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Unconstrained Hamiltonian formulation of SU„2… gluodynamics
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SU(2) Yang-Mills field theory is considered in the framework of the generalized Hamiltonian approach and
the equivalent unconstrained system is obtained using the method of Hamiltonian reduction. A canonical
transformation to a set of adapted coordinates is performed in terms of which the Abelianization of the Gauss
law constraints is trivialized and the pure gauge degrees of freedom drop out from the Hamiltonian after
projection onto the constraint shell. For the remaining gauge invariant fields two representations are introduced
where the three fields which transform as scalars under spatial rotations are separated from the three rotational
fields. An effective low energy nonlinear sigma model type Lagrangian is derived which out of the six physical
fields involves only one of the three scalar fields and two rotational fields summarized in a unit vector. Its
possible relation to the effective Lagrangian proposed recently by Faddeev and Niemi is discussed. Finally the
unconstrained analog of the well-known nonnormalizable ground state wave functional which solves the
Schrödinger equation with zero energy is given and analyzed in the strong coupling limit.
@S0556-2821~99!01310-7#
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I. INTRODUCTION

One of the main issues in the Hamiltonian formulation
Yang-Mills theories is to find the projection from the pha
space of canonical variables constrained by the non-Abe
Gauss law to the ‘‘smaller’’ phase space of unconstrain
gauge invariant coordinates only. Dealing with the probl
of the elimination of the pure gauge degrees of freedom
approaches exist, the perturbative and the nonperturba
one, with complementary features. The conventional per
bative gauge fixing method works successfully for the
scription of high energy phenomena, but fails in applicatio
in the infrared region. The correct nonperturbative reduct
of gauge theories@1–15#, on the other hand, leads to repr
sentations for the unconstrained Yang-Mills systems, wh
are valid also in the low energy region, but unfortunately
to now have been rather complicated for practical calcu
tions. The guideline of these investigations is the search f
representation of the gauge invariant variables which
suitable for the description of the infrared limit of Yang
Mills theory. To get such a representation for the unco
strained system we are following the Dirac generaliz
Hamiltonian formalism@16–18# using the method of Hamil-
tonian reduction~ @19–21# and references therein! instead of
the conventional gauge fixing approach@22#. In previous
work @23# it was demonstrated that for the case of the m
chanics of spatially constantSU(2) Dirac-Yang-Mills fields
an unconstrained Hamiltonian can be derived which ha
simple practical form. The elimination of the gauge degre
of freedom has been achieved by performing a canon
transformation to new adapted coordinates, in terms of wh
the Abelianization of the Gauss law constraints is trivialize

*Permanent address: Tbilisi Mathematical Institute, 3800
Tbilisi, Georgia.
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and then carrying out the projection onto the constraint sh
The obtained unconstrained system then describes the
namics of a symmetric second rank tensor under spatial
tations. The main-axis-transformation of this symmetric te
sor allowed us to separate the gauge invariant variables
scalars under ordinary space rotations and into ‘‘rotation
degrees of freedom. In this final form the physical Ham
tonian can be quantized without operator ordering ambi
ities.

In this work we shall generalize our approach from no
Abelian Dirac-Yang-Mills mechanics@23# to field theory.
We shall give a Hamiltonian formulation of classicalSU(2)
Yang-Mills field theory entirely in terms of gauge invaria
variables, and separate these into scalars under ordi
space rotations and into ‘‘rotational’’ degrees of freedom
will be shown that this naturally leads to their identificatio
as fields with ‘‘nonrelativistic spin-2 and spin-0.’’ Furthe
more the separation into scalar and rotational degrees of f
dom will turn out to be very well suited for the study of th
infrared limit of unconstrained Yang-Mills theory. We sha
obtain an effective low energy theory involving only two o
the three rotational fields and one of the three scalar fie
and shall discuss its possible relation to the effective soli
Lagrangian proposed recently in@24#. Finally we shall ana-
lyze the well-known exact, but nonnormalizable, soluti
@25# of the functional Schro¨dinger equation with zero energ
in the framework of the unconstrained formulation ofSU(2)
Yang-Mills theory.

The outline of the article is as follows. In Sec. II w
present the Hamiltonian reduction ofSU(2) Yang-Mills
field theory. We perform the canonical transformation to
new set of adapted coordinates, Abelianize the Gauss
constraints, and achieve the unconstrained description
SU(2) Yang-Mills theory. In Sec. III two representations fo
the physical field in terms scalars and rotational degrees
described. Section IV is devoted to the study of the infra
,
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limit of unconstrained gluodynamics. In Sec. V the we
known nonnormalizable solution of the functional Schr¨-
dinger equation with zero energy is analyzed in our unc
strained formulation ofSU(2) Yang-Mills theory. Finally, in
Sec. VI, we give our conclusions. In the Appendix we l
several formulas for nonrelativistic spin-0, spin-1 and spin
used in the text.

II. REDUCTION OF GAUGE DEGREES OF FREEDOM

The degenerate character of the conventional Yang-M
action forSU(2) gauge fieldsAm

a (x)

S@A#:52
1

4E d4xFmn
a Famn,

Fmn
a :5]mAn

a2]nAm
a 1geabcAm

b An
c , ~2.1!

requires the use of the generalized Hamiltonian appro
@16#. From the definition of the canonical momentaP0

a

ª]L/](]0A0
a), Eaiª]L/](]0Aai) it follows, that the phase

space spanned by the variables (A0
a ,P0

a), (Aai ,Eai) is re-
stricted by the three primary constraintsP0

a(x)50. Accord-
ing to the Dirac procedure in this case the evolution of
system is governed by the total Hamiltonian containing th
arbitrary functionsla(x):

HTªE d3xF1

2
„Eai

2 1Bai
2 ~A!…

2A0
a~] iEai1geabcAbiEci!1la~x!P0

a~x!G , ~2.2!

where Bai(A)ªe i jk(] jAak1
1
2 geabcAb jAck) is the non-

Abelian magnetic field. From the conservation of the prima
constraintsP0

a50 in time one obtains the non-Abelian Gau
law constraints

Fa :5] iEai1geabcAbiEci50. ~2.3!

Although the total Hamiltonian~2.2! depends on the arbi
trary functionsla(x) it is possible to extract the dynamica
variables which have uniquely predictable dynamics. F
thermore they can be chosen to be free of any constra
Such an extracted system with predictable dynamics with
constraints is called unconstrained.

