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Mode-by-mode summation for the zero point electromagnetic energy of an infinite cylinder
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Using the mode-by-mode summation technique the zero point energy of the electromagnetic field is calcu-
lated for the boundary conditions given on the surface of an infinite solid cylinder. It is assumed that the
dielectric and magnetic characteristics of the material which makes up the cylinder,) and of that which
makes up the surroundings4, u,) obey the relatior,u,=e,u,. With this assumption all the divergences
cancel. The divergences are regulated by making use of zeta function techniques. Numerical calculations are
carried out for a dilute dielectric-diamagnetic cylinder and for a perfectly conducting cylindrical shell. The
Casimir energy in the first case vanishes, and in the second is in a complete agreement with that obtained by
DeRaad and Milton who employed a Green’s function technique with an ultraviolet regulator.
[S0556-282(199)03010-9

PACS numbdps): 12.20.Ds, 03.50.De, 03.76k, 11.10.Lm

[. INTRODUCTION second made use of the technique of zeta function regular-
ization. The same method was also applied for calculating
The Casimir effect is a fundamental aspect of quantunthe Casimir energy of a massless scalar field obeying Dirich-
field theory in confined geometries or, more generally, wheret and Neumann boundary conditions on a splite The
the material properties of space vary from point to point. It issame technique has recently been used to rederive the elec-
fundamental because it may be thought of as a manifestatiamomagnetic Casimir energy for a spherical sHé&]. The
of the zero-point fluctuations of the field variables, which possibility of incorporating in this approach the dielectric
may have observable implications on all scales, from cosmoand magnetic properties of the media was demonstrated in
logical to subnuclear. Recently, direct measurements of thgg]. These calculations are distinguished by a certain conci-
Casimir force between(effectively) parallel conducting sion and simplicity in comparison with the Green’s function
plates, the original geometry considered by Casjjrhave  techniqueq4], which, however, retain superiority with re-
confirmed the theory to good accurd@}. Thus, it is timely  spect to physical interpretation.
to reexamine other configurations, not only in the hope that The present paper seeks to show the efficiency of the
they may also eventually prove amenable to experimentainode summation method in calculating the zero point energy
investigation, but also to deepen our theoretical understandf an electromagnetic field when the boundary conditions are
ing of what remains a rather mysterious subject. given on an infinite circular cylinder. When applying the
Calculation of the Casimir energy for nontrivial boundary Green’s function techniqudg,9,10, this problem turns out
conditions is a subject of intense ongoing activity. In spite ofto be more complicated than the corresponding calculation of
this, the experience accumulated in this area still does ndahe Casimir energy for a sphef&l—17.
allow one to predict, without involved calculation, even the The layout of the paper is as follows. In Sec. Il the gen-
sign of this energy3,4]. In this connection the development eral integral representation is derived for the Casimir energy
of new effective methods of calculating the Casimir energyof an infinite solid cylinder surrounded by an uniform me-
is doubtless of interest. dium. The permittivity and permeability of the cylinder ma-
In recent paper$5,6] the zero point energy of the elec- terial (¢1,11) and those of the surroundings(u,) are
tromagnetic field with boundary conditions given on a sphereconsidered to be arbitrary. In principle they may depend on
has been calculated by a method of direct summation of ththe frequency of the electromagnetic oscillatiddspersion
eigenfrequencies. A substantial point here was the use aff the medig but this point is beyond the scope of the
contour integration in the complex frequency pldi@é The  present paper. In Sec. Ill it is assumed that the electromag-
divergences in this problem were removed by two subsenetic characteristics obey the conditiefu,=g,u,=c 2
guent steps. The first was accomplished by the subtraction afherec is the speed of the light in the media units of that
the vacuum energy of an infinite homogeneous space and thie the vacuum When this condition is satisfied, all the di-
vergences cancel between interior and exterior modes. Those
divergences are regulated by employing the zeta function
*Electronic address: milton@mail.nhn.ou.edu technique. In Sec. IV the cases whéh<1 and£2=1 are
"Electronic address: nestr@thsuni.jinr.ru considered numerically? being (e1—&,)%/(e,+€5,)%. The
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first case gives the Casimir energy of a dilute dielectric- fa=NIN3ATE( a0 a)ATM(N a0 0a)

diamagnetic cylinder, while the second case corresponds to a

perfectly conducting infinitely thin cylindrical shell. Remark- - nzwzki(sl,ul— gop2)[In(N @) Hy(Npa) ]2,
ably, the Casimir energy obtained for a tenuous medium van- (2.4
ishes, as it does for a tenuous dielectric cylinder. The result ’
obtained in the second case is identical to that obtained by

the Green’s function method of calculating the energy andVIt

regulating the divergences by use of an ultraviolet regulator

[4]. In Sec. V(Conclusion the significance of the universal AN a0 a) =auihd) (A @) Hp(\5a)

results obtained are discussed.

