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SU„2… Yang-Mills theory with extended supersymmetry in a background magnetic field
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The vacuum structure ofN52 ~and N54) supersymmetric Yang-Mills theory is analyzed in detail by
considering the effective potential for constant background scalar-magnetic fields within different approxima-
tions. We compare the one-loop approximation with or without instanton improved effective coupling with the
one-loop result in the dual description. ForN52 we find that non-perturbative monopole degrees of freedom
remove the non-trivial minima present in the~improved! one-loop potential in the strong-coupling regime. The
combination of Yang-Mills theory and the dual description leads to a self-consistent effective potential over the
full range of background fields.@S0556-2821~99!01208-4#
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I. INTRODUCTION

Much attention has recently been focused onN52 super-
symmetric~SUSY! vector theories@1,2#. A set of inequiva-
lent vacuum states exists in these models, as the clas
potential is proportional to Tr(@f* ,f#2); distinct
supersymmetric-invariant, zero-energy vacuum states are
rametrized by the constant scalar componentf(x) taking its
value in the Cartan subalgebra of the gauge group. In@1# it
has been argued that the low energy physics of the stro
coupling regime of these theories is equivalently descri
by a weakly coupled dual theory. The analysis in@1# was
restricted to the vacuum manifold. Attempts to generalize
duality away from the vacuum have been presented in@3–5#,
taking into account higher derivative terms in the effect
action. In this paper, we propose another step in this di
tion by considering a constant Abelian background fi
strength and a constant scalar field, aligned in the same
rection in group space. We compute the one-loop effec
potential forN52 andN54 theories, using techniques sim
lar to those used in@6# where the effect of an external mag
netic field on the symmetry breaking patterns in a no
Abelian Higgs model was examined. ForN54 the one-loop
effective potential should be reliable in the context of pert
bation theory, as the coupling constant, once chosen to
small, is not affected by radiative corrections. In the case
N52 we improve the one-loop calculation with the exa
results @1#, therefore including all perturbative and no
perturbative contributions up to second order in the exte
magnetic field.

For a given non-zero magnetic field the classical vacu
degeneracy for the scalar field is lifted by quantum corr
tions. More precisely, the effective potential has a relat
minimum at ufu2/uBu5O(1), where f and B denote the
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background scalar and magnetic fields respectively. W
the lifting of the classical degeneracy for the scalar field
expected, we can only determine the value of the scalar fi
in terms of the background magnetic field, and forN52 we
find that both the one-loop and the instanton improved o
loop effective potential have a minimum at a non-vanish
value of the external magnetic field forB. At the one-loop
level Bmin is of the order ofLQCD

2 , where the running cou-
pling is large and the one-loop approximation therefore is
reliable. Ideally we should therefore include higher order
well as non-perturbative contributions for the higher ord
in the magnetic field as well. This, of course, is beyond rea
at present. However, the dual theory which should desc
the strong-coupling low energy physics of this model@1# is
weakly coupled in this regime and a one-loop calculat
within the dual model should be reliable. Note that the effe
tive potential, unlike the effective action, has a physical
terpretation and should therefore be duality invariant. If d
ality is realized for at least a small but non-vanishi
magnetic field, then the one-loop calculation in the du
theory should contain all relevant non-perturbative corr
tions in the original formulation. This is reasonable, althou
the duality conjecture has been proved only in the ze
energy limit @7# ~see however@3–5#!. We take this as moti-
vation for the assumption that the strong-coupling effect
potential is approximated by the~improved! one-loop effec-
tive potential of the dual theory which isN52 supersym-
metric QED @1#. We find that the non-trivial minima are
indeed removed by the monopole dynamics as describe
the dual action. As a result the combination of the Yan
Mills and dual description leads to to a self-consistent eff
tive potential over the full range of background fields.

In either formulation the effective potential has a no
vanishing imaginary part. While this imaginary part is no
mally associated with unstable~tachyonic! modes@8,9#, we
can argue that they are eliminated by non-perturbative eff
as in QCD@10–13#. In the present case, it may be interpret
as arising from monopole production in the presence of
external magnetic field.
l
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The paper is organized as follows: In the next section
compute the one-loop effective potential forN52 super
Yang-Mills (SYM2) theory for the background field configu
ration described above. Section III deals with the actual co
putation of the functional determinants arising in the on
loop computation of the effective potential and examines
vacuum structure. We repeat this forN54 super Yang-Mills
(SYM4) theory in Sec. IV. In Sec. V we improve theN
52 potential by including all instanton corrections to t
scalar field dependence of the effective coupling. The co
sponding effective potential is evaluated numerically. N
we obtain the effective potential to one-loop order in the d
theory (N52 super QED! using the background fields dua
to those above. The structure of this dual effective poten
is determined numerically and compared with that of
original model. Section VI contains our conclusions. T
computation of the functional determinant for a general el
tromagnetic field is explained in the Appendix.

