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Anyonic physical observables and spin phase transition

Hyun Seok Yang and Bum-Hoon Lee
Department of Physics, Sogang University, Seoul 121-742, Korea

~Received 17 September 1998; published 7 April 1999!

The quantization of a charged matter system coupled to Chern-Simons gauge fields is analyzed in covariant
gauge fixing and gauge invariant, physical anyon operators satisfying fractional statistics are constructed in a
symmetric phase, based on Dirac’s recipe performed on QED. This method provides us a definite way of
identifying physical spectrums free from gauge ambiguity and constructing physical anyon operators under a
covariant gauge fixing and we analyze the statistical spin phase transition in a symmetry-broken phase pre-
dicted by Wen and Zee. The Higgs mechanism transmutes an anyon satisfying fractional statistics into a
canonical boson, a spin 0 Higgs boson, or a topologically massive photon which is a Chern-Simons gauge field
absorbed would-be Goldstone boson.@S0556-2821~99!01206-0#

PACS number~s!: 11.15.2q, 03.70.1k, 11.10.Kk
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I. INTRODUCTION

In ~211!-dimensional field theories such as Cher
Simons gauge theory with a charged matter field@1#, the
nonlinears model with a Hopf term@2#, and the CP1 model
with a Chern-Simons term@3#, it has been known that ther
exist excitations with exotic statistics, anyons@4,5#, which
continuously interpolate between bosons and fermions.
fundamental role of fractional statistics in condensed ma
physics has been proposed in order to describe a fracti
quantum Hall effect@6# and the behavior of two-dimensiona
materials such as vortices in superfluid helium films@7# and
the Cu-O planes of the copper-oxide superconductors@8#.

However, in~211!-dimensional quantum field theory, th
explicit construction of anyon operators exhibiting fraction
statistics has led to much controversy and debate@9#. Al-
though the physical results must be independent of a ga
fixing condition, different results with different gaug
choices had been reported@10#. Because of the difficulty of
identifying physical degrees of freedom, doubt was cast
the results thus obtained and the gauge independent ana
was attempted@11,12#.

Since the representation of aphysicaloperator@13# can be
varied with each gauge fixing, the construction of a physi
operator under a gauge fixing condition must be treated c
fully. One of the reasons for consideration ofphysicalfield
variables is that the formulation of dynamics in terms o
Lagrangian~or Hamiltonian! and the equations of motio
make use of a larger field algebra which includes nonobs
able fields@14#. It is important to notice that gauge invar
ance of an operator does not necessarily imply it to bephysi-
cal. Additional care must be paid to identify the physic
spectrums with correct quantum numbers such as spin
charge.

There are also different opinions on the anyonic prop
ties including the existence of statistical spin phase transi
in a symmetry-broken phase@15,16#, which is an interesting
problem that may be relevant to high-Tc superconductivity
@17#. In Ref. @16#, Boyanovsky argued that the excitation
relative to ground state being not rotational invariant are s
0 bosons. But this result seems to contradict the resul
Deser and Yang@18#, observing that Higgs mechanism tran
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mutes a nondynamical Chern-Simons term into topologica
massive, parity-violating, spin 1 theory@19#.

In this paper, we will perform a careful analysis on th
charged matter fields coupled to Chern-Simons gauge fi
in a covariant gauge along Dirac’s method performed
QED @13#. In Sec. II, we will analyze the Maxwell theory o
a symmetric and a symmetry-broken phase in a covar
gauge in order to illustrate the definite way of identifying
physical spectrum free from gauge ambiguity arising fro
gauge fixing and to manifest the importance of considera
of physicalfields. In Sec. III, the quantization of the Chern
Simons matter system will be presented and physical an
operators will be constructed in a covariant gauge based
the approach in Sec. II. We will also analyze the quantizat
of the Chern-Simons matter system in the symmetry-bro
phase and show that the Higgs mechanism transmute
anyon satisfying fractional statistics into a spin 0 Higgs b
son and a topologically massive photon which is a Che
Simons gauge field absorbed would-be Goldstone bos
Thus the Higgs effect influences the spin phase of the an
and interestingly induces the statistical spin phase transit
predicted by Wen and Zee@15#. As we will see, the result is
consistent with the observation of Deser and Yang@18#. Sec-
tion IV contains our conclusion. In the Appendix, we w
analyze the Poincare´ algebra of massive vector fields—Proc
and massive Chern-Simons theories—and extract the
content of massive vector fields with no ambiguity.

II. MAXWELL THEORY IN A COVARIANT GAUGE

A. Symmetric phase

In this subsection, we will briefly review the analysis
the Maxwell theory subject to a covariant gauge fixing in
symmetric phase. The Lagrangian is given by

L52
1

4
FmnFmn1uDmfu21LGF ,

LGF52
1

2
~]mAm!2, ~2.1!
©1999 The American Physical Society07-1
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whereDm5]m1 ieAm is a covariant derivative with metric
gmn5(11,21,21). The equal-time commutators are as fo
lows ~a time argument of operators is suppressed!:

@Am~x!,An~y!#5@Em~x!,En~y!#50,

@Em~x!,An~y!#5 igmnd2~x2y!,

@f~x!,p~y!#5@f* ~x!,p* ~y!#5 id2~x2y!, ~2.2!

where we put

Em~x!5
]Am

]x0
, p~x!5~D0f!* ~x!, p* ~x!5~D0f!~x!.

In order to get consistent quantum theory in the covari
gauge, we must impose a supplementary condition for
stateuP& on an indefinite state space@13#,

]mAm~x!uP&50⇒]mAm'0. ~2.3!

We also require that this condition is satisfied afterwards

]0]mAm'0. ~2.4!

