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SU(2) Yang-Mills theory with extended supersymmetry in a background magnetic field
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The vacuum structure dl=2 (and N=4) supersymmetric Yang-Mills theory is analyzed in detail by
considering the effective potential for constant background scalar-magnetic fields within different approxima-
tions. We compare the one-loop approximation with or without instanton improved effective coupling with the
one-loop result in the dual description. Fé=2 we find that non-perturbative monopole degrees of freedom
remove the non-trivial minima present in tfimproved one-loop potential in the strong-coupling regime. The
combination of Yang-Mills theory and the dual description leads to a self-consistent effective potential over the
full range of background field$S0556-282(199)01208-4

PACS numbgs): 11.15.Bt, 12.38.Bx, 12.60.Jv

[. INTRODUCTION background scalar and magnetic fields respectively. While
the lifting of the classical degeneracy for the scalar field is
Much attention has recently been focused\ba2 super-  €xpected, we can only determine the value of the scalar field
symmetric(SUSY) vector theorieg1,2]. A set of inequiva- [N terms of the background magnetic field, and for2 we
lent vacuum states exists in these models, as the classic{égl‘odptgzteg?\sg tg]()eteonr;gll?]c;?/ :r;dnt_l?r%r:]nﬁ?rgfg gg@;ﬁ%ﬁﬂg'
potential is proportional to Tf@*,#]%); distinct 2 1 X
supersymmetric-invariant, zero-energy vacuum states are p alue of the external magnefic field @ At the one-loop

g . ) ]
ametized by the consant scla compor taking s 1 1 % U 008 e, nere e g oo
value in the Cartan subalgebra of the gauge groujpl}rit reliable. Ideally we should therefore include higher order as

has b_een argued that the low energy physms of the str.0n vell as non-perturbative contributions for the higher orders
coupling regime of these theories is equwaleqtly describegh e magnetic field as well. This, of course, is beyond reach
by a weakly coupled dual theory. The analysislij was 4t present. However, the dual theory which should describe
restricted to the vacuum manifold. Attempts to generalize thgne strong-coupling low energy physics of this mofiH| is
duality away from the vacuum have been presentd@#5],  \eakly coupled in this regime and a one-loop calculation
taking into account higher derivative terms in the effectiveyithin the dual model should be reliable. Note that the effec-
action. In this paper, we propose another step in this direcive potential, unlike the effective action, has a physical in-
tion by considering a constant Abelian background fieldierpretation and should therefore be duality invariant. If du-
strength and a constant scalar field, aligned in the same déxnty is realized for at least a small but non-vanishing
rection in group space. We compute the one-loop effectivenagnetic field, then the one-loop calculation in the dual
potential forN=2 andN=4 theories, using techniques simi- theory should contain all relevant non-perturbative correc-
lar to those used if6] where the effect of an external mag- tions in the original formulation. This is reasonable, although
netic field on the symmetry breaking patterns in a nonthe duality conjecture has been proved only in the zero-
Abelian Higgs model was examined. Adr=4 the one-loop  energy limit[7] (see howevef3-5]). We take this as moti-
effective potential should be reliable in the context of pertur-vation for the assumption that the strong-coupling effective
bation theory, as the coupling constant, once chosen to bsotential is approximated by tH@mproved one-loop effec-
small, is not affected by radiative corrections. In the case ofive potential of the dual theory which =2 supersym-
N=2 we improve the one-loop calculation with the exactmetric QED[1]. We find that the non-trivial minima are
results [1], therefore including all perturbative and non- indeed removed by the monopole dynamics as described by
perturbative contributions up to second order in the externathe dual action. As a result the combination of the Yang-
magnetic field. Mills and dual description leads to to a self-consistent effec-
For a given non-zero magnetic field the classical vacuumive potential over the full range of background fields.

degeneracy for the scalar field is lifted by quantum correc- In either formulation the effective potential has a non-
tions. More precisely, the effective potential has a relativevanishing imaginary part. While this imaginary part is nor-
minimum at | #|%/|B|=0(1), where ¢ and B denote the mally associated with unstabléachyoni¢ modes[8,9], we

can argue that they are eliminated by non-perturbative effects

as in QCD[10-13. In the present case, it may be interpreted

*On leave of absence from Bogolyubov Institute for Theoreticalas arising from monopole production in the presence of an

Physics, 252143, Kiev, Ukraine. external magnetic field.
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The paper is organized as follows: In the next section we 1 hlxin2 h*1zih*2
compute the one-loop effective potential fbf=2 super A,=— EFMXV, h*= . h¥t=———
Yang-Mills (SYM,) theory for the background field configu- V2 V2

ration described above. Section Ill deals with the actual com-
putation of the functional determinants arising in the one- 3 N
loop computation of the effective potential and examines the Q=Q% Q° :T- (4)
vacuum structure. We repeat this fde=4 super Yang-Mills