II. N52 MODEL

A harmonic superspace formulation of SYM2 was pre-
sented in@14# where furthermore the non-renormalizatio
theorems for SYM2 were revisited within that framework
For the finite contributions to the effective action we find
however easier to work in component formulation. The
tion is then given by

S5E d4xH 2
1

4g2
Fmn

a Famn2
u

32p2
Fmn

a F̃amn

2~Dmf!* a~Dmf!a2x̄D” x1
1

2
g2~ f abcfbf* c!2

1
ig

A2
f abc@ x̄ag2xcfb1x̄ag1xcf* b#J , ~1!

where g6516g5 , $gm ,gn%522gmn and gmn

5diag(2111) as in @15#. We take the gauge group to b
SU(2) and we align the background fields so that

fa~x!5 f da31ha~x!

and

Am
a ~x!52

1

2
Fmnxnda31Qm

a ~x!, ~2!

with f and Fmn constant. The gauge fixing Lagrangian
taken to be a modified version of theRj gauge@16#,

Lg f52
1

jg2F1

2
~]mQm!21@~]2 iA !nQn

1

1 ig2j~ f * h11 f h* 1!#@~]1 iA !mQm
2

2 ig2j~ f * h21 f h* 2!#G , ~3!

where
10501
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Am52
1

2
Fmnxn, h65

h17 ih2

A2
, h* 65

h* 17 ih* 2

A2
,

Q5Q3, Q65
Q17 iQ2

A2
. ~4!

The Faddeev-Popov ghost Lagrangian associated with
gauge fixing is, to leading order in the quantum fields wh
j51,

LFP5 c̄1@~]1 iA !222g2f * f #c1

1 c̄2@~]2 iA !222g2f * f #c2 , ~5!

while the one-loop contributions arising fromL1Lg f are of
the form

Qm
1DmnQn

21~h* 1 h1
!S 0 D0

D0 0 D S h* 2

h2 D 1„x̄1 ~x1!T
…

3S 0 D1/2

D1/2
T 0 D S ~ x̄2!T

x2 D , ~6!

where

D05D1
2 2M2, Dmn5gmn~D1

2 2M2!12iF mn

and

D1/252 iD” 12
g

A2
~g1 f * 1g2 f !, ~7!

respectively. In Eq.~6!, T refers to a transpose in the Dira
indices only,D6m[]m6 iAm and M252g2f * f . From Eqs.
~5!–~7! it is then easy to see that the ghost and scalar lo
cancel, so that

iW~1!52tr ln@Dmn#12 tr ln@D1/2#. ~8!

If we now regulate the logarithm and reciprocal of th
operators occurring in Eq.~8! usingz regularization@6,17#,
and its generalization, operator regularization@18#, then we
find that for operatorsHi ,

ln~Hi /m2!52
d

dsU
0

m2s

G~s!
E

0

`

d~ i t !~ i t !s21e2 iH i t ~9!

and

~H1H2 . . . HN!215
d

dsU
0
H m2s

G~s11!
E

0

`

d~ i t 1!

3~ i t 1!se2 iH 1t1
•••

m2s

G~s11!

3E
0

`

d~ i t N!~ i t N!se2 iH NtNJ . ~10!
0-2
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In Eqs.~9! and~10!, m2 is an arbitrary dimensionful param
eter.

III. CASE OF THE BACKGROUND MAGNETIC FIELD

We now specialize to the case whereFmn corresponds to
a magnetic field only, so thatF1252F215B ~the formulas
for the most general case of the electromagnetic field
given in the Appendix!. As has been shown in@15,19,20#
@see also Eq.~A1! with K25B andK150 in the Appendix#,
in this case we have

^x8uexp~ iD 1
2 t !ux&5

2 i

~4pt !2

Bt

sin~Bt!
expF ix i

2

4t
1

ix'
2 B

4 tan~Bt!

1
iB

2
~x2x182x1x28!G ~11!

@x'
2 [(x12x18)

21(x22x28)
2,xi

2[(x32x38)
22(x02x08)

2#.
Furthermore, since (s12)

2514 , it is easily shown that

tr expF2
i

2
smnFmnt G54 cos~Bt! ~12a!

and

tr exp@22Fmnt#54 cos2~Bt!. ~12b!

Since

tr lnF2 iD” 12
g

A2
~g1 f * 1g2 f !G

5tr lnF2 iD” 11
g

A2
~g1 f 1g2 f * !G

5
1

2
tr lnFD1

2 2M21
1

2
smnFmnG , ~13!

we find that, for the leading terms in Eq.~8!,

iWe f f[2tr ln@Dmn#12 tr ln@D1/2#[ i E d4xLe f f , ~14!

and Eqs.~9! and ~11!–~12b! imply

iLe f f5
d

dsU
0

m2s

G~s!
E

0

`

d~ i t !~ i t !s21e2 iM 2t
2 i

~4pt !2

Bt

sin~Bt!

