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In an effort to further understand the structure of effective actions for fermions in an external gauge
background at finite temperature, we study the example efl)-dimensional fermions interacting with an
arbitrary Abelian gauge field. We evaluate the effective action exactly at finite temperature. This effective
action is non-analytic as is expected at finite temperature. However, contrary to the structure at zero tempera-
ture and contrary to naive expectations, the effective action at finite temperature has interactiofevinall
orders(which, however, do not lead to any quantum correctiofife covariant structure thus obtained may
prove useful in studying (2 1)-dimensional models in arbitrary backgrounds. We also comment briefly on the
solubility of various (I+ 1)-dimensional models at finite temperatyr80556-282(199)03410-4

PACS numbgs): 11.10.Kk, 11.10.Ef, 11.10.Wx

I. INTRODUCTION model, at finite temperature, are quite well understood
[13,14 it is not at all obvious how the structure should be
Finite temperature introduces various new featurels generalized to higher dimensions. For one thing, i# 10
into quantum field theories that we are not used to at zer@imensions, there is only one component for the gauge field
temperature. Thus, for example, it is known that various amand, consequently, it is not clear what would be the appro-
p|itudes as well as the effective actions can become norpriate covariant structure that would generalize to hlgher di-
analytic at finite temperaturgl—3] (beyond O+1 dimen- mensions. Secpnd, as pointed out earlier, at finitg tempera-
sion9 which is connected with the existence of additionalture. the effective action can become non-analytic beyond
channels of reactions possible in a thermal medium. Ther@t1 dimensions and this makes any generalization of the
are also various subtleties that arise, such as the modifier&SuItS of the (& 1)-d|m¢n3|ongl modg(!wherg there IS N0
Feynman combination formuld. 4,5, because the propaga- proble_m of non-analyticityto higher dimensions addition- _
tors do not have simple analytic behavior at finite temperaﬁ:I.y tricky. For thdesle fre_atsons,dv_v? have clhoien to Stlljdyt’h'n
ture. More recently, it is also found that the effective action IS paper, a modet of intermediate complexity, namely, the

at finite temperature can be non-extendigkunlike at zero (1+1)-dimensional fermions interacting with an arbitrary
P i ; _ ) external Abelian gauge field with the hope that it would shed
temperature. Thus, for the ¢01)-dimensional fermions in-

i . X ! . . light on some of the issues raised.
tgr_actmg with an Abelian gauge field, the effe_ctlve ac'qon al " \ve consider massless fermions interacting with an exter-
finite temperature becomes a non-polynomial function of

dt A) where A is th i | Abell nal Abelian gauge field which, of course, can be exactly
(.f ) where A represents the external, Abelian gaugeqqyeq at zero temperatufeads to only quadratic terms in
field. This new structure of the effective action has led to

Ghe effective actionand is associated with the solubility of
Nrarious two dimensional model45,16,17,18 This model,
a%f course, is not directly related to the question of large

! ) ith bi | field in th auge invariance, but it is the structure of the effective action
Interacting with an arbitrary external gauge field in the Sens¢; gnive temperature that we are interested in. It is well

that the radiative corrections induce a Chern-Simons terrﬂnown that the chiral anomalwhich is responsible for the

whose coefficient is_ a contin.uous .function of t.emperaturesolub”ity of the model of this model is not changed in the
[7,8] and, therefore, incompatible with the quantization Con'presence of temperatuf#,19,20. In a gauge invariant regu-

dition necessary for large gauge invariance to H8IH The |5, 4ti0n (which is what we will use, but let us emphasize
study of the (G.F 1)-d|men5|onal_ model suggests a way fOr that the finite temperature calculations are all finite and it is
the understanding of the question of large gauge invariancge ,eq temperature calculation that needs a regularization
in the (2+1)-dimensional model at finite temperature andtherefore, it would seemm priori, that there would be no
there have been several attempts to generalize the results @b, herature dependent corrections to the effective action.