(SYM,) theory in Sec. IV. In Sec. V we improve the  The Faddeev-Popov ghost Lagrangian associated with this

scalar field dependence of the effective coupling. The correg—1q,

sponding effective potential is evaluated numerically. Next

we obtain the effective potential to one-loop order in the dual Lep=Ci[(9+iA)2—2g2f* f]c,
theory N=2 super QED using the background fields dual -
to those above. The structure of this dual effective potential +c,y[(9—iA)?—2g%f* f]c,, (5)

is determined numerically and compared with that of the

original model. Section VI contains our conclusions. Thewhile the one-loop contributions arising frofiv Ly are of
computation of the functional determinant for a general elecihe form

tromagnetic field is explained in the Appendix.

Q+A/,LVQ*+(h*+ h+) 0 AO h*_ +(_+ ( +)T)
Il. N=2 MODEL " v Ay 0 )lh- XX
A harmonic superspace formulation of SyMvas pre- 0 Ay (}*)T
sented in[14] where furthermore the non-renormalization x| T - , (6)
theorems for SYM were revisited within that framework. Ay, O X

For the finite contributions to the effective action we find it
however easier to work in component formulation. The acWhere

tion is then given b
gen by Ag=D2—M?2, AK’=gs"(D2—M?2)+2iFH

1 0 -
S:J'd4x __FaVFa,uV_ FaVFap,y and
49> * 3272 *
Dt o A= =D, — =y, 4yt 7
—(D,L¢)*a(D“¢)a—xDx+592(1‘”%%“)2 112 + ﬁ(w y-f) @

ig — - . respectively. In Eq(6), T refers to a transpose in the Dirac
+Efa IxXPy-x“ "+ X2y x0*"] 1, (1) indices only,D.,=d,*iA, and M?=2g%f*f. From Egs.
(5)—(7) it is then easy to see that the ghost and scalar loops

cancel, so that
where ’)’i:li’)’SI {Yyiyv}:_zggv and g,u.v

=diag(— ++ +) as in[15]. We take the gauge group to be

w = nv
SU(2) and we align the background fields so that ‘W rinfA*]+2 i Asp]. ®)
$3(x) =63+ h3(x) If we now regula;e the Ioga}rithm and rgciprocal of the

operators occurring in Eq8) using ¢ regularization[6,17],
and and its generalization, operator regularizat[@8], then we

find that for operator$d;,

1
A%(x)=— =F , X"6%3+Q%(x) 2) d 25 (o
“ 2 uv uA T N f V(45— 1a—iHt

In(H; /u?) ds| T(s) o d(it)(it)*" e 9

with f and F,, constant. The gauge fixing Lagrangian is
taken to be a modified version of th gauge[16],

and
1|1 2s

L=———(9 2y O’;_'Av+ 7_d o o
o 692{2( KQUTHLIZIANQ, (HiH, . HW™*=5g 0 F(s+1)Jo daty)

+ig?g(frh* +fh* ) ][(9+iA)*Q, 2

it )Se~iHaty, ..
x(itye I(s+1)
—igzg(f*h+fh*)]}, ()

med(itN)(itN)se“HN‘N}. (10
0

where
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In Egs.(9) and(10), «? is an arbitrary dimensionful param- t; consequently there is no mass renormalization in the
eter. theory as expected due to the supersymmetry of the model

Ill. CASE OF THE BACKGROUND MAGNETIC FIELD

We now specialize to the case whétg, corresponds to
a magnetic field only, so th&,,= —F,;=B (the formulas

for the most general case of the electromagnetic field are

given in the Appendix As has been shown ifl5,19,2Q
[see also EqAL) with K_=B andK . =0 in the Appendi},
in this case we have

—i Bt ix ix’B
’ i 2 _ H L
(x'|exp(iD3.1)[x)= (47t)2 SIN(BY) ex% 4t " tarn(BY)
iB ,
+ 7(X2X1_X1X2) (11
[xF = (%1 = %) 2+ (X2— X3) %, Xf = (X3 X5) > = (Xo— Xg) 2.