—aphJn(M@)H (N za),
IIl. INTEGRAL REPRESENTATION FOR THE CASIMIR ™ .
ENERGY Ap" (NN pa) =aeiNpdn(N @) Hp(ha)
We shall consider the following configuration. An infinite —aesNIp(N@)H (N a),
cylinder of radiusa is placed in a uniform unbounded me-
dium. The permittivity and the permeability of the material >\i2=ki2—k§, ki2=8i,uiw2, =12 n=0+1-+2....

making up the cylinder are; and wq, respectively, and 2.5
those for the surrounding medium asge and u,. It is as- '

sumed that the conductivity in both the media is zero. We o _ _ _
will compute the Casimir energy per unit length of the cyl- The indices TE and TM will be explained below. The prime

inder. on the functionsJ,, and H, means differentiation with re-
In the mode summation method, the renormalized CasimifPect to their arguments. For givepandn, Eq.(2.3) has an
energy is defined by infinite sequence of root®,(k,), m=1,2,.., these fre-

guencies being the same inside and outside the cylii®gr
In view of this the Casimir energg2.1) can be rewritten as

E=

N| -

> (wp—wp), (2.1
{p}

1 (> dk, & < _
o . E=§f 5~ 2 2 [onn(k) —onm(k)], (2.6
where w, are the classical eigenfrequencies of the electro- —0 &7 n=-x m=1

magnetic oscillations in the system under consideration, and

wp are those in the absence of any boundary, that is, whe@here w,,,(k,) stands for the uniform medium subtraction
either medium fills all spacéWhen the precise meaning is referred to above.

not required, we denote this by the formal lirait-.) The The next step in our consideration is a representation of
set{p} stands for a complete set of quantum numiieis-  the sum in Eq(2.6) in terms of the contour integré¥]

crete and continuodisvhich is determined by the symmetry

of the problem. Either sum in Eq2.1) diverges; therefore a

preliminary regularization is required. — EJ'OO dk, i E é wd. In fn(kz, »,a) _
In order for the eigenfrequencies to be found one needs to 2)-w2mn=e2m 2 Jo ¢ fi(k;,0,%)
solve Maxwell’'s equations for the given configuration with (2.7

allowance for the appropriate boundary conditions on the

lateral surface of the cylinder. As is well known, it is suffi- Integration in Eq(2.7) is conducted along a closed pattin
cient to require the continuity of the tangential componentspe complexw plane which consists of two part€;, which
of the electric fieldE and of the magnetic fielt [18]. In encloses the positive roots of E&.3) in a counterclockwise
terms of the cylindrical coordinates (¢,z) the eigenfunc-  sense andC_ which encircles the negative roots in a clock-
tions of the given boundary value problem contain the mulise sense. Therefore, we face the task of investigating the
tiplier properties of the functiorf,(k,,w,a) specifying the fre-
qguency equationjHowever, the resul{2.7) may be easily
exp —iwt+ik,z+ing), (2.2 shown to be equivalent to the corresponding Green’s func-
tion formulation. See Appendix AGenerally this is a prob-
and their dependence anis described by the cylindrical lem of extreme diffi.c.ulty. Thelrefore, in the. next sections we
Bessel functiond,, for r<a and by Hankel functions of the shall consider specific cases introducing simplifying assump-

first kind, Hy=H(" for r>a. The eigenfrequencies are the 107 . -
roots of the equatiofiRef. [18], p. 526 The method of calculation of the Casimir energy proposed

above can be straightforwardly generalized to dispersive me-
dia. To this end, it is sufficient to treat the parameterand
fo(kz, @,2)=0, 2.3 Ki, 1=1,2, in the frequency equatiof2.3 as given func-
tions of the frequency. However, this issue is beyond the
where scope of the present paper.
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lll. CASIMIR ENERGY OF AN INFINITE CYLINDER the left hand plane. On both semicircles the argument of the
WHEN &;[;=€,H, logarithm function in Eq(3.5) tends to 1. As a result these

parts of the contou€C’ do not give any contribution to the

Casimir energyE. When integrating along the imaginary

axis we chose the branch line of the functigp(\)

