero en-
In the limit of infinite coupling the unconstrained field theory ergy and analyze it in the strong coupling limit.
in terms of six physical fields equivalent to the original
SU(2) Yang-Mills theory in terms of the gauge fiel@@
reduces therefore to an effective classical field theory involv- . ]
ing only one of the three scalar fields and two of the three For the original constrained iYStem_$’U(2) gluodynam-
rotational fields summarized in the unit vector Note that €S in terms of the gauge field§’(x) with the Hamiltonian
this nonlinear sigma model type Lagrangian admits singular 1
hedgehog configurations of the unit vector fialdDue to the H(A) :=—f d3x(—
absence of a scale at the classical level, however, these are 2
unstable. Consider for example the case of one static mono-
pole placed at the origin, and the Gauss law operators

A. Exact ground state solution of the Schradinger equation

2

+ BZ(x)) (5.2

5A%(X)
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B. Exact ground state solution for the unconstrained

G3(x):=(d; 55— 9e**°AT(x)) (5.2 Hamiltonian

SAL(X) . . .
: Quantizing the variable® and P of the unconstrained

, . i . , Hamiltonian(2.17 analogously to thé\® abové we have
in the Schrdinger functional formalism, a physical state has

to satisfy both the functional Schdimger equation and the

Gauss law constraints 10 (_( s \? 5 }*2( i))
H—Zfdx 50, () +B(x)+2E 50/
(5.10
HY[A]=EV[A], (5.3 .
and hence the functional Scldiager equation
GFO)PIAI=0. ®49 HY[Ql=EW[Q]. (5.1

Remarkably, an exact solution for the ground state wavdhe Gauss law has already been implemented by the reduc-
functional W[ A] can be giveri25] tion to the physical variables.
A corresponding exact zero energy solution can indeed be
found for the reduced Schdimger equatior(5.11). For this
P[A]=exp(—87°W[A]) (5.5 we note the following two important properties of the poten-
tial terms present in the Schiimger equation5.11). First,

in terms of the so called “winding number functional” the reduced magnetic fiel};(Q) can be written as the func-

W[ A] defined as the integral over 3-space tional derivative of the functionalV[ Q]
w ! f d3x| Tr(B ! (Tr(Q®
= X| Tr — —g(Tr
3 _ 2
of the zero component of the Chern-Simons secondary char- FTr(Q) =2TM(Q)Tr(Q ))} (512
acteristic class vectdB2]’
such that
K#*(A):= ! HYORTE F oA 2AAA S
(R):= = €T FuoPe ™ 30AAAL . 655"V IQ1=8) (). (5.13
(5.8 !
Furthermore, the nonlocal term in the Sairmer equation
SinceW[ A] obeys the functional differential equation (5.11) annihilatesW[ Q]
E{Q ° _lwiqi-o (5.14
W[A]=B{(x) (5.9 " 0Qjj(x) ' '
SAZ(X)

The last equation can easily be found to hold if one takes

the wave functional(5.5) satisfies the above Schtiager into account that the magnetic fieltj="F satisfies the
equation. However this exact solution for the functionalBianchi identityD;*Fq;=0. _
Schrainger equation with the zero energy is known to be Thus the corresponding ground state wave functional so-
nonnormalizable and hence does not seem to have a physiddfion for the unconstrained Hamiltonian is
meaning[33].

In_the fo_llowi_ng we shall now_analyze ho_w such an exact V[Q]=exg —8m2W[Q]). (5.15
solution arises in the unconstrained formalism.

8Note that due to the positive definiteness of the elements of the
Mmatrix field Q we have to solve the Schdimger equation in a re-

o " stricted domain of functional space. Special boundary conditions
UAL fd“xaMK A .7 have to be imposed on the wave functional such that all operators
and the corresponding Pontryagin density*TF{¢""F ), are gauge  are well definede.g. Hermiticity of the Hamiltonian A discussion
invariant quantities, the Chern-Simons veckot is not gauge in-  on this subject in gauge theories can be found e.g. in the review
variant. [34].