Furthermore, sinced;,)?=1,, it is easily shown that

i
tr ex;{—EUWF”Vt =4 cogBt) (129
and
trexyg — 2F*"t]=4 cog(Bt). (12b)
Since
trin| —iD —i(y f*+y_1)
+ \/E + -
=trin| —iD +i('y f+y_f*)
+ \/E + -
1 In| D2 —M?2 ! Fur|, 13
—Etr n + 50 ur (13

we find that, for the leading terms in E(),

iWeffE_trln[Aﬂv]'f‘ztrln[Al/ﬂEi d4X£eff, (14)

and Eqgs.(9) and (11)—(12b) imply

s-lg-iM%___ i Bt
F(S J din ity (477t)2 sin(Bt)

i Lotr= ds

X[4 cog(Bt)—4 cogBt)]. (15)

Furthermore, it is possible to show using Edl) [or Eq.

(A1) in the case of the electromagnetic field of a general

form] that
J d*xd®x’ (x| |x")(x'| D, €0 2 x)=0. (16)

We first note that the term in the brackets in Efj5)
contains no term below ordéf when expanded in powers of

(see alsd14] and references thergin
To continue, it is convenient to rewrit&,¢; in Eq. (15) as

d ., Bt
SUCE r(s>4wfd('” T
X —%sin(Bt)Jr cos(Bt)—cogBt)
+%sin(Bt)) . (17)
Initially, we compute
d , Bt Bt
T 477[ d(in)(it)*e Mtsm(Bt)[_fs'”(B”}
—B—2 —Ina—lnH (18
8772 /.LZ,

where c=M?/|B|=2g?f*{/|B|. The remaining integral in
Eq.(17) is free of any divergence a&=0; so we are left with

PP U L +th
o a2 2T ) T o 2t

g3}

We first note that, using Eq. 3.551.9 [&1],

Il_f _e—lto

—ito

X | [t—sint]+ (19

tan———} fdzJ e ?Jtanht—t]

—fdeZZIFZ erz+1 ! 20
= . Z n§+ n E - n T —Z. ( )
Next, we get the imaginary part
(=dt .
|2=—|J —25|n(tcr)[t—5|nt]
ot
© | cogl—o)t—cogl+o)t sinot
='f dt a ) & )— , (22)
0 2t2 t

which, upon integrating the first two terms by parts and using

(22
becomes

T
|2=—i§(l—a')0(1—0'). (23
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Last, we have orously solved yet. Note however that even in the case when
this shift turns out to be big, one should expect that the true
% i vacuum energy is lower than the energy of the metastable
l3= o t—zcos{to)[t—smt] state with a non-zero imaginary part. Other discussions of
the stability of translation invariant background configura-
o tions in Yang-Mills theories are given i12,13.
zf dt , (29 In the present model it may appear natural to associate the
0 imaginary part with monopole production in an external
which upon integrating the first term by parts becomes
| 1+ i f “dt
=—1+Ilim | —
3 A—0 J A t2

cosot sin(1—o)t+sin(1+o)t
t 2t2

magnetic field. However, perturbation theory does not “see”
these degrees of freedom and therefore this interpretation is
possibly too far fetched.

Let us now discuss the vacuum structure predicted by the
effective potential(29). If we ignore the imaginary part in
Eq. (29), we find numerically thatl ReV(o)/do=0 implies

singt sin(1l—o)t+sin(1+ o)t
o 2

- 14 1+0‘|n(1+0)+ 1_Uln|1—a|—ln o (25) thato,;,=0.596 andJ ,;;= —0.358. The effective potential
2 ' with ¢ at the minimum reads
Tr?ga?:rl[ contributions t&;; coming from Eqs(20)—(25) 1 o |8l 52
show tha Vimin(B)=—B?| 1+ —In— |+ —Up,
mm( ) 292 4772 MZ 477_2 min
, B? |1 2g*f*f
Lett=—9"— §|n s—+U(a), (26) B2
4m 1 + F|n(amin). (30)
aa
with
" . . 741 1 The existence of a negative minimum 9f,;,(B) follows
U(g):f dz In—+2InF(—)—2InI‘ RS J— from the fact thatV,,i,(0)=0, Vyin(B—*)>0 and for
o 2 2 2 2z smallB, V,;,(B) <0 [because of the dominance of the loga-
1+ o 1-o rithmic term in Eqg.(30)]. At the minimum, the magnetic
—In(o)—1+ 5 In(1+0)+ T|n|1—(r| field is given by
LT 2 1
—IE(l—O')G(l—O'). (27 Bmin:AgeX _2Umin_§ . (31

Including the classical contribution in the effective Lagrang-pyqwever. ift= Lin(MZ/A

