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We consider the novel Kaluza-KleifKK) scenario where gravity propagates in thet@)-dimensional
bulk of spacetime, while gauge and matter fields are confined to thel j3limensional world volume of a
brane configuration. For simplicity we assume compactification of the extlianensions on a torus with a
common scal®, and identify the massive KK states in the four-dimensional spacetime. For a given KK level
n there is one spin-2 staten{ 1) spin-1 states, and(n—1)/2 spin-0 states, all mass degenerate. We
construct the effective interactions between these KK states and ordinary matter(fiezldfons, gauge
bosons, and scalgrdVe find that the spin-1 states decouple and that the spin-0 states only couple through the
dilaton mode. We then derive the interacting Lagrangian for the KK states and standard model fields, and
present the complete Feynman rules. We discuss some low-energy phenomenology for these new interactions
for the case when R/is small compared to the electroweak scale, and the ultraviolet cutoff of the effective KK
theory is on the order of 1 TeYS0556-282(99)05408-9

PACS numbsgs): 11.10.Kk, 11.25.Mj, 13.96xi

I. INTRODUCTION Klein states, where the massive spectrum is cutoff at the high
scaleA.
Kaluza-Klein (KK) reduction[1] has always been an im- Letting E denote the energy scale of some experiment,

portant ingredient in our attempts to relate=4 physics to and assuming for simplicity that the compactification scales
d=10 superstrings, as well as tb=11 supergravity, which R;~R are all roughly equal, one can distinguish three gen-
is now recognized as the low-energy effective description o&ral phenomenological regimes.
d=11 M theory[2]. It has become clear, however, that a (1) E<1/R=<A. This case is relevant to compactifications
much more general notion of Kaluza-Klein reduction is ap-of the weakly coupled heterotic string, with equal to the
plicable in certain regions of the moduli space of consistenstring scale, approximately ¥ GeV. In such a case mas-
superstring or M theory vacua. This occurs when varioussive Kaluza-Klein modes only impact low-energy physics
matter and/or gauge fields are confined to heavy solitoniindirectly, through threshold effects on couplings at the high
membranes. These recent developmdBisin superstring scale.
theory have led to a radical rethinking of the possibilities for (2) E<1/R<A. This encompasses Kaluza-Klein sce-
new particles and dynamics arising from extra compactifiecharios where the cutoff scalk is still very high, but some
spatial dimensionf4—15. dynamics fixes R to a much lower scale, perhaps as low as
To appreciate this radical change of view, it is useful toa few TeV. In this case a very large number(AR)" of
review the conventional Kaluza-Klein scenafi®]. One be- massive KK states are integrated out in evolving the effec-
gins with ad=4+n dimensional spacetime action, describ- tive action from the high scale to the low scale. Thus, al-
ing a coupled gravity gaugermatter system. Since field though the couplings of individual massive KK modes are
theories of gravity are poorly behaved in the ultraviolet,Planck suppressed, they may contribute non-negligible
Kaluza-Klein formulations should be generically regarded asigher-dimensional operators to the effective low-energy
effectiveactions, with an implicit or explicit ultraviolet cutoff theory[4]. Furthermore, they may have strong effects on the
A. One expands this theory around a vacuum metric which isunning of the renormalizable standard mod&M) cou-
the product of d=4 Minkowski space with some plings[5] above the scale R/
n-dimensional compact manifold, obtained by stationarizing (3) 1/R<E<A. In this case a large numbefr(ER)" of
this higher-dimensional effective action. For consistency, thenassive KK states are kinematically accessible. This effec-
characteristic length scaleR; of the compact manifold tively makes physics look (#n)-dimensional at the energy
should be larger than A/ In the shifted vacuum all fields are scaleE>1/R. There are severe constraints from experiment
expanded in normal modes of thedimensional compact on such scenarios. We know thi=4 electrodynamics can
manifold; the coefficients of this harmonic expansion arebe distinguished in collider experiments fraiw- 4+ n elec-
conventionald=4 fields. This Kaluza-Klein reduction re- trodynamics down to very short length scales. There is also a
sults in an effectived=4 theory of gravityrgauge strong bound from the nonobservance of mirror copies of
+massless matter coupled to towers of massive Kaluzastandard model chiral fermions. Consider for exangpte5
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fermions, which are pseudo Majorana fermions and hava&-dimensional indices, respectively. Repeated indices are
four (on-shel) real degrees of freedom. When dimensionallysummed. Our convention for the signature is-,{,

reduced tod=4, each splits into two Weyl fermions with —,...).
opposite chirality but the same gauge group representation; The rest of the paper is organized as follows: In Sec. I,
therefore one expects mirror fermions with massesR. we compactifyd=4+n gravity on ann-dimensional torus

Recently it was observefb] that this last case can be T" and perform a mode expansion. A torus compactification
phenomenologically viable if we assume that the fields of thés perhaps not realistic, since the bulk fields which we are
standard model are confined to a three-dimensional memgnoring are potential sources nfdimensional curvature, as
brane or intersection of membranes in the larger dimensionalre the branes themselves. However, the torus has the great
space. Assuming further that the scale of the membrane temdvantage of conceptual and calculational simplicity. We
sion is on the order of the cutoff or larger, the resulting find that the massive KK modes have a simple physical in-
effective theory consists of (81)-dimensional standard terpretation. For each KK level, there are one massive spin-2,
model fields coupled to #n gravity and, perhaps, other (n—1) massive spin-1, and(n—1)/2 massive spin-0 par-
(4+n)-dimensional “bulk” fields. With these assumptions ticles. We find the general form for the interactions between
the phenomenological constraints from gravity experimentsmatter(scalars, gauge bosons, and fermjcarsd the massive

collider physics, and astrophysics are much wedkgral- KK states. In Sec. Ill, we examine a few physical processes
lowing 1R scales as low as 10 eV (~1 mm1), for involving the KK states. We calculate their decay widths to
cutoff scalesA in the range 1-10 TeV. the light SM particles; this could have important cosmologi-

