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Exact effective action for †„111…-dimensional‡ fermions in an Abelian background
at finite temperature
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In an effort to further understand the structure of effective actions for fermions in an external gauge
background at finite temperature, we study the example of (111)-dimensional fermions interacting with an
arbitrary Abelian gauge field. We evaluate the effective action exactly at finite temperature. This effective
action is non-analytic as is expected at finite temperature. However, contrary to the structure at zero tempera-
ture and contrary to naive expectations, the effective action at finite temperature has interactions to all~even!
orders~which, however, do not lead to any quantum corrections!. The covariant structure thus obtained may
prove useful in studying (211)-dimensional models in arbitrary backgrounds. We also comment briefly on the
solubility of various (111)-dimensional models at finite temperature.@S0556-2821~99!03410-4#

PACS number~s!: 11.10.Kk, 11.10.Ef, 11.10.Wx
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I. INTRODUCTION

Finite temperature introduces various new features@1#
into quantum field theories that we are not used to at z
temperature. Thus, for example, it is known that various a
plitudes as well as the effective actions can become n
analytic at finite temperature@1–3# ~beyond 011 dimen-
sions! which is connected with the existence of addition
channels of reactions possible in a thermal medium. Th
are also various subtleties that arise, such as the mod
Feynman combination formula@1,4,5#, because the propaga
tors do not have simple analytic behavior at finite tempe
ture. More recently, it is also found that the effective acti
at finite temperature can be non-extensive@6# unlike at zero
temperature. Thus, for the (011)-dimensional fermions in-
teracting with an Abelian gauge field, the effective action
finite temperature becomes a non-polynomial function
(*dt A) where A represents the external, Abelian gau
field. This new structure of the effective action has led to
successful understanding of the question of large gauge
variance, at finite temperature, in this model. This model
properties similar to that of the (211)-dimensional fermions
interacting with an arbitrary external gauge field in the se
that the radiative corrections induce a Chern-Simons t
whose coefficient is a continuous function of temperat
@7,8# and, therefore, incompatible with the quantization co
dition necessary for large gauge invariance to hold@9#. The
study of the (011)-dimensional model suggests a way f
the understanding of the question of large gauge invaria
in the (211)-dimensional model at finite temperature a
there have been several attempts to generalize the resu
the (011)-dimensional model to the case of th
(211)-dimensional model@10,11,12#. However, these at
tempts, typically, deal with very specific gauge backgroun
and a systematic study of the effective action for the
11)-dimensional fermions interacting with an arbitra
gauge background is still lacking.

While various properties of the (011)-dimensional
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model, at finite temperature, are quite well understo
@13,14# it is not at all obvious how the structure should b
generalized to higher dimensions. For one thing, in 011
dimensions, there is only one component for the gauge fi
and, consequently, it is not clear what would be the app
priate covariant structure that would generalize to higher
mensions. Second, as pointed out earlier, at finite temp
ture, the effective action can become non-analytic beyo
011 dimensions and this makes any generalization of
results of the (011)-dimensional model~where there is no
problem of non-analyticity! to higher dimensions addition
ally tricky. For these reasons, we have chosen to study
this paper, a model of intermediate complexity, namely,
(111)-dimensional fermions interacting with an arbitra
external Abelian gauge field with the hope that it would sh
light on some of the issues raised.

We consider massless fermions interacting with an ex
nal Abelian gauge field which, of course, can be exac
solved at zero temperature~leads to only quadratic terms i
the effective action! and is associated with the solubility o
various two dimensional models@15,16,17,18#. This model,
of course, is not directly related to the question of lar
gauge invariance, but it is the structure of the effective act
at finite temperature that we are interested in. It is w
known that the chiral anomaly~which is responsible for the
solubility of the model! of this model is not changed in th
presence of temperature@1,19,20#. In a gauge invariant regu
larization ~which is what we will use, but let us emphasiz
that the finite temperature calculations are all finite and i
the zero temperature calculation that needs a regularizat!,
therefore, it would seem,a priori, that there would be no
temperature dependent corrections to the effective act
Namely, if there is a temperature dependent correction,G (b),
it must satisfy

]m

dG~b!

dAm
505emn]m

dG~b!

dAn
. ~1!