) ; L ; . , then the running coupling satis-
ian (26) and tradingu for the renormalization group invari- 5) 9 piing

fies the equation

ant scale
A2= ze—4w2/92’ 28 d— 1
o 9 F90=—-=01, (32
. 21
we obtain
82 2g2f*f BZ SO that
Vg=——=In +—U(0o). 29
®“8n? A2 an? () 9 )
aH=—2 — 33
The imaginary part olU(o) arises, as in pure Yang-Mills 9= l+gzt/7-r2'

theory, due to unstablgachyoni¢ modes in the spectrum of

the charged vector particle in the presence of a backgroun )
magnetic field[8,9]. In [10], these modes are removed by I%olr U:‘Tmi”’Bz’:.Bmi”’ then, the value of t
treating their classical part of the action as a Higgs modeLiziln(_"m‘”Bm‘“/A) is such that by Eq(32) the .couplln_g

i.e. by taking into account the quartic self-interaction of thesed“(t) is large and hence the one-loop potential is unreliable.
unstable modes non-perturbatively. An alternate treatment islowever, for any value of the external magnetic field, the
given in[11] (for a review sed22]). The imaginary part of scale of the scalar field is fixed, thereby breaking the classi-
the effective action now disappears, and the real part is becal vacuum degeneracy completely. For large values,of
lieved to remain unaltered. Here we must note that this realvhereg(t) is small,V,,;, in Eq. (30) is positive, as expected
part would quite likely be shifted though if the coupling for a supersymmetric theory.

between the stable and unstable modes were included in the Before seeing how the one-loop approximation can be
discussion. But even in the case of pure Yang-Mills theoryjmproved upon, we turn tdl=4 super Yang-Mills theory in
this is a rather complicated problem which has not been rigthe one-loop approximation.
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IV. N=4 MODEL IN A BACKGROUND MAGNETIC been suppressed once we se&X){=if2P%(XP), D=4
FIELD —iA, ando,,=(i12)[v,,7,].
We can now proceed using the techniques outlined in the

The effective potential for SYlin a background with previous section. Regulating as in Hd) we see that

constant field strength has been considerefPia3]. As in
that reference we simplify the algebra by viewing tie 4 d
supersymmetric gauge theory as M1 supersymmetric |W(1>——

j dit(it)s* e il- D2+M2t

gauge theory in ten dimensions in which six of the dimen- F(S)
sions have been suppresded|. The original vector field 1 11
A% (a=1,...,10)decomposes into a four component vec- X|— =e®Fult—2+ —e?"quW‘}. (40)
tor field A‘; (u=1,...,4), three scalars, identified with 2 2
a a a H
5, ... A7 and three pseudo-scala#g, . .. Ajp, while the Using Egs.(13) and(14), we see that, in the presence of an

original Majorana-Weyl spinor in ten dimensions becomes

set of four Majorana spinors in four dimensions. In four di-

mensions, the couplings of these matter fieldS(4) in-

variant. |W<l>—
The N=1 supersymmetric gauge theory in ten dimen-

sions that we will consider has the action

%xternal magnetic field,

i Bt
F(s)j dit(it) 1( (4wt)25inBt)

X (4 co€ Bt+4—8 cosBt)e M, (42)

1
f 1°X[ - —Gag(V)Gaaﬁ(V) N2D3P\P|. (34 (An overall factor of 2 comes from the trace in group space.
The integral ovett in Eq. (41) is free of divergences &

We now use the Honerkamp gaulgs] =0, and hence, upon using some trigonometric identities, we

see that
D*(A)-Q°=0, (35)
_ 8B% (= t ot
whereV has been decomposed into the sum of a background Wb = zf d(it)(it) 2 tan; — 5)
field A2 and a quantum fiel@? . If the background field in (4m)=Jo
four dimensions corresponds to a constant backgraifid t 1 it
field F3, (u, v=1,...,4) and aconstant scalar field of 5~ 23|nt) 7 (42)

magnitudegv, both in the directiom?® in group space, then
whereo=M?/B. The integrals in Eq(42) are given in Egs.

1
_ v 22), (25) and (27) so that
M= 2F,. X, @o (22,25 and(2?)

. iB2( (= z z z+1
10 iwt=—— f dzllnz+2InT| | -2 InT|——
E A2 A= 2,203 58D=\12n3 530, (37) 27| Jo 2 2 2
a=5

1+o0 1-o
The effective action to one-loop order is then given by " 27 + 2| 1+ 2 In(1+o)+ 2

(1) — 2ab —1/2/  2ab,
expiw'™ =de(D“*")det” "(D“?"g,z4 ) XIn|1—a|—In U—ig(l—a)ﬁ(l—a))]
+2fapr§B)det1’Z[Dab(l+—m” (39)

2 iB%_

in ten dimensiongwith the three terms in Eq.38) corre- 2m
sponding to the contribution of the ghost, vector, and
Majorana-Weyl spinor respectivdlydimensionally reducing
this to four dimensions with the background field satisfying

