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Mode-by-mode summation for the zero point electromagnetic energy of an infinite cylinder
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Using the mode-by-mode summation technique the zero point energy of the electromagnetic field is calcu-
lated for the boundary conditions given on the surface of an infinite solid cylinder. It is assumed that the
dielectric and magnetic characteristics of the material which makes up the cylinder («1 ,m1) and of that which
makes up the surroundings («2 ,m2) obey the relation«1m15«2m2 . With this assumption all the divergences
cancel. The divergences are regulated by making use of zeta function techniques. Numerical calculations are
carried out for a dilute dielectric-diamagnetic cylinder and for a perfectly conducting cylindrical shell. The
Casimir energy in the first case vanishes, and in the second is in a complete agreement with that obtained by
DeRaad and Milton who employed a Green’s function technique with an ultraviolet regulator.
@S0556-2821~99!03010-6#
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I. INTRODUCTION

The Casimir effect is a fundamental aspect of quant
field theory in confined geometries or, more generally, wh
the material properties of space vary from point to point. I
fundamental because it may be thought of as a manifesta
of the zero-point fluctuations of the field variables, whi
may have observable implications on all scales, from cos
logical to subnuclear. Recently, direct measurements of
Casimir force between~effectively! parallel conducting
plates, the original geometry considered by Casimir@1#, have
confirmed the theory to good accuracy@2#. Thus, it is timely
to reexamine other configurations, not only in the hope t
they may also eventually prove amenable to experime
investigation, but also to deepen our theoretical understa
ing of what remains a rather mysterious subject.

Calculation of the Casimir energy for nontrivial bounda
conditions is a subject of intense ongoing activity. In spite
this, the experience accumulated in this area still does
allow one to predict, without involved calculation, even t
sign of this energy@3,4#. In this connection the developmen
of new effective methods of calculating the Casimir ene
is doubtless of interest.

In recent papers@5,6# the zero point energy of the elec
tromagnetic field with boundary conditions given on a sph
has been calculated by a method of direct summation of
eigenfrequencies. A substantial point here was the us
contour integration in the complex frequency plane@7#. The
divergences in this problem were removed by two sub
quent steps. The first was accomplished by the subtractio
the vacuum energy of an infinite homogeneous space and
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second made use of the technique of zeta function regu
ization. The same method was also applied for calculat
the Casimir energy of a massless scalar field obeying Dir
let and Neumann boundary conditions on a sphere@5#. The
same technique has recently been used to rederive the
tromagnetic Casimir energy for a spherical shell@8#. The
possibility of incorporating in this approach the dielectr
and magnetic properties of the media was demonstrate
@6#. These calculations are distinguished by a certain co
sion and simplicity in comparison with the Green’s functio
techniques@4#, which, however, retain superiority with re
spect to physical interpretation.

The present paper seeks to show the efficiency of
mode summation method in calculating the zero point ene
of an electromagnetic field when the boundary conditions
given on an infinite circular cylinder. When applying th
Green’s function techniques@4,9,10#, this problem turns out
to be more complicated than the corresponding calculatio
the Casimir energy for a sphere@11–17#.

The layout of the paper is as follows. In Sec. II the ge
eral integral representation is derived for the Casimir ene
of an infinite solid cylinder surrounded by an uniform m
dium. The permittivity and permeability of the cylinder ma
terial («1 ,m1) and those of the surroundings («2 ,m2) are
considered to be arbitrary. In principle they may depend
the frequency of the electromagnetic oscillations~dispersion
of the media!, but this point is beyond the scope of th
present paper. In Sec. III it is assumed that the electrom
netic characteristics obey the condition«1m15«2m25c22

wherec is the speed of the light in the media~in units of that
in the vacuum!. When this condition is satisfied, all the d
vergences cancel between interior and exterior modes. Th
divergences are regulated by employing the zeta func
technique. In Sec. IV the cases whenj2!1 andj251 are
considered numerically,j2 being («12«2)2/(«11«2)2. The
©1999 The American Physical Society09-1
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MILTON, NESTERENKO, AND NESTERENKO PHYSICAL REVIEW D59 105009
first case gives the Casimir energy of a dilute dielectr
diamagnetic cylinder, while the second case corresponds
perfectly conducting infinitely thin cylindrical shell. Remark
ably, the Casimir energy obtained for a tenuous medium v
ishes, as it does for a tenuous dielectric cylinder. The re
obtained in the second case is identical to that obtained
the Green’s function method of calculating the energy a
regulating the divergences by use of an ultraviolet regula
@4#. In Sec. V~Conclusion! the significance of the universa
results obtained are discussed.