According to the arguments of Dirac@13#, one can easily see
Eqs.~2.3! and~2.4! are the only independent supplementa
conditions affecting dynamical variables at one instant
time. Then the stateuP& satisfying the conditions~2.3! and
~2.4! is defined as aphysicalstate. The condition for a dy
namical variableF to bephysicalis that

@F,F#'0 ~2.5!

for each supplementary conditionFuP&50.
To find the physical fields, let us decomposeAi(x) and

Ei(x) into transverse and longitudinal parts,

Ai~x!5Ai~x!1
]V

]xi
~2.6!

with ]A i /]xi50 and

Ei~x!5Ei~x!1
]U

]xi
~2.7!

with ]E i /]xi50 andU5]V/]x0. Observe that, for massles
theory, the transverse-longitudinal decompositions, E
~2.6! and~2.7!, are free from the ambiguity existing in zero
momentum limit for massive theory@20# and the Poincare´
algebra in terms of the physical variables is well defin
Indeed, this situation corresponds to the vanishing of to
logical Chern-Simons term,m50, in Ref.@20#, which shows
that its Poincare´ algebra is naturally free from zero
momentum anomaly. The conditions~2.3! and~2.4! can then
be rewritten as
10500
t
y

f

s.

.
-

F[]mAm5E02¹2V'0, ~2.8!

G[] iF
io2J05¹2~U2A0!2J0'0, ~2.9!

where charge densityJ0(x) is given by

J0~x!5 ie$p* ~x!f* ~x!2p~x!f~x!%

andG is a Gauss-law constraint.
From the commutation relation~2.2!, one can obtain a

useful relation@13#

@U~x!,V~y!#5 iG~x2y!, ~2.10!

whereG(x2y) is a two-dimensional Green’s function

¹2G~x2y!5d2~x2y!, G~x2y!5
1

2p
ln ux2yu.

Then one can see that the transverse field variablesA i

and E i evidently commute with the supplementary cond
tions ~2.8! and~2.9! and so are physical, while the operato
f andf* are unphysical. Define

f̃~x!5eieV~x!f~x!. ~2.11!

f̃(x) now commutes withF and G and hence is physical
Similarly, f̃* (x) is physical. In the covariant gauge, th
physical operatorsf̃ andf̃* describe charged particles su
rounded by their Coulomb fields. Accordingly, the compos
nonlocal operatorsf̃ andf̃* just correspond to the physica
processes of creation and annihilation of charged partic
since these processes must always be accompanied b
appropriate Coulomb change in an electric field around
point where the particle is created or annihilated@13#. The
nonlocality of the physical field variablesf̃ and f̃* are not
surprising since a field carrying a nonzero charge whose
rent obeys a local field equation,]nFnm5Jm, cannot be local
@14#.

The covariant derivatives off and f* can then be rep-
resented by the physical fieldsf̃ and f̃* :

Dif~x!5e2 ieV~x!~] i1 ieAi !f̃~x![e2 ieV~x!D̃ if̃~x!,

p~x!5eieV~x!$]02 ie~A02U !%f̃* ~x![eieV~x!p̃~x!,

„Dif~x!…* 5eieV~x!~] i2 ieAi !f̃* ~x![eieV~x!
„D̃ if̃~x!…* ,

p* ~x!5e2 ieV~x!$]01 ie~A02U !%f̃~x!

[e2 ieV~x!p̃* ~x!. ~2.12!

The variablesA i ,E i ,f̃,p̃,f̃* , andp̃* are the only indepen-
dent physical variables, apart from the quantities~2.8! and
7-2
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ANYONIC PHYSICAL OBSERVABLES AND SPIN PHASE . . . PHYSICAL REVIEW D 59 105007
~2.9!. Now we can find the relationships between Coulom
gauge and covariant gauge in the state space constructe
only physical variables. The field variables in covaria
gauge Ai5Ai2] iV,A02U,f̃, and f̃* correspond to
Ai ,A0 ,f, andf* in Coulomb gauge, respectively. Indee
we can reexpress the commutation relations~2.2! as those of
the physical field variables using the relation~2.10!:

@Ai~x!,Aj~y!#5@Ei~x!,Ej~y!#50,

@Ei~x!,Aj~x8!#52 id i j
tr~x2y!,

@f̃~x!,p̃~y!#5@f̃* ~x!,p̃* ~y!#5 id2~x2y!,

@f̃~x!,Ai~y!#5@f̃~x!,Ei~y!#50,
~2.13!

whered i j
tr(x2y) is given by

d i j
tr~x2y!5E d2k

~2p!2
eik•~x2y!S d i j 2

kikj

k2 D .

Also using the relation~2.10!, we obtain

@A0~x!2U~x!,f̃~y!#5eG~x2y!f̃~y!.

These are exactly the same as the commutation relation
Coulomb gauge in the presence of interaction@21#.

For simplicity, we can drop the gauge fixing term in th
Langrangian~2.1! without loss of generality since we impos
the supplementary conditions~2.8! and ~2.9! for physical
states and all the dynamical and physical variables comm
with these conditions. If we keep the gauge fixing term in
Lagrangian~2.1!, we will only obtain theweakly identical
results after working out all the commutator algebra.

Let us define an angular momentum operator constru
from the gauge invariant, symmetric energy-momentum t
sor defined as

dS5
1

2EMAgdgmnTmn . ~2.14!

The energy-momentum tensorTmn for the Langrangian~2.1!
is then given by

Tmn52FmlFn
l1~Dmf!* Dnf1~Dnf!* Dmf

2gmnH 2
1

4
FlrFlr1uDlfu2J . ~2.15!
10500
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Our interest is the rotational property of physical fields.
order to calculate the angular momentum operatorL, we be-
gin with the symmetric energy-momentum tensor in E
~2.15!:

L5E d2ye i j yiT0 j5E d2ye i j yi$p̃~y!] j f̃~y!

1p̃* ~y!] j f̃* ~y!%2E d2ye i j yiAj~y!J0~y!

1E d2ye i j yi$E
k~y!2]kA0~y!%$]kAj~y!2] jAk~y!%

5E d2ye i j yi$p̃~y!] j f̃~y!1p̃* ~y!] j f̃* ~y!%

1E d2ye i j yiȦk~y!] jAk~y!2E d2ye i j Ȧi~y!Aj~y!.