3@4 cos2~Bt!24 cos~Bt!#. ~15!

Furthermore, it is possible to show using Eq.~11! @or Eq.
~A1! in the case of the electromagnetic field of a gene
form# that

E d4xd4x8^xueiD 1
2 t1ux8&^x8uD” 1eiD 1

2 t2ux&50. ~16!

We first note that the term in the brackets in Eq.~15!
contains no term below ordert2 when expanded in powers o
10501
re

l

t; consequently there is no mass renormalization in
theory as expected due to the supersymmetry of the m
~see also@14# and references therein!.

To continue, it is convenient to rewriteLe f f in Eq. ~15! as

Le f f5
d

dsU
0

m2s

G~s!

1

4p2E0

`

d~ i t !~ i t !s23e2 iM 2t
Bt

sin~Bt!

3F2
Bt

2
sin~Bt!1S cos2~Bt!2cos~Bt!

1
Bt

2
sin~Bt! D G . ~17!

Initially, we compute

d

dsU
0

m2s

G~s!

1

4p2E0

`

d~ i t !~ i t !s23e2 iM 2t
Bt

sin~Bt!F2 Bt

2
sin~Bt!G

5
B2

8p2F2 ln s2 ln
uBu

m2G , ~18!

wheres[M2/uBu52g2f * f /uBu. The remaining integral in
Eq. ~17! is free of any divergence ats50; so we are left with

Le f f52
B2

4p2H 1

2S ln s1 ln
uBu

m2 D 1E
0

`dt

t2
e2 i ts

3S @ t2sint#1F tan
t

2
2

t

2G D J . ~19!

We first note that, using Eq. 3.551.9 of@21#,

I 15E
0

`dt

t2
e2 i tsF tan

t

2
2

t

2G5E
s

`

dzE
0

`dt

t
e22tz@ tanht2t#

5E
s

`

dzF ln
z

2
12 lnGS z

2D22 lnGS z11

2 D2
1

2zG . ~20!

Next, we get the imaginary part

I 252 i E
0

`dt

t2
sin~ ts!@ t2sint#

5 i E
0

`

dtFcos~12s!t2cos~11s!t

2t2
2

sinst

t G , ~21!

which, upon integrating the first two terms by parts and us

E
0

`

dx
sinlx

x
5

p

2

l

ulu ~lÞ0!, ~22!

becomes

I 252 i
p

2
~12s!u~12s!. ~23!
0-3
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Last, we have

I 35E
0

`dt

t2
cos~ ts!@ t2sint#

5E
0

`

dtFcosst

t
2

sin~12s!t1sin~11s!t

2t2 G , ~24!

which upon integrating the first term by parts becomes

I 35211 lim
l→0

E
l

`dt

t2Fsinst

s
2

sin~12s!t1sin~11s!t

2 G
5211

11s

2
ln~11s!1

12s

2
lnu12su2 ln s. ~25!

Together, contributions toLe f f coming from Eqs.~20!–~25!
show that

Le f f52g2
B2

4p2H 1

2
ln

2g2f * f

m2
1U~s!J , ~26!

with

U~s!5E
s

`

dzF ln
z

2
12 lnGS z

2D22 lnGS z11

2 D2
1

2zG
2 ln~s!211

11s

2
ln~11s!1

12s

2
lnu12su

2 i
p

2
~12s!u~12s!. ~27!

Including the classical contribution in the effective Lagran
ian ~26! and tradingm for the renormalization group invari
ant scale

Lz
25m2e24p2/g2

, ~28!

we obtain

VB5
B2

8p2
ln

2g2f * f

Lz
2

1
B2

4p2
U~s!. ~29!

The imaginary part ofU(s) arises, as in pure Yang-Mills
theory, due to unstable~tachyonic! modes in the spectrum o
the charged vector particle in the presence of a backgro
magnetic field@8,9#. In @10#, these modes are removed b
treating their classical part of the action as a Higgs mod
i.e. by taking into account the quartic self-interaction of the
unstable modes non-perturbatively. An alternate treatme
given in @11# ~for a review see@22#!. The imaginary part of
the effective action now disappears, and the real part is
lieved to remain unaltered. Here we must note that this
part would quite likely be shifted though if the couplin
between the stable and unstable modes were included in
discussion. But even in the case of pure Yang-Mills theo
this is a rather complicated problem which has not been
10501
-
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l,
e
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al
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,
-

orously solved yet. Note however that even in the case w
this shift turns out to be big, one should expect that the t
vacuum energy is lower than the energy of the metasta
state with a non-zero imaginary part. Other discussions
the stability of translation invariant background configur
tions in Yang-Mills theories are given in@12,13#.

In the present model it may appear natural to associate
imaginary part with monopole production in an extern
magnetic field. However, perturbation theory does not ‘‘se
these degrees of freedom and therefore this interpretatio
possibly too far fetched.