II. INTEGRAL REPRESENTATION FOR THE CASIMIR
ENERGY

We shall consider the following configuration. An infinit
cylinder of radiusa is placed in a uniform unbounded me
dium. The permittivity and the permeability of the mater
making up the cylinder are«1 and m1 , respectively, and
those for the surrounding medium are«2 and m2 . It is as-
sumed that the conductivity in both the media is zero. W
will compute the Casimir energy per unit length of the c
inder.

In the mode summation method, the renormalized Cas
energy is defined by

E5
1

2 (
$p%

~vp2v̄p!, ~2.1!

wherevp are the classical eigenfrequencies of the elec
magnetic oscillations in the system under consideration,
v̄p are those in the absence of any boundary, that is, w
either medium fills all space.~When the precise meaning
not required, we denote this by the formal limita→`.) The
set $p% stands for a complete set of quantum numbers~dis-
crete and continuous! which is determined by the symmetr
of the problem. Either sum in Eq.~2.1! diverges; therefore a
preliminary regularization is required.

In order for the eigenfrequencies to be found one need
solve Maxwell’s equations for the given configuration wi
allowance for the appropriate boundary conditions on
lateral surface of the cylinder. As is well known, it is suf
cient to require the continuity of the tangential compone
of the electric fieldE and of the magnetic fieldH @18#. In
terms of the cylindrical coordinates (r ,u,z) the eigenfunc-
tions of the given boundary value problem contain the m
tiplier

exp~2 ivt1 ikzz1 inu!, ~2.2!

and their dependence onr is described by the cylindrica
Bessel functionsJn for r ,a and by Hankel functions of the
first kind, Hn[Hn

(1) for r .a. The eigenfrequencies are th
roots of the equation~Ref. @18#, p. 526!

f n~kz ,v,a!50, ~2.3!

where
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f n[l1
2l2

2Dn
TE~l1a,l2a!Dn

TM~l1a,l2a!

2n2v2kz
2~«1m12«2m2!2@Jn~l1a!Hn~l2a!#2,

~2.4!

with

Dn
TE~l1a,l2a!5am1l2Jn8~l1a!Hn~l2a!

2am2l1Jn~l1a!Hn8~l2a!,

Dn
TM~l1a,l2a!5a«1l2Jn8~l1a!Hn~l2a!

2a«2l1Jn~l1a!Hn8~l2a!,

l i
25ki

22kz
2 , ki

25« im iv
2, i 51,2, n50,61,62,... .

~2.5!

The indices TE and TM will be explained below. The prim
on the functionsJn and Hn means differentiation with re-
spect to their arguments. For givenkz andn, Eq.~2.3! has an
infinite sequence of rootsvnm(kz), m51,2,..., these fre-
quencies being the same inside and outside the cylinder@19#.
In view of this the Casimir energy~2.1! can be rewritten as

E5
1

2 E2`

` dkz

2p (
n52`

`

(
m51

`

@vnm~kz!2v̄nm~kz!#, ~2.6!

where v̄nm(kz) stands for the uniform medium subtractio
referred to above.

The next step in our consideration is a representation
the sum in Eq.~2.6! in terms of the contour integral@7#

E5
1

2 E2`

` dkz

2p (
n52`

`
1

2p i

1

2 R
C
vdv ln

f n~kz ,v,a!

f n~kz ,v,`!
.

~2.7!