The effective potential to one-loop order is hence given by

o : 1 1
the conditions of Eq9(36) and(37) converts Eq(38) into VBZEBZ 14 _2U(‘7) _ (44)
expiw M =de(D?"—M?)det ¥4 (D*"-M?)g,,, i
—~2iF ,,][det V2 p2ab_ \12)16 def2 We note in passing that the res(#8) could also be obtained

by identifying the mass term if23] with the background

2ab , 1 , scalar. As for the imaginary part the discussion in the last
X| DT =M+ EO-,U«VFM : (39 section could be repeated here. In particular Nor~0 we
recover the result di23] for a vanishing scalar background.
All derivatives and functional determinants in E@9) are The minimum value of R¥g occurs when

understood to be in four dimensions; all group indices havel[ReU(o)]/do=0; this occurs when
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Tmin=.797 (45) equivalent vacua. The reason for thiat least in the
asymptotic regional—«) is well understood. As is seen
at which point from Eg. (49), for any value of|a| the minimum of the
. effective potential is achieved by takig=0. Since at this
ReU in= —.247 (46) minimum the value of the potential is zero, the lowest pos-

sible in supersymmetric models, we conclude that there exist
so thatVg>0 at o= op,, in agreement with the theorem different vacua for each choice of the value|af. On the
that the vacuum energy of a supersymmetric theory is nonether hand, for values d&| of the order ofA the potential
negative. However, foB+0, the degeneracy in the vacuum (49) is unbounded below. It was argued fii] and later
expectation value of the scalar particle is broken by®8).  shown[7] that the functionF(A) has a unique extension to
This result is reliable in perturbation theory, for M=4  the strong-coupling limit, compatible with supersymmetry
supersymmetry the coupling does not run and hence may and a finite number of singularities. Furthermore, the quan-
be chosen to be small irrespective of the valuBoFurther-  tum moduli space is in one-to-one correspondence with the
more the non-renormalization theorem[@6] excludes fur-  parameteu=tr(¢?) which takes its value in the upper half

ther corrections to th&* term. plane[7]. For large values o, u= 3a?, since in this region
¢=1ac®. Foru=A? the effective coupling diverges due to
V. NON-PERTURBATIVE CORRECTIONS the appearance of massless composite fields which are mag-

netic monopoles. In the neighborhood of this singularity the

In th.'s section we a”f”"yze the _effgct of no.n—perturbatwetheory should then be accurately described by a dual theory
corrections to the effective potential in two different ways:, bich is magneticN=2 QED[1].

first by including all instanton corrections to the running cou- From the above discussion we draw the following conclu-

pl.'tr;]gniﬁg C?eglogg ::er te_:)/ﬁluatlon of the effective potentialgjog - First of all, the one-loop resy9) can be improved

withi u scription. by replacing the first term by the corresponding non-
perturbative expressioril]. The higher loop and non-

A. Instanton improved potential for N=2 perturbative contributions tt (o) which are important in
We start by comparing E¢29) with the exact low energy the regime where the scalar and/or the magnetic field are of
effective action1]: the order ofA, will be approximated by computing the ana-

logue ofU (o) in the corresponding dual model. This will be
done by evaluating to one-loop order the effective potential
' in N=2 QED in the presence of background scalar and elec-
a7 tromagnetic fields which are dual to the fields appearing in
Eq. (29). The contribution to the analogue of the first term in
whereA=a+ gy +--- andW,=y,+--- are theN=1 chi-  EQ.(29) can be compared to the non-perturbative expression
ral and vector multiplets, respectivelgThe scalar compo- Of this first term in Eq.(29), obtained by using the methods

nent of A is proportional tof in our notation) The function ~ of [1]. This complements the comparison of the non-
F(A) in the region of validity of perturbation theory Perturbative extension to the instanton contribution to the

(|la]—=) is given by[1,27] effective potential oiN=2SU(2) super Yang-Mills theory
(see[27]). Furthermore, the remaining part of the one-loop
effective potential inN=2 QED should approximate the

: (48 non-perturbative extension of the functibr{c) in Eq. (29).
The accuracy of this approximation relies on to what extent

where c depends on the renormalization scheme. Matchin uglity inN=2 Yang-Mills theory is realiz_ed away f“.’F“ the
he scales as if28] we get, from Eq.(48) with A2 A2 trict vacuum ano_l the strong-weak coupling sm_gul_antlefs. We
t . s ’ ¢ “"DR  therefore expect it to be good for small magnetic fields in the
=3A” (here A corresponds to the scheme used It and  peighborhood of the point where monopoles are massless,
Apris the scale of dimensional reduction combined withyyhile nothing is known in the general case. We cannot test