With the usual assumptions of locality, then, it would follo
©1999 The American Physical Society11-1
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that G (b)50. However, as we have learnt from the study
the (011)-dimensional model@6#, the effective action at
finite temperature can be non-extensive in which case,
not necessary forG (b) to vanish. In fact, taking from the
results of the (011)-dimensional model@6,13#, we note that
a simple, non-extensive quadratic term in the effective ac
of the form (c is a constant!

Gq5cS E d2x Am~x! D S E d2y Am~y! D ~2!

can give rise to a current that has vanishing divergence
curl. Thus, we would like to systematically study the stru
ture of the effective action for this (111)-dimensional
model at finite temperature.

The paper is organized as follows. In Sec. II, we recap
late briefly the structure of the quadratic effective action
zero temperature. We, then, point out that the generaliza
of a theorem of zero temperature@21# which shows that the
effective action would continue to be quadratic even at fin
temperature may be too naive. In Sec. III, we evaluate
two point function to show that the quadratic term does h
a temperature dependent correction which does not alte
current conservation and the anomaly of the theory. The n
analytic structure of this correction is pointed out and
quadratic temperature dependent term of the effective ac
is expressed in a manifestly covariant fashion. In Sec. IV,
calculate explicitly the 3-point and the 4-point function
While the 3-point function vanishes~in fact, all the odd point
functions must vanish because of charge conjugation inv
ance!, the 4-point function is nontrivial at finite temperatu
and correspondingly, there is a quartic term in the tempe
ture dependent effective action. We also obtain the gen
form for the 2n-point function which is nontrivial and
thereby, determine the complete effective action at fin
temperature. We show that, in a dynamical gauge the
these additional interactions, however, do not generate
quantum mechanical correction which is yet a new featur
finite temperature. In Sec. V, we make some brief comme
about the solubility of various two dimensional models
finite temperature and present some brief conclusions in
VI.

II. GENERAL THEOREM

In this section, we will recapitulate briefly the structure
the effective action at zero temperature following from
general theorem@21# and make some observations conce
ing the structure of the effective action at finite temperatu
Let us note that we are interested in the (111)-dimensional
model described by the Lagrangian density

L5c̄gm~ i ]m2eAm!c. ~3!

We usehmn5(1,2) with m,n50,1. Although not neces
sary, a representation for the Dirac matrices can be chose
be g05s2 , g15 is1 . In 111 dimensions, the gamma ma
trices further satisfy the identity

gmgn5hmn1emng5 ~4!
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whereg55g0g1 and emn is the anti-symmetric Levi-Civita
tensor withe0151. Integrating out the fermions in the pat
integral leads to the effective action

G@A#52 i Tr ln„12eS~ i ]” !A” …. ~5!

Here, we have normalized the effective action so that it v
ishes for vanishing external field. The ‘‘Tr’’ in Eq.~5! stands
for the trace in a complete basis as well as a Dirac trace
S(p) is the propagator for the fermion.

We can expand the logarithm in Eq.~5! which leads to a
power series representation for the effective action

G@A#5 i TrS „eS~ i ]” !A” …1
„e2S~ i ]” !A” S~ i ]” !A” …

2
1¯ D . ~6!

Here S( i ]” ) and A(x) are supposed to be non-commutin
operators and the effective action, in general, contains
infinite number of terms. However, let us note that, in
11 dimensions, we can decompose the vector field as

Am5
1

e
~]ms1emn]nf! ~7!

and that at zero temperature, the fermion propagator has
form (i e prescription is understood!

S~p!5
1

p”
. ~8!

It is, therefore, clear that at zero temperature, we can w
@using Eq.~4!#

eS~ i ]” !A” 5~ i ]” !21~]”s2g5]”f!

5~ i ]” !21@]” ,s#1g5~ i ]” !21@]” ,f#

52 is1 i ~]” !21s]”2 ig5f

1 ig5~]” !21f]” . ~9!

It now follows from this that

„eS~ i ]” !A” …252 i @s1g5f,„eS~ i ]” !A” …# ~10!

which gives

Tr@„eS~ i ]” !A” …n11#52
i

n
Tr@s1g5f,„eS~ i ]” !A” …n#.