The non-Abelian character of the secondary constrain

$Fa~x!,Fb~y!%5geabcFc~x!d~x2y!, ~2.4!

is the main obstacle for the corresponding projection to
unconstrained phase space. For Abelian constra
Ca ($Ca ,Cb%50) the projection to the reduced pha
space can be simply achieved in the following two ste
One performs a canonical transformation to new variab
such that part of the new momentaPa coincide with the
constraintsCa . After the projection onto the constrain
shell, i.e. putting in all expressionsPa50, the coordinates
canonically conjugate to thePa drop out from the physica
quantities. The remaining canonical pairs are then gauge
10501
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variant and form the basis for the unconstrained system.
the case of non-Abelian constraints~2.4! it is clearly impos-
sible to find such a canonical basis only via canonical tra
formation. The way to avoid this difficulty is to replace th
set of non-Abelian constraints~2.4! by a new set of Abelian
constraints which describe the constraint surface in ph
space. This Abelianization procedure reduces the problem
the Abelian case. There are several methods of Abelian
tion of constraints~see e.g.@20,21# and references therein!.

A. Canonical transformation and Abelianization
of the Gauss law constraints

The problem of Abelianization is considerably simplifie
when studied in terms of coordinates adapted to the actio
the gauge group. The knowledge of theSU(2) gauge trans-
formations U for the gauge potentialsAm:5Am

a ta/2 (ta

Pauli matrices!

Am→Am8 5U~x!S Am1
i

g
]mDU21~x!, ~2.5!

which leave the Yang-Mills action~2.1! invariant, directly
promts us with the choice of adapted coordinates by us
the following point transformation to the new set of Lagran
ian coordinatesqj ( j 51,2,3) and the six elementsQik
5Qki ( i ,k51,2,3) of the positive definite symmetric 333
matrix Q:

Aai~q,Q!ªOak~q!Qki2
1

2g
eabc„O~q!] iO

T~q!…bc ,

~2.6!

where O(q)is an orthogonal 333 matrix parametrized by
theqi .1 In the following we shall show that in terms of thes
variables the non-Abelian Gauss law constraints~2.3! only
depend on theqi and their conjugate momentapi and after
Abelianization becomepi50. The unconstrained variablesQ
and their conjugateP are gauge invariant, i.e. commute wit
the Gauss law, and represent the basic variables for all
servable quantities.2 The transformation~2.6! induces a point

1In the strong coupling limit the representation~2.6! reduces to the
so-called polar representation for arbitrary quadratic matrices
which the decomposition can be proven to be well-defined
unique ~see for example@26#!. In the general case we have th
additional second term which takes into account the inhomogen
of the gauge transformation and Eq.~2.6! has to be regarded as a s
of partial differential equations for theqi variables. The uniquenes
and regularity of the suggested transformation~2.6! depends on the
boundary conditions imposed. In the present work the uniquen
and regularity of the change of coordinates is assumed as a rea
able conjecture without search for the appropriate boundary co
tions.

2The freedom to use other canonical variables in the unc
strained phase space corresponds to another fixation of the six
ablesQ in the representation~2.6!. This observation clarifies the
connection with the conventional gauge fixing method. We sh
discuss this point in forthcoming publications~see also Ref.@5#!.
7-2



o
c-
rd

n
d

e

a-
us

il-
an
f

rt
he

ge
the

r-
ial

ian

ell.

-

ob-

to

the

UNCONSTRAINED HAMILTONIAN FORMULATION OF . . . PHYSICAL REVIEW D59 105017
canonical transformation linear in the new canonical m
mentaPik andpi . Using the corresponding generating fun
tional depending on the old momenta and the new coo
nates,

F3@E;q,Q#ªE d3zEai~z!Aai„q~z!,Q~z!…, ~2.7!

one can obtain the new canonical momentapi andPik

pj~x!ª
dF3

dqj~x!
52

1

g
V j r „Di~Q!OTE…ri , ~2.8!

Pik~x!ª
dF3

dQik~x!
5

1

2
~ETO1OTE! ik . ~2.9!

Here

V j i ~q!:5
i

2
TrS OT~q!

]O~q!

]qj
Ji D , ~2.10!

with the 333 matrix generators ofSO(3), (Ji)mnª i emin ,
and the corresponding covariant derivativeDi(Q) in the ad-
joint representation

„Di~Q!…mnªdmn] i2 ig~Jk!mnQki . ~2.11!

A straightforward calculation based on the linear relatio
~2.8! and ~2.9! between the old and the new momenta lea
to the following expression for the field strengthsEai in
terms of the new canonical variables

Eai5Oak~q!†Pki1gekis* Dsl
21~Q!@Sl2~V21p! l #‡.

~2.12!

Here * D21 is the inverse of the matrix operator

* Dik~Q!:52 i „Dm~Q!Jm…ik , ~2.13!

and

Sk~x!ªeklm~PQ! lm2
1

g
] l Pkl . ~2.14!

Using the representations~2.6! and ~2.12! one can easily
convince oneself that the variablesQ andP make no contri-
bution to the Gauss law constraints~2.3!

Fa52gOas~q!Vs j
21~q!pj50. ~2.15!

Here and in Eq.~2.12! we assume that the matrixV is in-
vertible. The equivalent set of Abelian constraints is

pa50. ~2.16!

They are Abelian due to the canonical nature of the n
variables.

B. The Hamiltonian in terms of unconstrained fields

After having rewritten the model in terms of the new c
nonical coordinates and after the Abelianization of the Ga
10501
-

i-

s
s

w

s

law constraints, the construction of the unconstrained Ham
tonian system is straightforward. In all expressions we c
simply putpa50. In particular, the Hamiltonian in terms o
the unconstrained canonical variablesQ andP can be repre-
sented by the sum of three terms

H@Q,P#5
1

2E d3xFTr~P!21Tr„B2~Q!…1
1

2
EW 2~Q,P!G .

~2.17!

The first term is the conventional quadratic ‘‘kinetic’’ pa
and the second the ‘‘magnetic potential’’ term which is t
trace of the square of the non-Abelian magnetic field

Bsk :5eklmS ] lQsm1
g

2
esbcQblQcmD . ~2.18!

It is intersting that after the elimination of the pure gau
degrees of freedom the magnetic field strength tensor is
commutator of the covariant derivatives~2.11! Fi j
5@Di(Q),D j (Q)#.

The third, nonlocal term in the Hamiltonian~2.17! is the
square of the antisymmetric part of the electric field~2.12!,
Esª(1/2)esi jEi j , after projection onto the constraint su
face. It is given as the solution of the system of different
equations3

* Dls~Q!Es5gSl , ~2.19!

with the derivative* Dls(Q) defined in Eq.~2.13!. Note that
the vectorSi(x), defined in Eq.~2.14!, coincides up to diver-
gence terms with the spin density part of the Noether
angular momentum,Si(x)ªe i jkAa jEak , after transformation
to the new variables and projection onto the constraint sh4

The solutionEW of the differential equation~2.19! can be
expanded in a 1/g seriesEs5(n50

` Es
(n). The zeroth order

term is

Es
~0!5gsk

21eklm~PQ! lm , ~2.21!

with g ikªQik2d ik Tr(Q), and the first order term is deter
mined as

Es
~1!
ª

1

g
gsl

21@~rotEW ~0!! l2]kPkl# ~2.22!

from the zeroth order term. The higher terms are then
tained by the simple recurrence relations

3We remark that for the solution of this equation we need
impose boundary conditions only on the physical variablesQ, in
contrast to Eq.~2.6! for which boundary conditions only for the
unphysical variablesqi are needed.

