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Anyonic physical observables and spin phase transition
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The quantization of a charged matter system coupled to Chern-Simons gauge fields is analyzed in covariant
gauge fixing and gauge invariant, physical anyon operators satisfying fractional statistics are constructed in a
symmetric phase, based on Dirac’s recipe performed on QED. This method provides us a definite way of
identifying physical spectrums free from gauge ambiguity and constructing physical anyon operators under a
covariant gauge fixing and we analyze the statistical spin phase transition in a symmetry-broken phase pre-
dicted by Wen and Zee. The Higgs mechanism transmutes an anyon satisfying fractional statistics into a
canonical boson, a spin 0 Higgs boson, or a topologically massive photon which is a Chern-Simons gauge field
absorbed would-be Goldstone bosfR0556-282(199)01206-0

PACS numbgs): 11.15—q, 03.70+k, 11.10.Kk

[. INTRODUCTION mutes a hondynamical Chern-Simons term into topologically
massive, parity-violating, spin 1 theof%9].

In (2+1)-dimensional field theories such as Chern- In this paper, we will perform a careful analysis on the
Simons gauge theory with a charged matter figld the  charged matter fields coupled to Chern-Simons gauge fields
nonlineare model with a Hopf ternj2], and the CPmodel  in a covariant gauge along Dirac’s method performed on
with a Chern-Simons terif8], it has been known that there QED[13]. In Sec. Il, we will analyze the Maxwell theory of
exist excitations with exotic statistics, anyop5], which & symmetric and a symmetry-broken phase in a covariant
continuously interpolate between bosons and fermions. Thgauge in order to illustrate the definite way of identifying a
fundamental role of fractional statistics in condensed mattePhysical spectrum free from gauge ambiguity arising from
physics has been proposed in order to describe a fractiondRuge fixing and to manifest the importance of consideration
quantum Hall effecte] and the behavior of two-dimensional of phySICaIfleldS In Sec. “l, the quantization of the Chern-
materials such as vortices in superfluid helium filigand ~ Simons matter system will be presented and physical anyon
the Cu-O planes of the copper-oxide supercondud®s operators will be constructed in a covariant gauge based on

However, in(2+1)-dimensional quantum field theory, the the approach in Sec. Il. We will also analyze the quantization
explicit construction of anyon operators exhibiting fractional Of the Chern-Simons matter system in the symmetry-broken
statistics has led to much controversy and detjgfe Al- ~ pPhase and show that the Higgs mechanism transmutes an
though the physical results must be independent of a gaugdyon satisfying fractional statistics into a spin 0 Higgs bo-
fixing condition, different results with different gauge Son and a topologically massive photon which is a Chern-
choices had been report§ti0]. Because of the difficulty of Simons gauge field absorbed would-be Goldstone boson.
identifying physical degrees of freedom, doubt was cast ord hus the Higgs effect influences the spin phase of the anyon
the results thus obtained and the gauge independent analy§igd interestingly induces the statistical spin phase transition,
was attempted11,12]. predicted by Wen and Zdd5]. As we will see, the result is

Since the representation opaysicak)peratm{l:g] can be consistent with the observation of Deser and Ym Sec-
varied with each gauge fixing, the construction of a physication 1V contains our conclusion. In the Appendix, we will
operator under a gauge fixing condition must be treated carénalyze the Poincam@gebra of massive vector fields—Proca
fully. One of the reasons for consideration miysicalfield ~ and massive Chern-Simons theories—and extract the spin
variables is that the formulation of dynamics in terms of acontent of massive vector fields with no ambiguity.
Lagrangian(or Hamiltonian and the equations of motion
make use of a larger field algebra which includes nonobserv-
able fields[14]. It is important to notice that gauge invari- !l MAXWELL THEORY IN A COVARIANT GAUGE
ance of an operator does not necessarily imply it tpigsi- A. Symmetric phase
cal. Additional care must be paid to identify the physical ] ] o ] )
spectrums with correct quantum numbers such as spin and !N this subsection, we will briefly review the analysis of
charge. the Maxvyell theory subject to a covariant gauge fixing in a

There are also different opinions on the anyonic properSymmetric phase. The Lagrangian is given by
ties including the existence of statistical spin phase transition
in a symmetry-broken pha$é&5,16|, which is an interesting L=
problem that may be relevant to high- superconductivity
[17]. In Ref.[16], Boyanovsky argued that the excitations
relative to ground state being not rotational invariant are spin
0 bosons. But this result seems to contradict the result of - 1(& Ak)2 2.1)
Deser and Yan{l8], observing that Higgs mechanism trans- GF 2 H ' '

—ZFWF’“’+|DM¢|2+EGF,
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whereD ,=d,+ieA, is a covariant derivative with metric FEgMAﬂ:EO—V2v~o, (2.9
9,,=(+1,—1,—1). The equal-time commutators are as fol-
lows (a time argument of operators is suppressed G=3,F°—Jy=VX(U—Agy) —Jo~0, (2.9

LA, A= [EL(X),ELy)]=0, where charge densityy(x) is given by

[0 AL =19, (X ), Jo(0) =ie{m* (x) % ()~ w(x) $(x)}

[$(X), m(Y)]=[¢*(X),7* ()]=i8*(x—Y), (2.2  andG is a Gauss-law constraint.
From the commutation relatiof2.2), one can obtain a
where we put useful relation13]

e U(x),V(y)]=iG(x~y), 2.1
E“(X):Wg’ m(X)=(Dod)*(x), 7 (X)=(Doh)(X). [U(x),V(Y)]=iG(x~Y) (2.10

whereG(x—vy) is a two-dimensional Green’s function
In order to get consistent quantum theory in the covariant

gauge, we must impose a supplementary condition for any 5 > 1
state|P) on an indefinite state spa¢#3], VEB(x—y) =8 (x=y), G(x—y)=5_In[x-yl|.
d,A*(X)|P)=0=4,A"~0. (2.3 Then one can see that the transverse field varialdles