"Note that whereas the topological invariant, the Pontryagin inde
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In order to investigate the relation of th&'[ Q] to the above between the ground state wave functiof®l5) of the ex-
winding number functionaWW[ A] we write the zero compo- tended quantization scheme and the reduéeth. We find
nent of the the Chern-Simons secondary characteristic clagbat the winding number of the original gauge figddonly
vectorK#, given in Eq.(5.8), in terms of the new variablg3  appears as an unphysical normalization prefactor originating
andq; from the second term in Eq5.16), which depends only on
the unphysicalg;. Furthermore, we note that the power

5 (87%/g%)n is the classical Euclidean action 81J(2) Yang-
—gTr(Q;Q:Qp) Mills theory of self-dual field§36] with winding numbem.

3 . The physical part of the wave functio®/[Q], on the

KAQ,q)=K%Q)- Lf"
' 24/77_2 ijk

other hand however, has the same unpleasant property as Eq.
—aiTr(Qij)}. (5.16 (5.5 that it is nonnormalizable. !n order Fo_shed some _Iig_ht
on the reason for its nonnormalizability, it is useful to limit
to the homogeneous case and to analyze the properties of
P[Q] in the neighborhood of the classical minima of the
potential.

The first term

1 2
Ko%Q)=— —26ijkTr( FijQk— ggQinQk)
16w C. Analysis of the exact ground state wave functional
(5.1 in the strong coupling limit

is a functional only of the physicaD of a form similiar to ~ In the strong coupling limit the ground state wave func-
that of the original Chern-Simons secondary characteristi¢ional (5.19 reduces to the very simple form

class vector. Here we have introduced ®6(2) matrices _
Q:=Qi7;, with the Pauli matrices;, and Yld1, b2, ds]=exXd ~Qb1b2dbs]. (5.23

1 1 5[ 99 This wave functional is obviously nonnormalizable. In dif-
Qi(q)=—U" @) aU(q)= —Q|S(CI)—(—), (5.1  ference to the Abelian case, however, where an analogous
g g 2\ 9x; . . :
nonnormalizable exact zero energy solution exiSthe ex-

with the SU(2) matricesU(q) related to the X 3 orthogo- phonent _O_f _Eq.(?.ZhSD s free Of any s?gn_ an;]biguitlies due 1o
nal matrix O(a) via O —1TrU-t U and  the positivity of the symmetric matriQ in the polar repre-
the 3x 3 mat(r8<)9~ def?rﬁse?j)ianq((Z 10)(q) 72U (@) 7) sentation2.6), and hence the positivity of the diagonal fields
i (2.10. : )
We observe that the space integral over the first term co®i» S6€ EA(3.23. In order to investigate the reason for the

incides with the above functiona[ Q] of Eq. (5.12 n_onnormalizability O.f I_Eq(5.23) we af?a'yze it near the clas_-
sical zero-energy minima, that is, without loss of generality,

in the neighborhood of the ling,;= ¢,=0 of minima of the
f d*xK%(Q)=WI[Q]. (5.19 classical potentiald.2). It is useful to pass from the variables
¢4 and ¢, transverse to the valley to the new variablks
Using the usual boundary conditibn andy via
u(g)—=I, (5.20 _ iy
p1=¢ . COSy, =g, siny | ¢, =0, 0$7$§ .
we see that the space integral over the second term is pro- (5.24)
portional to the natural number n representing the winding of
the mapping of compactified three space i8t0(2) The classical potential then reads
g3
—— | &€ Tr(QiQ,Q)=n. 5.2 1.,
sz PxenTHO.0,00 520 V(s by 1) =07 362 + Zfbismz(m), (5.25

Assuming here the vanishing of the physical fi€dat spa- )
tial infinity there is no contribution from the third term. and the ground state wave functitf23 becomes
Hence we obtain the relation