~11!

For n.1, these integrals are convergent and hence one
use the cyclicity of the trace to conclude that all the terms
the effective action in Eq.~6! which are higher order than th
quadratic vanish at zero temperature. Even the linear term
Eq. ~6! vanishes because of the odd nature of the integra
The quadratic term in the effective action can be evaluate
a straightforward manner and a gauge invariant regular
tion gives the complete effective action at zero temperat
to be~although there is a one parameter freedom of regu
ization, we will use a gauge invariant regularization for sim
plicity!
1-2
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EXACT EFFECTIVE ACTION FOR@(111)- . . . PHYSICAL REVIEW D 59 105011
G~0!@A#5
e2

2p E d2x AmS hmn2
]m]n

]2 DAn . ~12!

We can now try to generalize the above proof to fin
temperature. Let us recall that, at finite temperature, the
mion propagator has the form@1#. @At finite temperature, in
the real time formalism~which is what we will use!, there is
a doubling of the field degrees of freedom. Consequently,
propagator acquires a 232 matrix structure. For a complet
calculation of the effective action in the real time formalis
one needs all the components of the propagator. Howe
we are interested only in that part of the effective act
which depends only on the original~not the doubled! degree
of freedom. For such a calculation, at one loop, only the fi
component~the11 component in the terminology of close
time path formalism! is needed which we give below#

S~p!5
1

p”
12ipp”n~ up0u!d~p2! ~13!

where n(up0u) represents the fermion distribution functio
~b51/kT, k5Boltzmann constant!

n~ up0u!5
1

ebup0u11
. ~14!

We note that, with the parametrization in Eq.~7!, we can
proceed again as before and show that the only n
vanishing term in the effective action would be quadratic
the field variables suggesting that the only modification t
temperature might induce is at most to change the two p
function. However, such a conclusion is too naive becaus
finite temperature, there are more tensor structures pre
and the decomposition in Eq.~7! is not the most general
Consequently, one must examine the structure of the ef
tive action explicitly which we do next.

III. TWO POINT FUNCTION

To study the structure of the effective action at finite te
perature, we, therefore, study then-point amplitudes of the
theory systematically. As mentioned earlier, we follow t
real time formalism~in fact, the closed time path formalism!
where one needs to double the degrees of freedom.
original field variables are denoted by a subscript1 while
the doubled field variables are conventionally denoted b
subscript2. In such a calculation of the effective actio
therefore, there arise amplitudes with all1 thermal index, all
2 thermal index as well as terms with mixed indices.
what follows, we calculate that part of the effective acti
which contains only the original field variables, namely, t
ones with only1 thermal index. For such a calculation,
one loop, ~as mentioned before! one only needs the11
component of the propagator in the internal lines. The ca
lation of the two point function is not really very difficult
There is only one Feynman diagram to evaluate which
the form (i e prescription is understood!
10501
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iG11
mn ~p0,p1!52e2E d2k

~2p!2 $k1
m ~k1p!1

n 1k2
m ~k1p!2

n %

3S 1

k2 12ipn~ uk0u!d~k2! D
3S 1

~k1p!2 12ipn~ uk01p0u!d„~k1p!2
…D

~15!

where we have defined

k6
m 5~hmn6emn!kn . ~16!

The zero temperature part, of course, can be read out f
Eq. ~12! and, therefore, we would concern ourselves, in t
section, only with possible temperature dependent cor
tions to the two point function. We note from the definitio
in Eq. ~16! that only two independent tensor structures ar
from Eq.~15!. The evaluation is straightforward and we ha

iG11
00~b!~p0,p1!5 iG11

11~b!~p0,p1!

5„d~p2!1d~p1!…I 2

iG11
01~b!~p0,p1!5 iG11

10~b!~p0,p1!

5„d~p2!2d~p1!…I 2 .
~17!

Here, we have defined

p65p06p1 ~18!

and

I 25
~2iep!2

2 E dk1

~2p!2 @e~k1!e~k11p1!

3$n~ uk1u!1n~ uk11p1u!