the (0+1)-dimensional model to the case of the namely if there is a temperature dependent correctiof,
(2+1)-dimensional mode[10,11,12. However, these at- it must satisfy

tempts, typically, deal with very specific gauge backgrounds
and a systematic study of the effective action for the (2 STA) Sr®
+1)-dimensional fermions interacting with an arbitrary I~ 0= €ud’ —5—- (1)
gauge background is still lacking. # Y
While various properties of the (©1)-dimensional With the usual assumptions of locality, then, it would follow

variance, at finite temperature, in this model. This model h
properties similar to that of the (21)-dimensional fermions
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thatI'¥)=0. However, as we have learnt from the study ofwhere ys=9°y! and €*" is the anti-symmetric Levi-Civita
the (O+1)-dimensional mode[6], the effective action at tensor withe®’=1. Integrating out the fermions in the path
finite temperature can be non-extensive in which case, it isntegral leads to the effective action

not necessary fof ) to vanish. In fact, taking from the _ _

results of the (6 1)-dimensional moddl6,13], we note that ITA]=—iTrin(1—eSidH)A). ®)

a simple, non-extensive quadratic term in the effective actior|1_|

) ere, we have normalized the effective action so that it van-
of the form (c is a constant

ishes for vanishing external field. The “Tr” in E@5) stands
for the trace in a complete basis as well as a Dirac trace and
Iy=c fdzx A (X) (f d?y A"(y)) (2)  S(p) is the propagator for the fermion.

We can expand the logarithm in E) which leads to a

can give rise to a current that has vanishing divergence anower series representation for the effective action

curl. Thus, we would like to systematically study the struc- D :

ture of the effective action for this {1)-dimensional [[A]=i Tr| (eSid)A) + €S HAS(HA)

model at finite temperature. 2
The paper is organized as follows. In Sec. I, we recapitu- . .

late briefly the structure of the quadratic effective action atHere (i) and A(x) are_suppo_sed to be hon-commuting

zero temperature. We, then, point out that the generalizatioﬂp?r.ators and the effective action, in general, contalns an

of a theorem of zero temperatur2l] which shows that the |nf|n|t(_a num_ber of terms. However, let us note_that, in 1

effective action would continue to be quadratic even at finitet 1 dimensions, we can decompose the vector field as

temperature may be too naive. In Sec. Ill, we evaluate the 1

two point function to show that the quadratic term does have A,==(0,0+€,,0"P) (7)

a temperature dependent correction which does not alter the €

current conservation an_d the ano_maly of the theory. The nons 4 yhat at zero temperature, the fermion propagator has the

analytic structure of this correction is pointed out and theform (i e prescription is understood

guadratic temperature dependent term of the effective action

is expressed in a manifestly covariant fashion. In Sec. IV, we 1

calculate explicitly the 3-point and the 4-point functions. S(IO)=E- 8

While the 3-point function vanishém fact, all the odd point

functions must vanish because of charge conjugation invarit js, therefore, clear that at zero temperature, we can write

ance, the 4-point function is nontrivial at finite temperature [ysing Eq.(4)]

and correspondingly, there is a quartic term in the tempera-

+--|. (6)

ture dependent effective action. We also obtain the general eSidA=(ih) " (bo—ysbp)
form for the 2n-point function which is nontrivial and,
thereby, determine the complete effective action at finite =({0) b0+ ys(i6) 7 4, 4]
temperature. We show that, in a dynamical gauge theory, o _
these additional interactions, however, do not generate any =—ioc+i(8) tob—ivyse
guantum mechanical correction which is yet a new feature at ; -1

+iys(d) " d. C)

finite temperature. In Sec. V, we make some brief comments

about the solubility of various two dimensional models at|; now follows from this that

finite temperature and present some brief conclusions in Sec.