) ) o o and &' evidently commute with the supplementary condi-
We also require that this condition is satisfied afterwards: tjons (2.8) and(2.9) and so are physical, while the operators

¢ and ¢* are unphysical. Define
dod ,AF~0. (2.9
~ _ qaieV(x)
According to the arguments of Dirg3], one can easily see ¢(x)=e ¢ (213
Egs.(2.3) and(2.4) are the only independent supplementary ] ) .
conditions affecting dynamical variables at one instant of¢(X) now commutes wittF and G and hence is physical.
time. Then the statgP) satisfying the condition§2.3) and  Similarly, ¢*(x) is physical. In the covariant gauge, the

(2.4) is defined as ghysicalstate. The condition for a dy- physical operatorgh and ¢* describe charged particles sur-

namical variableP to be physicalis that rounded by their Coulomb fields. Accordingly, the composite
nonlocal operatorg) and ¢* just correspond to the physical
[F.®]~0 (2.5 processes of creation and annihilation of charged patrticles,
N since these processes must always be accompanied by an
for each supplementary conditid#{P)=0. appropriate Coulomb change in an electric field around the

To find the physical fields, let us decompo&gx) and  point where the particle is created or annihilafé@]. The

Ei(x) into transverse and longitudinal parts, nonlocality of the physical field variables and ¢* are not
surprising since a field carrying a nonzero charge whose cur-

Vv rent obeys a local field equatiof,F”*=J#, cannot be local
AGO=AG0+ 5 @o 1 quation,
The covariant derivatives ap and ¢* can then be rep-
with 9A1/oxi=0 and resented by the physical fields and ¢*:
ECO=E(x)+ aU 2.7 Dig(x)=e V(g +ieA) p(x)=e VD ¢(x),
iX)=¢i - .
X'

m(x)=€'VM{g,—ie(Ag— U)}d* (x)=€'V¥7(x),
with 9€'/9x'=0 andU = gV/9x°. Observe that, for massless
theory, the transverse-longitudinall dt_acompqsitiqns, Eqs-(Di¢(x))*=e‘eV<X)((9i—ieAi)Zs*(x)ze‘e\’(x)(ﬁi&(x))*,
(2.6) and(2.7), are free from the ambiguity existing in zero-
momentum limit for massive theorj20] and the Poincare , -
algebra in terms of the physical variables is well defined. 7 (X)=e~'"*""{ay+ie(As—U)} ¢(x)
Indeed, this situation corresponds to the vanishing of topo- eV~
logical Chern-Simons termy =0, in Ref.[20], which shows =€ 7 (X). (212
that its Poincarealgebra is naturally free from zero- L 3
momentum anomaly. The conditiof&.3) and(2.4) can then  The variablesd',£',¢,7,¢*, and#* are the only indepen-
be rewritten as dent physical variables, apart from the quantitigs3) and
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(2.9. Now we can find the relationships between CoulombOur interest is the rotational property of physical fields. In
gauge and covariant gauge in the state space constructed bgder to calculate the angular momentum operatore be-
only physical variables. The field variables in covariantgin with the symmetric energy-momentum tensor in Eq.
gauge A=A —dV,A,—U,$, and ¢* correspond to (2.15:

A, Ag, ¢, and ¢* in Coulomb gauge, respectively. Indeed,

the prysical i vatabies wsing the relaun, - L= [ cyeiyiTy ~ [ dyely (s d
[A(X), A(y)]=[&(x),&(y)]=0, + 7 (y) 96" (y)} f d?yelyiAj(y) Jo(y)
[£00),A(x")]=—i8](x~y), + f d?y ey {EX(y) — *Ao(y) HawAj(y) — 9. Ax(y)}
[$00, 7(Y]=[* (), 7* (y)]=16(x~y), - f d?yely{m(y)ajb(y) +m* (¥) 3,6 (y)}
(300, AW =[B(0.6()]=0, | dvenamadom - [ dvdamam.
(2.13

(2.19

where 8! (x—y) is given by

j In order to find the final expressiof2.16, we used the

Gauss-law constrairi2.9). Because of a particular feature in

2 Kk three dimensions, the last term in E§.16), would-be-spin
M (x—y)= f _eik«x—y)( 8~ L) term, identically vanishes since the massless vector theory
) (2)? k2 has only one degree of freedom so that there is no additional

degree of freedom available to form nonzero spin stéfes
we takeA; = €&, € A; 4; is then the total derivative Al-
though the second term in E§2.16) does not verify the
commutation relation characteristic of angular momentum
[A(X)—U(X),d(y)]=eG(x—y)d(y). [remember[Ai(x),Aj(y)]=i5}1-“(x—y)], it can be shown
that this term is independent of the possible polarizations of
) _ photons, so purely “orbital” in terms of an appropriate
These are exactly the same as the commutation relations ghojce of the polarization vectors satisfying transversality
Coulomb gauge in the presence of interacfiaf]. . condition. Thus a massless vector theory in three dimensions
For simplicity, we can drop the gauge fixing term in the js spinless, confirming the result of Bined@2).
Langrangian(2.1) without loss of generality since we impose  Note that one can make use of supplementary conditions

the supplementary condition@.8) and (2.9 for physical  only after we have worked out all the commutat§es].
states and all the dynamical and physical variables commuteg|iowing this rule, we get

with these conditions. If we keep the gauge fixing term in the
Lagrangian(2.1), we will only obtain theweaklyidentical