= \%+ kz2 to run between—ik, and ik,, where k,

E1p1=Epmr=C 2, (3.)  =+kZ>0. In terms ofy=Im\ we have

We assume that the permittivity and permeability of the
cylinder material £€,,14) and of the surroundingseg, )
are not arbitrary but satisfy the condition

wherec is the light speed in either mediufm units of the

2_ 12
speed of light in vacuuim The physical implications of this y ks, y=ke,

condition can be found if20-22. When Eq.(3.1) holds, we e(iy)=3 =vki—y? |y|<k,, (3.6
have\ ;=\,=\, and the frequency equatidB.3) is simpli- .
1=A2 q y equati@B.3) p LW y<—k,,

fied considerably. It breaks down into two equations: for the

transverse-electri€TE) oscillations
where the sign on the middle form depends on whether we

AME(N,a)=Na[udl(Aa)Hp(Na)— updp(Na)H/ (Aa)]=0  are to the right or the left of the cut. Thus contributions to
(3.2 Eqg. (3.5 due to the integration along the segment of the
imaginary axis ik, ,ik,) cancel betweeg! andC'’ , and

and for the transverse-magne(EM) oscillations Eq. (3.5 acquires the form

AM(N,a)=Nale,d/(Aa)H,(Aa) — epdn(Na)H/ (Aa)]=0.

In the general casisee Eq(2.4)] such a decomposition oc- “_’°°
curs only for oscillations witm=0. In Egs.(3.2) and(3.3), ATE(iay)ATM(iay)
N is the eigenvalue of the corresponding transverse ”TE _ QM . i (3.7
(membrane-likg boundary value problef23] Ap(i)ApT (i)
5 w? 2 Changing the order of integration kf andy and taking into
N=——Kk?. (3.9

account the value of the integral

Classification of the solutions of Maxwell's equations y -
without sources in terms of the TE and TM modes originates f dk,\y?—ki= Zyz, (3.9
in waveguide theory18,23,24. The main distinction of the 0
propagation of electromagnetic waves in waveguides, in con-
trast to the same process in unbounded space, is that a puré%g obtain, after the substituticay—y,
transverse wave cannot propagate in a waveguide. The wave
in a waveguide must necessarily contain either longitudinal Ey)AM(iy)
electric or magnetic fields. The first case is referred to as th&= — 8mal _E f ATE(I YATM(ioo) " (3.9
waves of electric typdTM waves and in the second case = n
one is dealing with waves of magnetic ty(E waves. This -~ ]
classification proves to be convenient in studies of electro- Further we shall need the modified Bessel functibyfy)
magnetic oscillations in closed resonators as well. andK(y) [25],

Replacing the functiofi,(k,,w,a) in Eq. (2.7) by the left
hand sides of Eqg3.2) and(3.3) and changing the integra- In(y)=i""Ju(iy), (3.10
tion variable tox we arrive at the following representation
for the Casimir energy:

c(=dk, « 11
E—‘zf_wzwn;_mmz

AEna)AtM(na)
X 3@ W2+ K2, In—g——r—— . (3.5) o o
d A () A7) ()= =, 1hy)=—7=,
N2 N2
Here we have distorted the contour of integrationGo6 y Y
=C/ +C.L. We takeC/, to consist of a straight line parallel
to, and just to the right of, the imaginary axis-{e°, +i) K, (y)= 1 [T o Y KL(y)=— [T oy, (3.13
closed by a semicircle of an infinitely large radius in the right 2y 2y

half-plane.C". similarly is a line parallel to, and just to the
left of, the imaginary axis, closed by an infinite semicircle in With the help of this we derive, from Eq$3.2) and(3.3),