22n~ uk1u!n~ uk11p1u!%#. ~19!

Heree(x) stands for the alternating step function.
Thus, we see that there is indeed a temperature depen

correction to the two point function. Furthermore, there a
several things to note from the structure of the tempera
dependent part in Eq.~17!. First, it is easy to verify from Eq.
~17! that

pmG11
mn~b!~p0,p1!505pnG11

mn~b!~p0,p1! ~20!

so that this additional correction is transverse as gauge
variance would require. Furthermore, it is also equa
straightforward to check that

emnpmG11
nl~b!~p0,p1!505emlpmG11

nl~b!~p0,p1!. ~21!

In other words, this temperature dependent correction wo
lead to a modification in the current which has vanishi
divergence as well as curl~and yet is not trivial!.
1-3
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ASHOK DAS AND A. J. da SILVA PHYSICAL REVIEW D59 105011
The two point function in Eq.~17! is clearly non-analytic
at the origin in the (p0,p1) plane which is best seen b
writing

p05ap1

and noting that in the limitp1→0 the amplitude depends o
the parametera. This is the well known non-analyticity in
the two point function that is expected at finite temperatu
However, it is interesting to note that the non-analyticity,
this case, manifests essentially in the structure of the d
functions which is also quite crucial for the current cons
vation as well as the vanishing of the anomaly@which is
clear from Eqs.~20!,~21!#. We suspect that this is a structu
that may generalize to higher dimensions in a calculat
with an arbitrary gauge background.@We would like to point
out here that this dependence on the delta function is a
ticular generalization of the (011)-dimensional result
@13,14# where the two point function has only one comp
nent and is proportional tod(p).]

The two point function, of course, can be expressed i
more covariant form. The standard way to do this is to int
duce a velocity for the heat bath,um, such that@22#

umum51.

Without going into too much detail, let us note that eve
four-vector can now be decomposed along parallel and
pendicular directions toum as @23#

km5Vum2emnunk̄

pm5vum2emnunp̄ ~22!

where the Lorentz invariant quantitiesV, v, k̄ and p̄ are
defined by

V5kmum ; k̄5emnkmun

v5pmum ; p̄5emnpmun . ~23!

We can also define the component of the velocity four-vec
perpendicular topm as

ūm~p!5um2
v

p̄
emnun . ~24!

The calculation of the two point function can be eas
carried out in terms of these variables and the tempera
dependent correction has the form

iG11
mn~b!~v,p̄!5„d~v2 p̄!1d~v1 p̄!…ūm~p!ūn~2p! Ī 2

~25!

where

Ī 25
~2iep!2

2 E dk̄

~2p!2 e~ k̄!e~ k̄1 p̄!@n~ uk̄u!

1n~ uk̄1 p̄u!22n~ uk̄u!n~ uk̄1 p̄u!#. ~26!
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This single tensor structure indeed generates the two in
pendent structures noted in Eq.~17! and, in fact, reduces to
them in the rest frame of the heat bath for whichum

5(1,0). We also note here that the transversality of the t
point function follows trivially from the fact thatūm(p) is
transverse topm. The vanishing of the curl, however, doe
not follow from the transversality ofūm; rather, it is a con-
sequence of the delta function structure of the two po
function. ~Note also that, in addition to the delta function
being non-analytic,ūm also depends on the direction alon
which we approach the origin.!

Once we have a covariant expression for the tempera
dependent correction to the two point function, we can ea
write the additional quadratic term that would be genera
at finite temperature in the effective action~here, for simplic-
ity, we are identifyingA1

m 5Am, namely, the original fields!,

G2
~b!@A#5

1

2! E dvdp̄

~2p!2 Am~p!~ iG11
mn~b!!An~2p!

5
1

2! E dvdp̄

~2p!2 ~ ū•A!~p!~ ū•A!~2p!

3 Ī 2„d~v2 p̄!1d~v1 p̄!…. ~27!