Integration in Eq.~2.7! is conducted along a closed pathC in
the complexv plane which consists of two parts:C1 which
encloses the positive roots of Eq.~2.3! in a counterclockwise
sense andC2 which encircles the negative roots in a cloc
wise sense. Therefore, we face the task of investigating
properties of the functionf n(kz ,v,a) specifying the fre-
quency equation.@However, the result~2.7! may be easily
shown to be equivalent to the corresponding Green’s fu
tion formulation. See Appendix A.# Generally this is a prob-
lem of extreme difficulty. Therefore, in the next sections w
shall consider specific cases introducing simplifying assum
tions.

The method of calculation of the Casimir energy propos
above can be straightforwardly generalized to dispersive
dia. To this end, it is sufficient to treat the parameters« i and
m i , i 51,2, in the frequency equation~2.3! as given func-
tions of the frequencyv. However, this issue is beyond th
scope of the present paper.
9-2



he

th

-

rs

s
te

o
ur
a

ina
th
e

tro

-
n

l

h
e
in

the
e

y

we
to
he
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III. CASIMIR ENERGY OF AN INFINITE CYLINDER
WHEN «1µ15«2µ2

We assume that the permittivity and permeability of t
cylinder material («1 ,m1) and of the surroundings («2 ,m2)
are not arbitrary but satisfy the condition

«1m15«2m25c22, ~3.1!

wherec is the light speed in either medium~in units of the
speed of light in vacuum!. The physical implications of this
condition can be found in@20–22#. When Eq.~3.1! holds, we
havel15l25l, and the frequency equation~2.3! is simpli-
fied considerably. It breaks down into two equations: for
transverse-electric~TE! oscillations

Dn
TE~l,a![la@m1Jn8~la!Hn~la!2m2Jn~la!Hn8~la!#50

~3.2!

and for the transverse-magnetic~TM! oscillations

Dn
TM~l,a![la@«1Jn8~la!Hn~la!2«2Jn~la!Hn8~la!#50.

~3.3!

In the general case@see Eq.~2.4!# such a decomposition oc
curs only for oscillations withn50. In Eqs.~3.2! and ~3.3!,
l is the eigenvalue of the corresponding transve
~membrane-like! boundary value problem@23#

l25
v2

c2 2kz
2 . ~3.4!

Classification of the solutions of Maxwell’s equation
without sources in terms of the TE and TM modes origina
in waveguide theory@18,23,24#. The main distinction of the
propagation of electromagnetic waves in waveguides, in c
trast to the same process in unbounded space, is that a p
transverse wave cannot propagate in a waveguide. The w
in a waveguide must necessarily contain either longitud
electric or magnetic fields. The first case is referred to as
waves of electric type~TM waves! and in the second cas
one is dealing with waves of magnetic type~TE waves!. This
classification proves to be convenient in studies of elec
magnetic oscillations in closed resonators as well.

Replacing the functionf n(kz ,v,a) in Eq. ~2.7! by the left
hand sides of Eqs.~3.2! and ~3.3! and changing the integra
tion variable tol we arrive at the following representatio
for the Casimir energy:

E52
c

2 E2`

` dkz

2p (
n52`

`
1

2p i

1

2

3 R
C8

Al21kz
2dl ln

Dn
TE~la!Dn

TM~la!

Dn
TE~`!Dn

TM~`!
. ~3.5!

Here we have distorted the contour of integration toC8
5C18 1C28 . We takeC18 to consist of a straight line paralle
to, and just to the right of, the imaginary axis (2 i`,1 i`)
closed by a semicircle of an infinitely large radius in the rig
half-plane.C28 similarly is a line parallel to, and just to th
left of, the imaginary axis, closed by an infinite semicircle
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the left hand plane. On both semicircles the argument of
logarithm function in Eq.~3.5! tends to 1. As a result thes
parts of the contourC8 do not give any contribution to the
Casimir energyE. When integrating along the imaginar
axis we chose the branch line of the functionw(l)
5Al21kz

2 to run between 2 ikz and ikz , where kz

51Akz
2.0. In terms ofy5Im l we have

w~ iy !5H iAy22kz
2, y.kz ,

6Akz
22y2, uyu,kz ,

2 iAy22kz
2, y,2kz ,

~3.6!

where the sign on the middle form depends on whether
are to the right or the left of the cut. Thus contributions
Eq. ~3.5! due to the integration along the segment of t
imaginary axis (2 ikz ,ikz) cancel betweenC18 andC28 , and
Eq. ~3.5! acquires the form

E52
c

2p2 (
n52`

` E
0

`

dkzE
kz

`
Ay22kz

2dy

3 ln
Dn

TE~ iay!Dn
TM~ iay!