~2.16!

In order to find the final expression~2.16!, we used the
Gauss-law constraint~2.9!. Because of a particular feature i
three dimensions, the last term in Eq.~2.16!, would-be-spin
term, identically vanishes since the massless vector the
has only one degree of freedom so that there is no additio
degree of freedom available to form nonzero spin states~if
we takeAi5e i j ] jj,e i j ȦiAj is then the total derivative!. Al-
though the second term in Eq.~2.16! does not verify the
commutation relation characteristic of angular moment
@remember@Ai(x),Ȧj (y)#5 id i j

tr(x2y)], it can be shown
that this term is independent of the possible polarizations
photons, so purely ‘‘orbital’’ in terms of an appropriat
choice of the polarization vectors satisfying transversa
condition. Thus a massless vector theory in three dimens
is spinless, confirming the result of Binegar@22#.

Note that one can make use of supplementary conditi
only after we have worked out all the commutators@24#.
Following this rule, we get

@L,f̃~x!#

5E d2ye i j yi@p̃~y!] j f̃~y!1p̃* ~y!] j f̃* ~y!,f̃~x!#

2E d2ye i j yiAj~y!@J0~y!,f̃~x!#

1E d2ye i j yi@Ek~y!,f̃~x!#$]kAj~y!2] jAk~y!%

52 i e i j xi] j f̃~x!. ~2.17!

Since the angular momentum operator is Hermitian, we a
obtain

@L,f̃* ~x!#52 i e i j xi] j f̃* ~x!. ~2.18!
7-3
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These are natural results since there is no reason fo
anomalous spin in the Maxwell theory.

However, if we do not use the physical fields commuti
with supplementary conditions, we will have extra term
which depend on gauge fields. They will make the physi
interpretation about rotational property of fields obscure
suggests that before turning to dynamics, one should
solve constraints~2.8! and ~2.9!, i.e., one has to find al
physical objects. This is one of the reasons we consider
physical variables.

B. Symmetry-broken phase

For the Maxwell theory of symmetric phase, our prescr
tion of physical variables on gauge fields has based
transverse-longitudinal decomposition of the fields. Ho
ever, in the case of symmetry-broken phase, we will be fa
with a problem, zero-momentum ambiguity in th
transverse-longitudinal decomposition of gauge fields. T
ambiguity interrupts us from defining the Poincare´ algebra in
terms of physical variables and thus extracting the spin c
tent of gauge fields@20#. Thus we will use two alternative
and complementary prescriptions in order to identify phy
cal spectrums.

To begin with, we introduce a symmetry breaking pote
tial V(f) in the Lagrangian~2.1!. And, for definite physical
spectrums, consider the following parametrization of
charged scalar fieldf(x):

f~x!5
1

A2
$v1w~x!%eix~x!/v, ~2.19!

where vacuum expectation valuev of f is nonzero. Now the
Lagrangian~2.1! with the potentialV(f) becomes in terms
of the Higgs fieldw(x) and the would-be-Goldstone boso
x(x),

L52
1

4
FmnFmn1

1

2
~]mw!2

1
1

2
e2~v1w!2Ām

2 2V~v,w!1LGF , ~2.20!

whereĀm is defined by

Ām[Am1
1

m
]mx, m5ev. ~2.21!

The Lagrangian~2.20! has no constraint-nonsingular theor
so the canonical quantization is straightforward. From
Lagrangian~2.20!, one can obtain the conjugate momen
pw andpx of w andx,

pw5
]L
]ẇ

5ẇ, px5
]L
]ẋ

5
e

v
~v1w!2Ā0 ,

and their equal-time commutation relations are
10500
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@w~x!,pw~y!#5@x~x!,px~y!#5 id2~x2y!,

@w~x!,px~y!#5@x~x!,pw~y!#50,

@w~x!,x~x8!#5@pw~x!,px~y!#50. ~2.22!

The commutation relations of gauge fields are identical w
those in the symmetric phase.

Note that the gauge symmetry still remains in t
symmetry-broken phase as long as we keep the would
Goldstone bosonx in the Lagrangian~2.20! except the gauge
fixing term. The supplementary conditions in the symmet
broken phase correspond to this gauge symmetry. They
also equal to Eqs.~2.8! and~2.9!, except thatJ0(x) is given
by

J0~x!52mpx~x!. ~2.23!

According to these supplementary conditions, one can
that the variablesA i ,E i ,w,pw ,Ai

L[] i(V1x/m), and pA
i
L

[m] ipx /(2¹21m2)1m2] i(U2A0)/(2¹21m2) are the
only independent physical variables, i.e., commute withF
andG.

Consider the symmetric energy-momentum tensor defi
by Eq. ~2.14!:

Tmn52FmlFn
l1]mw]nw1e2~v1w!2ĀmĀn

2gmnH 2
1

4
FlrFlr1

1

2
~]lw!2

1
1

2
e2~v1w!2Āl

22V~v,w!J . ~2.24!

As in the symmetric phase, we have dropped the gauge
ing termLGF from the Lagrangian~2.20! since we will deal
with only physical variables commuting with the gauge fi
ing term. According to Eq.~2.24!, for a small excitationw,
the Hamiltonian is

H'
1

2E d2x$E i
21B 21pw

2

1~¹w!21px
21m2~Ai

L!21m2A i
2%

2
1

2E d2xd2yJ0~x!G~x2y!J0~y!1Hint1V~v,w!,

5
1

2E d2xH E i
21B 21pw

21~¹w!21pA
i
L

3S 12
¹2

m2D pA
i
L1m2~Ai

L!21m2A i
2J 1Hint1V~v,w!,

~2.25!

whereB[e i j ] iA j . The Coulomb-like energy appears as t
result of applying the supplementary condition~2.9! with Eq.
~2.23!. After a canonical transformation, which is a Bogoli
7-4
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ANYONIC PHYSICAL OBSERVABLES AND SPIN PHASE . . . PHYSICAL REVIEW D 59 105007
bov transformation with respect toAi
L defined by p̃A

i
L

5A12(¹2/m2)pA
i
L and Ãi

L5Ai
L/A12¹2/m2,H finally be-

comes

H5
1

2E d2x$E i
21B 21pw

21~¹w!21p̃A
i
L21~¹Ãi

L!2

1m2A i
21m2~Ãi

L!2%1Hint1V~v,w!. ~2.26!