VI. eSidA)?=—i[o+ ysb,(eSiHA)] (10)

Il. GENERAL THEOREM which gives

In this section, we will recapitulate briefly the structure of . ne1q_ ! . n
the effective action at zero ![Oemperature );ollowing from a T (eKi)A) ]__ﬁTr[0+ 75¢,@XIHAY].
general theoreri21] and make some observations concern- (11
ing the structure of the effective action at finite temperature. .
Let us note that we are interested in the{(1)-dimensional Forn>1, these integrals are convergent and hence one can

model described by the Lagrangian density use the CyC||C|ty of the trace to conclude that all the terms in
the effective action in E(6) which are higher order than the
gzgyﬂ(i d,—eA,) . ©)) quadratic vanish at zero temperature. Even the linear term in

Eq. (6) vanishes because of the odd nature of the integrand.
We usen*’'=(+,—) with u,»=0,1. Although not neces- The quadratic term in the effective action can be evaluated in
sary, a representation for the Dirac matrices can be chosen #ostraightforward manner and a gauge invariant regulariza-
be y°=0,, y*=io,. In 1+ 1 dimensions, the gamma ma- tion gives the complete effective action at zero temperature

trices further satisfy the identity to be(although there is a one parameter freedom of regular-
ization, we will use a gauge invariant regularization for sim-
Yy =ttt e ys (4 plicity)
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0) e[ 943" Py (00 L o[k v v
r [A]:Ef A AL\ 7= — A, (12 T (pTp)=—e JW{k’i(k+p)++k’f(k+p),}

We can now try to generalize the above proof to finite X
temperature. Let us recall that, at finite temperature, the fer-

ki'z+2i7rn(|k°|)8(k2))

mion propagator has the forfil]. [At finite temperature, in 1

the real time formalisntwhich is what we will usg there is X | ——— + 2i mn(|k%+ p°|) 8((k+ p)z))
a doubling of the field degrees of freedom. Consequently, the (k+p)

propagator acquires a2 matrix structure. For a complete (15)

calculation of the effective action in the real time formalism,
one needs all the components of the propagator. Howeveyhere we have defined
we are interested only in that part of the effective action u ) ,

which depends only on the originaiot the doublefidegree KE=(n""Ze*")k,. (16)
of freedom. For such a calculation, at one loop, only the firs
componentthe ++ component in the terminology of closed
time path formalismis needed which we give beldw

tI'he zero temperature part, of course, can be read out from
Eq. (12) and, therefore, we would concern ourselves, in this
section, only with possible temperature dependent correc-
1 tions to the two point function. We note from the definition
S(p)= = + 2i wbn(|p°) 8(p2 13 in Eq. (16) that only two independent tensor structures arise
(P) p mpn([p°) a(p?) (13 from Eq.(15). The evaluation is straightforward and we have

. 0 _
where n(|p°|) represents the fermion distribution function ir%?(p°pY=irtP (p°ph
(8=1KkT, k=Boltzmann constant
=(8(p-)+8(p))l,

(14) ir¥P(p%,pY)=ir%P(p%ph

=(8(p-)—&(p+))l>2.
We note that, with the parametrization in Eg), we can 17
proceed again as before and show that the only non|-_|ere we have defined
vanishing term in the effective action would be quadratic in '
the field variables suggesting that the only modification that p.=p°=pl (18)
temperature might induce is at most to change the two point -
function. However, such a conclusion is too naive because g
finite temperature, there are more tensor structures present
and the decomposition in Eq7) is not the most general. (2ie)? dk? 1 1
Consequently, one must examine the structure of the effec- lo=—— (zﬂ)z[f(k )e(k™+p7)
tive action explicitly which we do next.