4Note that the presence of this divergence term destroys theso(3)
algebra of densities due to the presence of Schwinger terms

$Si~x!,Sj~y!%5e i jkSk~x!d~x2y!1e i jsPsk~x!]k
xd~x2y!,

~2.20!
but maintains the value of spin and its algebra if one neglects
surface terms.
7-3
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A. M. KHVEDELIDZE AND H.-P. PAVEL PHYSICAL REVIEW D 59 105017
Es
~n11!

ª

1

g
gsl

21~rotEW ~n!! l . ~2.23!

One easily recognizes in these expressions the convent
definition of the covariant curl operation@27# in terms of the
covariant derivative

curl S~ei ,ej !ª^¹ei
S,ej&2^¹ej

S,ei&,

calculated in the basisei :5(g1/2) i j ] j andg i j :5^ei ,ej& with
the corresponding connection¹ei

ej5G i j
l el , e.g.

Ei j
~1!5curl S~ei ,ej !. ~2.24!

III. THE UNCONSTRAINED HAMILTONIAN
IN TERMS OF SCALAR AND ROTATIONAL

DEGREES OF FREEDOM

In the previous section we have obtained the unc
strained Hamiltonian system in terms of physical fields r
resented by a positive definite symmetric matrixQ. The ini-
tial gauge fieldsAi transformed as vectors under spat
rotations. We now would like to study the transformati
properties of the corresponding reduced matrix fieldQ. For
systems possessing some rigid symmetry it is well known
be very useful for practical calculations to pass to a coo
nate basis such that a subset of the variables is inva
under the action of the symmetry group. In this section
shall therefore carry out the explicit separation of the ro
tional degrees of freedom, which vary under rotations, fr
the scalars.

A. Transformation properties of the unconstrained fields
under space rotations

In order to search for a parametrization of the unco
strained variables in Yang-Mills theory adapted to the act
of the group of spatial rotations we shall study the cor
sponding transformation properties of the fieldQ. The total
Noetherian angular momentum vector forSU(2) gluody-
namics is

I i5e i jkE d3xS Ea jAak1xkEal

]Aal

]xj D . ~3.1!

After elimination of the gauge degrees of freedom it redu
to

I i5E d3xe i jk„~PQ! jk1xk Tr~P] jQ!…, ~3.2!

where surface terms have been neglected.
Under infinitisimal rotations in 3-dimensional space,dxi

5v i j xj , generated by formula~3.2!, the physical fieldQ
transforms as

dvQi j 5esmnvmn$Qi j ,I s%5vmn~SmnQ! i j

1orbital part transf. ~3.3!
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with the matrices

~S!~ i l !~s j!
mn :5~d i l d j

mds
n1d i

md l
nds j!2~m↔n!, ~3.4!

which describe theSO(3) rotations of a 3-dimensional sec
ond rank tensor field

Qik8 5Ril ~v!Rkm~v!Qlm . ~3.5!

It is well known that any symmetric second rank tensor c
be decomposed into its irreducible components, one sp
and the five components of a spin-2 field by extraction of
trace @28#. On the other hand it can be diagonalized via
main-axis-transformation, which corresponds to a separa
of the diagonal fields, which are invariant under rotatio
from the rotational degrees of freedom. In the followin
paragraphs we shall investigate both representations
their relation to each other.

B. The unconstrained Hamiltonian in terms
of spin-2 and spin-0 fields

As shown in the preceeding paragraph the six independ
elements of the matrix fieldQ can be represented as a mi
ture of fields with nonrelativistic spin-2 and spin-0. In ord
to put the theory into a more transparent form explici
showing its rotational invariance, it is useful to perform
canonical transformation to the corresponding spin-2 a
spin-0 fields as new variables. To achieve this let us dec
pose the symmetric matrixQ into the irreducible representa
tions of theSO(3) group

Qi j ~x!5
1

A2
YA~x!Ti j

A1
1

A3
F~x!I i j , ~3.6!

with the fieldF proportional to the trace ofQ as spin-0 field
and the 5-dimensional spin-2 vectorY(x) with components
YA labeled by its value of spin along thez- axis, A562,
61,0.5 I is the 333 unit matrix and the five traceless
33 basis matricesTA are listed in the Appendix.

The momentaPA(x) and PF(x) canonical conjugate to
the fieldsYA(x) andF(x) are the components of the corre
sponding expansion for theP variable

Pi j ~x!5
1

A2
PA~x!Ti j

A1
1

A3
PF~x!I i j . ~3.7!

For the magnetic fieldB we obtain the expansion

5Everywhere in the article 3-dimensional vectors are topped by
arrow and their Cartesian and spherical components are labele
small Latin and Greek letters respectively, while the 5-dimensio
spin-2 vectors are written in boldface and their ‘‘spherical’’ com
ponents labeled by capital Latin letters. For the lowering and rais
of the indices of 5-dimensional vectors the metric tensorhAB5
(21)AdA,2B is used.
7-4
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Bi j ~x!5
1

A2
HA~x!Ti j

A1
1

A2
ha~x!Ji j

a 1
1

A3
b~x!I i j ,

~3.8!

with the components

HAª
1

2
cABg

~2! ]gYB1
g

A3
S 1

A2
* YA2FYAD , ~3.9!

haª
1

2
dabC

~1! ]bYC1A2

3
]aF, ~3.10!

bª
g

A3
S 1

2
Y22F2D , ~3.11!

in terms of the structure constantscABg
(2) and dabC

(1) of the
algebra of the spin-1 matricesJa (a561,0) and thespin-2
matrices TA, listed in the Appendix, and another five
dimensional vector

* YAªdABC
~2! YBYC, ~3.12!

with constantsdABC
(2) given explicitly in the Appendix. Finally

we obtain the reduced Hamiltonian in terms of spin-2 a
spin-0 field components

H@P,Y,PF ,F#:5
1

2E d3x„P2~x!1EW 2~x!1PF
2 ~x!1H2~x!

1hW 2~x!1b2~x!…, ~3.13!

with expressions~3.9! for the magnetic field components an

the antisymmetric partEW of the electric field given by Eqs
~2.21! – ~2.23!, expressingQ andP in terms ofY, F andP,
PF via Eqs.~3.6! and~3.7!. In order to discuss the transfo
mation properties of the spin-2 fieldsY under spatial rota-
tions we rewrite the angular momentum vector~3.2! in terms
of the fieldsY,P andF,PF

I i5Si1e i jkE d3x xj~PF]kF1PA]kY
A!, ~3.14!

with the spin part

Si5 i ~Ji !A
BYAPB. ~3.15!