Dn
TE~ i`!Dn

TM~ i`!
. ~3.7!

Changing the order of integration ofkz andy and taking into
account the value of the integral

E
0

y

dkzAy22kz
25

p

4
y2, ~3.8!

we obtain, after the substitutionay→y,

E52
c

8pa2 (
n52`

` E
0

`

y2dy ln
Dn

TE~ iy !Dn
TM~ iy !

Dn
TE~ i`!Dn

TM~ i`!
. ~3.9!

Further we shall need the modified Bessel functionsI n(y)
andKn(y) @25#,

I n~y!5 i 2nJn~ iy !, ~3.10!

Kn~y!5 i n11
p

2
Hn~ iy !, ~3.11!

and their asymptotic behavior for fixedn andy→`,

I n~y!.
ey

A2py
, I n8~y!.

ey

A2py
, ~3.12!

Kn~y!.Ap

2y
e2y, Kn8~y!.2Ap

2y
e2y. ~3.13!

With the help of this we derive, from Eqs.~3.2! and ~3.3!,
9-3
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MILTON, NESTERENKO, AND NESTERENKO PHYSICAL REVIEW D59 105009
Dn
TE~ iy !

Dn
TE~ i`!

5
2y

m11m2
@m1I n8~y!Kn~y!2m2I n~y!Kn8~y!#,

Dn
TM~ iy !

Dn
TM~ i`!

5
2y

«11«2
@«1I n8~y!Kn~y!2«2I n~y!Kn8~y!#.

~3.14!

Making use of all this, we can recast Eq.~3.9! into the form

E5
c

4pa2 (
n52`

` E
0

`

ydy lnH 4y2

«1«2112
$@ I n8~y!Kn~y!#2

1@ I n~y!Kn8~y!#22~«1«21!I n~y!I n8~y!Kn~y!Kn8~y!%J .

~3.15!

Here a new notation«5«1 /«2 has been introduced,m has
been eliminated by condition~3.1!, and when going from Eq
~3.9! to Eq. ~3.15! an integration by parts has been done,
boundary terms being omitted. The last point will be justifi
further when the removal of the divergences is discuss
The argument of the logarithm in Eq.~3.15! is simplified
considerably if one uses the value of the Wronskian of
modified Bessel functionsI n(y) andKn(y) @25#,

I n~y!Kn8~y!2I n8~y!Kn~y!52
1

y
, ~3.16!

and the identity

I n~y!Kn8~y!1I n8~y!Kn~y!5„I n~y!Kn~y!…8. ~3.17!

Finally Eq. ~3.15! acquires the form

E5 (
n52`

`

En , ~3.18!

where

En5
c

4pa2 E
0

`

ydy ln$12j2@y„I n~y!Kn~y!…8#2%, ~3.19!

with j5(12«)/(11«). This is a simple unregulated gene
alization of Eq.~4.5! of Ref. @4#, and the cylindrical analog
of the spherical form~7.1! of Ref. @14#.

From the asymptotic behaviors given in Eq.~3.12! and
Eq. ~3.13! it follows that the integral in Eq.~3.19! diverges
logarithmically wheny→`. At the same time the sum ove
n in Eq. ~3.18! also diverges because at largen the uniform
asymptotic expansion of the modified Bessel functions gi
@25# @see Eq.~4.6! of @4##

Enun→`.2
cj2

16pa2 E
0

` z5dz

~11z2!3 [E`. ~3.20!

Here the change of variablesy5nz has been done. Disre
garding for the moment that the integral in Eq.~3.20! is
10500
e

d.

e

s

divergent, we employ here the Riemann zeta function te
nique @26,27# for attributing a finite value to the sum in Eq
~3.18!:

E5 (
n52`

`

~En2E`1E`!