2

Al p[ 8 <I>[¢3,¢L,y]=ex;{—g¢3¢isin<2y>} (5.26
[ ]—ex —?n

v[Q] (5.22

1%n (Abelian) electrodynamics the unconstrained form of the cor-
Note that we have no information about the behavior of the un+esponding exact zero-energy ground state wave functional is an
physical variables);. For example the requirement of the finiteness exponential off dkka;(k)a,(k), wherea;,a, are the(momentum
of the action usually used to fix the behavior of the physical fieldsspacg polarization modes of. This false ground state is nonnor-
does not apply to the unphysical fiedgl. malizable due to the sign indefiniteness of the exponent.
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We see that close to the bottom of the valley, for snaall, rations which might be related to glueballs. For the stability

the potential is that of a harmonic oscillator and the waveof the knots higher order terms in the derivative expansion,
functional correspondingly a Gaussian with a maximum atsuch as the Skyrme type fourth order tern{24], are nec-

the classical minimum lings, =0. The height of the maxi- essary. Their derivation in the framework of the uncon-

mum is constant along the valley. The nonnormalizability ofstrained theory, proposed in this paper, is under investiga-
the ground state wave function in the infrared region is theretion. First steps towards a complete quantum description
fore due to the outflow of the wave function with constantpaye been done in this paper. In particular, we have investi-
values along the valley to arbitrarily large values of the fieldgated the famous ground state wave functional, which solves
¢3. This may result in the formation of condensates withihe Schidinger equation with zero energy eigenvalue. In

macroscopically large fluctuations of the field amplitude. To¢qnciysion we would like to emphasize that our investigation

establish the connection between this phen_omenon _and tlbelz low energy aspects of non-Abelian gauge theories directly

{z(rjsst:n()f ttgseksf%ﬁﬁftﬁirﬁlﬁfgsﬁoggsgim will be an in- in terms of the physical unconstrained fields offers an alter-

9 9 ' native to the variational calculations using approximate pro-
jection onto gauge invariant statg®7,3§|.

VI. CONCLUDING REMARKS The reason for trying to construct the physical variables
entirely in internal terms without the use of any gauge fixing
) ._is the aspiration to maintain all local and global properties of
tonian systems we have formulated several representationge, g gauge theory. Several questions in connection with

for the classicab ng) Yang-M!IIs gauge theofy entirely in the global aspects of the reduction procedure are arising at
terms of unconstrained gauge invariant local fields. All trans-, . . . .
this point. In the paper we describe how to project(3U

formations which have been used, canonical transformatio . . .
and the Abelianization of the constraints, maintain the C;_\?ang—Mnls theory onto the constraint shell defined by the

nonical structures of the generalized Hamiltonian dynamicsSauss law. It is well known that the exponentiation of in-

We identify the unconstrained field with a symmetric posi_finitisimal transformations genergted by 'the Gauss law op-
tive definite second rank tensor field under spatial rotationsErator can Ieaq _only to homotopically trlv!al gauge transfor-
Its decomposition into irreducible representations under spghations, continiously deformable to unity. However, the
tial rotations leads to the introduction of two fields, a five- initial classical action is invariant under all gauge transfor-
dimensional vector fielt (x) and a scalar field(x). Their mations, including the homotopically nontrivial ones. What
dynamics is governed by an explicitly rotational invarianttrace does the existence of large gauge transformations leave
non-local Hamiltonian. It is different from the local Hamil- on the unconstrained system? First steps towards a clarifica-
tonian obtained by Goldstone and JacKit} as well as by tion of these important issues have been undertaken in this
Izergin et al. [3]. They used the so-called electric field rep- paper, a more complete analysis is under present investiga-
resentation with vanishing antisymmetric part of the electriction.