Here the three 535 matricesJi are the elements of th
so(3) algebra. They are shown explicitly in the Append
The I i generate the transformation of the 5-dimensional v
tor Y under infinitisimal rotations in 3-dimensional spa
dxi5e i jkvkxj

dvYA5vk$YA,Sk%52 iv~Jk!A
BYB. ~3.16!

For finite spatial rotationsR(v) we therefore have

YA85DAB~v!YB , ~3.17!
10501
d

-

with the well-known 5-dimensional spin-2D-functions@28#
related to the 333 orthogonal matrixR(v) via

DAB~v!5 1
2 Tr„R~v!TART~v!TB…. ~3.18!

The transformation rule~3.17! is in accordance with Eq
~3.5!.

Note that for a complete investigation of the transform
tion properties of the reduced matrix fieldQ under the whole
Poincare´ group one should also include the Lorentz transf
mations. But we shall limit ourselves here to the isolation
the scalars under spatial rotations and can treatQ in terms of
‘‘nonrelativistic spin-0 and spin-2 fields’’ in accordance wi
the conclusions obtained in the work@3#. The study of the
nonlinear representations of the whole Poincare´ group in
terms of the unconstrained variables will be the subject
further investigation.

C. Separation of scalar and rotational degrees of freedom

In this paragraph we would like to introduce a parame
zation of the 5-dimensionalY field in terms of three Euler
angles and two variables which are invariant under spa
rotations. The transformation property~3.17! prompts us
with the parametrization

YA~x!5DAB„x~x!…MB~x!, ~3.19!

in terms of the three Euler anglesx i5(f,u,c) and some
5-vectorM . The special choice

M ~r,a!5rS 2
1

A2
sina,0,cosa,0,2

1

A2
sina D

~3.20!

corresponds to the main-axis-transformation of the origi
symmetric 333 matrix fieldQ(x),

Q~x!5RT
„x~x!…Qdiag„f1~x!,f2~x!,f3~x!…R„x~x!…,

~3.21!

with the D(x) related toR(x) via Eq. ~3.18! and the rota-
tional invariant variablesF,r,a related to the diagonal ele
mentsf i via6

f1ª
1

A3
F1A2

3
r cosS a1

2p

3 D ,

f2ª
1

A3
F1A2

3
r cosS a1

4p

3 D ,

6Similar variables have been used as density and deforma
variables in the collective model of Bohr in nuclear physics@29#
and as a parametrization for the square of the eigenvalues o
rotational invariant part of the gauge field by@30# in the represen-
tation proposed in@8#.
7-5
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f3ª
1

A3
F1A2

3
r cosa. ~3.22!

As mentioned in the first part of the paper, the matrixQ is
symmetric positive definite. The variablesf i are therefore
positive

f i>0, i 51,2,3, ~3.23!

and the domain of definition for the variablesa and r can
correspondingly be taken as

0<r<A2F, a<
p

3
. ~3.24!

The main-axis transformation of the symmetric second r
tensor fieldQ therefore induces a parametrization of the fi
spin-2 fieldsYA in terms of the three rotational degrees
freedom, the Euler anglesx i5(c,u,f), which describe the
orientation of the ‘‘intrinsic frame,’’ and the two invariantsr
and a represented by the 5-vectorM . As the three scalars
under spatial rotations we can hence use eitherr, a, and the
spin-0 fieldF, or the three fieldsf i ( i 51,2,3).

In the following we shall use the main-axis representat
~3.21!. The momentap i andpx i

, canonical conjugate to th

diagonal elementsf i and the Euler anglesx i , can easily be
found using the generating function

F3@f i ,x i ;P#:5E d3x Tr~QP!

5E d3x Tr„RT~x!Qdiag~f!R~x!P…

~3.25!

as

p i~x!5
]F3

]f i~x!
5Tr~PRTā iR!,

px i
~x!5

]F3

]x i~x!
5TrS ]RT

]x i
R@PQ2QP# D .

~3.26!

Here ā i are the diagonal matrices with the elements (ā i) lm
5d l i dmi . Together with the off-diagonal matricies (a i) lm
5ue i lmu they form an orthogonal basis for symmetric mat
ces, shown explicitly in the Appendix. The original physic
momentaPik can then be expressed in terms of the n
canonical variables as

P~x!5RT~x!S (
s51

3

ps~x!ās1
1

2
(
s51

3

Ps~x!asD R~x!,

~3.27!

with
10501
k

n

l

Pi~x!ª
j i~x!

f j~x!2fk~x!
~cyclic permutationiÞ j Þk!,

~3.28!

where thej i are theSO(3) left-invariant Killing vectors in
terms of Euler anglesx i5(c,u,f),

jk~x!:5M~u,c!klpx l
, ~3.29!

with the matrix

M~u,c!:5S sinc/sinu, cosc, 2sinc cotu

2cosc/sinu, sinc, cosc cotu

0, 0, 1
D .

~3.30!

The j i describe the Noetherian spin density part of formu
~3.2!, Si5e i jk(PQ) jk, in the ‘‘intrinsic frame,’’ Si5Ri j

T j j .

The antisymmetric partEW of the electric field appearing in
the unconstrained Hamiltonian~2.17! is given by the follow-
ing expansion in a 1/g series, analogous to Eqs.~2.21!–
~2.23!:

Ei5Ris
T (

n50

`

E s
~n! , ~3.31!

with the zeroth order term

E i
~0!
ª2

j i

f j1fk
~cycl. permut. iÞ j Þk!, ~3.32!

the first order term given fromE (0) via

E i
~1!
ª2

1

g

1

f j1fk
@„~¹Xj

EW~0!!k2~¹Xk
EW~0!! j…2J i #,

~3.33!

with cyclic permutations ofiÞ j Þk, and the higher order
terms of the expansion determined via the recurrence r
tions

E i
~n11!

ª2
1

g

1

f j1fk
„~¹Xj

EW~n!!k2~¹Xk
EW~n!! j….

~3.34!

Here the components of the covariant derivatives¹Xk
in the

direction of the vector fieldsXi(x)ªRik]k ,

~¹Xi
EW!bªXiEb1G ib

d Ed , ~3.35!

are determined by the connection depending only on the
ler angles

Gb
iaª~RXiR

T!ab . ~3.36!

Note that the connectionGb
ia can be written in the form

Gb
ia5 i ~Js!ab~M21!ksXixk , ~3.37!
7-6
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using the matrixM given in terms of the Euler anglesx i
5(c,u,f) in Eq. ~3.30!, which expresses the dual nature
the Killing vectorsj i in Eq. ~3.30!, and the Maurer-Cartan
one-formsv i defined by

RdRT5:v iJi , v i5 i ~M21!kidxk . ~3.38!