Also using the relatiori2.10), we obtain

results after working out all the commutator algebra. [L,p(x)]

Let us define an angular momentum operator constructed
from the gauge invariant, symmetric energy-momentum ten- :j dzyeiiyi[;(y)ﬁja(y)+’7}*(y)aj:ﬁ*(y),:¢,(x)]
sor defined as

) - [ aryery A miam. 3]
85S= EJM VgoghT,, . (2.14
+j d?y el yi[EX(Y), pO) N aiAj(Y) = . An(y)}

The energy-momentum tensoy,, for the Langrangiari2.1) = —ielixd;h(x) 2.17
is then given by t ' '

Since the angular momentum operator is Hermitian, we also

Tu=—FuF,+(D,#)*D,¢+(D,$)*D,¢ obtain
- —EF F*+|D, #|? (2.19 ~ T
9| T Salk ' [L,$* (0]=—iexa,*(x). (2.18
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These are natural results since there is no reason for an [e(X), m,(N]=[X(X), 7, (y)]=i5*(X~y),
anomalous spin in the Maxwell theory.
However, if we do not use the physical fields commuting [o(X), 7, (Y)1=[ x(X),7,(y)]=0,
with supplementary conditions, we will have extra terms
which depend on gauge fields. They will make the physical [o(X), x(X')]=[7,(X), 7, (y)]=0. (2.22

interpretation about rotational property of fields obscure. It

suggests that before turning to dynamics, one should firSthe commutation relations of gauge fields are identical with
solve constraintg2.8) and (2.9), i.e., one has to find all {yose in the symmetric phase.

physical objects. This is one of the reasons we consider the Note that the gauge symmetry still remains in the

physical variables. symmetry-broken phase as long as we keep the would-be
Goldstone bosoy in the Lagrangiari2.20 except the gauge
B. Symmetry-broken phase fixing term. The supplementary conditions in the symmetry-

_broken phase correspond to this gauge symmetry. They are

For the Maxwell theory of symmetric phase, our prescrip I;’iﬂSO equal to Eqs2.8) and (2.9), except thatly(x) is given

tion of physical variables on gauge fields has based o
transverse-longitudinal decomposition of the fields. How- y
ever, in the case of symmetry-broken phase, we will be faced
with a problem, zero-momentum ambiguity in the
trans_ve_rse_-longitudinal decomp_osition of gauge fields._ Thi%\ccording to these supplementary conditions, one can find
ambiguity interrupts us from defining the Poincatgebra in hat the variablesd! £ AL= 5. (V+ y/m), and s
terms of physical variables and thus extracting the spin cont- a P T A =0 X, A
tent of gauge field§20]. Thus we will use two alternative =Md;m, /(= V2+m?)+m?9,(U—Ao)/(—V?+m?) are the
and complementary prescriptions in order to identify physi-only independent physical variables, i.e., commute fith
cal spectrums. andG.

To begin with, we introduce a symmetry breaking poten- Consider the symmetric energy-momentum tensor defined
tial V() in the Lagrangiar(2.1). And, for definite physical by Ed.(2.14:
spectrums, consider the following parametrization of a

Jo(X)=—mm7 (X). (2.23

charged scalar fielgh(x): T,=—FuFl+d,00,0+eX(v+9)?A A,
! : Cgl - TEL M (00)2
B0 = o+ 00}, (2.19 9ur| = gP P 5 (0he)
2
where vacuum expectation valueof ¢ is nonzero. Now the + 562(0 +¢)’A—V(v,¢) . (2.24

Lagrangian(2.1) with the potentialV(¢) becomes in terms

of the Higgs fielde(x) and the would-be-Goldstone boson As in the symmetric phase, we have dropped the gauge fix-
x(X), ing term Lgr from the Lagrangiari2.20 since we will deal
with only physical variables commuting with the gauge fix-
ing term. According to Eq(2.24), for a small excitationp,

1 1
_— v gl 2
L= E E* +2(aﬂ<p) the Hamiltonian is

47 m

Lo 2p2 1 2,502, R2, 2

toe (vt @) A~ V(@) + Ler, (220 H~§f d2x{E7+ B2+ 7

— 2, .2 20 ALy2 212
whereA , is defined by (Vo)™ m+ mi(AD) "+ m° A}

1
A L - §J d?xd?y Jo(X)G(X—Y)Jo(Y) +Hint+V(v, @),
A=A+ —dux, m=e. (2.21)

_ - 2 2 2 2 2
The Lagrangian2.20 has no constraint-nonsingular theory, 2] dx) E7+ B (Vo) t AL

so the canonical quantization is straightforward. From the
Lagrangian(2.20, one can obtain the conjugate momenta ( V2
X

m, andm, of ¢ andy, 1- s ALt M2(AD)?+M2A7 b +Hin + V(v 0),
iL . iL e o (2.25
m=——=¢, w="==—(vF+¢)Ao, - ) .
de dx v whereB=¢€"4;A!. The Coulomb-like energy appears as the
result of applying the supplementary conditi@9) with Eq.
and their equal-time commutation relations are (2.23. After a canonical transformation, which is a Bogoliu-
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bov transformation with respect t&" defined by 7t IIl. ANYONIC PHYSICAL OBSERVABLES
~L L ) ! AND SPIN PHASE TRANSITION

=\1—(V?/m?) maL and Ar=A /\1-V?/m? H finally be-

comes i A. Symmetric phase

In (2+1)-dimensional Maxwell theory, we showed that
the fields have no rotational anomaly in any phase, so that
there is no exotic statistics. But this story is dramatically
changed in Chern-Simons theory. The model we wish to ana-
_ lyze is Chern-Simons gauge theory coupled to complex sca-
+m2AF+mA(AD A+ Hin+ V(v 0). (2.26 Ilar fields. The Lagrangian density in a symmetric phase is

given by

1 ~ ~
H= EJ dPx{EF+ B2+ ml+ (Vo) >+ ma+(VAD)?