1 4 OF(A)— , L PFA) )
ﬁSMFE|m d 0TA+ d<o- w, W

2 oA ¢

2
|HP+C

[
F(A)= EAZ

minimal subtractiofy this directly as higher loop and instanton corrections to the
5 ) effective potential in the presence of a background magnetic

v zB—InM as @Hm (49)  field are unknown.
B g2 A2 A, ' Let us first implement the instanton corrections. For this

we substitute the exact res(f] for the running coupling in
with ¢=0. From Eq.(27) it follows that U(o)—0 for o  the first term in Eq(29), which then becomes

—o0, so that Eq(49) is identical to Eq(29) if we make the B2
identificationa=gf. This is also the identification which is Vg==—Im[7(u)], (50)
consistent with Bogomol'nyi-Prasad-Sommerfield8PS 8

mass formulaM?=2|an,+apn,|>.

The analysis of1] was based on the following argument:
each fixed value of the scalar field| defines a distinct  !For theN=4 model discussed in the last section the dual theory
vacuum of the system; different values (& define in-  would be itself.
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FIG. 1. Effective potentiaV(a[u]/A,B) andV(u/A2%,B) as a function olu=tr(¢$?) andB.

where the explicit expressions foerandf as a function of The background configurations are naty=fp andFp,,

u={(tr ¢2) are given by[1,29| respectively. We follow[1,4] in order to determind=p,, .
Consider
CF[1/2,1/2,1(u—1)/(u+1)] 1 A 9
WS TR LA D] GD s Ej d*x| — 2T g PP AV,
(54)

This is the full non-perturbative expression for the effective _

potential in the presence of a very weak magnetic field. Conwhereg, & denote the effective coupling and vacuum angle,
cerning the second term in ER9) there appears to be an TZW:%EMMFM and V# is a Lagrange multiplier vector
ambiguity. There are two different non-perturbative expressig|q imposing the Bianchi identity,F#*=0. Varying Eq.
sions fora, each of which reduce to the perturbative eXpres+(54) with respect toF ,, then leads to

sion [below Eq.(42)]; both o=2|a|?/|B| and the gauge- r

invariant form o=4u/|B| reduce to the perturbative A )
expression. In Fig. 1 the improved effective potential is plot- FDW=:2FW— Z_F‘”’ (55
ted for different values ofi (horizonta) and the magnetic g ™

field |B| for both possible parametrizations @f This shows _ . , .
that the qualitative behavior is the same for both choices/VereFp,,=d,V,—d,V, is the field strength in the dual

The exact relation betweananda is [1] theory. This is consistent with

e AT o, (56)
11 2 wv= o Dpuv™ 5 _FDuvs
a(U):\/E\/U—FlF(—E,E,l,m . (52 9 2m

provided o= Op/27+i4m/g3=—1/7. With ey5=1 and

B. Dual description F12=B we see by Eq(59) that

The only theory with the same number of degrees of free- 4 0
dom as the YM theory, which haé=2 SUSY and in which Fpos==B and Fpj,=— 2, B (57)
the coupling runs to zero at small scaledNs-2 SUSY QED 9

with magnetic rather than electric charges. In componen{ne one-loop effective potential for the acti¢®3) is then

form its Lagrangian reads30] given by the following analogue of E16):
1 — ; _ 2 2
S:f d4x[ = ZF L= (3,0)* (9 $p) -\, W= ~21rin(Dp, ~Mp)

1 _ o +trin(iDo+29foy.V29foy-), (59
+ 5 X?=(D,A)*D*A — D+ |F'[> =i 29\ YA
2 where

+iN2gUl doy-+ by 1Y+ AigXIAA, D3, =(9+iV)? and M3=2g3fpfp, (59

i (530  with gp being the microscopic coupling of the dual QED.

—20% ¢p|°A'A,
Note the presence of the chiral mass term in the Dirac op-

105010-7



D. G. C. McKEON, I. SACHS, AND I. A. SHOVKOVY

erator. It leads to a phase dependence of the Dirac determi-

nant of the form of the chiral anomaly proportional to

0DfFDWI~:’D”. However, this term, being linear in the elec-
tric field, drops out in the effective potential. We can there-
fore ignore this phase and replace the last term in(&%). by

1 2 v 2
Etrln DD++EO' Four—Mp /. (60
To continue we use the identitA8),
tr /270 o uit2= 4 coshitK | )cogtK ), (61)
where, by Eqs(57),(A5),
4
K,=Ep==B=Im[7]B
g
and
K_=—-Bp= 0 B=R B 62
-=~Bp=5_-B=Rg7]B. (62)

The steps which lead from E¢l4) to Eq.(17) can now be
repeated to give

MZS
oL ()

d i L2
AL it(it\S—1la—iMgt
iWp ds fo dit(it)> *e "™b

de=

X[2—2 coshEpt cosBpt].