This result confirms that the vector fields are excitations w
massm.

However, note that the following expression about t
angular momentumL does not show the result of Binega
@22# that a massive vector field is spin 1:

L5E d2ye i j yiT0 j

5E d2ye i j yi$pw~y!] jw~y!

1Ȧk~y!] jAk~y!1pA
k
L~y!] jAk

L~y!%, ~2.27!

where we have dropped would-be-spin terms on vector fie
since they are total derivatives and vanishes at spatial in
ity. Notice that, for massive theory, the transvers
longitudinal decompositions, Eqs.~2.6! and ~2.7!, are am-
biguous in zero-momemtum limit@20#. Since the spin of
one-particle states can be characterized by the value o
angualar momentum of the particle about an arbitrary a
when the particle is at rest, it is not unfortunately a go
prescription for the spin contents of massive vector fields
deal with the transverse and longitudinal components se
rately. Of course, as considered in Ref.@20#, after the re-
moval of an infrared singularity of boost generators, one
fix the spin of vector excitations. In Ref.@23#, the determi-
nation of the spin of massive vector fields was already p
formed on along this line, where it was shown that the m
sive vectors carry spin 1. This result implies a spin ph
transition in the three-dimensional Maxwell-Higgs theory

If now the would-be Goldstone bosonx is gauged away,
there is no supplementary condition because there is
gauge symmetry. And the canonical variablesA0 andp0 are
removed through Dirac brackets since the constraints,p0

'0 and ṗ0'0, are second-class@24,25#. Thus, there is no
need to explicitly specify physical variables as the field
gebra includes only observable fields,A1 andA2 , as already
confirmed. In addition, if we would not take the transvers
longitudinal decomposition of the massive vector fie
which is observer-dependent, the two degrees of freed
will be available to form parity doubled, nonzero spin stat
Then, it can be shown with no wonder the Poincare´ algebra
is well-defined and so the spin contents of vector fields
be extracted from it with no ambiguity. We will perform th
in the Appendix.
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III. ANYONIC PHYSICAL OBSERVABLES
AND SPIN PHASE TRANSITION

A. Symmetric phase

In (211)-dimensional Maxwell theory, we showed th
the fields have no rotational anomaly in any phase, so
there is no exotic statistics. But this story is dramatica
changed in Chern-Simons theory. The model we wish to a
lyze is Chern-Simons gauge theory coupled to complex s
lar fields. The Lagrangian density in a symmetric phase
given by

L5
k

4
emnlAmFnl1uDmfu21LGF ,

LGF52
1

2
~]mAm!2. ~3.1!

In spite of gauge fixing term, there are primary constrai
given by

p i2
k

2
e i j Aj'0, i , j 51,2, ~3.2!

which are second-class constraints which no longer lea
secondary constraints. We shall follow the Dirac proced
to eliminate these constraints. We now proceed to quan
the theory canonically by introducing Dirac brackets in t
standard manner@24,25#. The nonvanishing set of equal-tim
commutation relations is

@A0~x!,p0~y!#5 id2~x2y!,

@Ai~x!,Aj~y!#5
i

k
e i j d

2~x2y!,

@f~x!,p~y!#5@f* ~x!,p* ~y!#5 id2~x2y!. ~3.3!

As in the Maxwell theory, let us decompose the gau
field Ai(x) into transverse and longitudinal parts,

Ai~x!5Ai~x!1
]V

]xi
5e i j

]U

]xj
1

]V

]xi
.

Then one can show that the fieldsU(x) andV(y) satisfy the
following commutation relation using the second relation
Eq. ~3.3!:

@U~x!,V~y!#52
i

k
G~x2y!. ~3.4!

As disscussed in Maxwell theory, we must impose t
supplementary conditions on any stateuP& in order to return
to the consistent original theory from the modified Lagran
ian ~3.1!. All the supplementary conditions affecting dynam
cal variables at one instant of time are

F[]mAm5]0A02¹2V'0, ~3.5!

G[2ke i j ] iAj1J05k¹2U1J0'0, ~3.6!
7-5
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HYUN SEOK YANG AND BUM-HOON LEE PHYSICAL REVIEW D59 105007
where charge densityJ0(x) is given by

J0~x!5 ie$p* ~x!f* ~x!2p~x!f~x!%.

Of course,F and G commute with each other. Then an
components of Chern-Simons gauge fieldAm or any combi-
nations of them are not physical, i.e., do not commute witF
and G. Even any component of the field tensorFmn is not
physical, although it is gauge invariant. As a well-known fa
@1#, there exists no real photon in pure Chern-Simons the
of symmetric phase.