This result confirms that the vector fields are excitations with N 5
massm. L=—¢€t AMFV)\+|D,LL¢| +£GF’

4
However, note that the following expression about the
angular momentunt. does not show the result of Binegar 1
[22] that a massive vector field is spin 1: Log=— E(aMA”)Z. (3.0
) In spite of gauge fixing term, there are primary constraints
sz d?ye'ly;Ty; given by
20, il - S dIA~0, =12 3.2
=f d?yely{m,(y)dje(y) e '

+ AdY) O ALY)+ Ta(y)AK(y)},  (2.27  Which are second-class constraints which no longer lead to
k secondary constraints. We shall follow the Dirac procedure
to eliminate these constraints. We now proceed to quantize

where we have dropped would-be-spin terms on vector fieldd€ theory canonically by introducing Dirac brackets in the
since they are total derivatives and vanishes at spatial infirst2ndard manng@4,25. The nonvanishing set of equal-time
ity. Notice that, for massive theory, the transverse-cOmMMmutation relations is

longitudinal decompositions, Eq$2.6) and (2.7), are am- 2y

biguous in zero-momemtum limifi20]. Since the spin of [Ao(X), moly) ]=16°(x~y),
one-particle states can be characterized by the value of the i
angualar momentum of the particle about an arbitrary axis [AI(X),Aj(Y)]==€; 5% (X~Y),

when the particle is at rest, it is not unfortunately a good K

prescription for the spin contents of massive vector fields to _ o

deal with the transverse and longitudinal components sepa- [¢0), m(y)]=[¢" (%), 7* () ]=1 6 (x=y).
rately. Of course, as considered in RE20], after the re- As in the Maxwell theory, let us decompose the gauge

moval of an infrared singularity of boost generators, one caggq A, (x) into transverse and longitudinal parts
fix the spin of vector excitations. In Ref23], the determi- ' '

nation of the spin of massive vector fields was already per- oV auU oV
formed on along this line, where it was shown that the mas- Ai(X)=Ai(X) + — =€ —
sive vectors carry spin 1. This result implies a spin phase 23
transition in the three-dimensional Maxwell-Higgs theory.

If now the would-be Goldstone bosgnis gauged away,
there is no supplementary condition because there is n 4
gauge symmetry. And the canonical variabfgsand m are g.(3.3:
removed through Dirac brackets since the constraifts, i
~0 andm,~0, are second-clag®4,25. Thus, there is no [U(X),V(y)]=— ;G(X—Y)- (3.4
need to explicitly specify physical variables as the field al-
gebra includes only observable fields, andA;, as already As disscussed in Maxwell theory, we must impose the
confirmed. In addition, if we would not take the transverse-sypplementary conditions on any sti in order to return
longitudinal decomposition of the massive vector fieldsyg the consistent original theory from the modified Lagrang-

which is observer-dependent, the two degrees of freedomyn (3.1). All the supplementary conditions affecting dynami-
will be available to form parity doubled, nonzero spin statescg| variables at one instant of time are

Then, it can be shown with no wonder the Poincalgebra

(3.3

—_—+ —.
ax  ox!

Then one can show that the fieldgx) andV(y) satisfy the
llowing commutation relation using the second relation in

is well-defined and so the spin contents of vector fields can F=d,A*=3doA—V?V~0, (3.5
be extracted from it with no ambiguity. We will perform this B
in the Appendix. =— kel gA;+Jp=kV?U +Jp=~0, (3.6

105007-5
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where charge densityy(X) is given b
e densifol) 15 given by Voo [ dyeoeyaAy. (@10
Jo(x) =ie{am* (x)$* (x) = m(X) $(x)}.
The gauge fieldh;(x) can be thus expressed as the following
Of course,F and G commute with each other. Then any combination:
components of Chern-Simons gauge figlg or any combi-
nations of them are not physical, i.e., do hot commute With
and G. Even any component of the field tendey,, is not
physical, although it is gauge invariant. As a well-known fact
[1], there egists no real photon in pure Chern-Simons theory +0J d2y G(x—Y) dpAg(Y).
of symmetric phase.
The variableg is not physical since it commutes with
but not with G. However, if we defing13]

1
Ai(x)=— ;ﬂj&]f d?yG(x—y)Jo(Y)

The angular momentum operator obtained from symmet-
ric energy-momentum tensor given by

b(x) =€V h(x), (3.7) T,,=(D,$)*D,¢p+(D,¢)*D,h—d,,/D\¢|°

$(x) commutes withF and G and thus physical. Likely, IS represented as follows:
#*(x) is physical. Then, the variableg(x), 7(X),$* (), )

and7* (x) are the only independent physical variables, apart LZJ dzyf'JYiToJ‘

from the quantitieq3.5 and (3.6). From the commutation
relations(3.3) and(3.4), we observe that these physical field

operatorsh(x) and ¢* (x) create a flux quantum as well as a
U(1) charge,

=f d?yely{m(y)a;b(y) +7* (¥) 9, * (y)}

- 5 - f d2yely; A;(y)Jo(y)
Q{o(x)|P)}=(g—e)d(x)|P),

2
=f dzye”yi{%(y)aj?b(y)+7r*(y)t9155*(y)}+4QTK'