Let us now discuss the vacuum structure predicted by
effective potential~29!. If we ignore the imaginary part in
Eq. ~29!, we find numerically thatd ReV(s)/ds50 implies
thatsmin.0.596 andUmin.20.358. The effective potentia
with s at the minimum reads

Vmin~B!5
1

2g2
B2S 11

g2

4p2
ln

uBu

m2 D 1
B2

4p2
Umin

1
B2

8p2
ln~smin!. ~30!

The existence of a negative minimum ofVmin(B) follows
from the fact thatVmin(0)50, Vmin(B→`).0 and for
smallB, Vmin(B),0 @because of the dominance of the log
rithmic term in Eq. ~30!#. At the minimum, the magnetic
field is given by

Bmin5Lz
2 expS 22Umin2

1

2D . ~31!

However, if t5 1
2 ln(M2/Lz

2), then the running coupling satis
fies the equation

d

dt
ḡ~ t !52

1

2p2
g3~ t !, ~32!

so that

ḡ~ t !5
g2

11g2t/p2
. ~33!

For s5smin ,B5Bmin ; then, the value of t
5 1

2 ln(sminBmin/L2) is such that by Eq.~32! the coupling
ḡ2(t) is large and hence the one-loop potential is unreliab
However, for any value of the external magnetic field, t
scale of the scalar field is fixed, thereby breaking the cla
cal vacuum degeneracy completely. For large values oB,
whereḡ(t) is small,Vmin in Eq. ~30! is positive, as expected
for a supersymmetric theory.

Before seeing how the one-loop approximation can
improved upon, we turn toN54 super Yang-Mills theory in
the one-loop approximation.
0-4
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IV. N54 MODEL IN A BACKGROUND MAGNETIC
FIELD

The effective potential for SYM4 in a background with
constant field strength has been considered in@9,23#. As in
that reference we simplify the algebra by viewing theN54
supersymmetric gauge theory as anN51 supersymmetric
gauge theory in ten dimensions in which six of the dime
sions have been suppressed@24#. The original vector field
Aa

a (a51, . . . ,10)decomposes into a four component ve
tor field Am

a (m51, . . . ,4), three scalars, identified with
A5

a , . . . ,A7
a and three pseudo-scalarsA8

a , . . . ,A10
a , while the

original Majorana-Weyl spinor in ten dimensions become
set of four Majorana spinors in four dimensions. In four d
mensions, the couplings of these matter fields isSU(4) in-
variant.

The N51 supersymmetric gauge theory in ten dime
sions that we will consider has the action

S5E d10xF2
1

4
Gab

a ~V!Gaab~V!2
i

2
l̄aD” ablbG . ~34!

We now use the Honerkamp gauge@25#

Dab~A!•Qb50, ~35!

whereV has been decomposed into the sum of a backgro
field Aa

a and a quantum fieldQa
a . If the background field in

four dimensions corresponds to a constant backgroundU(1)
field Fmn

a (m, n51, . . . ,4) and aconstant scalar field o
magnitudegv, both in the directionna in group space, then

Am
a 52

1

2
Fmn xnna, ~36!

(
a55

10

Aa
a Aab5g2v2nadab[M2nadab. ~37!

The effective action to one-loop order is then given by

expiW~1!5det~D2ab!det21/2~D2abgab

12 f apbFab
p !det1/2FD” abS 11g11

2 D G2

~38!

in ten dimensions@with the three terms in Eq.~38! corre-
sponding to the contribution of the ghost, vector, a
Majorana-Weyl spinor respectively#; dimensionally reducing
this to four dimensions with the background field satisfyi
the conditions of Eqs.~36! and ~37! converts Eq.~38! into

expiW~1!5det~D2ab2M2!det21/2@~D2ab2M2!gmn

22iF mn#@det21/2~D2ab2M2!#6 det1/2

3S D2ab2M21
1

2
smnFmnD . ~39!

All derivatives and functional determinants in Eq.~39! are
understood to be in four dimensions; all group indices h
10501
-

-

a

-

d

e

been suppressed once we set (X)ab5 i f apb(Xp), D5]
2 iA, andsmn5( i /2)@gm ,gn#.

We can now proceed using the techniques outlined in
previous section. Regulating as in Eq.~11! we see that

iW~1!52
d

dsU
0

tr
1

G~s!
E

0

`

dit~ i t !s21e2 i [ 2D21M2] t

3F2
1

2
e2Fmnt221

1

2
e

i
2 smnFmntG . ~40!

Using Eqs.~13! and ~14!, we see that, in the presence of a
external magnetic field,

iW~1!5
d

dsU
0

1

G~s!
E

0

`

d it~ i t !s21S 2
i

~4pt !2

Bt

sinBtD
3~4 cos2 Bt1428 cosBt!e2 iM 2t. ~41!