0y —
n(|p |)_ eﬁ‘pol-f—l

x{n([k*)+n([k*+p*)
Ill. TWO POINT FUNCTION —2n(|kY)n(k*+ph}. (19

To study the structure of the effective action at finite tem-tiare €(x) stands for the alternating step function.

pherature, we, thgrellioreA study t.hepo(;nt arl'pplltude? (Ijlf theh Thus, we see that there is indeed a temperature dependent
t elory sy]:stema}.nca_y.]c s rrrllentlloned earlier, \ﬁ: o] Ol\(v the correction to the two point function. Furthermore, there are
real time formalismin fact, the closed time path formalism several things to note from the structure of the temperature

where one needs to double the degrees of freedom. Thg. andent part in Ed17). First. it is easv to verify from E
original field variables are denoted by a subscriptvhile (172 that P a17). ' y fy a

the doubled field variables are conventionally denoted by a

subscript—. In such a calculation of the effective action, wv(B)(n0 nly—n= uv(B)( 00 il

therefore, there arise amplitudes with @lthermal index, all Pulm (PP =0=p, IR P 20

— thermal index as well as terms with mixed indices. Insg that this additional correction is transverse as gauge in-
what follows, we calculate that part of the effective aCtiOﬂvariance would require_ Furthermore, it is also equa"y
which contains only the original field variables, namely, thestraightforward to check that

ones with only+ thermal index. For such a calculation, at

one loop, (as mentioned befoyeone only needs thet+ €, T NP (%, phy=0=€,,p* TP (p°pt). (21)
component of the propagator in the internal lines. The calcu-

lation of the two point function is not really very difficult. In other words, this temperature dependent correction would
There is only one Feynman diagram to evaluate which hakad to a modification in the current which has vanishing
the form (e prescription is understogd divergence as well as cufand yet is not trivial.
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The two point function in Eq(17) is clearly non-analytic  This single tensor structure indeed generates the two inde-
at the origin in the p°p?) plane which is best seen by pendent structures noted in Ed.7) and, in fact, reduces to
writing them in the rest frame of the heat bath for which

0 2 =(1,0). We also note here that the transversality of the two
p =ap point function follows trivially from the fact thati®(p) is

. . . . transverse t@*. The vanishing of the curl, however, does
and noting that in the limip—0 the amplitude depends on M ® vanishing v eV

o ~ > =" not follow from the transversality afi*; rather, it is a con-
the parameter. This is the well known non-analyticity in y

) : . - sequence of the delta function structure of the two point
the two point function that is expected at finite temperature ction, (Note also that, in addition to the delta functions

However, it is interesting to note that the non-analyticity, in being non-analyticu* also depends on the direction along
this case, manifests essentially in the structure of the delt%hich we approach the origin

functions which is also quite crucial for the current conser- Once we have a covariant expression for the temperature

V?t'or'}ra; vaeII(gg) t(gi)]va:/vmshlng Oftt?r? tatr;?”}@yh'?rh ":‘ ; dependent correction to the two point function, we can easily
clear from £qsiy), - Ve suspect that this IS a SUCIUre e the additional quadratic term that would be generated

th_at may g_enerallze to higher dimensions n a calcqlatlorht finite temperature in the effective acti@rere, for simplic-
with an arbitrary gauge backgrouri#Ve would like to point ity, we are identifyingA* = A*, namely, the original fields
out here that this dependence on the delta function is a par-"’ + ' '

ticular generalization of the (©1)-dimensional result

[13,14 where the two point function has only one compo- 1 [ dodp

nent and is proportional té(p).] INRIPNES —f ——2 A (P)(ITHP)A,(—p)
The two point function, of course, can be expressed in a 2! ) (2m)

more covariant form. The standard way to do this is to intro-

duce a velocity for the heat bath#, such tha{22]

1 dodp __ o
- o [ R @A A-p)
Without going into too much detail, let us note that every ><|_2(5(w—5)+ S(w+P)). (27)

four-vector can now be decomposed along parallel and per-
pendicular directions to* as[23]

As is obvious, this action is highly nonlocal although it does

k“=Qu“—e“”uI not have the non-extensive structure found in the
(0+1)-dimensional model. It is not obvious to us, at this
p¥*=wu*—e*’u,p (220  point, whether the non-extensive structure is a special feature

o in odd space-time dimensions or simply an accidental feature
where the Lorentz invariant quantiti€®, o, k andp are  of the (0+1)-dimensional model. We would also like to

defined by comment here that the structure of the quadratic term in Eq.
o (27) is manifestly gauge invariant because of the transversal-
Q=k*u,; k=e€e""k,u, ity of u*. While it is not obvious, it can be easily checked
that the same structure is also invariant for non-Abelian
w=p“u,; p=€e"p,u,. (23 gauge fields which may be an interesting thing to note for