field. A representation for the Hamiltonian with a nonlocal

interaction of the unconstrained variables similar to ours has
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of the three scalar field operators, which would set a scale, a

guantum treatment at least to one loop order is necessary and

is under present investigation. For the case of a spatially APPENDIX A: NOTATIONS AND SOME FORMULAS

constant scalar quantum condensate we expect to obtain the
first term of a derivative expansion proposed recently by
Faddeev and Niemji24]. As shown in their work such a For generators of spin-1 obeying the algeld,J;]
soliton Lagragian allows for stable massive knotlike configu-=i €;; J, we use the following matrix realizations:

Following the Dirac formalism for constrained Hamil-

1. Spin 1 matrices and eigenvectors
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0 0 0 1 0 -i O
Jy=if O —1], =il 0 0 Of, Jo=(e_1®€,,—€,,@e_)=| i 0 0Of,
01 O -1 0 O 0
0 -1 0 for spin-2
J;=i|1 O 1 1 i 0
0 0 0 T+2:\/§(é+1®é+1)zﬁ i -1 0],
Furthermore the representation of rotationgRin terms 0 0
of Euler anglesy= (6,4, ®) is used 1 —i o
. . . - - 1
R(i,0,¢) =€ '¥3e™ M1e7 9%, (A1) T_,=\2(e_1@e_y)=—| =i -1 0],
V2 0 0 O
The eigenfunctions ad? andJ; are
0O 0 -1
-1 0 1 . . - . 1 .
N 1 . N > 1 . T+1::(e+1®eo+e0®e+1):_ 0 0 —1 ,
e+1=ﬁ —i ], e=|0[, e_lzﬁ - 2 -1 —-i 0
0 1 0
hich th | with t to th tri 1 0 01
which are orthogonal with respect to the metrig,z - - - - .
=(—1)"6, g T713=(efl®eo+eo®efl)=ﬁ 0 0 -—i],
1 i 0
(€4 €8) = Nap (A2)
1
and satisfy the completeness condition Tor= \/_(e+l®e 1+28®ete 1®€.)
efel nq5= 0. (A3) L["r o0
=— 0 -1 0
2. Spin-0, spin-1 and spin-2 tensors basis \/§ 0 0 2

To obtain a matrix representation for spin-0, spin-1 and . . _
spin-2 basis matrices we use the Clebsh-Gordon decomposthey obey the following orthonormality relations:
tion for the direct product of spin-1 eigenvect@sinto the B B _
irreducible components33=0®1®2. To distinguish the TrH(TaTe)=27ma8, Tr(Tadl)=0, TrJ,Jp)= 2%&,4)
matrices corresponding to the different spins we use boldface

notation for spin 2. . the completeness condition
For spin-0 they read explicitly

1 1
10 ; (TA)iI(TA)km+(IO)iI(IO)km:Z(5im5Ik+ it Omi) »

1 . . . - - -
lg:=—=(gy®ey—e,®e_;—e_;®e
0 \/§( 0 0 +1 1 1 +1) (AS)
1 0 O and the following commutation and anticommutation rela-
1 tions:
_? 0 1 0],
3 0 0 1 4 2 5 ¢
[TA!TB]Jr:ﬁ’?ABIO—" \/—df’-\l%CT (A6)
for spin-1
0 0 1 [Ta.Tel- =cia,J”; (A7)
I > - 1
J+13=(eo®e+1_e+1®eo)=ﬁ 0 0 i}, 4
-1 _| O [‘]al‘]ﬁ]+ \/577aB|0+daBC (A8)
0 0 1
| , [3a.dp]-=Cip, % (A9)
371:(971@30_90@971)25 0 0 —iy, .
-1 | 0 [JavTB]Jr:dE)z'})/B‘Jy’ (AlO)
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TABLE I. The coefficientsd()., d'@c andc{@,