As is obvious, this action is highly nonlocal although it do
not have the non-extensive structure found in t
(011)-dimensional model. It is not obvious to us, at th
point, whether the non-extensive structure is a special fea
in odd space-time dimensions or simply an accidental fea
of the (011)-dimensional model. We would also like t
comment here that the structure of the quadratic term in
~27! is manifestly gauge invariant because of the transver
ity of ūm. While it is not obvious, it can be easily checke
that the same structure is also invariant for non-Abel
gauge fields which may be an interesting thing to note
generalizations to non-Abelian theories in higher dime
sions.

IV. HIGHER POINT FUNCTIONS

The general proof of Sec. II would seem to suggest t
the quadratic term is all the correction that temperat
would induce in the effective action. However, as we ha
pointed out earlier, such a conclusion is too naive. Con
quently, in what follows, we would like to calculate explic
itly the 3-point and the 4-point functions for this theory
finite temperature.

The calculation of the 3-point function is only slightl
more difficult than the two point function. In this case, th
amplitude involves evaluating two Feynman diagrams. If
denote the two independent external momenta byp and q,
then, the two independent diagrams would correspond to
changingp↔q ~of course, with the appropriate interchang
of the tensor indices!. The 3-point function has the structur
1-4
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iG111
mnl ~p,q!52e3E d2k

~2p!2 F „k1
m ~k1p!1

n ~k1p1q!1
l 1k2

m ~k1p!2
n ~k1p1q!2

l
…

3S 1

k2 12ipn~ uk0u!d~k2! D S 1

~k1p!2 12ipn~ uk01p0u!d„~k1p!2
…D

3S 1

~k1p1q!2 12ipn~ uk01p01q0u!d„~k1p1q!2
…D1~p,n↔q,l!G ~28!

where we have used the definitions in Eq.~16!. Once again, we can easily see that the temperature dependent correction
only two independent structures, the ones with an even number of space-like indices~they are equal! and the ones with an odd
number of space-like indices~which are also equal!. The two independent structures can be evaluated to have the simple

iG111
000~b!~p,q!5„d~p2!d~q2!1d~p1!d~q1!…I 3

iG111
001~b!~p,q!5„d~p2!d~q2!2d~p1!d~q1!…I 3 ~29!

where

I 3~p,q!5
~2iep!3

22 E dk1

~2p!2 @e~k1!e~k11p1!e~k11p11q1!$2„n~ uk1u!1n~ uk11p1u!1n~ uk11p11q1u!…

12„n~ uk1u!n~ uk11p1u!1n~ uk1u!n~ uk11p11q1u!1n~ uk11p1u!n~ uk11p11q1u!…

24n~ uk1u!n~ uk11p1u!n~ uk11p11q1u!%1~p↔q!#. ~30!

With an appropriate change of variables, it is easy to see thatI 3 vanishes because of the anti-symmetry of an odd numbe
alternating step functions.~Namely, the two diagrams exactly cancel each other.! In fact, one can show, in general, that all th
odd-point functions vanish because of charge conjugation invariance in the theory. Namely, the Lagrangian density in~3!
is invariant under

c→h C c̄T; Am→2Am

whereh is a phase andC represents the charge conjugation matrix. This invariance requires that the effective action ca
depend on an even number ofAm fields. However, in spite of this general result, we went through the explicit calculatio
show the generalization of the structure of the two point function to the case of the three point function.@Had the three point
function not vanished, transversality as well as vanishing anomaly would have required the structure to be a generali
the two point function in the form in Eq.~29!.#

Let us next turn to the 4-point function. This is much more involved than the 3-point function. Furthermore, there a
six diagrams to be evaluated. However, each of them has the generic form (p, q andr are the independent external momen!

52e4E d2k

~2p!2 F $k1
m ~k1p!1

n ~k1p1q!1
l ~k1p1q1r !1

r 1k2
m ~k1p!2

n ~k1p1q!2
l ~k1p1q1r !2

r %

3S 1

k2 12ipn~ uk0u!d~k2! D S 1

~k1p!2 12ipn~ uk01p0u!d„~k1p!2
…D

3S 1

~k1p1q!2 12ipn~ uk01p01q0u!d„~k1p1q!2
…D

3S 1

~k1p1q1r !2 12ipn~ uk01p01q01r 0u!d„~k1p1q1r !2
…D G .