—i
(47rt)?

Ept Bpt
sinhEpt sinBpt

(63

Let us first have a closer look at the leading term in the

magnetic fieldB. In leading order Eq(63) simplifies to

|

2s H
B 7 i ipys—ta-im2el !
OF(S)fo d(it)(it)> e ((477

t)2
2 A 2
-\ =Bt] |
Performing the remaining integration and taking the Leg-

g
endre transform with respect 6, this leads to the dual
effective potential

d
AW —
iIWp ds

0
-—Bt

><271'

(64)

Vp(B,fp) | M2 4”)2 (5)282
, :——n — P — J— —_—
SO w2 2] 2w
M2
" |n(M—2D [E2-B2]. (65)

Now, using the BPS mass formula for a minimally charged
monopoleM?=2|ap|? we identify ap=gpfp. Then, using
the exact expressiofl] for mp(ap)=—7 1(a) we can re-
write Eq. (65) as

PHYSICAL REVIEW D59 105010

1 2p2 1 2
Vo(B,fo)= g—Iml7p]|7{?B?= g Im[ 7B, (66)

sincerp(ap)~(i/)In(ap/7) in the region where Eq67) is
valid, showing that to leading order Bithe dual potential is
identical to the original potential as it must be in order to be
consistent witH 1]. In this limit the duality invariance of the
effective potential is easy to establiph|.

The full expression for the dual one-loop effective action
(63) does not appear to be easily tractable. A simplification

occurs, however, if we tak@=0. This is consistent as long
as the moduli parametertakes values on the real axis with
u>A2. In that situation Eq(63) takes the form

2s
P i iys-LamiMAt
F(S)Jo d(it)(it)*> e

d
aw —
iWg s

X(
s

—i—=In
8m? M

-

where oDzM%/ED. The corresponding effective potential
is obtained, as usual, via the Legendre transform. Taking the
real part we have

0
—i
(4t)?

Ept
sinhEpt

[2—2 coshEpt]

2 oo
. Ep -
+i— | dtt 2e oot
8m2Jo

Mo

2

t

2

t

X 2

(67)

MWp
VplU,Ep]= EED_WD

2

E
= 2, B
871_Im[7':|B + =
x| 1 i dett’z “lont ¢ t) !
UD(?UD . e an 5173
W E2 fDOdt _ t) ot
=Wp QO’D OTSII'I(O'D'[) tan 575
(68)

where we have usellp J(-)/dEp=—op d(-)/dop and we
have again substituted the exact expression for the leading
term inEp . To continue we use

|-

tam( E

%COSZO‘D)[SKZO’D) —Ci(20p)]

213
tan 57 5 (69

t

2

Ref dtt—2e oot
0

+f dtt~?cog opt)
0
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approximations. Our main finding is that the non-trivial
minimum that appears generically in one-loop approxima-
tions survives even if the leading order in the background
magnetic field is evaluated exactly, but is absent in the dual
description which takes into account the monopole dynam-
ics. This gives support to the idea that monopoles stabilize
the theory in the strongly coupled regime. It would be of
interest to know whether this qualitative feature survives in a
non-supersymmetric theory.

An implicit assumption in our analysis is that the simplest
form of duality proposed inil] is approximately realized at
least for small but non-vanishing magnetic fields. Our results

FIG. 2. Dual effective potentiaVp(ap[u]/A,B) as a function ~aPpear to be_ consistent with this assumption. Furthermore,
of u andB. the combination of perturbative Yang-Mills and dual effec-
tive potential leads to a self consistent effective poteifitial

where si¢) and ci(z) are the integral sine and cosine respec-compatible with the symmetries of the thepfgr all values

tively. The remaining part can be calculated numerically.of the external field.

The resulting effective potential is plotted in Fig. 2. The leading order contribution in the background mag-
It is interesting to isolate the contribution to the effective Netic field to the effective potential being evaluated exactly,

potential which comes from the non-leading terms only. Théhe difference between the effective potential in the funda-

leading termg O(B?)] are, of course, identical because theymental and dual description is due to non-leading contribu-

are exact and the exact effective potential is duality invarianttions. We find that up to an overall sign these contributions

The terms of ordeB* can obtained by expanding Eq49)  are almost identical in the two description. At present it is
and (67), leading to not clear to us whether this could be anticipated.