w—

A B c d@. A B y ¢, a g C  df
-2 2 0 -1 -2 2 0o -2 -1 1 0 -143
-2 1 1 32 -2 1 1 -2 -1 0 1 1
-2 0 2 -1 -1 -1 2 -2
-1 2 -1 43R -1 2 -1 -2 0 1 -1 1
-1 1 0 -1 -1 1 0 1 0 0 0 —2,/3
-1 0 1 -1 -1 0 1 -3 0 -1 1 1
-1 -1 2 32
0 2 -2 -1 0 1 -1 -3 1 1 -2 -2
0 1 -1 -1 0 0 0 0 1 0 -1 1
0 0 0 1 0 -1 1 J3 1 -1 0 -143
0 -1 1 —-1/2
0 -2 2 -1
1 1 -2 B2 1 0 -1 J3
1 0 -1 -112 1 -1 0o -1
1 -1 0 -1 1 -2 1 2
1 -2 1 3R
2 0 -2 -1 2 -1 -1 2
2 -1 -1 3 2 -2 0 2
2 -2 0o -1
[0, Tel-=Cd,TC. (A12) 200 0 O
01 0 O 0
The coefficientsc!}), are totally antisymmetric with
M 10=1 and @,);;=—cl)efel. The coefficients Jo={ 0 0 0 0
dfc, d@c andcld, are given in Table I. Note that 0 00 -1 0
0 0O -2

(Ta)ij= —dygaeief’. (A12)
The corresponding Cartesian componerd &:=¢ef(J,) a®

3. Generators for the D functions are

Define the five-dimensional spin matrices 0 1 0 0 0
(I)a%=— "%, (A13) 1 0 —\y32 o0 0
such that =0 —-Vy32 0o -\32 0],
0 0 —y32 o0 1
0 -yv2 0 O 0 0 0 0 1 0
0 0 3 0 o0 0 1 . . o
J,=|0 0 0 3 o0 |, Lo A o0 o0
0O 0 -y32 0 -1
0 0 0 O 0 0 0 1 0
\/5 ° >0 J3=Jo
J,=| 0 -3 0 0 0],
0 0 —-Jy3 0 0 satisfying theso(3) algebra
0 o0 0 V2 0 [Ja,Jp]=i€apcde- (A14)
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We use the D-functions as representation of rotations in

3-space defined in terms of Euler angles (0, ¢, ¢)

D(i,6,p)=e g™ 1¥1g71d33, (A15)

They can be obtained from the corresponding 3-dimensional

representatiofi28] via the formula

1
D(X)AB:ETr(R(X)TART(X)TB)- (A16)

4. Basis for symmetric matrices

We use the orthogonal basigi(,ai) for symmetric ma-
trices. They read explicitly
1 00
a;=| 0 0 Of,
0 0O

3

000
=0 1 0
000

PHYSICAL REVIEW D 59 105017

a3z= O

o O O
~ O O

=

o O O
= O O
o +» O
S
I
= O
o O O
o O B

az=

=
o O -
o O O

They obey the following orthonormality relations:

tr(ea;))=6;, tlaa;)=28;, tr(aa;)=0.

(A17)

[1] J. Goldstone and R. Jackiw, Phys. L&¥B, 81 (1978.
[2] V. Baluni and B. Grossman, Phys. Lefi8B, 226 (1978.

[3] A.G. Izergin, V.F. Korepin, M.E. Semenov-Tyan-Shanskii,

and L.D. Faddeev, Teor. Mat. Fi38, 3 (1979.

[4] A. Das, M. Kaku, and P.K. Townsend, Nucl. Ph{d49, 109
(1979.

[5] M. Creutz, 1.J. Muzinich, and T.N. Tudron, Phys. ReviB,
531(1979.

[6] N.H. Christ and T.D. Lee, Phys. Rev. Z?, 939(1980.

[7] V.N. Pervushin, Teor. Mat. Fiz5, 327 (1980.

[8] Yu. Simonov, Yad. Fiz41, 1311(1985 [Sov. J. Nucl. Phys.
41, 835(1985)].

[9] V.V. Vlasov, V.A. Matveev, A.N. Tavkhelidze, S.Yu. Khle-

[21] S.A. Gogilidze, A.M. Khvedelidze, and V.N. Pervushin, Phys.
Rev. D53, 2160(1996.