_ . generalizations to non-Abelian theories in higher dimen-
We can also define the component of the velocity four-vectogjons.

perpendicular tp* as

w
U*(p)=u*— EGMVUV_ (24) IV. HIGHER POINT FUNCTIONS

The general proof of Sec. Il would seem to suggest that
The calculation of the two point function can be easily the qugdratic .term is aII.the cqrrection that temperature
carried out in terms of these variables and the temperatureould induce in the effective action. However, as we have

dependent correction has the form pointed out earlier, such a conclusion is too naive. Conse-
. quently, in what follows, we would like to calculate explic-
iTAA) (0, p)=(8(w—P)+ 8(w+P)U*(P)U*(—p)l, itly the 3-point and the 4-point functions for this theory at
25) finite temperature.

The calculation of the 3-point function is only slightly
where more difficult than the two point function. In this case, the
amplitude involves evaluating two Feynman diagrams. If we

— (2iem)? dk  — _— — denote the two independent external momentagptgnd g,
l2= 2 f (27)2 e(k)e(k+p)[n([K|) then, the two independent diagrams would correspond to ex-
o L changingp+« q (of course, with the appropriate interchange
+n(|k+p])—2n(|k)n(|k+pD1. (26)  of the tensor indices The 3-point function has the structure
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2

d
D82, ()=~ [ 5 (ke (D)% (K @)L K () (et p))

X

1+2i n(|k°|)5(k2))( ! +2i7n(|k°+ p?) 8((k+ p)?)
kreT (k+p2 '™ P P

5+ 2i mn(|k%+p°+q°) 8((k+ p+q)?)

1
“|rprar ey

(28)

where we have used the definitions in Efp). Once again, we can easily see that the temperature dependent corrections have
only two independent structures, the ones with an even number of space-like ifideeare equaland the ones with an odd
number of space-like indicésvhich are also equalThe two independent structures can be evaluated to have the simple forms

iT®%(p,q)=(8(p_)8(q_)+8(p4)8(q:))l 5
irT%% A (p,q)=(8(p_)8(q_)— 8(p+)8(q; )l (29)
where

2i 8 dk!
150, = Z2 [ Ttk elht ekt pt g1~ k) + i+ )l + pE+a))

+2(n(|k*Hn([k*+p*) +n(kn([k+pt+agt) +n(k +pt)Hn([k+pt+al))
—an(|k*hn(|k*+p*Hn(|k*+pt+gth}+ (p—a)]. (30

With an appropriate change of variables, it is easy to seel thednishes because of the anti-symmetry of an odd number of
alternating step functiongéNamely, the two diagrams exactly cancel each ojHerfact, one can show, in general, that all the
odd-point functions vanish because of charge conjugation invariance in the theory. Namely, the Lagrangian dens(8) in Eq.
is invariant under

y—nCy", A,—~—A,

wheren is a phase an@ represents the charge conjugation matrix. This invariance requires that the effective action can only
depend on an even number Af, fields. However, in spite of this general result, we went through the explicit calculation to
show the generalization of the structure of the two point function to the case of the three point fumtdidrihe three point
function not vanished, transversality as well as vanishing anomaly would have required the structure to be a generalization of
the two point function in the form in Eq29).]

Let us next turn to the 4-point function. This is much more involved than the 3-point function. Furthermore, there are now
six diagrams to be evaluated. However, each of them has the genericgooraqdr are the independent external momenta

d?k
:_GAJ (2m)?