~ e\~
¢{¢(X)|P>}=(b+; B(x)[P),
(3.11
Q{9* (x)|P)}=(q+e)d* (X)|P), where we used Eq3.9) in the final step. For the same rea-
son as in Sec. Il, we have safely dropped the gauge fixing
e term. First, note that physical and gauge invariant scalar
d){?j;*(x)|P>}=(b— p @* (x)|P), (3.8 fields ¢(x) and$* (x) have a anomalous spin. That is,

whereQ=fd?xJy(x), ®=[d?xB(x) and a stat¢P) is as- (L. @00 ]=~Telxid;¢(x)

sumed to be a simultaneous eigenstateQoind ® with 2, i ~
eigenvaluesy and b, respectively. These properties show a _f dyelyi[Aj(y)Jo(y), ¢(x)]
manifest evidence that Chern-Simons gauge fields attach a L

flux quantum proportional t&J (1) charge to complex scalar =—i€e'x9;(x)

field, which is a dual picture that a physical electron in Max-

well theory carries Coulomb fields surrounding the charge. +Ef d2y(x, 7+ y;8") G(x—y) Io(Y) B(X)
In the presence of Chern-Simons gauge fields, the complex K B 0

scalar field¢(x) or ¢* (x), becomes a boson plus flux com- o eQ .
posite and, as we will see, this composite dynamically will =—ie'xd;p(x) —5—(X), (3.12
be an anyon by the Aharonov-Bohm eff¢@6]. That is, if 27K
we interchange the two field quanta with chagehe sta-
tistical phase by the Aharonov-Bohm effect is equal to
q%/2«. Indeed, we will construct the composite anyon opera:
tors satisfying fractional statistick4] under a covariant
gauge fixing. ~ o eQ -
One can solve the Gauss-law constraint in Fock space [L,¢* (X)]=—i€"x9 ¢*(x)+2—¢>*(x). (3.13
. . . . TK
represented by the physical variables which satisfy supple-
mentary condition$3.5) and (3.6):

where we have computed the commutator using the relations
(3.3 and(3.4) and used the expressi¢8.9 after this com-
‘putation. Similarly,

These results agree with the previous ofiesunder Cou-

1 lomb gauge.
R Y _ In symmetric phase, the Chern-Simons gauge fields are by
U Kf ATy Gx=y)do(y), 3.9 themselves nondynamical as the result of “too much
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symmetry”’—diffeomorphism invariance. As a result of this w(X)=(Dgp(X))*

“too much symmetry,” these gauge fields remain confined, .

but change a boundary condition of coupled fields in the ={(do+ieAy)S LX) p(x)}*

same way that the unphysical fields of Maxwell theory, i.e.,

scalar and longitudinal photons, result in an infrared dressing -3 9 _-eJ' d2vG(x—v)OA

of static Coulomb field to charged matter fie[d$]. So there (x)| | Jo~1 yGx=y)DA(Y)

can be two points of view describing the charged matter e
system coupIe_d to .Chern-Sllmons gauge flelds...One is that a —i _f d2y®(x—y)(9iJi(y)] B(%)
part of dynamical informationgboundary condition of the 27K

coupled fields assigns to the Chern-Simons gauge fields .
through an interaction. The other is that all the dynamicaf’vhere we used Eo[3._10) and thv_e current conse_rvatlon_law.
informations are assigned to the charged matter fields b fter using the.equatlon of moyon aboay, and integration
removing the Chern-Simons gauge fields through a singuldf¥ Part, we arrive at the following result:

gauge transformation initiated by Semen(eff. However, in
guantum field theory described Isynoothfields, the remov- S(X)
ing of a topological term with diffeomorphism invariance—
Chern-Simons term—through singular gauge transforma- e A
tions is in general impossible and instead remains a remnant —i —f d2y®(x—y)ai3’Ji(y)] d(X)
[27]. This phenomenon seems to be a quite general feature of 2w

*

e
[3o_i ;f d?ye;;aYG(x—y)J;(y)

*

bosonization in a continuum field theory in higher dimension e R *

D=3. =3(x) (ﬁo_i m[ dzyﬁi)/(@(x_y)Ji(y))] $(X)
The presence of nondynamical Chern-Simons gauge fields

leads ascalar fieldto anomalous spin term. In order to in- =S(x){a05b(x)}*ES(x)%(x), (3.18

corporate the relation between spin and statistics, we shall
construct anyon operators satisfying graded commutation reyhere we used “Cauchy-Riemann” equati¢®16 and as-

lations showing the fractional statistip4]. This is based on  sumed that current density rapidly decreases at larigethe
the fact that the choica la Semenoff with respect to the same way, we can show that

physical variables about complex fields and ¢* is also . .

true: 7 (X) =S 1x){dep(X)}=S"L(x)7*(x). (3.19
Z;s(x):e{‘<e’2”'<>fdzy®(x‘y>30<y>+ieV(X)}¢>(x)ES(x)¢(x), Second, expresB; ¢(x) in terms of the hat fields:

@19 Dig(x)=(d+ieA)S 100}

* (x) = el ~1(e2m0) [0 (x-y)Jo(y)~ieV00) g () =S 1(x)dp(x)+ieS Y(x)
_ 1 -
=S 1(X)¢*(X)- (315) X{Ai(x)—maif d2y®(x_y)J0(y) ¢(X)
We introduced the multivalued functio®(x) satisfying (3.20

“Cauchy-Riemann” equations As a consequence of Eg&3.9 and (3.16), A;(x) can be

rewritten as

1
aiG =~ |(9® 31 ]_
(x) 27TEJ J (x) (3.16 Ai(x):mJ d2y(9i><®(x_y)J0(y)_ (3.21)

and the resulting functiof (x) satisfies the following prop- However, unless the charge denslify) is sufficiently well
erties: localized, the interchange of integral and derivative in Eq.
(3.2 and thus displaying4;(x) as a pure gauge is in gen-
X X eral not correcf27]. When Jy(y) is smoothly distributed

tan® (x) = - 5O (X)=— €, over an extended region, the correct expression4ois
1

1

Ai(x)= 2—3|J d?y O (x—y)Jo(y)
VXVO(X)=278%(x), V?0(x)=0. mH
(3.17 1 '
—me”f dedz,dq(x;2), (3.22

Now we want to see the properties of that fields

through careful analysis. First, let us expres) in terms  where the line integral al, is along the cut line introduced
of the hat fields: to integrate the multivalued functio® and @ is the polar
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angle of the cut line. In order to remove an arbitrary direc-physical variables before turning to dynamics in order to
tional dependence of minimal coupling arising from theobtain correct results. This is the lesson learned from Dirac
choice of cut-line, we considered the averaging process fdrl13].

all possible choices of cut-line. This expression is still con-

sistent \{vi_th Gauss-law cpnstrat=V><A= - (1/k)Jg. For B. Symmetry-broken phase
the sufficiently well localized charge density such as nonrel- ]
ativistic quantum field theory27] or theory on the lattice We shall now consider when spontaneous symmetry

[28], the second term in Eq3.22 can be dropped with Preaking opcurs[ls]. In the same way as the Maxwell
impunity. Anyway, if we cameglectthe contribution of the ~theory, we introduce the symmetry breaking poteri@é)
remnant in Eq.(3.22 for some distribution],, we finally ~ and consider the same parametrization of a complex scalar

broken phase is given by

Dip(X)=S 1 x)3d(x), (D;h(x))* =S(x)d;p* (X).

K 1
— — gMVA - 2
The Hamiltonian of hat fields then takes the form = 4°€ A"F”ﬁz(a”('o)
1" 1 p 1 2 2/ A \2
sz d?x §”2+§(V¢)2 , (3.23 + 5%+ ¢)%(A,) = V(v,¢)+ Lok, (3.27

and their angular momentum operator is given by whereA_ is defined by
y73

L= [ @itz dritad). (2 _ 1
A=A+ 5‘9”)(' (3.28
To study the statistics of hat fields, we use the identities by
the Baker-Campbell-Hausdorff formula, The effective vector action obtained from E§.27) is
S(X)(2)S Hx) = (ERmIO0Dg(z), « 1,
L= Zef“’“AMFVﬁ 7€ AL, (3.29

S(X) 7T(Z)87 l(x) — ei(e2/27m)®(xfz)ﬂ_(z) )
329 after a gauge transformatiod,—A , —(1l/ev)d,x. The

The commutation relations of hat fields now obey the gradegSelf-dual” first order systen(3.29 has been showfl9] to

commutation relationf4] be equivalent to topologically massive spin 1 thed?g]
’ even in the presence of interaction. Thus one expects that the

(%(X)(Aﬁ(y):e—i(ezA/Zﬂ'K):ﬁ(y);b(X) Chern-Simons gauge field absorbed a would-be Goldstone
’ boson is transmuted into topologically massive helicity 1 ex-

DN ik o i (€2A27K) Tk (o ) citation in the Higgs' phase. This is the observation of Deser

P04 (y) =€ 6% () $(x), and Yang[18]. But there also exist argumer(ts6] that the
VO 1(20127K) ™ (1 7 excitation relative to ground state being not rotational invari-
p(x)m(y)=15°(x—y)+e m(y)$(%), ant is spin 0 boson. We shall resolve this inconsistency based

.. L, . . (3.20  on the same analysis as in Sec. Il.

()7 (y)=e 82T 7 (y) d(x), The equal-time commutation relations of Chern-Simons
L - L gauge fields are equal to E@.3) and matter parts are equal
m(X)w(y)=e ATy 7 (x), to Eq. (2.22. The supplementary conditions are also identi-

cal to Egs.(3.5 and(3.6), except thatly(x) is given by
(x) 7 (y) =€ (V2T 2% (y) r(x),
_ _ Jo(X)=—ev,(X). (3.30
with multivalued phase
According to these supplementary conditions, we can
find that the variablesp(x), 7, AiLEai(VJrX/ev), and

These multivalued operators carry fractional statistics andTa-=€vdim, /(= VZ+m?) + km?gU/ (= V2 +m?) (m
may be regarded as anyon operators since they create a state?v?/«) are the only independent physical variables, apart
with arbitray spin when acting on a physical state. The stafrom the quantitie$3.5 and(3.6). Note that the longitudinal
tistical phases in the graded commutation relati@26 are  Chern-Simons gauge field absorbed would-be Goldstone bo-
exactly equal to the Aharonov-Bohm phase for the fieldson can be a dynamical variable and restore the vector field's
qguanta satisfying Eq(3.8). Consequently, we see that the dynamics[18] in the Higgs' phase. That is, the Chern-
Aharonov-Bohm effect is the origin of anyon statistics. Simons-Higgs theory will have one massive spin 1 and one
Note that the representation of a physical variable demassive spin @Higgs field propagating modes. In the case
pends on the gauge fixing and one needs to first find albf Maxwell-Chern-Simons-Higgs theory, we again have two