Knly) =im 12 Hy(iy), (311

and their asymptotic behavior for fixedandy— o,

(3.12
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ATEy) 2y divergent, we employ here the Riemann zeta function tech-
== [al f(Y)Kn(Y) = ol f(Y)K ()T, nique[26,27] for attributing a finite value to the sum in Eq.
An (i®)  prtpus (3.18:
A:M(iy)_ 2y L OOK (V) — ol " . o
ATV(io) 81_1_82[81 n(Y)Kn(Y) =2l n(Y)Kp(y) . E:n:E—oc (E,—E*+E™)
(3.19
Making use of all this, we can recast E.9) into the form _ 2 (E,—E”)+ 2 E”
n=—w n=-—wx
C <« [ 4y?
E=7— > | vdylnj———{[li(y)Ky)]? ° °
4qan=. Jo et+e "+2 = 2 E,+E” 2 n°, (3.2)
n=-—w n=-—ow

(VKL= (e+e HI(ILH(Y)K(Y)K, : —
[KaNI= (et e D) KalY)Ka(Y)} whereE,, stands for the “renormalized” partial Casimir en-
(3.15 ergy,

Here a new notatiom =¢,/e, has been introducegy has E,=E,—E", n=0,x1,... (3.22
been eliminated by conditiof8.1), and when going from Eq. .

(3.9 to Eq.(3.15 an integration by parts has been done, the"Ve now hfve tootreat the product of two divergent expres-
boundary terms being omitted. The last point will be justifiedSIONS E"2,__..n" more precisely, by presenting it in the
further when the removal of the divergences is discussedollowing form:
The argument of the logarithm in E3.15 is simplified

* 2 5-5s
considerably if one uses the value of the Wronskian of the - o & Jx 2>z .
modified Bessel functionk,(y) andK(y) [25], E nzz_w : 167ra25|:r:+ 0 (1+22)3[2§(S) 1]
LKA~ LK) =~ 5, (3.6 S R 1
nlY)Knly n(Y)KnlY y1 : =—Wl|m g—Z[Zg(S)S]
s—0*
and the identit
y R (1 3)[ In(2m)s]
’ ! , =-— im|{=—-=|[—In s
(KA + 1K) = (n(y)Kn(Y)- (317 l6ma’ s 4 "
Finally Eq.(3.195 acquires the form cé?
" = W'n(Z’ﬂ) (323)
E= E,, 3.1 . e .
n:z—oc " (3.18 Finally, the Casimir energy acquires the form
where o c#
oo E=n:2_x Ent 155227 (3.29
En=-—= | ydyIn{1—¢¥y(,(y)K 1%, 3.19
" 4ma’ fo ydyIn{ =Ty a(y)Ka(W) T 319 ~ Now we deduce from Eqg3.22, (3.19, and(3.20), for
with é=(1—¢)/(1+¢). This is a simple unregulated gener- "
alization of Eq.(4.5) of Ref.[4], and the cylindrical analog — ¢ ° ) 2 & (= 7°dz
of the spherical forn{7.1) of Ref.[14]. En=122 fo ydyIn[1=¢&on(y) ]+ 4 L a3’
From the asymptotic behaviors given in E§.12 and (3.29
Eqg. (3.13 it follows that the integral in Eq(3.19 diverges
logarithmically wheny—-oo. At the same time the sum over EntEn, N=01.2,.., (3.26

n in Eqg. (3.189 also diverges because at langehe uniform
asymptotic expansion of the modified Bessel functions giveghere o, (y) = y(1,,(y)K,(y))’. Since both integrals in Eq.

[25] [see Eq(4.6) of [4]] (3.25 diverge, the finite sum is to be interpreted in a precise
2 e g manner as specified below.
Bl o= — cé f 297 e (3.20 The removal of the divergences by making use of ghe
nnert 16mat Jo (1+29)° function justifies dropping the boundary terms in the integra-

tion by parts when we went from E¢3.9) to (3.15. To see
Here the change of variablgs=nz has been done. Disre- this one can at first remove the divergences in Bp) by
garding for the moment that the integral in E®.20 is  employing the Riemanij function as described above. After
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that the integration by parts in the formula for the renormal- 1V. DILUTE COMPACT CYLINDER AND PERFECTLY
ized partial Casimir energf, can be done, with boundary CONDUCTING CYLINDRICAL SHELL

terms now vanishing rigorously. Proceeding in that way one e begin by addressing the case whidre 1. Because we
again arrives at Eqg3.29 and (3.26. are assuming the conditiog, u,=e,u=c? and £2<1,