The calculation for the temperature dependent part is exactly similar to the two and the three point functions, but mu
tedious. We have evaluated these explicitly and adding all the six diagrams, we find, again, that there are only two ind
structures that arise. There are the ones with an even number of space-like indices~and they are all equal! and the other kind
is for the ones with an odd number of space-like indices~which are again all equal! with the forms given by@with appropriate
definitions given in~18!#

iG1111
0000~b! ~p,q,r !5„d~p2!d~q2!d~r 2!1d~p1!d~q1!d~r 1!…I 4 ~31!
105011-5
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iG1111
0001~b! ~p,q,r !5„d~p2!d~q2!d~r 2!2d~p1!d~q1!d~r 1!…I 4

where

I 4~p,q,r !5
~2iep!4

23 E dk1

~2p!2 @e~k1!e~k11p1!e~k11p11q1!e~k11p11q11r 1!$n~ uk1u!1n~ uk11p1u!1n~k11p11q1u!

1n~ uk11p11q11r 1u!22„n~ uk1u!n~ uk11p1u!1all quadratic permutations…

14„n~ uk1u!n~ uk11p1u!n~ uk11p11q1u!1all cubic permutations…

28n~ uk1u!n~ uk11p1u!n~ uk11p11q1u!n~ uk11p11q11r 1u!%1all permutations of~p,q,r !#. ~32!

There are several things to note here. First of all, the 4-point function involves an even number of alternating step f
and, therefore, does not vanish unlike the three point function. However, from the structure in Eq.~31!, it is clear that it is
divergence free and does not contribute to the anomaly either. In fact, the structure is a generalization of the two poin
three point functions in Eqs.~17! and ~29! respectively. The non-analyticity continues to be present in the structure o
4-point function. Furthermore, we can also write the 4-point function in a manifestly covariant form as in the case of
point function. Let us identify

pm5p1
m ; qm5p2

m ; r m5p3
m ~33!

and define, as in Eqs.~22!,~23!,

pi
m5v iu

m2emnunp̄i , i 51,2,3. ~34!

One can calculate the 4-point function with these variables and it takes the covariant form

iG1111
mnlr~b!~p1 ,p2 ,p3!5„d~v12 p̄1!d~v22 p̄2!d~v32 p̄3!

1d~v11 p̄1!d~v21 p̄2!d~v31 p̄3!…ūm~p1!ūn~p2!ūl~p3!ūr
„2~p11p21p3!…Ī 4 ~35!

with

Ī 45
~2iep!4

23 E dk̄

~2p!2 @e~ k̄!e~ k̄1 p̄1!e~ k̄1 p̄11 p̄2!e~ k̄1 p̄11 p̄21 p̄3!$n~ uk̄u!1n~ uk̄1 p̄1u!

1¯22„n~ uk̄u!n~ uk̄1 p̄1u!1all quadratic permutations…14„n~ uk̄u!n~ uk̄1 p̄1u!n~ uk̄1 p̄11 p̄2u!

1all cubic permutations…28n~ uk̄u!n~ uk̄1 p̄1u!n~ uk̄1 p̄11 p̄2u!n~ uk̄1 p̄11 p̄21 p̄3u!%

1all permutations of~ p̄1 ,p̄2 ,p̄3!#. ~36!

It is clear, therefore, that unlike at zero temperature, the higher order terms do not vanish at finite temperature. Thi
much like the behavior of the (011)-dimensional theory@6,13,14# where, at zero temperature, the effective action is o
linear in the external field while, in the presence of a heat bath, interactions to all orders are generated. Here, however
the simplification that only even amplitudes are nonvanishing. Furthermore, the dependence on the delta functions
particular generalization of the (011)-dimensional result@13,14# where the n-point function is proportional to
d(p1)d(p2)¯d(pn21) and is a simple consequence of gauge invariance alone. From the calculations presented so far~as well
as from the requirement of vanishing divergence and curl!, the structure of the temperature dependent corrections to the h
point functions is quite clear. The covariant form of the 2n-point function can be written as follows. Letp1 ,p2 ,...,p2n21
denote the independent external momenta. Then, with the generalization of the decomposition given in Eq.~34!, we can write
the 2n-point function as

iG
1¯1

m1¯m2n~p1 ,...,p2n21!5$„d~v12 p̄1!¯d~v2n212 p̄2n21!