The variablef is not physical since it commutes withF
but not withG. However, if we define@13#

f̃~x!5eieV~x!f~x!, ~3.7!

f̃(x) commutes withF and G and thus physical. Likely,
f̃* (x) is physical. Then, the variablesf̃(x),p̃(x),f̃* (x),
andp̃* (x) are the only independent physical variables, ap
from the quantities~3.5! and ~3.6!. From the commutation
relations~3.3! and~3.4!, we observe that these physical fie
operatorsf̃(x) andf̃* (x) create a flux quantum as well as
U(1) charge,

Q$f̃~x!uP&%5~q2e!f̃~x!uP&,

F$f̃~x!uP&%5S b1
e

k D f̃~x!uP&,

Q$f̃* ~x!uP&%5~q1e!f̃* ~x!uP&,

F$f̃* ~x!uP&%5S b2
e

k D f̃* ~x!uP&, ~3.8!

whereQ5*d2xJ0(x), F5*d2xB(x) and a stateuP& is as-
sumed to be a simultaneous eigenstate ofQ and F with
eigenvaluesq and b, respectively. These properties show
manifest evidence that Chern-Simons gauge fields atta
flux quantum proportional toU(1) charge to complex scala
field, which is a dual picture that a physical electron in Ma
well theory carries Coulomb fields surrounding the char
In the presence of Chern-Simons gauge fields, the com
scalar field,f̃(x) or f̃* (x), becomes a boson plus flux com
posite and, as we will see, this composite dynamically w
be an anyon by the Aharonov-Bohm effect@26#. That is, if
we interchange the two field quanta with chargeq, the sta-
tistical phase by the Aharonov-Bohm effect is equal
q2/2k. Indeed, we will construct the composite anyon ope
tors satisfying fractional statistics@4# under a covariant
gauge fixing.

One can solve the Gauss-law constraint in Fock sp
represented by the physical variables which satisfy sup
mentary conditions~3.5! and ~3.6!:

U~x!52
1

kE d2yG~x2y!J0~y!, ~3.9!
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V~x!5E d2yG~x2y!]0A0~y!. ~3.10!

The gauge fieldAi(x) can be thus expressed as the followi
combination:

Ai~x!52
1

k
e i j ] jE d2yG~x2y!J0~y!

1] iE d2yG~x2y!]0A0~y!.

The angular momentum operator obtained from symm
ric energy-momentum tensor given by

Tmn5~Dmf!* Dnf1~Dnf!* Dmf2gmnuDlfu2

is represented as follows:

L5E d2ye i j yiT0 j

5E d2ye i j yi$p̃~y!] j f̃~y!1p̃* ~y!] j f̃* ~y!%

2E d2ye i j yiAj~y!J0~y!

5E d2ye i j yi$p̃~y!] j f̃~y!1p̃* ~y!] j f̃* ~y!%1
Q2

4pk
,

~3.11!

where we used Eq.~3.9! in the final step. For the same rea
son as in Sec. II, we have safely dropped the gauge fix
term. First, note that physical and gauge invariant sca
fields f̃(x) and f̃* (x) have a anomalous spin. That is,

@L,f̃~x!#52 i e i j xi] j f̃~x!

2E d2ye i j yi@Aj~y!J0~y!,f̃~x!#

52 i e i j xi] j f̃~x!

1
e

kE d2y~xi] i
x1yi] i

y!G~x2y!J0~y!f̃~x!

52 i e i j xi] j f̃~x!2
eQ

2pk
f̃~x!, ~3.12!

where we have computed the commutator using the relat
~3.3! and ~3.4! and used the expression~3.9! after this com-
putation. Similarly,

@L,f̃* ~x!#52 i e i j xi] j f̃* ~x!1
eQ

2pk
f̃* ~x!. ~3.13!

These results agree with the previous ones@1# under Cou-
lomb gauge.

In symmetric phase, the Chern-Simons gauge fields ar
themselves nondynamical as the result of ‘‘too mu
7-6
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symmetry’’—diffeomorphism invariance. As a result of th
‘‘too much symmetry,’’ these gauge fields remain confine
but change a boundary condition of coupled fields in
same way that the unphysical fields of Maxwell theory, i.
scalar and longitudinal photons, result in an infrared dress
of static Coulomb field to charged matter fields@13#. So there
can be two points of view describing the charged ma
system coupled to Chern-Simons gauge fields. One is th
part of dynamical informations~boundary condition of the
coupled fields! assigns to the Chern-Simons gauge fie
through an interaction. The other is that all the dynami
informations are assigned to the charged matter fields
removing the Chern-Simons gauge fields through a sing
gauge transformation initiated by Semenoff@4#. However, in
quantum field theory described bysmoothfields, the remov-
ing of a topological term with diffeomorphism invariance—
Chern-Simons term—through singular gauge transform
tions is in general impossible and instead remains a rem
@27#. This phenomenon seems to be a quite general featu
bosonization in a continuum field theory in higher dimens
D>3.

The presence of nondynamical Chern-Simons gauge fi
leads ascalar field to anomalous spin term. In order to in
corporate the relation between spin and statistics, we s
construct anyon operators satisfying graded commutation
lations showing the fractional statistics@4#. This is based on
the fact that the choiceà la Semenoff with respect to th
physical variables about complex fieldsf and f* is also
true:

f̂~x!5e$ i ~e/2pk!*d2yQ~x2y!J0~y!1 ieV~x!%f~x![S~x!f~x!,
~3.14!

f̂* ~x!5e$2 i ~e/2pk!*d2yQ~x2y!J0~y!2 ieV~x!%f* ~x!

[S21~x!f* ~x!. ~3.15!

We introduced the multivalued functionQ(x) satisfying
‘‘Cauchy-Riemann’’ equations

] iG~x!5
1

2p
e i j ] jQ~x! ~3.16!

and the resulting functionQ(x) satisfies the following prop-
erties:

tanQ~x!5
x2

x1
, ] iQ~x!52e i j

xj

x2
,

¹3¹Q~x!52pd2~x!, ¹2Q~x!50.
~3.17!

Now we want to see the properties of thehat fields
through careful analysis. First, let us expressp(x) in terms
of the hat fields:
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p~x!5„D0f~x!…*

5$~]01 ieA0!S21~x!f̂~x!%*

5S~x!F H ]02 ieE d2yG~x2y!hA0~y!

2 i
e

2pkE d2yQ~x2y!] iJi~y!J f̂~x!G* ,

where we used Eq.~3.10! and the current conservation law
After using the equation of motion aboutA0 and integration
by part, we arrive at the following result:

S~x!F H ]02 i
e

kE d2ye i j ] i
yG~x2y!Jj~y!