In order for Eq.(3.29 to be cast in a form suitable for s js not the same situation as a dilute compact cylinder
numerical evaluations both terms there should be placed uyi:, le1— 5| <1 anduy = p=1. In this case

der s single integral sign. To this end, fo# 0 the change of

variablesz=y/n has to be done in the second term. This

change is inverse to the one which has led to the asymptotic 52:(
form (3.20. This yields

2

2
€17 €2 _(81_82)

T 482

4.1

81+82

wheree = (g, +¢,)/2. Retaining in Eq(3.28 only the terms

— c (- £ oy roportional to&? we obtain
B gz | Oy - £y 1+ 5 ), PP ¢
4a‘ Jo 4 (n +y ) > 4
o=t Fydy{ Y T5(y)
0= 2 T o3 00
n=1,2,.... (3.27 4ma” Jo 7 [ 4(1+y7)
2
Forn=0 Eqg.(3.29 is rewritten as :i _
4ﬂ_a2( 0.490878. (4.2
— ¢ (= ) 2 gy L= - i
Eo=7—2 | ydyyIn[1-&oa(Y) ]+ -+ =m—=3(- To estimateE, ,n>0, we can use the leading asymptotic
4ma“ Jo 4 (1+y9) .
behavior(3.32):
(3.28
The integrals in these formul b fo0 Ecgzl ! 4.3
e integrals in these formulas converge because "~ 122 | 9a2 ~ 382077 4.3

andn#0 we have25]

1 To a precision of 10°, we evaluate Eq(3.33 by substitut-
|n(y)Kn(y)_>%- (3.29 ing in the value ofg,, Eq. (4.2_), integra_uingEn numerically
for n=1,...,5, andasymptotically using Eq(3.32 for n

=6, with the result

In this limit
c&? S 121
a2(y)—1. (3.30 E= W( —0.490878 221 Ent 4—8n26 =
On the other hand, for largg, 7 -1 1
. ~ 19202 F+Z'”(2”))
i) = g7 (3:3) o
= m( —0.490878-0.027638-0.003778
By making use of uniform asymptotics of the Bessel func-
tions[25] we deduce, from Eq3.27), —0.0000070.459469
2
_ c&? [10—3&% 2822473442+ 72064 ¢
~ — = ——(0.000000. (4.9
Boln—~ 77702 | 96012 15482880" 4ma
1 Thus the Casimir energy of a cylinder possessing the same
+0 nél 1 (3.32 speed of light inside and outside proves to be zero. This is to

be contrasted with the positive Casimir energy found for a

Thus the Casimir energy dilute ball with the same properfy6,14,4:

= 2 £~ £2=0 0468755—2 (4.5)
— — c§ ball™ =0. : -
= — 64a a
E=Ept23 Ent o 2in2m, (333
with E, andE,,n=1, given in Egs.(3.28 and (3.27, re- The cancellations here are very severe. If the asymptotic approxi-

spectively, is finite[28]. One can advance further only by mation were used for al, a positive result would be founds
considering special cases and applying numerical calcula~ (c£?/47a?)(—0.00108). Unlike for the spherical case, doing the
tions. integral exactly is essential.
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It is further remarkable that the same zero result is found foperfectly conducting cylindrical surface has also been re-
a dilute dielectric cylinder, that is, one withu=1 every- derived, to much higher accuracy, but using a rather more
where ande>1 inside the cylinder, and=1 outside, a elaborate method.

result which may be most easily confirmed by summing the

intermolecular van der Waals energies. That calculation is V. CONCLUSION

given in Appendix B. However, zero is not the universal . .

value of the Casimir energy for cylinders, as we now remind When calculating the Casimir energy there appear to be
the reader. many arbitrary methods of controlling and removing diver-