[22] L.D. Faddeev and A.A. SlavnovGauge Fields: Introduction
to Quantum TheoryBenjamin-Cummings, New York, 1984

[23] S.A. Gogilidze, A.M. Khvedelidze, D.M. Mladenov, and H.-P.
Pavel, Phys. Rev. 37, 7488(1998.

[24] L. Faddeev and A.J. Niemi, Phys. Rev. L&®, 1624(1999.

[25] H. Loos, Phys. Revi88 2342(1969.

[26] M. Marcus and H. MincA Survey of Matrix Theory and Ma-
trix Inequalities(Allyn and Bacon, Boston, 1964

[27] D. Martin, Manifold Theory(Ellis Horwood, Chichester, En-
gland, 199], p. 203.

bnikov, and M.E. Shaposhnikov, Fiz. Elem. Chastits At. Yadra[28] D.M. Brink and G.R. SatcheleAngular Momentun{Oxford

18, 5 (1987 [Sov. J. Part Nucl18, 1 (1987)].

[10] K. Haller, Phys. Rev. 86, 1839(1987).

[11] E.-T. Newman and C. Rovelli, Phys. Rev. Le&9, 1300
(1992.

[12] M. Bauer, D.Z. Freedman, and P.E. Haagensen, Nucl. Phys.

B428 147(1994; P.E. Haagensen and K. Johnsitmig. B439,
597 (1999; R. Schiappaibid. B517, 462(1998.

[13] H. Nachbagauer, Phys. Rev.32, 3672(1995.

[14] M. Lavelle and D. McMullan, Phys. Re279, 1 (1997.

[15] A.M. Khvedelidze and V.N. Pervushin, Helv. Phys. A&&
N6-637(1994.

[16] P.A.M. Dirac,Lectures on Quantum Mechanj®&elfer Gradu-
ate School of Sciencéreshiva University Press, New York,
1964).

[17] K. Sundermeyer,Constrained DynamigsLecture Notes in
Physics Vol. 169(Springer-Verlag, Berlin-Heidelberg-New
York, 1982.

[18] M. Henneaux and C. TeitelboinQuantization of Gauge Sys-
tems(Princeton University Press, Princeton, NJ, 1992

[19] S. Shanmugadhasan, J. Math. PHy§.677 (1973.

[20] S.A. Gogilidze, A.M. Khvedelidze, and V.N. Pervushin, J.
Math. Phys.37, 1760(1996.

University Press, Oxford, 1993

[29] A. Bohr and B.R. MottelsonNuclear Structure(Benjamin,
New York, 1975, Vol. 2.

[30] C. Martin and D. Vautherin, “Ground State Properties and

Glueball Spectrum in Yang-Mills Theory using Gauge Invari-

ant Variables,” Orsay Report IPNO/TH 93-68993 (unpub-

lished.

[31] D. Blaschke, H.-P. Pavel, V.N. Pervushin, G.dfRe, and M.K.
Volkov, Phys. Lett. B397, 129(1997).

[32] S. Deser, R. Jackiw, and S. Templeton, Ann. PKiMsY.) 140,
372(1982.

[33] R. Jackiw,Current Algebra and Anomalie@Vorld Scientific,
Singapore, 1985

[34] L.V. Prokhorov and S.V. Shabanov, Usp. Fiz. Natik1, 13
(1997 [Sov. Phys. Usp34, 108(1991)].

[35] M. Luscher, Nucl. PhysB219 233(1983.

[36] A.A. Belavin, A.M. Polyakov, A.S. Schwartz, and Yu.S.
Tyupkin, Phys. Lett59B, 85 (1975.

[37] I.I. Kogan and A. Kovner, Phys. Rev. B2, 3719(1995.

[38] D. Diakonov, “Trying to Understand Confinement in the
Schralinger Picture,” electronic archive hep-th/9805137
(1998.

105017-14