The source termsJk in Eq. ~3.33!, finally, are given as

J15G1
22~p12p2!1 1

2 X1p12 1
2 G23

2 P22 1
2 G23

1 P12G1
12P3

1 1
2 X2P31~2→3!, ~3.39!

and its cyclic permutationsJ2 andJ3.
The unconstrained Hamiltonian therefore takes the fo

H5
1

2E d3xS (
i 51

3

p i
21

1

2 (
cycl.

j i
2

~f j2fk!
2 1

1

2
EW21VD ,

~3.40!

where the potential termV

V@f,x#5(
i 51

3

Vi@f,x# ~3.41!

is the sum of

V1@f,x#5„G1
12~f22f1!2X2f1…

2

1„G1
13~f32f1!2X3f1…

2

1~G1
23f31G32

1 f22gf2f3!2, ~3.42!

and its cyclic permutations. We see that through the ma
axis transformation of the symmetric second rank tensor fi
Q the rotational degrees of freedom, the Euler anglesx and
their canonical conjugate momentapx , have been isolated
from the scalars under spatial rotations and appear in
unconstrained Hamiltonian only via the three Killing vect
fields jk , the connectionsG, and the derivative vectorsXk .

IV. THE INFRARED LIMIT OF UNCONSTRAINED SU„2…
GLUODYNAMICS

A. The strong coupling limit of the theory

From the expression~3.40! for the unconstrained Hamil
tonian one can analyze the classical system in the str
coupling limit up to orderO(1/g). Using the leading orde

~3.33! of the EW we obtain the Hamiltonian

HS5
1

2E d3xS (
i 51

3

p i
21 (

cycl.
j i

2
f j

21fk
2

~f j
22fk

2!2
1V@f,x# D .

~4.1!

For spatially constant fields the integrand of this express
reduces to the Hamiltonian ofSU(2) Yang-Mills mechanics
considered in previous work@23#. For the further investiga-
10501
-
ld

e

ng

n

tion of the low energy properties ofSU(2) field theory a
thorough understanding of the properties of the leading or
g2 term in Eq.~3.41!

Vhom@f i #5g2@f1
2f2

21f2
2f3

21f3
2f1

2#, ~4.2!

containing no derivatives, is crucial. The stationary points
the potential term~4.2! are

f15f250, f32arbitrary, ~4.3!

and its cyclic permutations. Analyzing the second order
rivatives of the potential at the stationary points one c
conclude that they form a continous line of degenerate ab
lute minima at zero energy. In other words the potential h
a ‘‘valley’’ of zero energy minima along the linef15f2
50. They are the unconstrained analogs of the toron s
tions @35# representing constant Abelian field configuratio
with vanishing magnetic field in the strong coupling lim
The special pointf15f25f350 corresponds to the ordi
nary perturbative minimum.

In terms of the variablesr, F and a the homogeneous
potential~4.2! reads

Vhomª
g2

3 S F41
3

4
r42A2Fr3cos 3a D , ~4.4!

showing that thea parametrizes the strength of the couplin
between the spin-0 and spin-2 fields. The valley of minima
given byr5A2F, a50, F arbitrary, and the perturbative
vacuum byr5F5a50.

For the investigation of configurations of higher energy
is necessary to include the part of the kinetic term in E
~4.1! containing the angular momentum variablesj i . Since
the singular points of this term just correspond to the ab
lute minima of the potential there will a competition betwe
an attractive and a repulsive force. At the balance point
shall have a local minimum corresponding to a classical c
figuration with higher energy.

B. Nonlinear sigma model type effective action as the infrared
limit of the unconstrained system

We would like to find in this paragraph the effective cla
sical field theory to which the unconstrained theory redu
in the limit of infinite coupling constantg, if we assume that
the classical system spontaneously chooses one of the
sical zero energy minima of the leading orderg2 part~4.2! of
the potential~3.41!. As discussed in the proceeding secti
these classical minima include apart from the perturba
vacuum, where all fields vanish, also field configuratio
with one scalar field attaining arbitrary values. Let us the
fore put without loss of generality~explicitly breaking the
cyclic symmetry!

f15f250, ~4.5!

such that the potential~4.2! vanishes. In this case the part o
the potential~3.41! containing derivatives takes the form
7-7
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Vinhom5f3~x!2@„G2
13~x!…21„G2

23~x!…21„G2
33~x!…2

1„G3
11~x!…21„G3

21~x!…21„G3
31~x!…2#1@~X1f3!2

1~X2f3!2#12f3~x!@G3
31~x!X1f3

1G3
32~x!X2f3#. ~4.6!

Introducing the unit vector

ni~f,u!ªR3i~f,u!, ~4.7!

pointing along the 3-axis of the ‘‘intrinsic frame,’’ one ca
write

Vinhom5f3~x!2~] inW !21~] if3!22~ni] if3!2

2~ni] inj !] j~f3
2!. ~4.8!

Concerning the contribution from the nonlocal term in th
phase, we obtain for the leading part of the electric fields

E 1
~0!52j1 /f3 , E 2

~0!52j2 /f3 . ~4.9!

Since the third componentE 3
(0) andP3 are singular in the

limit f1 ,f2→0, it is necessary to havej3→0. The assump-
tion of a definite value ofj3 is in accordance with the fac
that the potential is symmetric around the 3-axis for smallf1
andf2, such that the intrinsic angular momentumj3 is con-
served in the neighborhood of this configuration. Hence
obtain the following effective Hamiltonian up to orde
O(1/g)

Heff5
1

2E d3xFp3
21

1

f3
2 ~j1

21j2
2!1~] if3!21f3

2~] inW !2

2~ni] if3!22~ni] inj !] j~f3
2!G . ~4.10!

After the inverse Lagrangian transformation we obtain
corresponding nonlinear sigma model type effective L
grangian for the unit vectornW (t,xW ) coupled to the scalar field
f3(t,xW )

Leff@f3 ,nW #5
1

2E d3x@~]mf3
2!21f3

2~]mnW !21~ni] if3!2

1ni~] inj !] j~f3
2!#. ~4.11!

In the limit of infinite coupling the unconstrained field theo
in terms of six physical fields equivalent to the origin
SU(2) Yang-Mills theory in terms of the gauge fieldsAm

a

reduces therefore to an effective classical field theory invo
ing only one of the three scalar fields and two of the th
rotational fields summarized in the unit vectornW . Note that
this nonlinear sigma model type Lagrangian admits singu
hedgehog configurations of the unit vector fieldnW . Due to the
absence of a scale at the classical level, however, these
unstable. Consider for example the case of one static mo
pole placed at the origin,
10501
e

e
-

-
e

r

are
o-

niªxi /r , f35f3~r !, rªAx1
21x2

21x3
2. ~4.12!

Minimizing its total energyE,

E@f3#54pE drf3
2~r !, ~4.13!

with respect tof3(r ) we find the classical solutionf3(r )
[0. There is no scale in the classical theory. Only in
quantum investigation a mass scale such as a nonvanis
value for the condensate^0uf̂3

2u0& may appear, which migh
be related to the string tension of flux tubes directed alo
the unit-vector fieldnW (t,xW ). The singular hedgehog configu
rations of such string-like directed flux tubes might then
associated with the glueballs. The pure quantum ob

^0uf̂3
2u0& might be realized as a squeezed gluon conden

@31#. Note that for the case of a spatially constant cond
sate,

^0uf̂3
2u0&5:2m25const., ~4.14!

the quantum effective action corresponding to Eq.~4.11!
should reduce to the lowest order term of the effective s
ton Lagangian discussed very recently by Faddeev and
emi @24#

Leff@nW #5m2E d3x~]mnW !2. ~4.15!