Of particular interest is the case whéf—=1. With c=1 gences. It is therefore reassuring that unique results emerge
in our formulas it corresponds to an infinitely thin and per_whatever regularization scheme is adopted. This is somewhat

fectly conducting cylindrical shellsee Appendix € Setting  1€SS trivial for this cylindrical case than for the case of a
¢=1 andc=1 in Eq. (3.28 we obtain, by numerical s_phere,' because of the subtlepes a}ssoua_ted with even space
integration? dimensions[30]. However, this universality seems to be
characteristic of Casimir calculations even in cases where
_ 1 1 finiteness is not achieved, such as for a dielectric ball without
Eo=752(—0.6517=-0.05186;. (4.0 the condition(3.1) imposed31,32. Thus our understanding
of the Casimir effect seems to be improving. However, this
The sum =7 1En in Eq. (3.33 can be found by making comforting conclusion must be tempered by the surprising

! ; ; . new result that for both dilute dielectric-diamagnefsatis-
use of the two leading terms in the uniform asymptotic ex-, - _ . . . . .
fying e u=const) cylinders and dilute dielectric cylinders,

pansion the Casimir energy vanishes. We have as yet no theoretical
o 1 2 = 5 1 understanding of these zeros.
23 B | oS o TS
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n=1 47ra“ 2 47ra a
(4.8 APPENDIX A: RELATION OF METHOD TO GREEN'S
Substituting Egs(4.6) and (4.8) into Eqg. (3.33 we obtain, FUNCTION APPROACH
for the Casimir energy of a perfectly conducting cylindrical Here we sketch the relation of the formuia.7) to the
shell, Green’s function formalism. We will confine our remarks to
1 1 the case of a massless scalar field, as the generalization to,
_ —0.1704= —0.01356 . 4.9 say, electromagn_etlsm is r_ather |mmed|ate_. We tak_e the sca-
shell= 7 52 4 %2 49 |ar Green's function to satisfy the differential equation

This is exactly the result first obtained by DeRaad and Mil- - N ,

ton[4,10]. It is worth noting here that unlike in that approach (EZ_V G(x,x")==do(x=x'), (A1)

the use of thef function technique enables us to dispense

with the introduction of a high-frequency cutoff function, subject to appropriate boundary conditions. The stress tensor

although the latter is undoubtedly more physical. (use of the conformal stress tensor has the same gffect
While this paper was being completed the authors became
aware of Ref[29] where the vacuum energy of an infinite tAY = G b dh— ;g‘”«?)\qﬁﬁ*(b, (A2)

so0, since the Green’s function is given as a vacuum expec-

“in the notation of Ref.[4] this is (~1/8ma%)(S+Ry  tation value of a time-ordered product of fields,

+ 1 In 2r)—see Eqs(5.5) and(5.6) of Ref.[4]. The In 27 term is

cancelled by that in Eq.3.33 here. G(X,X")=—i{Tp(X)p(x")), (A3)
3This is exactly the same as-(L/8wa®)R given by Eq.(5.11) of
Ref. [4]. the energy density is
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o i 0 contour closed in the counterclockwise sense, and the nega-
u=(t%%=- ZLd%d "+V-V']G(x,x") . (A4) tive poles by a contour closed in the clockwise sefse
x=x' Ref. [33]):

To compute the total energy, we integratever all space;
then we can integrate by parts on one of the gradient terms,
and use the differential equatio\1l), omitting the delta
function because the limit of point coincidence is under-
stood:

i
E=—g- iwdwlnlg[ (0—kp)(w+ky). (Al4)

[We may verify the sign by noting that E(R.1) is formally
o) reproduced. This is the content of Eq2.7).
V'V’H—VZH—EZ. (A5)

APPENDIX B: van der WAALS ENERGY OF A

(The net effect is that the Lagrangian termtift does not DIELECTRIC CYLINDER

contribute) In terms of the Fourier transform of the Green's
function It is now established that for tenuous media the Casimir
q effect and the sum of molecular van der Waals forces are
w . ' H H H H
G(x,x)= | ——etet=tg (r "), AG |de_nt|cal [3_1]. H_ere we calculate the I_atter f(_)r a _dllute solid
( ) f 2 Gul1") (A6) cylinder, with dielectric constant# 1 in the interior,e =1
in the exterior, angk=1 everywhere. We follow the proce-

the Casimir energy is dure given in Ref[15]. The van der Waals energy for this

do sphere is
E:—if—e*iw“*”f (dr)w?G,(r,r")
2 ! 1
(A7) EvdW:—EBsz dPrdPr'[|r, —r{|?+r2+r'2
Now introduce eigenfunctions of the differential operator P —y2
V2 subject to the same boundary conditionsggs 2rr’ cosf] ™, (B1)
V2y(r) = —Kau(r), (A8)  whereB=(23/4m)a? a=(s—1)/4mN being the molecular