2 i
e

2pkE d2yQ~x2y!] i
yJi~y!J f̂~x!G*

5S~x!F H ]02 i
e

2pkE d2y] i
y
„Q~x2y!Ji~y!…J f̂~x!G*

5S~x!$]0f̂~x!%* [S~x!p̂~x!, ~3.18!

where we used ‘‘Cauchy-Riemann’’ equation~3.16! and as-
sumed that current density rapidly decreases at larger. In the
same way, we can show that

p* ~x!5S21~x!$]0f̂~x!%[S21~x!p̂* ~x!. ~3.19!

Second, expressDif(x) in terms of the hat fields:

Dif~x!5~] i1 ieAi !$S
21~x!f̂~x!%

5S21~x!] if̂~x!1 ieS21~x!

3HAi~x!2
1

2pk
] iE d2yQ~x2y!J0~y!J f̂~x!.

~3.20!

As a consequence of Eqs.~3.9! and ~3.16!, Ai(x) can be
rewritten as

Ai~x!5
1

2pkE d2y] i
xQ~x2y!J0~y!. ~3.21!

However, unless the charge densityJ0(y) is sufficiently well
localized, the interchange of integral and derivative in E
~3.21! and thus displayingAi(x) as a pure gauge is in gen
eral not correct@27#. When J0(y) is smoothly distributed
over an extended region, the correct expression forAi is

Ai~x!5
1

2pk
] iE d2yQ~x2y!J0~y!

2
1

2pk
e i j E dudzu

j J0~x;z!, ~3.22!

where the line integral ofJ0 is along the cut line introduced
to integrate the multivalued functionQ and u is the polar
7-7
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angle of the cut line. In order to remove an arbitrary dire
tional dependence of minimal coupling arising from t
choice of cut-line, we considered the averaging process
all possible choices of cut-line. This expression is still co
sistent with Gauss-law constraintB5¹3A52(1/k)J0 . For
the sufficiently well localized charge density such as non
ativistic quantum field theory@27# or theory on the lattice
@28#, the second term in Eq.~3.22! can be dropped with
impunity. Anyway, if we canneglectthe contribution of the
remnant in Eq.~3.22! for some distributionJ0 , we finally
arrive at the following result:

Dif~x!5S21~x!] if̂~x!, „Dif~x!…* 5S~x!] if̂* ~x!.

The Hamiltonian of hat fields then takes the form

H5E d2xH 1

2
p̂21

1

2
~¹f̂!2J , ~3.23!

and their angular momentum operator is given by

L5E d2xe i j xi$p̂] j f̂1p̂* ] j f̂* %. ~3.24!

To study the statistics of hat fields, we use the identities
the Baker-Campbell-Hausdorff formula,

S~x!f~z!S21~x!5e2 i ~e2/2pk!Q~x2z!f~z!,

S~x!p~z!S21~x!5ei ~e2/2pk!Q~x2z!p~z!.
~3.25!

The commutation relations of hat fields now obey the gra
commutation relations@4#,

f̂~x!f̂~y!5e2 i ~e2D/2pk!f̂~y!f̂~x!,

f̂~x!f̂* ~y!5ei ~e2D/2pk!f̂* ~y!f̂~x!,

f̂~x!p̂~y!5 id2~x2y!1ei ~e2D/2pk!p̂~y!f̂~x!,
~3.26!

f̂~x!p̂* ~y!5e2 i ~e2D/2pk!p̂* ~y!f̂~x!,

p̂~x!p̂~y!5e2 i ~e2D/2pk!p̂~y!p̂~x!,

p̂~x!p̂* ~y!5ei ~e2D/2pk!p̂* ~y!p̂~x!,

with multivalued phase

D5Q~x2y!2Q~y2x!5p mod 2pn.

These multivalued operators carry fractional statistics
may be regarded as anyon operators since they create a
with arbitray spin when acting on a physical state. The s
tistical phases in the graded commutation relations~3.26! are
exactly equal to the Aharonov-Bohm phase for the fi
quanta satisfying Eq.~3.8!. Consequently, we see that th
Aharonov-Bohm effect is the origin of anyon statistics.

Note that the representation of a physical variable
pends on the gauge fixing and one needs to first find
10500
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physical variables before turning to dynamics in order
obtain correct results. This is the lesson learned from Di
@13#.

B. Symmetry-broken phase

We shall now consider when spontaneous symme
breaking occurs@15#. In the same way as the Maxwe
theory, we introduce the symmetry breaking potentialV(f)
and consider the same parametrization of a complex sc
field f. Then the Lagrangian density in the symmetr
broken phase is given by

L5
k

4
emnlAmFnl1

1

2
~]mw!2

1
1

2
e2~v1w!2~Ām!22V~v,w!1LGF , ~3.27!

whereĀm is defined by

Ām[Am1
1

ev
]mx. ~3.28!

The effective vector action obtained from Eq.~3.27! is

L5
k

4
emnlAmFnl1

1

2
e2v2Am

2 , ~3.29!

after a gauge transformationAm→Am2(1/ev)]mx. The
‘‘self-dual’’ first order system~3.29! has been shown@19# to
be equivalent to topologically massive spin 1 theory@20#
even in the presence of interaction. Thus one expects tha
Chern-Simons gauge field absorbed a would-be Goldst
boson is transmuted into topologically massive helicity 1 e
citation in the Higgs’ phase. This is the observation of De
and Yang@18#. But there also exist arguments@16# that the
excitation relative to ground state being not rotational inva
ant is spin 0 boson. We shall resolve this inconsistency ba
on the same analysis as in Sec. II.

The equal-time commutation relations of Chern-Simo
gauge fields are equal to Eq.~3.3! and matter parts are equa
to Eq. ~2.22!. The supplementary conditions are also iden
cal to Eqs.~3.5! and ~3.6!, except thatJ0(x) is given by

J0~x!52evpx~x!. ~3.30!