As discussed in@24#, for the stability of these knots further
more a higher order Skyrmion-like term in the derivati
expansion of the unit-vector fieldnW (t,xW ) is necessary. To
obtain it from the corresponding higher order terms in t
strong coupling expansion of the unconstrained Hamilton
~3.40! is under present investigation.

First steps towards a quantum treatment of the unc
strained formulation obtained in the preceding paragra
will be undertaken in the next section.

V. QUANTUM GROUND STATE WAVE FUNCTIONAL
AND THE CLASSICAL CONFIGURATION

OF LOWEST ENERGY

In this section we shall give the unconstrained analog
the well-known nonnormalizable ground-state wave fun
tional which solves the Schro¨dinger equation with zero en
ergy and analyze it in the strong coupling limit.

A. Exact ground state solution of the Schro¨dinger equation

For the original constrained system ofSU(2) gluodynam-
ics in terms of the gauge fieldsAi

a(x) with the Hamiltonian

H~A!ª
1

2E d3xX2S d

dAi
a~x!

D 2

1B2~x!C ~5.1!

and the Gauss law operators
7-8
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G a~x!ª„] idb
a2geabcAi

c~x!…
d

dAi
b~x!

~5.2!

in the Schro¨dinger functional formalism, a physical state h
to satisfy both the functional Schro¨dinger equation and the
Gauss law constraints

HC@A#5EC@A#, ~5.3!

G a~x!C@A#50. ~5.4!

Remarkably, an exact solution for the ground state w
functionalC@A# can be given@25#

C@A#5exp~28p2W@A# ! ~5.5!

in terms of the so called ‘‘winding number functional
W@A# defined as the integral over 3-space

W@A#:5E d3xK0~x! ~5.6!

of the zero component of the Chern-Simons secondary c
acteristic class vector@32#7

Km~A!:52
1

16p2
emnskTrS FnsAk2

2

3
gAnAsAkD .

~5.8!

SinceW@A# obeys the functional differential equation

d

dAi
a~x!

W@A#5Bi
a~x! ~5.9!

the wave functional~5.5! satisfies the above Schro¨dinger
equation. However this exact solution for the function
Schrödinger equation with the zero energy is known to
nonnormalizable and hence does not seem to have a phy
meaning@33#.

In the following we shall now analyze how such an exa
solution arises in the unconstrained formalism.

7Note that whereas the topological invariant, the Pontryagin in

n@A#:5Ed4x]mKm~A! ~5.7!

and the corresponding Pontryagin density Tr(* FmnFnm), are gauge
invariant quantities, the Chern-Simons vectorKm is not gauge in-
variant.
10501
e
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B. Exact ground state solution for the unconstrained
Hamiltonian

Quantizing the variablesQ and P of the unconstrained
Hamiltonian~2.17! analogously to theAi

a above8 we have

H5
1

2E d3xX2S d

dQi j ~x! D
2

1B2~x!1
1

2
EW 2S Q,

d

dQD C,
~5.10!

and hence the functional Schro¨dinger equation

HC@Q#5EC@Q#. ~5.11!

The Gauss law has already been implemented by the re
tion to the physical variables.

A corresponding exact zero energy solution can indeed
found for the reduced Schro¨dinger equation~5.11!. For this
we note the following two important properties of the pote
tial terms present in the Schro¨dinger equation~5.11!. First,
the reduced magnetic fieldBi j (Q) can be written as the func
tional derivative of the functionalW @Q#

W @Q#ª
1

32p2E d3xFTr~BQ!2
1

12
g„Tr~Q3!

1Tr3~Q!22Tr~Q!Tr~Q2!…G ~5.12!

such that

d

dQi j ~x!
W @Q#5Bi j ~x!. ~5.13!

Furthermore, the nonlocal term in the Schro¨dinger equation
~5.11! annihilatesW @Q#

EW 2FQ,
d

dQi j ~x!GW @Q#50. ~5.14!

The last equation can easily be found to hold if one ta
into account that the magnetic fieldBi5 * F0i satisfies the
Bianchi identityDi* F0i50.

Thus the corresponding ground state wave functional
lution for the unconstrained Hamiltonian is

C@Q#5exp~28p2W @Q# !. ~5.15!

x
8Note that due to the positive definiteness of the elements of

matrix field Q we have to solve the Schro¨dinger equation in a re-
stricted domain of functional space. Special boundary conditi
have to be imposed on the wave functional such that all opera
are well defined~e.g. Hermiticity of the Hamiltonian!. A discussion
on this subject in gauge theories can be found e.g. in the rev
@34#.
7-9
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In order to investigate the relation of theW @Q# to the above
winding number functionalW@A# we write the zero compo
nent of the the Chern-Simons secondary characteristic c
vectorKm, given in Eq.~5.8!, in terms of the new variablesQ
andqi

K0~Q,q!5K 0~Q!2
1

24p2 e i jkF2

3
gTr~V iV jVk!

2] iTr~QjVk!G . ~5.16!

The first term

K 0~Q!ª2
1

16p2
e i jkTrS Fi j Qk2

2

3
gQiQjQkD

~5.17!

is a functional only of the physicalQ of a form similiar to
that of the original Chern-Simons secondary characteri
class vector. Here we have introduced theSU(2) matrices
QlªQli t i , with the Pauli matricest i , and

V i~q!ª
1

g
U21~q!] iU~q!5

1

g
V ls~q!

ts

2 S ]ql

]xi
D , ~5.18!

with the SU(2) matricesU(q) related to the 333 orthogo-
nal matrix O(q) via Oab(q)5 1

2 Tr„U21(q)taU(q)tb… and
the 333 matrix V i j defined in Eq.~2.10!.

We observe that the space integral over the first term
incides with the above functionalW @Q# of Eq. ~5.12!

E d3xK 0~Q!5W @Q#. ~5.19!

Using the usual boundary condition9

U~q!→6I , ~5.20!

we see that the space integral over the second term is
portional to the natural number n representing the winding
the mapping of compactified three space intoSU(2)

g3

24p2E d3xe i jkTr~V iV jVk!5n. ~5.21!

Assuming here the vanishing of the physical fieldQ at spa-
tial infinity there is no contribution from the third term
Hence we obtain the relation

C@A#5expF2
8p2

g2 nGC@Q# ~5.22!