1
P+2iwn(|ko|)5(k2)

{Ki(k+p) L (ktp+ )t (k+p+a+r) +k (k+p)” (k+p+a)* (k+p+g+r)”}

X

1
W+2i mn([k%+p?) 8((k+ p)z))

x(;+2iwn(|k°+ %+q%) 8((k+p+ )2))
K+ pt )2 p+q p+q

1 ; 0 0 0 0 2
X m-ﬁ-&wnﬂk +p +q+r |)5((k+p+q+r) )

The calculation for the temperature dependent part is exactly similar to the two and the three point functions, but much more
tedious. We have evaluated these explicitly and adding all the six diagrams, we find, again, that there are only two independent
structures that arise. There are the ones with an even number of space-like {aditdlsey are all equpand the other kind

is for the ones with an odd number of space-like indigélsich are again all equaith the forms given bywith appropriate
definitions given in(18)]

ir%%A) (p,q,r)=(8(p_)8(q_)8(r )+ 8(py)8(q.)8(r )4 (31)
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TP (p,.1) = (8(p-) 8(0-) 8(r ) = 8(p+) 8(q4) (1))l 4
where

(2iem)* [ dk!
l(p.an="—3— | yleDe(ki+phe(k+pr+ahe(k™+pt+gi+rH{n(k)+n([k™+p')+n(k+p*+a™)

+n(|kt+pr+gt+ri)—2(n(kY)n(|kt+ pl|) +all quadratic permutatiofs
+4(n([k)n(|k*+pthn(|kt+pt+qgl)+all cubic permutations
—8n(|k)n(|kt+pt)n(kt+pr+qgl)n(|kr+ pt+gl+ri))}+all permutations of(p,q,r)]. (32
There are several things to note here. First of all, the 4-point function involves an even number of alternating step functions
and, therefore, does not vanish unlike the three point function. However, from the structure(BLEdt. is clear that it is
divergence free and does not contribute to the anomaly either. In fact, the structure is a generalization of the two point and the
three point functions in Eqg17) and (29) respectively. The non-analyticity continues to be present in the structure of the
4-point function. Furthermore, we can also write the 4-point function in a manifestly covariant form as in the case of the two
point function. Let us identify
pr=pi; q“=ph; re=pk (33
and define, as in Eq$22),(23),
pf=wu*—e*’u,p;, 1=123. (34
One can calculate the 4-point function with these variables and it takes the covariant form
iT4" P (01,p2.p3) = (8( w1~ P1) 8w~ Pp) S w3—Ps)
+ 8(w1+P1) @z + P2) @3+ P3) YU (P1)U(P2)UN(P3)UP(— (P1+ P2+ P3))l 4 (35
with

(2iem* ( dk  — — -
25 | ozl etkt P e(kt it Po)e(kt PotPotpa){n([k) +n(lk-+Paf)

|4:

+---—2(n(|?|)n(|?+ﬁl|)+all quadratic permutatioh%4(n(|?|)n(|?+ﬁl|)n(|?+ﬁl+ﬁzl)
+all cubic permutations-8n(|k|)n(|k+pz)n(|k+p1+P2l)n(|k+P1+P2+Pa))}
+all permutations of(py,p2,p3)]- (39

It is clear, therefore, that unlike at zero temperature, the higher order terms do not vanish at finite temperature. This is very
much like the behavior of the (81)-dimensional theory6,13,14 where, at zero temperature, the effective action is only
linear in the external field while, in the presence of a heat bath, interactions to all orders are generated. Here, however, we have
the simplification that only even amplitudes are nonvanishing. Furthermore, the dependence on the delta functions is a very
particular generalization of the @1)-dimensional result{13,14 where the n-point function is proportional to
8(p1) 8(p2)- - 8(pn—1) and is a simple consequence of gauge invariance alone. From the calculations presentéassedihr
as from the requirement of vanishing divergence and ciim structure of the temperature dependent corrections to the higher
point functions is quite clear. The covariant form of the-Roint function can be written as follows. Let ,p5,...,Pon_1
denote the independent external momenta. Then, with the generalization of the decomposition givéB4) &g.can write
the 2n-point function as

iTEY 20 (py,. . Pon—1) ={(8(w1—P1)" * 8(®2n—1~ Pan—1)
+ 6(w1+P1) 8 wan_1F Pon—1))UHL(Py)- - -UF2n(— (py++ - + Pan-1)12n (37
where
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—  (2iem®™  dk — — _ _ _ _ _ .
lon= 52h=1 f(ZW)Z[e(k)e(k+pl)---e(k+---+pZn,l){n(|k|)+---+n(|k+---+p2n,1|)