5 (
n52`

`

~En2E`!1 (
n52`

`

E`

5 (
n52`

`

Ēn1E` (
n52`

`

n0, ~3.21!

whereĒn stands for the ‘‘renormalized’’ partial Casimir en
ergy,

Ēn5En2E`, n50,61,... . ~3.22!

We now have to treat the product of two divergent expr
sions E`(n52`

` n0 more precisely, by presenting it in th
following form:

E` (
n52`

`

n052
cj2

16pa2 lim
s→01

E
0

` z52sdz

~11z2!3 @2z~s!11#

52
cj2

16pa2 lim
s→01

S 1

s
2

3

4D @2z8~s!s#

52
cj2

16pa2 lim
s→01

S 1

s
2

3

4D @2 ln~2p!s#

5
cj2

16pa2 ln~2p!. ~3.23!

Finally, the Casimir energy acquires the form

E5 (
n52`

`

Ēn1
cj2

16pa2 ln~2p!. ~3.24!

Now we deduce from Eqs.~3.22!, ~3.19!, and~3.20!, for
Ēn ,

Ēn5
c

4pa2 H E
0

`

ydy ln@12j2sn
2~y!#1

j2

4 E
0

` z5dz

~11z2!3J ,

~3.25!

Ē2n5Ēn , n50,1,2,..., ~3.26!

wheresn(y)5y„I n(y)Kn(y)…8. Since both integrals in Eq
~3.25! diverge, the finite sum is to be interpreted in a prec
manner as specified below.

The removal of the divergences by making use of thz
function justifies dropping the boundary terms in the integ
tion by parts when we went from Eq.~3.9! to ~3.15!. To see
this one can at first remove the divergences in Eq.~3.9! by
employing the Riemannz function as described above. Afte
9-4
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MODE-BY-MODE SUMMATION FOR THE ZERO POINT . . . PHYSICAL REVIEW D 59 105009
that the integration by parts in the formula for the renorm
ized partial Casimir energyĒn can be done, with boundar
terms now vanishing rigorously. Proceeding in that way o
again arrives at Eqs.~3.25! and ~3.26!.

In order for Eq.~3.25! to be cast in a form suitable fo
numerical evaluations both terms there should be placed
der s single integral sign. To this end, fornÞ0 the change of
variablesz5y/n has to be done in the second term. Th
change is inverse to the one which has led to the asymp
form ~3.20!. This yields

Ēn5
c

4pa2 E
0

`

ydyH ln@12j2sn
2~y!#1

j2

4

y4

~n21y2!3J ,

n51,2,... . ~3.27!

For n50 Eq. ~3.25! is rewritten as

Ē05
c

4pa2 E
0

`

ydyH ln@12j2s0
2~y!#1

j2

4

y4

~11y2!3J .

~3.28!

The integrals in these formulas converge because fory→0
andnÞ0 we have@25#

I n~y!Kn~y!→
1

2n
. ~3.29!

In this limit

s0
2~y!→1. ~3.30!

On the other hand, for largey,

sn
2~y!→

1

4y2 . ~3.31!

By making use of uniform asymptotics of the Bessel fun
tions @25# we deduce, from Eq.~3.27!,

Ēnun→`;
cj2

4pa2 F1023j2

960n2 2
2822427344j21720j4

15482880n4

1OS 1

n6D G . ~3.32!

Thus the Casimir energy

E5Ē012(
n51

`

Ēn1
cj2

16pa2 ln~2p!, ~3.33!

with Ē0 and Ēn ,n>1, given in Eqs.~3.28! and ~3.27!, re-
spectively, is finite@28#. One can advance further only b
considering special cases and applying numerical calc
tions.
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l-

e

n-

tic

-

a-

IV. DILUTE COMPACT CYLINDER AND PERFECTLY
CONDUCTING CYLINDRICAL SHELL

We begin by addressing the case whenj2!1. Because we
are assuming the condition«1m15«2m15c22 and j2!1,
this is not the same situation as a dilute compact cylin
with u«12«2u!1 andm15m251. In this case

j25S «12«2

«11«2
D 2

5
~«12«2!2

4«2 , ~4.1!

where«5(«11«2)/2. Retaining in Eq.~3.28! only the terms
proportional toj2 we obtain

Ē0.
cj2

4pa2 E
0

`

ydyF y4

4~11y2!3 2s0
2~y!G

.
cj2

4pa2 ~20.490878!. ~4.2!