According to these supplementary conditions, we c
find that the variablesw(x),pw , Ai

L[] i(V1x/ev), and
pA

i
L [ ev] ipx / ( 2 ¹2 1 m2 ) 1 km2] iU / (2 ¹2 1 m2 ) ( m

5e2v2/k) are the only independent physical variables, ap
from the quantities~3.5! and~3.6!. Note that the longitudinal
Chern-Simons gauge field absorbed would-be Goldstone
son can be a dynamical variable and restore the vector fie
dynamics @18# in the Higgs’ phase. That is, the Chern
Simons-Higgs theory will have one massive spin 1 and o
massive spin 0~Higgs field! propagating modes. In the cas
of Maxwell-Chern-Simons-Higgs theory, we again have tw
7-8
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parity-violating massive spin 1 modes@23,29#. Although the
scalar formV1x/ev identified by Boyanovsky isphysicalin
the Dirac’s sense, the more appropriate choice will be ve
form as seen from the experience obtained by the analys
the Maxwell-Higgs theory in Sec. II. In addition, Boy
anovsky’s choice will encounter an infrared singularity sin
V1x/ev5] iAi

L/¹2 and this will bring about a superfluou
infrared singularity in Poincare´ generators.

In order to examine the physical spectrum of the involv
fields, consider the symmetric energy-momentum tensor
fined by Eq.~2.14!:

Tmn5]mw]nw1e2~v1w!2ĀmĀn

2gmnH 1

2
~]lw!21

1

2
e2~v1w!2Āl

22V~v,w!J .

~3.31!

Then the Hamiltonian becomes

H5E d2xH 1

2
„ẇ21~¹w!21e2~v1w!2Ā0Ā0

1e2~v1w!2Āi Āi…1V~v,w!J
5

1

2E d2xH pw
21~¹w!21pA

i
LS e2v2

k2
2

¹2

e2v2D pA
i
L

1e2v2~Ai
L!2J 1Hint1V~v,w!, ~3.32!

where Coulomb-like energy appears as the result of ap
ing the supplementary condition~3.6!. As in Sec. II,
after a Bogoliubov transformation with respect toAi

L

defined by p̃A
i
L5A(e2v2/k2)2(¹2/e2v2)pA

i
L and Ãi

L

5Ai
L/A(e2v2/k2)2(¹2/e2v2),H becomes

H5
1

2E d2xH pw
21~¹w!21p̃A

i
L21~¹Ãi

L!2

1
e4v4

k2
~Ãi

L!2J 1Hint1V~v,w!. ~3.33!

This result confirms that the vector field is an excitation w
massm5e2v2/k.

The angular momentum operator obtained from the sy
metric energy-momentum tensor~3.31! is represented by us
ing the supplementary condition~3.6! as follows:
10500
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L5E d2ye i j yiT0 j

5E d2ye i j yi$pw~y!] jw~y!1evpx~y!Aj
L~x!%

2E d2ye i j yiAj~y!J0~y!

5E d2ye i j yi$pw~y!] jw~y!1pA
k
L~y!] jAk

L~y!%1
Q2

4pk
,

~3.34!

where we have again dropped a would-be-spin term on v
tor field since it is total derivative and vanishes at spa
infinity. The angular momentum operatorL in Eq. ~3.34!
seems to have the anomalous term as in Ref.@16# but it is
misleading since the last term in Eq.~3.34! induces no effect
on fields, i.e.,

F E d2ye i j yiAj~y!J0~y!,Ai
L~x!G

5F E d2ye i j yiAj~y!J0~y!,w~x!G50. ~3.35!

Moreover, it is expected that, in the massive vector theo
we will encounter the zero-momentum ambiguity on t
transverse-longitudinal decomposition of vector fields, wh
brings about the zero-momentum anomaly in Poincare´ alge-
bra as in Sec. II. Thus the correct spin content of vector fie
should be determined by the removing of zero-moment
singularity of boost generator or prescription free from ze
momentum ambiguity which abandons the transver
longitudinal decomposition of vector fields. In the Append
we will obtain the result that the Chern-Simons gauge fi
Ai

L is a spin 1 excitation, by checking the Poincare´ algebra in
terms of the prescription free from zero-momentum ambi
ity which does not take the transverse-longitudinal decom
sition of vector fields.

Deser and Jackiw found@19# that massive Chern-Simon
theory is equivalent~by a Legendre transformation! to topo-
logically massive gauge theory@20# which has a parity-
violating spin 1 excitation, where the spin of the vector e
citation was fixed by the removal of zero-momentu
singularity of Poincare´ algebra. In Ref.@18#, Deser and Yang
observed that Higgs mechanism transmutes a non-dynam
Chern-Simons term into topologically massive, parit
violating, spin 1 theory. According to the results, we c
conclude that the Chern-Simons gauge field in Higgs’ ph
is a spin 1 excitation. Consequently, the excitations in Hig
phase have no anomalous spin and the Chern-Simons g
field absorbed a would-be Goldstone boson is transmu
into topologically massive helicity 1 excitation. Therefor
the Higgs mechanism transmutes an anyon satisfying f
tional statistics into a spin 0 or a spin 1 boson and so th
exists interestingly a statistical spin-phase transition as
observation of Wen and Zee@15#.
7-9
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IV. CONCLUSION

We have presented the quantization of a charged ma
system coupled to a Chern-Simons gauge field in a covar
gauge fixing. Our approach is based on Dirac’s method p
formed on QED@13# which provides us a definite way o
identifying physical spectrums free from gauge ambigu
arising from the gauge fixing and illustrates the importan
of consideration of physical field variables. The importa
point is that the formulation of dynamics in terms of a L
grangian~or Hamiltonian! and the equations of motion mak
use of a larger field algebra which includes nonobserva
fields and thus one must find all physical variables bef
turning to dynamics in order to obtain correct results. The
can be shown quite generally that the physical charged fi
are described by nonlocal fields carrying static field, for e
ample, Coulomb fields for Maxwell theory and magnetic fl
for Chern-Simons theory. In the case of Chern-Simo
theory, we have shown that the static field, i.e., the magn
flux, attached to charged matter fields is the origin of fra
tional statistics.