~An overall factor of 2 comes from the trace in group spac!
The integral overt in Eq. ~41! is free of divergences ats
50, and hence, upon using some trigonometric identities,
see that

iW~1!5
8B2

~4p!2E0

`

d~ i t !~ i t !22F S tan
t

2
2

t

2D
1S t

2
2

1

2
sint D Ge2 ist, ~42!

wheres5M2/B. The integrals in Eq.~42! are given in Eqs.
~22!, ~25! and ~27! so that

iW~1!52
iB2

2p2H Es

`

dzF ln
z

2
12 lnGS z

2D22 lnGS z11

2 D
2

1

2zG1
1

2S 211
11s

2
ln~11s!1

12s

2

3 lnu12su2 ln s2 i
p

2
~12s!u~12s! D J

[2
iB2

2p2
Ū~s!. ~43!

The effective potential to one-loop order is hence given b

VB5
1

2
B2F11

1

p2
Ū~s!G . ~44!

We note in passing that the result~43! could also be obtained
by identifying the mass term in@23# with the background
scalar. As for the imaginary part the discussion in the l
section could be repeated here. In particular forM→0 we
recover the result of@23# for a vanishing scalar background

The minimum value of ReVB occurs when
d@ReŪ(s)#/ds50; this occurs when
0-5
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smin5.797 ~45!

at which point

ReŪmin52.247 ~46!

so thatVB.0 at s5smin , in agreement with the theorem
that the vacuum energy of a supersymmetric theory is n
negative. However, forBÞ0, the degeneracy in the vacuu
expectation value of the scalar particle is broken by Eq.~45!.
This result is reliable in perturbation theory, for inN54
supersymmetry the couplingg does not run and hence ma
be chosen to be small irrespective of the value ofB. Further-
more the non-renormalization theorem of@26# excludes fur-
ther corrections to theB4 term.

V. NON-PERTURBATIVE CORRECTIONS

In this section we analyze the effect of non-perturbat
corrections to the effective potential in two different way
first by including all instanton corrections to the running co
pling and second by evaluation of the effective poten
within the dual description.

A. Instanton improved potential for N52

We start by comparing Eq.~29! with the exact low energy
effective action@1#:

LSW5
1

4p
ImF E d4u

]F~A!

]A
Ā1E d2u

1

2

]2F~A!

]A2
WaWaG ,

~47!

whereA5a1ux1••• andWa5xa1••• are theN51 chi-
ral and vector multiplets, respectively.~The scalar compo-
nent ofA is proportional tof in our notation.! The function
F(A) in the region of validity of perturbation theor
(uau→`) is given by@1,27#

F~A!5
i

2p
A2S ln

A2

L2
1cD , ~48!

wherec depends on the renormalization scheme. Match
the scales as in@28# we get, from Eq.~48! with Lz

25LDR̄
2

5 1
2 L2 ~hereL corresponds to the scheme used in@1# and

LDR̄ is the scale of dimensional reduction combined w
minimal subtraction!,

VB.
B2

8p2
ln

2uau2

Lz
2

, as
uau
Lz
→`, ~49!

with c50. From Eq.~27! it follows that U(s)→0 for s
→`, so that Eq.~49! is identical to Eq.~29! if we make the
identificationa5g f . This is also the identification which i
consistent with Bogomol’nyi-Prasad-Sommerfield~BPS!
mass formulaM252uane1aDnmu2.

The analysis of@1# was based on the following argumen
each fixed value of the scalar fielduau defines a distinct
vacuum of the system; different values ofuau define in-
10501
n-

e
:
-
l

g

equivalent vacua. The reason for this~at least in the
asymptotic regionuau→`) is well understood. As is see
from Eq. ~49!, for any value ofuau the minimum of the
effective potential is achieved by takingB50. Since at this
minimum the value of the potential is zero, the lowest po
sible in supersymmetric models, we conclude that there e
different vacua for each choice of the value ofuau. On the
other hand, for values ofuau of the order ofL the potential
~49! is unbounded below. It was argued in@1# and later
shown@7# that the functionF(A) has a unique extension t
the strong-coupling limit, compatible with supersymmet
and a finite number of singularities. Furthermore, the qu
tum moduli space is in one-to-one correspondence with
parameteru5tr^f2& which takes its value in the upper ha
plane@7#. For large values ofa, u5 1

2 a2, since in this region
f5 1

2 as3. For u.L2 the effective coupling diverges due t
the appearance of massless composite fields which are m
netic monopoles. In the neighborhood of this singularity t
theory should then be accurately described by a dual the
which is magneticN52 QED @1#.1