To estimateĒn ,n.0, we can use the leading asymptot
behavior~3.32!:

Ēn;
cj2

4pa2 S 1

96n2 2
7

3840n4D . ~4.3!

To a precision of 1026, we evaluate Eq.~3.33! by substitut-
ing in the value ofĒ0 , Eq. ~4.2!, integratingĒn numerically
for n51, . . . ,5, andasymptotically using Eq.~3.32! for n
>6, with the result1

E.
cj2

4pa2 S 20.49087812(
n51

5

Ēn1
1

48 (
n56

`
1

n2

2
7

1920(n56

`
1

n4 1
1

4
ln~2p!D

5
cj2

4pa2 ~20.49087810.02763810.003778

20.00000710.459469!

5
cj2

4pa2 ~0.000000!. ~4.4!

Thus the Casimir energy of a cylinder possessing the s
speed of light inside and outside proves to be zero. This i
be contrasted with the positive Casimir energy found fo
dilute ball with the same property@16,14,6#:

Eball'
3

64a
j250.046875

j2

a
. ~4.5!

1The cancellations here are very severe. If the asymptotic appr
mation were used for alln, a positive result would be found,E
;(cj2/4pa2)(20.00108). Unlike for the spherical case, doing t
integral exactly is essential.
9-5
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MILTON, NESTERENKO, AND NESTERENKO PHYSICAL REVIEW D59 105009
It is further remarkable that the same zero result is found
a dilute dielectric cylinder, that is, one withm51 every-
where and«.1 inside the cylinder, and«51 outside, a
result which may be most easily confirmed by summing
intermolecular van der Waals energies. That calculation
given in Appendix B. However, zero is not the univers
value of the Casimir energy for cylinders, as we now rem
the reader.

Of particular interest is the case whenj251. With c51
in our formulas it corresponds to an infinitely thin and pe
fectly conducting cylindrical shell~see Appendix C!. Setting
j51 and c51 in Eq. ~3.28! we obtain, by numerica
integration,2

Ē05
1

4pa2 ~20.6517!520.05186
1

a2 . ~4.6!

The sum 2(n51
` Ēn in Eq. ~3.33! can be found by making

use of the two leading terms in the uniform asymptotic e
pansion

2(
n51

`

Ēn.
1

4pa2 S 7

480(
n51

`
1

n2 2
5

1792(n51

`
1

n4D
5

1

4pa2 S 7

480

p2

6
2

5

1792

p4

90D
5

1

4pa2 0.021050.0018
1

a2 . ~4.7!

With higher accuracy~up to 1025) this sum has been calcu
lated in @4# by integration of Eq.~3.27!:3

2(
n51

`

Ēn.
1

4pa2

1

2
0.04375

1

4pa2 0.021850.00174
1

a2 .

~4.8!

Substituting Eqs.~4.6! and ~4.8! into Eq. ~3.33! we obtain,
for the Casimir energy of a perfectly conducting cylindric
shell,

Eshell5
1

4pa2 ~20.1704!520.01356
1

a2 . ~4.9!

This is exactly the result first obtained by DeRaad and M
ton @4,10#. It is worth noting here that unlike in that approac
the use of thez function technique enables us to dispen
with the introduction of a high-frequency cutoff function
although the latter is undoubtedly more physical.

While this paper was being completed the authors bec
aware of Ref.@29# where the vacuum energy of an infini

2In the notation of Ref. @4# this is (21/8pa2)(S1R0

1
1
2 ln 2p)—see Eqs.~5.5! and ~5.6! of Ref. @4#. The ln 2p term is

cancelled by that in Eq.~3.33! here.
3This is exactly the same as (21/8pa2)R given by Eq.~5.11! of

Ref. @4#.
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perfectly conducting cylindrical surface has also been
derived, to much higher accuracy, but using a rather m
elaborate method.