We have also presented the quantization of the Ch
Simons matter system in a symmetry-broken phase and
sured that the Higgs mechanism transmutes a nondynam
Chern-Simons term into topologically massive, pari
violating, spin 1 theory. Thus the Higgs effect transmutes
anyon satisfying fractional statistics into a canonical boso
spin 0 Higgs boson or a topologically massive photon wh
is a Chern-Simons gauge field absorbed would-be Golds
boson. In order to identify correct spectrums, we have u
two alternative and complementary prescriptions and fo
the consistent result with Deser and Jackiw on the spin
massive vector fields and thus removed an inconsistency
tween Boyanovsky and Deser and Yang. Consequently
implies that the Higgs effect induces the statistical spin ph
transition predicted by Wen and Zee.

We think that the same approach performed in this pa
will be applied to Maxwell-Chern-Simons theory as we
For the Maxwell-Chern-Simons theory, there also exist d
ferent opinions@10,30# on anyon statistics in symmetri
phase. In Higgs’ phase, this theory has two parity-violat
massive spin 1 photons@23,29# and one spin 0 Higgs field
Thus the problem on the existence of anyon statistics in
model will be involved with the statistical spin phase tran
tion. Study on these issues will be also interesting.
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APPENDIX A: POINCARÉ ALGEBRA OF MASSIVE
VECTOR FIELDS IN 2 11 DIMENSIONS

1. Proca theory

In this appendix, we will analyze the Poincare´ algebra of
Proca theory in 211 dimensions and show that the mass
vector field in the Proca theory is canonically spin 1.
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Consider the following Proca Lagrangian:

LP52
1

4
FmnFmn1

1

2
m2Am

2 . ~A1!

After the canonical quantization of the theory by introduci
a Dirac bracket, we obtain the following commutation re
tions:

@A0~x!,p0~y!#50,

@Ai~x!,p j~y!#5 id i j d
2~x2y!, ~A2!

where conjugate momentap j[]LP /]Ȧj5F j 0. Then the
energy-momentum tensorTmn for the Proca theory~A1! is
given as

Tmn52FmlFn
l1m2AmAn2gmnLP . ~A3!

With the energy-momentum tensor, the Poincare´ generators
can be expressed as the following forms:

Pi5E d2xT0i5E d2xpk~x!] iAk~x!,

H5E d2xT005E d2xH 1

2
p i~x!p i~x!1

1

4
Fi j ~x!Fi j ~x!

1
1

2m2
„] ip

i~x!…21
m2

2
Ai~x!Ai~x!J ,

L5E d2xe i j xiT0 j ~A4!

5E d2xe i j xip
k~x!] jAk~x!2E d2xe i j p i~x!Aj~x!,

Mi05E d2xxi H 1

2
p j~x!p j~x!1

1

4
F jk~x!F jk~x!

1
1

2m2
„] jp

j~x!…21
m2

2
Aj~x!Aj~x!J 2tPi ,

using the equation of motion,A052(1/m2)] iF
i05

2(1/m2)] ip
i . After a straightforward calculation with the

commutation relations~A2!, one can check that the Poinca´
algebra for the Proca theory is well defined, especially,

@Mi0 ,Pj #52 id i j H,

@Mi0 ,M j 0#52 i e i j L. ~A5!

The Poincare´ algebra is free from zero-momentum
anomaly and the angular momentum operatorL in Eq. ~A4!
has a canonical expression for spin 1 theory contrary to
of Eq. ~2.27!. Here, we confirm the result of Binegar@22#
that a massive vector field is spin 1.
7-10
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2. Massive Chern-Simons theory

In this Appendix, we will analyze the Poincare´ algebra of
massive Chern-Simons theory in 211 dimensions which has
only one propagating mode and show that this massive m
in the Chern-Simons theory is canonically spin 1.

Consider the following massive Chern-Simons Lagra
ian @19#

LCS5
k

4
emnlAmFnl1

m

2
Am

2 . ~A6!

After the canonical quantization of the theory by introduci
a Dirac bracket, we obtain the following commutation re
tions:

@A0~x!,p0~y!#50,

@Ai~x!,Aj~y!#5
i

k
e i j d

2~x2y!. ~A7!

Equation~A7! shows that the Chern-Simons gauge fieldsA1
andA2 are not independent due to the symplectic structure
LCS.

The energy-momentum tensorTmn for the massive Chern
Simons theory~A6! is given by

Tmn5mAmAn2
m

2
gmnAlAl. ~A8!

With the energy-momentum tensor, the Poincare´ generators
can be expressed as the following forms:
s-

10500
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f

Pi5E d2xT0i5E d2xkB~x!Ai~x!

5E d2xpk~x!] iAk~x!,

H5E d2xT005E d2xH k2

2m
„B~x!…21

m

2
Ai~x!Ai~x!J ,

L5E d2xe i j xiT0 j5kE d2xe i j xiB~x!Aj~x!

5E d2xe i j xip
k~x!] jAk~x!2E d2xe i j p i~x!Aj~x!,

Mi05E d2xxi H k2

2m
„B~x!…21

m

2
Aj~x!Aj~x!J 2tPi ,

~A9!

where B(x)5e i j ] iA
j (x), p i(x)5(k/2)e i j Aj (x), and A0

5(k/m)B(x). After a straightforward calculation using th
commutation relations~A7! and @B(x),B(y)#50, one can
also check that the Poincare´ algebra for the massive Chern
Simons theory is well defined, especially,

@Mi0 ,Pj #52 id i j H,

@Mi0 ,M j 0#52 i e i j L. ~A10!

The Poincare´ algebra is also free from zero-momentu
anomaly and the angular momentum operatorL in Eq. ~A9!
has a canonical expression for spin 1 theory. Thus, we c
firm the result of Deser and Jackiw@19# that the excitation of
the massive Chern-Simons theory is spin 1.
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