From the above discussion we draw the following conc
sions. First of all, the one-loop result~29! can be improved
by replacing the first term by the corresponding no
perturbative expression@1#. The higher loop and non
perturbative contributions toU(s) which are important in
the regime where the scalar and/or the magnetic field ar
the order ofL, will be approximated by computing the ana
logue ofU(s) in the corresponding dual model. This will b
done by evaluating to one-loop order the effective poten
in N52 QED in the presence of background scalar and e
tromagnetic fields which are dual to the fields appearing
Eq. ~29!. The contribution to the analogue of the first term
Eq. ~29! can be compared to the non-perturbative express
of this first term in Eq.~29!, obtained by using the method
of @1#. This complements the comparison of the no
perturbative extension to the instanton contribution to
effective potential ofN52SU(2) super Yang-Mills theory
~see@27#!. Furthermore, the remaining part of the one-lo
effective potential inN52 QED should approximate th
non-perturbative extension of the functionU(s) in Eq. ~29!.
The accuracy of this approximation relies on to what ext
duality in N52 Yang-Mills theory is realized away from th
strict vacuum and the strong-weak coupling singularities.
therefore expect it to be good for small magnetic fields in
neighborhood of the point where monopoles are massl
while nothing is known in the general case. We cannot t
this directly as higher loop and instanton corrections to
effective potential in the presence of a background magn
field are unknown.

Let us first implement the instanton corrections. For t
we substitute the exact result@1# for the running coupling in
the first term in Eq.~29!, which then becomes

VB5
B2

8p
Im@t~u!#, ~50!

1For theN54 model discussed in the last section the dual the
would be itself.
0-6
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FIG. 1. Effective potentialV(a@u#/L,B) andV(u/L2,B) as a function ofu5tr^f2& andB.
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where the explicit expressions fort and f as a function of
u5^tr f2& are given by@1,29#

t~u!5 i
F@1/2,1/2,1,~u21!/~u11!#

F@1/2,1/2,1,2/~u11!#
. ~51!

This is the full non-perturbative expression for the effect
potential in the presence of a very weak magnetic field. C
cerning the second term in Eq.~29! there appears to be a
ambiguity. There are two different non-perturbative expr
sions fors, each of which reduce to the perturbative expr
sion @below Eq. ~42!#; both s52uau2/uBu and the gauge-
invariant form s54u/uBu reduce to the perturbativ
expression. In Fig. 1 the improved effective potential is pl
ted for different values ofu ~horizontal! and the magnetic
field uBu for both possible parametrizations ofs. This shows
that the qualitative behavior is the same for both choic
The exact relation betweenu anda is @1#

a~u!5A2Au11FS 2
1

2
,
1

2
,1,

2

11uD . ~52!

B. Dual description

The only theory with the same number of degrees of fr
dom as the YM theory, which hasN52 SUSY and in which
the coupling runs to zero at small scale isN52 SUSY QED
with magnetic rather than electric charges. In compon
form its Lagrangian reads@30#

S5E d4xH 2
1

4
FmnFmn2~]mfD!* ~]mfD!2l̄ i]”l i

1
1

2
X22~DmAi !* DmAi2c̄D” c1uFi u22 i2gl̄ icĀi

1 iA2gc̄@fDg21fD* g1#c14igXi j ĀiAj

22g2ufDu2ĀiAi J . ~53!
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The background configurations are nowfD5 f D and FDmn

respectively. We follow@1,4# in order to determineFDmn .
Consider

S5
1

16pE d4xF2
4p

ḡ2
FmnFmn2

ū

2p
FmnF̃mn24Vm]nF̃mnG ,

~54!

whereḡ,ū denote the effective coupling and vacuum ang
F̃mn5 1

2 emnlsFls and Vm is a Lagrange multiplier vecto
field imposing the Bianchi identity]nF̃mn50. Varying Eq.
~54! with respect toFmn then leads to

FDmn5
4p

ḡ2
F̃mn2

ū

2p
Fmn , ~55!

whereFDmn5]mVn2]nVm is the field strength in the dua
theory. This is consistent with

Fmn5
4p

ḡD
2

F̃Dmn2
ūD

2p
FDmn , ~56!

provided tD5 ūD/2p1 i4p/ḡD
2 521/t. With e012351 and

F125B we see by Eq.~55! that

FD035
4p

ḡ2
B and FD1252

ū

2p
B. ~57!

The one-loop effective potential for the action~53! is then
given by the following analogue of Eq.~16!:

iWD
~1!522 tr ln~DD1

2 2MD
2 !

1tr ln~ iD” D1A2g fDg1A2g f̄Dg2!, ~58!

where

DD1
2 5~]1 iV !2 and MD

2 52gD
2 f̄ D f D , ~59!

with gD being the microscopic coupling of the dual QED
Note the presence of the chiral mass term in the Dirac
0-7
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erator. It leads to a phase dependence of the Dirac dete
nant of the form of the chiral anomaly proportional
uD*FDmnF̃D

mn . However, this term, being linear in the ele
tric field, drops out in the effective potential. We can the
fore ignore this phase and replace the last term in Eq.~58! by

1

2
tr lnS DD1

2 1
1

2
smnFDmn2MD

2 D . ~60!

To continue we use the identity~A8!,

tr ei /2FD
mnsmnt/254 cosh~ tK1!cos~ tK2!, ~61!

where, by Eqs.~57!,~A5!,

K15ED5
4p

ḡ2
B5Im@t#B

and

K252BD5
ū

2p
B5Re@t#B. ~62!