9Note that we have no information about the behavior of the
physical variablesqi . For example the requirement of the finitene
of the action usually used to fix the behavior of the physical fie
does not apply to the unphysical fieldqi .
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between the ground state wave functional~5.5! of the ex-
tended quantization scheme and the reduced~5.15!. We find
that the winding number of the original gauge fieldA only
appears as an unphysical normalization prefactor origina
from the second term in Eq.~5.16!, which depends only on
the unphysicalqi . Furthermore, we note that the pow
(8p2/g2)n is the classical Euclidean action ofSU(2) Yang-
Mills theory of self-dual fields@36# with winding numbern.

The physical part of the wave function,C@Q#, on the
other hand however, has the same unpleasant property a
~5.5! that it is nonnormalizable. In order to shed some lig
on the reason for its nonnormalizability, it is useful to lim
to the homogeneous case and to analyze the propertie
C@Q# in the neighborhood of the classical minima of th
potential.

C. Analysis of the exact ground state wave functional
in the strong coupling limit

In the strong coupling limit the ground state wave fun
tional ~5.15! reduces to the very simple form

C@f1 ,f2 ,f3#5exp@2gf1f2f3#. ~5.23!

This wave functional is obviously nonnormalizable. In d
ference to the Abelian case, however, where an analog
nonnormalizable exact zero energy solution exists,10 the ex-
ponent of Eq.~5.23! is free of any sign ambiguities due t
the positivity of the symmetric matrixQ in the polar repre-
sentation~2.6!, and hence the positivity of the diagonal field
f i , see Eq.~3.23!. In order to investigate the reason for th
nonnormalizability of Eq.~5.23! we analyze it near the clas
sical zero-energy minima, that is, without loss of general
in the neighborhood of the linef15f250 of minima of the
classical potential~4.2!. It is useful to pass from the variable
f1 andf2 transverse to the valley to the new variablesf'

andg via

f15f'cosg, f25f'sing S f'>0, 0<g<
p

2 D .

~5.24!

The classical potential then reads

V~f3 ,f' ,g!5g2S f3
2f'

2 1
1

4
f'

4 sin2~2g! D , ~5.25!

and the ground state wave function~5.23! becomes

F@f3 ,f' ,g#5expF2
g

2
f3f'

2 sin~2g!G . ~5.26!

-

s

10In ~Abelian! electrodynamics the unconstrained form of the c
responding exact zero-energy ground state wave functional is
exponential of*dkka1(k)a2(k), wherea1 ,a2 are the~momentum
space! polarization modes ofA. This false ground state is nonno
malizable due to the sign indefiniteness of the exponent.
7-10
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We see that close to the bottom of the valley, for smallf' ,
the potential is that of a harmonic oscillator and the wa
functional correspondingly a Gaussian with a maximum
the classical minimum linef'50. The height of the maxi-
mum is constant along the valley. The nonnormalizability
the ground state wave function in the infrared region is the
fore due to the outflow of the wave function with consta
values along the valley to arbitrarily large values of the fie
f3. This may result in the formation of condensates w
macroscopically large fluctuations of the field amplitude.
establish the connection between this phenomenon and
model of the squeezed gluon condensate@31# will be an in-
teresting task for further investigation.

VI. CONCLUDING REMARKS

Following the Dirac formalism for constrained Hami
tonian systems we have formulated several representa
for the classicalSU(2) Yang-Mills gauge theory entirely in
terms of unconstrained gauge invariant local fields. All tra
formations which have been used, canonical transformat
and the Abelianization of the constraints, maintain the
nonical structures of the generalized Hamiltonian dynam
We identify the unconstrained field with a symmetric po
tive definite second rank tensor field under spatial rotatio
Its decomposition into irreducible representations under s
tial rotations leads to the introduction of two fields, a fiv
dimensional vector fieldY(x) and a scalar fieldF(x). Their
dynamics is governed by an explicitly rotational invaria
non-local Hamiltonian. It is different from the local Hami
tonian obtained by Goldstone and Jackiw@1# as well as by
Izergin et al. @3#. They used the so-called electric field re
resentation with vanishing antisymmetric part of the elec
field. A representation for the Hamiltonian with a nonloc
interaction of the unconstrained variables similar to ours
been derived in the work of Simonov@8# based on anothe
separation of scalar and rotational degrees of freedom.
separation of the unconstrained fields into scalars under
tial rotations and into rotational degrees of freedom, ho
ever, leads to a simpler form of the Hamiltonian, which
particular is free of operator ordering ambiguities in t
strong coupling limit. Our unconstrained representation
the Hamiltonian furthermore allows us to derive an effect
low energy Lagrangian for the rotational degrees of freed
coupled to one of the scalar fields suggested by the form
the classical potential in the strong coupling limit. The d
namics of the rotational variables in this limit is summariz
by the unit vector describing the orientation of the intrins
frame. Due to the absence of a scale in the classical th
the singular hedgehog configurations of the unit vector fi
are found to be unstable classically. In order to obtain
nonvanishing value for the vacuum expectation value for
of the three scalar field operators, which would set a sca
quantum treatment at least to one loop order is necessary
is under present investigation. For the case of a spati
constant scalar quantum condensate we expect to obtai
first term of a derivative expansion proposed recently
Faddeev and Niemi@24#. As shown in their work such a
soliton Lagragian allows for stable massive knotlike config
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rations which might be related to glueballs. For the stabi
of the knots higher order terms in the derivative expansi
such as the Skyrme type fourth order term in@24#, are nec-
essary. Their derivation in the framework of the unco
strained theory, proposed in this paper, is under invest
tion. First steps towards a complete quantum descrip
have been done in this paper. In particular, we have inve
gated the famous ground state wave functional, which so
the Schro¨dinger equation with zero energy eigenvalue.
conclusion we would like to emphasize that our investigat
of low energy aspects of non-Abelian gauge theories dire
in terms of the physical unconstrained fields offers an al
native to the variational calculations using approximate p
jection onto gauge invariant states@37,38#.

The reason for trying to construct the physical variab
entirely in internal terms without the use of any gauge fixi
is the aspiration to maintain all local and global properties
the initial gauge theory. Several questions in connection w
the global aspects of the reduction procedure are arisin
this point. In the paper we describe how to project SU~2!
Yang-Mills theory onto the constraint shell defined by t
Gauss law. It is well known that the exponentiation of i
finitisimal transformations generated by the Gauss law
erator can lead only to homotopically trivial gauge transf
mations, continiously deformable to unity. However, t
initial classical action is invariant under all gauge transf
mations, including the homotopically nontrivial ones. Wh
trace does the existence of large gauge transformations l
on the unconstrained system? First steps towards a clari
tion of these important issues have been undertaken in
paper, a more complete analysis is under present inves
tion.
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APPENDIX A: NOTATIONS AND SOME FORMULAS

1. Spin 1 matrices and eigenvectors

For generators of spin-1 obeying the algebra@Ji ,Jj #
5 i e i jkJk we use the following matrix realizations:
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J15 iS 0 0 0

0 0 21

0 1 0
D , J25 iS 0 0 1

0 0 0

21 0 0
D ,

J35 iS 0 21 0

1 0 0

0 0 0
D .