A=0(x—y)—0O(y—x)=a mod 2mn.
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parity-violating massive spin 1 modg23,29. Although the N
scalar formV + y/ev identified by Boyanovsky iphysicalin L=| d?yely Ty
the Dirac’s sense, the more appropriate choice will be vector
form as seen from the experience obtained by the analysis of
the Maxwell-Higgs theory in Sec. Il. In addition, Boy-
anovsky’s choice will encounter an infrared singularity since
V+ x/ev=g;A[/V? and this will bring about a superfluous —J d2?yely; A (y)Joly)
infrared singularity in Poincargenerators.

=f d?yelyi{m (y)dje(y) +evm (y)AF(X)}

In order to examine the physical spectrum of the involved o i L 2
fields, consider the symmetric energy-momentum tensor de- :f doyely{m (y)dje(y)+ 7T/At(Y)‘?J"A‘k(Y)}”L dr’

fined by Eq.(2.14): (3.39

T ,,=(7M(p(9,,(p+62(v+ @)ZKMKV where we have again dropped a would-be-spin term on vec-
tor field since it is total derivative and vanishes at spatial
infinity. The angular momentum operatar in Eq. (3.34
. seems to have the anomalous term as in Rid] but it is
misleading since the last term in E&.34) induces no effect
(3.31 on fields, i.e.,

1 1
—gﬂy[i(&xsp)sz 562(U+<P)2K5—V(v,¢)

Then the Hamiltonian becomes “ dZyEiiyiAj(y)Jo(y),A:—(X)
1. - =Ud2 ey Ai(y)Jo(y), e(x)|=0. (3.35
HZJ d2X §(¢2+(V(p)2+e2(y+(p)2A0Ao y yl j(y) O(y) <P( )

5 R Moreover, it is expected that, in the massive vector theory,
+e“(v+@)°AA)+V(v,9) we will encounter the zero-momentum ambiguity on the
transverse-longitudinal decomposition of vector fields, which

1 2,2 y2 brings about the zero-momentum anomaly in Poincége-
= Ef d?x wi+(V<p)2+ TaLl —5 — 55| A bra as in Sec. II. Thus the correct spin content of vector fields
kS e ' should be determined by the removing of zero-momentum

singularity of boost generator or prescription free from zero-
+e2v2(AiL)2] +Hi +V(v,0), (3.32 momentum ambiguity which abandons the transverse-
longitudinal decomposition of vector fields. In the Appendix,
we will obtain the result that the Chern-Simons gauge field
A:‘ is a spin 1 excitation, by checking the Poincatgebra in
where Coulomb-like energy appears as the result of applyterms of the prescription free from zero-momentum ambigu-
ing the supplementary conditiori3.6). As in Sec. I, ity which does not take the transverse-longitudinal decompo-
after a Bogoliubov transformation with respect # S't'g” of vec;o; ﬂeliqs.f 9] that e Chern.Si
) ~ > =L eser and Jackiw foun at massive Chern-Simons
defined by mat= (/%) ~ (V€0 )ma and A theory is equivalentoy a Legendre transformatipto topo-
=A(€%% k%) —(V?/e?v?),H becomes logically massive gauge theorf20] which has a parity-
violating spin 1 excitation, where the spin of the vector ex-
citation was fixed by the removal of zero-momentum
~ _ singularity of Poincarelgebra. In Ref[18], Deser and Yang
H= Ef d?x{ 5+ (V)2 + 7TA:-2+ (VAD)? observed that Higgs mechanism transmutes a non-dynamical
Chern-Simons term into topologically massive, parity-
ety violating, spin 1 theory. According to the results, we can
+ _Z(Z\iL)Z} +Hin+V(v,0). (3.33 conclude that the Chern-Simons gauge field in Higgs’' phase
K is a spin 1 excitation. Consequently, the excitations in Higgs’
phase have no anomalous spin and the Chern-Simons gauge
field absorbed a would-be Goldstone boson is transmuted
This result confirms that the vector field is an excitation withinto topologically massive helicity 1 excitation. Therefore,
massm=e%v?/k. the Higgs mechanism transmutes an anyon satisfying frac-
The angular momentum operator obtained from the symtional statistics into a spin 0 or a spin 1 boson and so there
metric energy-momentum tens(®.31) is represented by us- exists interestingly a statistical spin-phase transition as the
ing the supplementary conditidi3.6) as follows: observation of Wen and Zdé5)].
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IV. CONCLUSION Consider the following Proca Lagrangian:

We have presented the quantization of a charged matter
system coupled to a Chern-Simons gauge field in a covariant
gauge fixing. Our approach is based on Dirac’s method per-
formed on QED[13] which provides us a definite way of
identifying physical spectrums free from gauge ambiguityAfter the canonical quantization of the theory by introducing

arising from the gauge fixing and illustrates the importancey Dirac bracket, we obtain the following commutation rela-
of consideration of physical field variables. The importantijgns:

point is that the formulation of dynamics in terms of a La-

1 1
Lp=— ZFM,,F’“H—EmzAi. (A1)

grangian(or Hamiltonian) and the equations of motion make [Ag(X),mo(Y)]=0,
use of a larger field algebra which includes nonobservable
fields and thus one must find all physical variables before [A(X), 7 (y)]=i8; 82 (x—y), (A2)

turning to dynamics in order to obtain correct results. Then it

can be shown quite generally that the physical charged fieldgpare conjugate momentaizaﬁp/aAjz Fi® Then the

are described by ponlocal fields carrying static field, fpr ex'energy-momentum tensdr,,, for the Proca theoryAl) is
ample, Coulomb fields for Maxwell theory and magnetic ﬂuxgiven as
for Chern-Simons theory. In the case of Chern-Simons

theory, we have shown that the static field, i.e., the magnetic T,,=—F, F*+m2A A —g,.Cp. (A3)
flux, attached to charged matter fields is the origin of frac- - pAw mow SRy
tional statistics. With the energy-momentum tensor, the Poinogeaerators