Note addedThe coefficient of the one-loop contribution
5 B4 to theF* term in Eq.(70a has been computed independently
6 237 1.4 (708 in a yet unpublished work by A. Yung and his result is found
2°m°3! [a to agree with ours. The numerical value of this coefficient is
incompatible with the conjectured exact resi8f for the

Kahler potentialK(.A,.4). The l-instanton contribution to
5 Im[7]B* the F* term was computed ifb]. It would be interesting to

VoB)let= 55— (700 see if instanton corrections can explain the change in sign
2°7° |ap| between Eqs(708 and (70b. We thank A. Yung for his

respectively. The difference in sign is consistent with theCOmments on this point.

absence of a non-trivial minimum in the dual description.
The complete non-leading contributions to the effective and ACKNOWLEDGMENTS

dual effective potentials are plotted in Fig. 3. Note that up to . o
a global sign they are almost identical. We would like to thank C. Ford for collaboration in the

early stage of this work and A. Tseytlin for drawing our
V1. DISCUSSION attention to Refg[9,23]. NSERC is acknowledged for finan-

cial support. R. and D. MacKenzie were helpful in motivat-

In this paper we have analyzed the effective potential foling this research. 1.S. would like to thank the Department of
N=2 andN=4 SUSY Yang-Mills theory within different Applied Mathematics at University of Western Ontario in

V(B)|ga=—

and

FIG. 3. Contribution to the effective and dual effective potential from the non-leading terms as a funaiemaB.
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London for hospitality during the first stage of this project. which appears if19] only in this awkward form. A repre-
The work of I.A.S. was supported by the U.S. Department ofsentation with explicit Dirac matrix structure was presented
Energy Grant No. DE-FG02-84ER40153. Michael Haslamin [32]. Below, we derive another representation which has
helped with the computer evaluations @f;;, . an explicit structure in both Dirac and tensor indices.
It is easy to see that
APPENDIX: GENERAL CASE OF THE

1
ELECTROMAGNETIC FIELD f(t)=— ZFMVGMVFaB(,an(t)ZZ(]:+ iv°G)f(t)
Using the result of19] for the matrix elements of inter- e
est, and the method ¢81] dealing with functions of matrix = (K +iy’K_)*f(1). (A5)
argumentr,,,, we obtain (Here, we have used the following notationy®
. tK tK, =—iy%1y?y% and ??=+1)

(X' |exp(iD2t)|x)= ” It)z SItK_) SInh(tKL) Solving the homogeneous differential equatié®) gives
- _

_ f(t)=Cycosli (K, +iy°K_)t]+C,sinH (K, +iy°K_)t]
Xex;{l—(x—x’)ﬂcf‘”(x—x’),, (A6)
4 with C;=1 and
(A1) i

Co=—————5 (K, —iy’K_)F,, 0", (A7)
2= T ek TR

X
+if A,dz'
X/

where the integral over is taken along the straight line
running fromx’ to x. In Eq. (A1), we also introduced two
independent invariants

in order to satisfy the conditionsf(0)=1,f"(0)
=—iF,,0""2. Thus, we obtain a closed form expression

for Eq. (A4):
K.=VVF2+G2+F, with F=— %FWF’”, exp< _ iz,:wgwt)
G= %G“B“VFQBFM, (A2) =coshtK, )cogtK_)| 1—iy®tanHtK_ )tan(tK_)
and the following matrix: iF,on
:g’”K,K+[ K. < - W[K+ tanhtK ) +K_tantk_)]

o

+
K2 +K?2 [tantK_  tanhtK £ ou
5 Twv
y — 95— A [K_tanh(tK,)—K. tantk_)]|.
(F2) [ K. K_ y2(Ki+K2_)[ + N ]

K2 +K2[tanhtK,  tantK_

}. (A3)
(A8)

When dealing with propagators for fermions, one alsoThis relation can also be used to analyze the properties of a
needs a convenient expression for the following matrix:  Dirac spinor under a Lorentz transformation.
. ] In the case of propagators for vector fields, one needs a
| | closed expression for the spin factor ex@ft),, (in the &
= — — 24 MY — MV mv
f® exp( 2 F o t)’ 7 2[7 Y1 (Ad) =1 gaugé. Again using the method d81], we obtain

exp(— 2Ft) ){+gM[K% cosh2tK )+ K3 cog2tK _)]+(F?),,,[cosh2tK ;) —cog 2tK )]

" (KZ K2
—F K, Sinh(2tK )+ K_ sin(2tK _)]+F% [K_ sinh(2tK )~ K , sin(2tK _)]}. (A9)

Using the proper time representati(®), (10) and Eqs(Al), (A8) and(A9), one can obtain convenient expressions for the
propagators of charged scalar, fermion and vector fields appearing ¥8)Eq.
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