V. CONCLUSION

When calculating the Casimir energy there appear to
many arbitrary methods of controlling and removing dive
gences. It is therefore reassuring that unique results em
whatever regularization scheme is adopted. This is somew
less trivial for this cylindrical case than for the case of
sphere, because of the subtleties associated with even s
dimensions@30#. However, this universality seems to b
characteristic of Casimir calculations even in cases wh
finiteness is not achieved, such as for a dielectric ball with
the condition~3.1! imposed@31,32#. Thus our understanding
of the Casimir effect seems to be improving. However, t
comforting conclusion must be tempered by the surpris
new result that for both dilute dielectric-diamagnetic~satis-
fying «m5const) cylinders and dilute dielectric cylinder
the Casimir energy vanishes. We have as yet no theore
understanding of these zeros.
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APPENDIX A: RELATION OF METHOD TO GREEN’S
FUNCTION APPROACH

Here we sketch the relation of the formula~2.7! to the
Green’s function formalism. We will confine our remarks
the case of a massless scalar field, as the generalizatio
say, electromagnetism is rather immediate. We take the
lar Green’s function to satisfy the differential equation

S ]2

]t2 2¹2DG~x,x8!52d~x2x8!, ~A1!

subject to appropriate boundary conditions. The stress te
~use of the conformal stress tensor has the same effect! is

tmn5]mf]nf2
1

2
gmn]lf]lf, ~A2!

so, since the Green’s function is given as a vacuum exp
tation value of a time-ordered product of fields,

G~x,x8!52 i ^Tf~x!f~x8!&, ~A3!

the energy density is
9-6
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u5^t00&52
i

2
@]0]081“•“8#G~x,x8!U

x5x8

. ~A4!

To compute the total energy, we integrateu over all space;
then we can integrate by parts on one of the gradient ter
and use the differential equation~A1!, omitting the delta
function because the limit of point coincidence is und
stood:

“•“8→2¹2→2
]2

]t2 . ~A5!

~The net effect is that the Lagrangian term intmn does not
contribute.! In terms of the Fourier transform of the Green
function

G~x,x8!5E dv

2p
e2 iv~ t2t8!Gv~r ,r 8!, ~A6!

the Casimir energy is

E52 i E dv

2p
e2 iv~ t2t8!E ~dr !v2Gv~r ,r 8!U

x5x8

.

~A7!

Now introduce eigenfunctions of the differential opera
¹2 subject to the same boundary conditions asGv :

¹2c~r !52kp
2c~r !, ~A8!

(
p

cp~r !cp* ~r 8!5d~r2r 8!, ~A9!

E ~dr !cp* ~r !cp8~r !5dpp8 . ~A10!

Then the Green’s function has an eigenfunction expansi

Gv~r ,r 8!5(
p

cp~r !cp* ~r 8!

v22kp
2 . ~A11!

Carrying out the volume integration,

E ~dr !Gv~r ,r !5(
p

1

v22kp
2 , ~A12!

we find that the energy can be written in the form

E52 i E
2`

` dv

2p
e2 ivt

v

2 (
p

S 1

v2kp
1

1

v1kp
D .

~A13!

Here we have retained a time splitting,t5t2t8→0, which
is a technique to regulate the divergent expression. W
does this integral mean? Since the energy must be real, w
t is set equal to zero, the2 i is to be interpreted as a
instruction to pick out the negative imaginary part of t
integral. That means that the contour of integrationC must
encircle all the poles on the real axis, the positive poles b
10500
s,

-

r

at
en

a

contour closed in the counterclockwise sense, and the n
tive poles by a contour closed in the clockwise sense~see
Ref. @33#!:

E52
i

8p R
C
vdv ln )

p
~v2kp!~v1kp!. ~A14!

@We may verify the sign by noting that Eq.~2.1! is formally
reproduced.# This is the content of Eq.~2.7!.