We have also presented the quantization of the Chermcan pe expressed as the following forms:
Simons matter system in a symmetry-broken phase and en-
sured that the Higgs mechanism transmutes a nondynamical
Chern-Simons term into topologically massive, parity- PFJ dZXTOi:J d?x (%) i AK(X),
violating, spin 1 theory. Thus the Higgs effect transmutes an
anyon satisfying fractional statistics into a canonical boson, a 1 1
spin 0 Higgs boson or a topologically massive photon which H:f deTOO:f (12)([_7.,i(x)77i(x)4r —F”(x)Fi]—(x)
is a Chern-Simons gauge field absorbed would-be Goldstone 2 4
boson. In order to identify correct spectrums, we have used
two alternative and complementary prescriptions and found
the consistent result with Deser and Jackiw on the spin of
massive vector fields and thus removed an inconsistency be-
tween Boyanovsky and Deser and Yang. Consequently, it B
implies that the Higgs effect induces the statistical spin phase L= f d2X6"XiT0j (A4)
transition predicted by Wen and Zee.

We think that the same approach performed in this paper - o
will be applied to Maxwell-Chern-Simons theory as well. =f deEI]XiWk(X)ajAk(X)_j dxel 7' (X)Aj(x),
For the Maxwell-Chern-Simons theory, there also exist dif-
ferent opinions[10,30 on anyon statistics in symmetric
phase. In Higgs’ phase, this theory has two parity-violating ;. :f d2xx ij(x)wj(x)Jr lek(X)F_k(X)
massive spin 1 photori£3,29 and one spin 0 Higgs field. ' 2 4 )
Thus the problem on the existence of anyon statistics in this
model will be involved with the statistical spin phase transi-
tion. Study on these issues will be also interesting.

1 PRV m? i i
+ﬁ((9i77(x)) +7A(X)A(X) ,

2

+i(a- j(x))2+1Aj(x)Aj(x) —tP;
2me 7 2 R
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APPENDIX A: POINCARE ALGEBRA OF MASSIVE [MiOijO]: —i €ij L. (A5)
VECTOR FIELDS IN 2 +1 DIMENSIONS
The Poincarealgebra is free from zero-momentum
anomaly and the angular momentum operadtan Eq. (A4)
In this appendix, we will analyze the Poincaalgebra of has a canonical expression for spin 1 theory contrary to that
Proca theory in 21 dimensions and show that the massiveof Eq. (2.27). Here, we confirm the result of Binegf22]
vector field in the Proca theory is canonically spin 1. that a massive vector field is spin 1.

1. Proca theory
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2. Massive Chern-Simons theory

| g2xTa= | g2 .
In this Appendix, we will analyze the Poincaatgebra of Pi Jd XTo fd XKBOOA;(x)

massive Chern-Simons theory ir-2 dimensions which has
only one propagating mode and show that this massive mode = f d2x7K(X) . A(X),
in the Chern-Simons theory is canonically spin 1.

Consider the following massive Chern-Simons Lagrang-

2
ian [19] H:f dszoozf dzx(:—IM(B(x))ZnL %Ai(X)Ai(X)],
K o
Log=—€“"™ A F \+ =AZ. A6 y y
CsTZ2 € M T 5 (A6) L=Jd2X6|JXiTOj=KJ d?xe' I x;B(x)Aj(X)
After the canonical quantization of the theory by introducing T o i
a Dirac bracket, we obtain the following commutation rela- =f d°xe" x;m (X)ﬂjAk(X)—J d“xe" 7' (x)Aj(x),
tions:
2
Moo= | d2¢| —— (B(x))2+ = Al(x)Al(x) | —tP,
[Ao(X),mo(y)]=0, 0~ 2u 2 H
. (A9)
i . . ;
[AI),A(Y)]= - € (x-y). (A7) where B(x)=€laAl(x), 7'(x)=(x/2)elA(x), and A,

=(x/un)B(x). After a straightforward calculation using the

commutation relationgA7) and[B(x),B(y)]=0, one can
Iso check that the Poincaségebra for the massive Chern-
imons theory is well defined, especially,

Equation(A7) shows that the Chern-Simons gauge fiedds
andA, are not independent due to the symplectic structure o

Lcs.
The energy-momentum tensby,, for the massive Chern- [Mio,Pj]=—idjH,
Simons theory(A6) is given by )
[Mio,Mjo]= —ie;L. (A10)
M incal i -
T = nAA,— EQWAAAX- (A8) The Poincarealgebra is also free from zero-momentum

anomaly and the angular momentum operdtan Eq. (A9)

has a canonical expression for spin 1 theory. Thus, we con-
With the energy-momentum tensor, the Poinogeeerators firm the result of Deser and Jack[i9] that the excitation of
can be expressed as the following forms: the massive Chern-Simons theory is spin 1.
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