polarizability, andN being the number density of molecules.
. ) We have regulated the integral by dimensional continuation,
2 (NP (r)=8(r=r"), (A9) D peing the number of spatial dimensions, andeing the
P (inverse power of the Casimir-Polder potential. The follow-

ing calculation is valid providind > v; the final result will
f (dr) s (1) g (1) =S - (A10)  be obtained by violating this condition, by settibg=3 and
y=T.

Then the Green’s function has an eigenfunction expansion ~We assume translational invariance in the-2 trans-
verse directions; so the transverse integral is esis(the

(g (r") length of the cylinder antb®=r?+r'?—2rr’ cosé):
o= e (ay ’ )
p p
Carrying out the volume integration, foc d®~2r d®2r[|r, —r||?+Db?] 2
f dr)g => ! A12 x
(dr)G,(r,r)= - wz—kf,' (A12) =LD’ZJ dP=2r [r2+b2] "2
we find that the energy can be written in the form LD-2 (o = dt
_ dP-2 — 2t +b?)
de W . . T(y2) ) .0 )t ®
— aTler__
E IJ_WZWe ZEp (w—kp+w+kp ‘ _ LP™2 (= tt72-1g-tb? - dxe v o
(A13) “T(2) Jo L
Here we have retained a time splitting=t—t’—0, which I'(y/l2—D/2+1)

is a technique to regulate the divergent expression. What = (L+/m)P~2(b?)PR2-72-1 (B2
does this integral mean? Since the energy must be real, when
7 is set equal to zero, the-i is to be interpreted as an

instruction to pick out the negative imaginary part of the The remaining integral over, r’, 6, #' is just that given in
integral. That means that the contour of integratdmust  Ref. [15]. In Eq. (3.29 there, we merely seb=2 and y

encircle all the poles on the real axis, the positive poles by a&y—D +2. The result is

I'(v/2)
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LP=2 2D~ vgDR+i2p (2 D2+ 1)T'(D/2— yI2+1/2)

— _RN2
Evaw=~BN 250 ['(y/2)T(D/2— yI2+2)(D— ) ' (B3
|
This is exactly the result found by Romés4]. Now when H/(Aa)=0, r>a. (C2)
we setD=3 and y=7 everything is finite except for the
second gamma function in the denominator, which has &or the TM modes we have
iggle pole, and thus the Casimir energy vanishes in this I (\a)=0, r<a, 3
H,(Aa)=0, r>a. (C9
APPENDIX C: INFINITELY THIN PERFECTLY In these equations
CONDUCTING CYLINDRICAL SHELL q !
N=w?—k2, n=0,+1,+2,... (C5)

We show here that the Casimir energy for an infinitely

thin perfectly conducting cylindrical shell is given by Egs. SubstitutingAIE andAIE into Eq.(3.9 by the new equations
(3.18 and(3.19 with £€2=1. In this case, as for a perfectly (C1)—(C4) we obtain[cf. with Eq. (3.15]

conducting spherical shell, the frequencies of electromag-

netic oscillations inside and outside the shell turn out to be 1 %
different [18]. The frequencies of the TE modes are deter- E=7—>3 _2 f ydyIn{—4y?1,() 11 (Y)Kn(Y)Kn(Y)}.
mined by n=o Jo (o)

©

J'(\a)=0, r<a, (cy  Torearrange the argument of the logarithmic function in this
formula we again use equaliti€3.16) and(3.17). This gives
Egs.(3.18 and(3.19 with £2=1 andc=1:

“The exterior modes can be considered only formally, since the 1 - « 112
Hankel functions have only a finite number @dmplexzeros. See E= 47-ra?n:2_o0 fo ydyIn{1=[y(Ia(y)Ka(¥))' 15,
Ref.[8]. Nevertheless, this formal procedure yields the correct re- (C7)

sult. The mode sum breaks down in this case, because the singular-
ity structure is not that assumed in H8.7), but the Green’s func- which is, of course, the unregulated version of the result

tion method retains meaning. derived rigorously in Refl4].
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