1d~v11 p̄1!¯d~v2n211 p̄2n21!…%ūm1~p1!¯ūm2n
„2~p11¯1p2n21!…Ī 2n ~37!

where
105011-6
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Ī 2n5
~2iep!2n

22n21 E dk̄

~2p!2 @e~ k̄!e~ k̄1 p̄1!¯e~ k̄1¯1 p̄2n21!$n~ uk̄u!1¯1n~ uk̄1¯1 p̄2n21u!

22„n~ uk̄u!n~ uk̄1 p̄1u!1all quadratic permutations…14„n~ uk̄u!n~ uk̄1 p̄1u!n~ uk̄1 p̄11 p̄2u!1all cubic permutations…

1¯222n21n~ uk̄u!¯n~ uk̄1¯1 p̄2n21u!%1all permutations of~ p̄1 ,...,p̄2n21!#. ~38!

Thus, collecting all terms, we can write the full effective action at finite temperature to be

G@A#5G~0!@A#1 (
n51

`

G2n
~b!@A# ~39!

where~once again, we have identifiedA1
m 5Am)

G2n
~b!@A#5

1

2n! E dv1dp̄1

~2p!2 ¯

dv2n21dp̄2n21

~2p!2 ~ ū•A!~p1!¯~ ū•A!„2~p11¯1p2n21!…

3 Ī 2n„d~v12 p̄1!¯d~v2n212 p̄2n21!1d~v11 p̄1!¯d~v2n211 p̄2n21!… ~40!
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andG (0)@A# is the effective action at zero temperature giv
in Eq. ~12!.

This shows that, at finite temperature, the effective act
has interactions to all even orders unlike the case at z
temperature. The structures of all these additional, temp
ture dependent terms are what we were interested in and
note that they are such that they do not change the cur
conservation as well as the anomaly of the theory.@We
would like to add here that we have calculated that par
the effective action which depends only on the original fie
variables of the theory. The part of the effective action t
contains only the doubled degrees of freedom can be ea
derived from this since the corresponding amplitudes are
lated to the ones we have calculated by mere complex c
jugation. The part of the effective action containing mix
degrees of freedom, on the other hand, cannot be obta
from what we have calculated, but the evaluation of th
amplitudes is similar to what we have carried out and e
relatively simpler since the off-diagonal matrix elements
ve
at
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the propagator are on-shell. The actual value~coefficient! of
these terms is not as relevant for our subsequent discus
as the structure of these terms which can be easily seen
of the form we have already calculated~namely, the depen-
dence on the delta functions! which would not modify cur-
rent conservation as well as anomaly.#

The presence of these temperature dependent terms r
the interesting possibility that, unlike at zero temperatu
there may be finite temperature effects giving rise to t
loop and higher loop contributions in the fundamen
theory. In fact, such contributions will correspond to di
grams where two~or more! gauge fields are contracted in th
effective action~of course, we are assuming here that t
gauge fields are dynamical and that one must take into c
sideration the full effective action containingA1

m andA2
m and

the full 232 matrix structure for the photon propagato!.
But, a little analysis would show that every such contract
would involve a factor of the form@remembering the trans
versality of ūm(p)]
ūm~p!Dmn~p!ūn~2p!d~v7 p̄!52S 1

p22m2 22ipnB~u•p!d~p22m2! D ūm~p!ūm~2p!d~v7 p̄!

52S 1

p22m2 22ipnB~u•p!d~p22m2! D S p2

p̄2D d~v7 p̄!50. ~41!
the
c-

this
Here we have used forDmn(p) the 11 component of the
temperature dependent propagator for the gauge field,m2

5e2/p, nB is the bosonic distribution function and we ha
used Eq.~24! in the final step. However, it is also clear th
the same conclusion holds for any other component of
propagator as well and follows from the very special stru
ture of the temperature dependent vertex functions in
theory ~namely, the delta functions!. @As a side remark, we-
1-7
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would like to point out that in 111 dimensions,1 ūmūn can
be expressed in terms of the usual transverse projection
erator as follows:

ūm~p!ūn~2p!52
p2

p̄2 S hmn2
pmpn

p2 D . ~42!