APPENDIX B: van der WAALS ENERGY OF A
DIELECTRIC CYLINDER

It is now established that for tenuous media the Casi
effect and the sum of molecular van der Waals forces
identical @31#. Here we calculate the latter for a dilute sol
cylinder, with dielectric constant«Þ1 in the interior,«51
in the exterior, andm51 everywhere. We follow the proce
dure given in Ref.@15#. The van der Waals energy for thi
sphere is

EvdW52
1

2
BN2E dDrdDr 8@ ur'2r'8 u21r 21r 82

22rr 8 cosu#2g/2, ~B1!

whereB5(23/4p)a2,a5(«21)/4pN being the molecular
polarizability, andN being the number density of molecule
We have regulated the integral by dimensional continuati
D being the number of spatial dimensions, andg being the
~inverse! power of the Casimir-Polder potential. The follow
ing calculation is valid providingD.g; the final result will
be obtained by violating this condition, by settingD53 and
g57.

We assume translational invariance in theD22 trans-
verse directions; so the transverse integral is easy (L is the
length of the cylinder andb25r 21r 8222rr 8 cosu):

E
2`

`

dD22r'dD22r'8 @ ur'2r'8 u21b2#2g/2

5LD22E
2`

`

dD22r'@r'
2 1b2#2g/2

5
LD22

G~g/2!
E

2`

`

dD22r'E
0

` dt

t
tg/2e2t~r'

2
1b2!

5
LD22

G~g/2!
E

0

`

dttg/221e2tb2F E
2`

`

dxe2tx2GD22

5~LAp!D22~b2!D/22g/221
G~g/22D/211!

G~g/2!
. ~B2!

The remaining integral overr , r 8, u, u8 is just that given in
Ref. @15#. In Eq. ~3.25! there, we merely setD52 and g
5g2D12. The result is
9-7
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EvdW52BN2
LD22

ag2D22

2D2gpD/211/2G~g/22D/211!G~D/22g/211/2!

G~g/2!G~D/22g/212!~D2g!
. ~B3!
s
th

ly
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y
a
b

er
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u

This is exactly the result found by Romeo@34#. Now when
we setD53 and g57 everything is finite except for the
second gamma function in the denominator, which ha
simple pole, and thus the Casimir energy vanishes in
case.

APPENDIX C: INFINITELY THIN PERFECTLY
CONDUCTING CYLINDRICAL SHELL

We show here that the Casimir energy for an infinite
thin perfectly conducting cylindrical shell is given by Eq
~3.18! and ~3.19! with j251. In this case, as for a perfectl
conducting spherical shell, the frequencies of electrom
netic oscillations inside and outside the shell turn out to
different @18#. The frequencies of the TE modes are det
mined by4

Jn8~la!50, r ,a, ~C1!

4The exterior modes can be considered only formally, since
Hankel functions have only a finite number ofcomplexzeros. See
Ref. @8#. Nevertheless, this formal procedure yields the correct
sult. The mode sum breaks down in this case, because the sing
ity structure is not that assumed in Eq.~2.7!, but the Green’s func-
tion method retains meaning.
A

s.

n-

10500
a
is

g-
e
-

Hn8~la!50, r .a. ~C2!

For the TM modes we have

Jn~la!50, r ,a, ~C3!

Hn~la!50, r .a. ~C4!

In these equations,

l25v22kz
2 , n50,61,62,... . ~C5!

SubstitutingDn
TE andDn

TE into Eq.~3.9! by the new equations
~C1!–~C4! we obtain@cf. with Eq. ~3.15!#

E5
1

4pa2 (
n52`

` E
0

`

ydy ln$24y2I n~y!I n8~y!Kn~y!Kn8~y!%.

~C6!

To rearrange the argument of the logarithmic function in t
formula we again use equalities~3.16! and~3.17!. This gives
Eqs.~3.18! and ~3.19! with j251 andc51:

E5
1

4pa2 (
n52`

` E
0

`

ydy ln$12@y„I n~y!Kn~y!…8#2%,

~C7!

which is, of course, the unregulated version of the res
derived rigorously in Ref.@4#.
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