The steps which lead from Eq.~14! to Eq. ~17! can now be
repeated to give

iWD
~1!5

d

dsU
0

m2s

G~s!
E

0

`

dit~ i t !s21e2 iM D
2 t

3S 2 i

~4pt !2D EDt

sinhEDt

BDt

sinBDt

3@222 coshEDt cosBDt#. ~63!

Let us first have a closer look at the leading term in
magnetic fieldB. In leading order Eq.~63! simplifies to

iWD
~1!5

d

dsU
0

m2s

G~s!
E

0

`

d~ i t !~ i t !s21e2 iM D
2 tS 2 i

~4pt !2D
3F S ū

2p
BtD 2

2S 4p

ḡ2
BtD 2G . ~64!

Performing the remaining integration and taking the Le
endre transform with respect toED this leads to the dua
effective potential

VD~B, f D!52
1

~4p!2
lnS MD

2

m2 D F S 4p

ḡ2 D 2

2S ū

2p
D 2GB2

52
1

~4p2!
lnS MD

2

m2 D @ED
2 2BD

2 #. ~65!

Now, using the BPS mass formula for a minimally charg
monopoleM252uaDu2 we identify aD5gDf D . Then, using
the exact expression@1# for tD(aD)52t21(a) we can re-
write Eq. ~65! as
10501
i-

-

e

-

d

VD~B, f D!5
1

8p
Im@tD#utu2B25

1

8p
Im@t#B2, ~66!

sincetD(aD)'( i /p)ln(aD /p) in the region where Eq.~67! is
valid, showing that to leading order inB the dual potential is
identical to the original potential as it must be in order to
consistent with@1#. In this limit the duality invariance of the
effective potential is easy to establish@4#.

The full expression for the dual one-loop effective acti
~63! does not appear to be easily tractable. A simplificat
occurs, however, if we takeū50. This is consistent as long
as the moduli parameteru takes values on the real axis wit
u.L2. In that situation Eq.~63! takes the form

iWD
~1!5

d

dsU
0

m2s

G~s!
E

0

`

d~ i t !~ i t !s21e2 iM D
2 t

3S 2 i

~4pt !2D EDt

sinhEDt
@222 coshEDt#

52 i
ED

2

8p2
lnS MD

2

m2 D 1 i
ED

2

8p2E0

`

dtt22e2 isDt

3F tanhS t

2D2
t

2G , ~67!

where sD5MD
2 /ED . The corresponding effective potentia

is obtained, as usual, via the Legendre transform. Taking
real part we have

VD@u,ED#5
]WD

]ED
ED2WD

5
1

8p
Im@t#B21

ED
2

8p2

3S 12sD

]

]sD
D E

0

`

dtt22e2 isDtF tanhS t

2D2
t

2G
5WD1

ED
2

8p2
sDE

0

`dt

t
sin~sDt !F tanhS t

2D2
t

2G ,
~68!

where we have usedED ](•)/]ED52sD ](•)/]sD and we
have again substituted the exact expression for the lea
term in ED . To continue we use

ReE
0

`

dtt22e2 isDtF tanhS t

2D2
t

2G
5

1

2
cos~2sD!@si~2sD!2ci~2sD!#

1E
0

`

dtt22 cos~sDt !F tanhS t

2D2
t

2G , ~69!
0-8
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where si(z) and ci(z) are the integral sine and cosine respe
tively. The remaining part can be calculated numerica
The resulting effective potential is plotted in Fig. 2.

It is interesting to isolate the contribution to the effecti
potential which comes from the non-leading terms only. T
leading terms@O(B2)# are, of course, identical because th
are exact and the exact effective potential is duality invaria
The terms of orderB4 can obtained by expanding Eqs.~19!
and ~67!, leading to

V~B!uB452
5

26p23!

B4

uau4
~70a!

and

VD~B!uB45
5

28p2

Im@t#B4

uaDu4
, ~70b!

respectively. The difference in sign is consistent with t
absence of a non-trivial minimum in the dual descriptio
The complete non-leading contributions to the effective a
dual effective potentials are plotted in Fig. 3. Note that up
a global sign they are almost identical.

VI. DISCUSSION

In this paper we have analyzed the effective potential
N52 and N54 SUSY Yang-Mills theory within different

FIG. 2. Dual effective potentialVD(aD@u#/L,B) as a function
of u andB.
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approximations. Our main finding is that the non-trivi
minimum that appears generically in one-loop approxim
tions survives even if the leading order in the backgrou
magnetic field is evaluated exactly, but is absent in the d
description which takes into account the monopole dyna
ics. This gives support to the idea that monopoles stabi
the theory in the strongly coupled regime. It would be
interest to know whether this qualitative feature survives i
non-supersymmetric theory.