This observation makes the derivation of the propaga
rather simple.# This is quite interesting, for it says that, eve
though there are higher point functions present in the ef
tive theory, all the radiative corrections in the fundamen
theory are of order one loop. The consequence of this is
the temperature dependent, effective theory obtained in
~39!,~40! is purely classical—it cannot generate any quant
correction. This is interesting and is indeed quite unus
and, as is clear from Eq.~41!, is a direct consequence of th
specific dependence on delta functions which is also ne
sary to maintain the current conservation as well as
anomaly of the theory. This is indeed yet a new feature t
finite temperature field theories can have. We also note f
Eq. ~41! that, for m50, such a contraction will not vanish
Consequently, in perturbation theory~where the photon doe
not have a mass!, the higher loop contributions will not van
ish individually. They would, in fact, be highly infrared sin
gular. However, if the perturbation is summed to all orde
all such contributions would add up to zero as is clear fr
Eq. ~41!.

V. SOLUBLE MODELS

As is well known@15,21# once the effective action for th
fermion field in an external Abelian gauge background
known, various soluble models can be directly studi
Therefore, we will be rather brief in this section. First, let
recall that the Schwinger model@24# is defined by the La-
grangian density

L52
1

4
FmnFmn1c̄gm~ i ]m2eAm!c. ~43!

It is clear, therefore, that integrating out the fermions wo
lead to an effective action which is the sum of the kine
term for the photons and the effective action derived in E
~39!. Thus, the effective action, in addition to containing t
mass term for the photon also contains now the additio
interactions whose properties we have already discussed

The general model, in 111 dimensions,@16,17,18# is de-
scribed by the Lagrangian density

L52
1

4
FmnFmn1c̄gm

„i ]m2e~11rg5!Am…c. ~44!

Here r is an arbitrary parameter and this model is known
reduce to various soluble models under different limits a
reductions. We note that if we define a new gauge field

1We thank Professor J. Frenkel for this observation.
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Bm5~hmn1r emn!An ~45!

then, using the two dimensional identities in Eq.~4!, it is
easy to show that the fermion part of the Lagrangian in E
~44! becomes identical to that for the Schwinger model, b
in terms of theBm field. We have already evaluated the e
fective action for this and so, expressing everything back
terms of theAm field, we would have the effective action fo
the general model which then, would give the effective a
tion for various soluble models at finite temperature un
different limits and reductions@25#. We would simply like to
note here that for the gradient coupling model,

Am5]mf

namely, the gauge field can be identified with the gradien
a scalar. In such a case, however, it is clear that

ū~p!•A~p!50. ~46!

Consequently, all the temperature dependent correction
this model identically vanish and the zero temperature eff
tive action is the full action~independent of the regulariza
tion used!.

VI. CONCLUSION

In this paper, we have studied, systematically, the eff
tive action for (111)-dimensional, massless fermions inte
acting with an external Abelian gauge field at finite tempe
ture. While the naive expectation would be that only the t
point function is corrected by temperature, we have cal
lated and shown that the effective action, in fact, conta
interaction terms to all~even! orders. The exact form of the
effective action is obtained and it is shown that these ad
tional temperature dependent terms do not change
anomaly or the current conservation. The non-analytic str
ture of the effective action at finite temperature is point
out. It is also pointed out that these temperature depen
terms in the effective action have a very specific struct
which prevents them from generating any quantum mech
cal correction. To the best of our knowledge, this is a n
feature of field theories at finite temperature. The solubi
of various two dimensional models is also briefly discuss
We hope that some of the features found here will help in
understanding of the structure of the effective action fo
fermion interacting with an arbitrary gauge field in 211
dimensions. As a final comment, we would like to add th
we have also calculated the retarded Green’s function@1# in
this model. All the temperature dependent parts vanish wh
is consistent with our conclusion that these new terms in
finite temperature effective action cannot lead to any qu
tum correction@26#.
1-8
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