—2(n(Jk])n([k+py|)+all quadratic permutations 4(n(|k|)n(|k+py|)n(|k+p;+pP,|)+all cubic permutations

+eee =220 In([K])- - n(|k++ -+ Pan_ 1)} +all permutations of(Py, ..., Pan-1)]- (38)

Thus, collecting all terms, we can write the full effective action at finite temperature to be
T[A]=TO[A]+ X, THIA] (39
n=1

where(once again, we have identifigdl! = A*)

1 dwi;dp;  dwyn-1dPan-1

F(Zﬁ)[A]:ﬁ (277)2 (277_)2 (UA)(pl)(UA)(_(pl_l—+p2n71))

X1 on(8(w1=P1) 8 wan—1— Pan—1) + @1+ Py) 8 @an— 1+ Pan-1)) (40)

andT' (O A] is the effective action at zero temperature giventhe propagator are on-shell. The actual valeeefficien) of
in Eq. (12). these terms is not as relevant for our subsequent discussion
This shows that, at finite temperature, the effective actioras the structure of these terms which can be easily seen to be
has interactions to all even orders unlike the case at zerof the form we have already calculatémamely, the depen-
temperature. The structures of all these additional, temperalence on the delta functionsrhich would not modify cur-
ture dependent terms are what we were interested in and went conservation as well as anomaly.
note that they are such that they do not change the current The presence of these temperature dependent terms raises
conservation as well as the anomaly of the thedije  the interesting possibility that, unlike at zero temperature,
would like to add here that we have calculated that part othere may be finite temperature effects giving rise to two
the effective action which depends only on the original fieldloop and higher loop contributions in the fundamental
variables of the theory. The part of the effective action thatheory. In fact, such contributions will correspond to dia-
contains only the doubled degrees of freedom can be easigrams where twgor more gauge fields are contracted in the
derived from this since the corresponding amplitudes are reeffective action(of course, we are assuming here that the
lated to the ones we have calculated by mere complex corgauge fields are dynamical and that one must take into con-
jugation. The part of the effective action containing mixedsideration the full effective action containidg, andA* and
degrees of freedom, on the other hand, cannot be obtaingte full 2X2 matrix structure for the photon propagator
from what we have calculated, but the evaluation of thesdut, a little analysis would show that every such contraction
amplitudes is similar to what we have carried out and evemwould involve a factor of the forniremembering the trans-
relatively simpler since the off-diagonal matrix elements ofversality ofu*(p)]

1
U*(p)D,,(PIUT(—Pp) 8(wFp) = — (52_—mz—2iwnB(U~ p)é(pz—mz))ﬁ"(p)iﬂ(—p)é(wiﬁ

T 2 o | [P
—(W—anB(up)é(p -m )>(p__2) S(w¥p)=0. (41

Here we have used fdD,,(p) the ++ component of the the same conclusion holds for any other component of the
temperature dependent propagator for the gauge fiefd, propagator as well and follows from the very special struc-
=e?/, ng is the bosonic distribution function and we have ture of the temperature dependent vertex functions in this
used Eqg.(24) in the final step. However, it is also clear that theory (namely, the delta functions[As a side remark, we-
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would like to point out that in # 1 dimensions, u*u” can
be expressed in terms of the usual transverse projection o
erator as follows:

2 mnV
U“(p)ﬁ”(—p)=—g——2(n’”— ppf ) 42

PHYSICAL REVIEW D59 105011

BH= (7" +T M)A, (45)

p_

then, using the two dimensional identities in Ed), it is

easy to show that the fermion part of the Lagrangian in Eq.
(44) becomes identical to that for the Schwinger model, but
in terms of theB,, field. We have already evaluated the ef-

This observation makes the derivation of the propagatofective action for this and so, expressing everything back in

rather simplel. This is quite interesting, for it says that, even

terms of theA , field, we would have the effective action for

though there are higher point functions present in the effecthe general model which then, would give the effective ac-

tive theory, all the radiative corrections in the fundamental

ftion for various soluble models at finite temperature under

theory are of order one loop. The consequence of this is thatifferent limits and reduction25]. We would simply like to

the temperature dependent, effective theory obtained in Eq

sote here that for the gradient coupling model,

(39),(40) is purely classical—it cannot generate any quantum
correction. This is interesting and is indeed quite unusual

and, as is clear from Ed41), is a direct consequence of the
specific dependence on delta functions which is also nece

Au

3,4

S_

sary to maintain the current conservation as well as the

anomaly of the theory. This is indeed yet a new feature thahamely, the gauge field can be identified with the gradient of
finite temperature field theories can have. We also note frora scalar. In such a case, however, it is clear that

Eq. (41 that, form=0, such a contraction will not vanish.
Consequently, in perturbation theomyhere the photon does
not have a magsthe higher loop contributions will not van-
ish individually. They would, in fact, be highly infrared sin-
gular. However, if the perturbation is summed to all orders

u(p)-A(p)=0. (46)

all such contributions would add up to zero as is clear fronbonsequent|y1 all the temperature dependent corrections to

Eq. (41).

V. SOLUBLE MODELS

As is well known[15,21] once the effective action for the

fermion field in an external Abelian gauge background is

known, various soluble models can be directly studied
Therefore, we will be rather brief in this section. First, let us
recall that the Schwinger modg24] is defined by the La-
grangian density

1
~ZF,F

L=-7F,,

Bt yM(ia,—eA,) . (43

It is clear, therefore, that integrating out the fermions would
lead to an effective action which is the sum of the kinetic
term for the photons and the effective action derived in Eq
(39). Thus, the effective action, in addition to containing the

this model identically vanish and the zero temperature effec-
tive action is the full actior(independent of the regulariza-
tion used.

VI. CONCLUSION

In this paper, we have studied, systematically, the effec-
tive action for (1+ 1)-dimensional, massless fermions inter-
acting with an external Abelian gauge field at finite tempera-
ture. While the naive expectation would be that only the two
point function is corrected by temperature, we have calcu-
lated and shown that the effective action, in fact, contains
interaction terms to alleven orders. The exact form of the
effective action is obtained and it is shown that these addi-
tional temperature dependent terms do not change the
anomaly or the current conservation. The non-analytic struc-
ture of the effective action at finite temperature is pointed

mass term for the photon also contains now the additionaPut. It is also pointed out that these temperature dependent

interactions whose properties we have already discussed.
The general model, in£1 dimensions|16,17,1§ is de-
scribed by the Lagrangian density

1
E

L=-3

FAv+ gy (i, —e(1+Tys)A)g.  (44)

y2%

Herer is an arbitrary parameter and this model is known to
reduce to various soluble models under different limits an
reductions. We note that if we define a new gauge field as

We thank Professor J. Frenkel for this observation.

terms in the effective action have a very specific structure
which prevents them from generating any quantum mechani-
cal correction. To the best of our knowledge, this is a new
feature of field theories at finite temperature. The solubility
of various two dimensional models is also briefly discussed.
We hope that some of the features found here will help in the
understanding of the structure of the effective action for a
fermion interacting with an arbitrary gauge field i+2
imensions. As a final comment, we would like to add that
e have also calculated the retarded Green’s fundtlgin
this model. All the temperature dependent parts vanish which
is consistent with our conclusion that these new terms in the
finite temperature effective action cannot lead to any quan-
tum correction 26].
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