Furthermore the representation of rotations R(x) in terms
of Euler anglesx5(u,c,f) is used

R~c,u,f!5e2 icJ3e2 iuJ1e2 ifJ3. ~A1!

The eigenfunctions ofJ2 andJ3 are

eW 115
1

A2 S 21

2 i

0
D , eW05S 0

0

1
D , eW 215

1

A2 S 1

2 i

0
D

which are orthogonal with respect to the metrichab
ª(21)ada,2b

~eWa•eWb!5hab ~A2!

and satisfy the completeness condition

ei
aej

bhab5d i j . ~A3!

2. Spin-0, spin-1 and spin-2 tensors basis

To obtain a matrix representation for spin-0, spin-1 a
spin-2 basis matrices we use the Clebsh-Gordon decomp
tion for the direct product of spin-1 eigenvectorsei

a into the
irreducible components 3̂350% 1% 2. To distinguish the
matrices corresponding to the different spins we use bold
notation for spin 2.

For spin-0 they read explicitly

I 0 :5
1

A3
~eW0^ eW02eW 11^ eW 212eW 21^ eW 11!

5
1

A3 S 1 0 0

0 1 0

0 0 1
D ,

for spin-1

J11:5~eW0^ eW 112eW 11^ eW0!5
1

A2 S 0 0 1

0 0 i

21 2 i 0
D ,

J21ª~eW 21^ eW02eW0^ eW 21!5
1

A2 S 0 0 1

0 0 2 i

21 i 0
D ,
10501
d
si-

ce

J0ª~eW 21^ eW 112eW 11^ eW 21!5S 0 2 i 0

i 0 0

0 0 0
D ,

for spin-2

T125A2~eW 11^ eW 11!5
1

A2 S 1 i 0

i 21 0

0 0 0
D ,

T225A2~eW 21^ eW 21!5
1

A2 S 1 2 i 0

2 i 21 0

0 0 0
D ,

T11:5~eW 11^ eW01eW0^ eW 11!5
1

A2 S 0 0 21

0 0 2 i

21 2 i 0
D ,

T21:5~eW 21^ eW01eW0^ eW 21!5
1

A2 S 0 0 1

0 0 2 i

1 2 i 0
D ,

T0:5
1

A3
~eW 11^ eW 2112eW0^ eW01eW 21^ eW 11!

5
1

A3 S 21 0 0

0 21 0

0 0 2
D .

They obey the following orthonormality relations:

Tr~TATB!52hAB , Tr~TAJa!50, Tr~JaJb!52hab ,
~A4!

the completeness condition

1

10 (
A

~TA! i l ~TA!km1~ I 0! i l ~ I 0!km5
1

4
~d imd lk1d i l dmk!,

~A5!

and the following commutation and anticommutation re
tions:

@TA ,TB#15
4

A3
hABI 01

2

A3
dABC

~2! TC, ~A6!

@TA ,TB#25cABg
~2! Jg; ~A7!

@Ja ,Jb#15
4

A3
habI 01dabC

~1! TC, ~A8!

@Ja ,Jb#25cabg
~1! Jg; ~A9!

@Ja ,TB#15dagB
~1! Jg, ~A10!
7-12
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TABLE I. The coefficientsdabC
(1) , dABC

(2) andcABg
(2) .

A B C dABC
(2) A B g cABg

(2) a b C dabC
(1)

22 2 0 21 22 2 0 22 21 1 0 21/A3
22 1 1 A3/2 22 1 1 2A2 21 0 1 1
22 0 2 21 21 21 2 2A2

21 2 21 A3/2 21 2 21 2A2 0 1 21 1
21 1 0 21/2 21 1 0 1 0 0 0 22/A3
21 0 1 21/2 21 0 1 2A3 0 21 1 1
21 21 2 A3/2

0 2 22 21 0 1 21 2A3 1 1 22 2A2
0 1 21 21/2 0 0 0 0 1 0 21 1
0 0 0 1 0 21 1 A3 1 21 0 21/A3
0 21 1 21/2
0 22 2 21

1 1 22 A3/2 1 0 21 A3
1 0 21 21/2 1 21 0 21
1 21 0 21/2 1 22 1 A2
1 22 1 A3/2

2 0 22 21 2 21 21 A2
2 21 21 A3/2 2 22 0 2
2 22 0 21
@Ja ,TB#25cBDa
~2! TC. ~A11!

The coefficientscabg
(1) are totally antisymmetric with

c21,11,0
(1) 51 and (Jg) i j 52cabg

(1) ei
aej

b. The coefficients
dabC

(1) , dABC
(2) andcABg

(2) are given in Table I. Note that

~TA! i j 52dabA
~1! ei

aej
b. ~A12!

3. Generators for the D functions

Define the five-dimensional spin matrices

~Jg!A
B
ª2hBCcACg

~2! ~A13!

such that

J115S 0 2A2 0 0 0

0 0 A3 0 0

0 0 0 A3 0

0 0 0 0 2A2

0 0 0 0 0

D ,

J215S 0 0 0 0 0

A2 0 0 0 0

0 2A3 0 0 0

0 0 2A3 0 0

0 0 0 A2 0

D ,
10501
J05S 2 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 21 0

0 0 0 0 22

D .

The corresponding Cartesian components (Ji)A
B
ªei

a(Ja)A
B

are

J15S 0 1 0 0 0

1 0 2A3/2 0 0

0 2A3/2 0 2A3/2 0

0 0 2A3/2 0 1

0 0 0 1 0

D ,

J25 iS 0 21 0 0 0

1 0 A3/2 0 0

0 2A3/2 0 A3/2 0

0 0 2A3/2 0 21

0 0 0 1 0

D ,

J35J0

satisfying theso(3) algebra

@Ja ,Jb#5 i eabcJc . ~A14!
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We use the D-functions as representation of rotations
3-space defined in terms of Euler anglesx5(u,c,f)

D~c,u,f!5e2 icJ3e2 iuJ1e2 ifJ3. ~A15!

They can be obtained from the corresponding 3-dimensio
representation@28# via the formula

D~x!AB5
1

2
Tr„R~x!TART~x!TB…. ~A16!

4. Basis for symmetric matrices

We use the orthogonal basis (ā i ,a i) for symmetric ma-
trices. They read explicitly

ā15S 1 0 0

0 0 0

0 0 0
D , ā25S 0 0 0

0 1 0

0 0 0
D ,
ii,

-
ra

hy

,

-

J.

10501
in

al

ā35S 0 0 0

0 0 0

0 0 1
D ,

a15S 0 0 0

0 0 1

0 1 0
D , a25S 0 0 1

0 0 0

1 0 0
D ,

a35S 0 1 0

1 0 0

0 0 0
D .

They obey the following orthonormality relations:

tr~ ā i ā j !5d i j , tr~a ia j !52d i j , tr~ ā ia j !50.
~A17!
s.

.
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