An implicit assumption in our analysis is that the simple
form of duality proposed in@1# is approximately realized a
least for small but non-vanishing magnetic fields. Our resu
appear to be consistent with this assumption. Furtherm
the combination of perturbative Yang-Mills and dual effe
tive potential leads to a self consistent effective potential~i.e.
compatible with the symmetries of the theory! for all values
of the external field.

The leading order contribution in the background ma
netic field to the effective potential being evaluated exac
the difference between the effective potential in the fun
mental and dual description is due to non-leading contri
tions. We find that up to an overall sign these contributio
are almost identical in the two description. At present it
not clear to us whether this could be anticipated.

Note added.The coefficient of the one-loop contributio
to theF4 term in Eq.~70a! has been computed independen
in a yet unpublished work by A. Yung and his result is fou
to agree with ours. The numerical value of this coefficien
incompatible with the conjectured exact result@3# for the
Kähler potentialK(A,Ā). The 1-instanton contribution to
the F4 term was computed in@5#. It would be interesting to
see if instanton corrections can explain the change in s
between Eqs.~70a! and ~70b!. We thank A. Yung for his
comments on this point.
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APPENDIX: GENERAL CASE OF THE
ELECTROMAGNETIC FIELD

Using the result of@19# for the matrix elements of inter
est, and the method of@31# dealing with functions of matrix
argumentFmn , we obtain

^x8uexp~ iD 1
2 t !ux&5

2 i

~4pt !2

tK2

sin~ tK2!

tK1

sinh~ tK1!

3expF i

4
~x2x8!mCmn~x2x8!n

1 i E
x8

x

AldzlG ~A1!

where the integral overz is taken along the straight lin
running fromx8 to x. In Eq. ~A1!, we also introduced two
independent invariants

K65AAF 21G 26F, with F52
1

4
FmnFmn,

G5
1

8
eabmnFabFmn , ~A2!

and the following matrix:

Cmn5
gmnK2K1

K1
2 1K2

2 F K1

tantK2
1

K2

tanhtK1
G

2
~F2!mn

K1
2 1K2

2 F K1

tanhtK1
2

K2

tantK2
G . ~A3!

When dealing with propagators for fermions, one a
needs a convenient expression for the following matrix:

f ~ t !5expS 2
i

2
Fmnsmnt D , smn5

i

2
@gm,gn# ~A4!
10501
.
f

o

which appears in@19# only in this awkward form. A repre-
sentation with explicit Dirac matrix structure was presen
in @32#. Below, we derive another representation which h
an explicit structure in both Dirac and tensor indices.

It is easy to see that

f 9~ t !52
1

4
FmnsmnFabsab f ~ t !52~F1 ig5G! f ~ t !

5~K11 ig5K2!2f ~ t !. ~A5!

~Here, we have used the following notation:g5

52 ig0g1g2g3 ande0123511.)
Solving the homogeneous differential equation~A5! gives

f ~ t !5C1 cosh@~K11 ig5K2!t#1C2 sinh@~K11 ig5K2!t#

~A6!

with C151 and

C252
i

2~K1
2 1K2

2 !
~K12 ig5K2!Fmnsmn, ~A7!

in order to satisfy the conditions f (0)51,f 8(0)
52 iF mnsmn/2. Thus, we obtain a closed form expressi
for Eq. ~A4!:

expS 2
i

2
Fmnsmnt D

5cosh~ tK1!cos~ tK2!F12 ig5 tanh~ tK1!tan~ tK2!

2
iF mnsmn

2~K1
2 1K2

2 !
@K1 tanh~ tK1!1K2 tan~ tK2!#

2g5
Fmnsmn

2~K1
2 1K2

2 !
@K2 tanh~ tK1!2K1 tan~ tK2!#G .

~A8!

This relation can also be used to analyze the properties
Dirac spinor under a Lorentz transformation.

In the case of propagators for vector fields, one need
closed expression for the spin factor exp(22Ft)mn ~in the j
51 gauge!. Again using the method of@31#, we obtain
the
exp~22Ft !mn5
1

~K1
2 1K2

2 !
$1gmn@K2

2 cosh~2tK1!1K1
2 cos~2tK2!#1~F2!mn@cosh~2tK1!2cos~2tK2!#

2Fmn@K1 sinh~2tK1!1K2 sin~2tK2!#1Fmn* @K2 sinh~2tK1!2K1 sin~2tK2!#%. ~A9!

Using the proper time representation~9!, ~10! and Eqs.~A1!, ~A8! and~A9!, one can obtain convenient expressions for
propagators of charged scalar, fermion and vector fields appearing in Eq.~8!.
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