In superstring theory there are regions of moduli spaceal consequences. We then construct effective four-fermion

where compactification radii become large while the stringand ffVV interactions; this provides a useful formalism for

coupling, gauge couplings, and Newton’s constant remaigtudying some high-energy processes. We next study the

fixed [7,8]. The scale of these large extra dimensions is reprocesse™e™— y+ KK, whereKK are spin-0 and -2 mas-

lated to the string scalbls: sive KK states. In the final example, we calculate the one-
loop corrections to the scalar boson masses due to virtual KK
states; we find that the corrections are proportional to the

iNMgan' (1) scalar mass, instead of the ultraviolet cutbf§. Section IV

Gn is reserved for a discussion and conclusions. We list some

useful formulas in two appendixes. In Appendix A, we

) ) present the propagators and polarizations for the physical

where Gy, is the Newton constant. Roughly speakifds ki states, and show the complete leading-ofd8¢«)] ver-

plays the role of the ultraviolet cutoff. This reproduces the oy Feynman rules. In Appendix B, we discuss the summa-

relationship of scales assumed in the scenario just describeg,, over KK states which appears in many physical pro-
It has also been shown in superstring theory that it iegges.

possible to obtaid=4 N=21 supersymmetric chiral gauge
theories confined to the world volumes of stable configura-
tions of intersecting D-branef9]. The region of string
moduli space where such configurations have a perturbative A. Decomposition of the massive KK states
description is not necessarily incompatible with the region
where large extra dimensions may occur. Thus within our
current knowledgeg(or ignorancg of superstrings it is not
implausible to imagine that the standard model is confined to

II. GENERAL FORMALISM

The starting point for our analysis is the linearized gravity
grangian, i.e., the Fierz-Pauli Lagrangidr]:

—. 1 . T P
a brane configuratiof10,11], while large compactified di- A—\/@Rz—(a“h”l’&h“—&“h&”h—th‘h”+2h“&Ah)
. . . 2 4 plivp 2 )2 1
mensions are probed only by gravity and other bulk fields
[6,12]. -
In this paper we will consider the simplest case where +0(x), @

gravity is the onlyd=4+n bulk field. The couplings of P . .
gravity tod=4 gauge and matter fields are completely fixedWhere hEhlj;,h;Eﬁ”h,};, and we have used;;=7;;
by the general coordinate invariance in e 4+n space- +xh;;, k?=167G{ ™™, with G{{*™ the Newton constant
time and thed=4 world volume. This allows us to deduce in d=4+n. This Lagrangian is invariant under the general
the complete Feynman rules for the couplings of standardoordinate transformation
model particles to the massive KK states. The low-energy
phenomenology is then calculable modulo the details of how 5ﬁ;;:a;g;+ 945 3)
to treat the cutoffA, which truncates the KK mode sums.

In the following, we will use a caret to denote the (4  After imposing the de Donder gauge condifion

+n)-dimensional quantities; e.g{;l;; denotes the metric
tensor ind=4+n. Greek letters &, v, ...) andRoman let-

ters from the beginning &b, ...) and in themiddle IHere we choose the gauge condition for the sake of clarity; the
(i,j, ...) of the alphabet will be used to label four- definitions of physical fields in Eq17) do not depend on the gauge
dimensional Einstein, Lorentz, andthe compactified choice.
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;L,\AA 1 s ﬂﬁ 1 q _27Tni n
J hMV_En/-LVh =0, (4) J hl-“’_z(g”h +ITAyi=0, (11)
the equation of motion is the d’Alembert equation - Amng - wng - 2@ng -
AN i — Pl +i—h"+i——¢"=0. (12
1 w R M R R
D(‘””)( hai— En;‘;h) =0. 5) From Eq.(12), it follows that
The gauge condition, along with the tracelessness condition so2nng = 1. :
Al; . . 3 ¢ + =5 ¢|J+_h —1 _,ZO’IMAMiZO, (13)
h ;L=0, and the residual general coordinate transformation, n 2 2mn
Eg. (3), with the gauge parameter satisfying,, ¢, =0,
fix all but the (2+n)(3+n)/2—1 physical degrees of free- o oupn JAmng S\
dom for a massless graviton it dimensions. Pik| 0" Auit1 R ij | =0, (14
Now we proceed to perform the KK reduction of the _ _
Fierz-Pauli Lagrangian td=4. We shall assume where we have defined the projectors
- Nt ¢ A n ning =5 _NiN;
hoo=v-1 # b (6) Pi=6——=", Pi=—=" (15)
13 n AV] 2¢|J 1] n2 1] n2
whereV, is the volume of thed=n compactified spacep  they satisfy
=¢j, p,v=0,1,23 and,j=5,6, ...,4-n, and they,,¢ P R T
term in the(11)-entry is a Weyl rescaling. These fields are PiiPik=Pik, PijPj=Pi.
compactified on am-dimensional toru§" and have the fol- .- .
lowing mode expansions: PiP=0, Pi+Pi=¢,
- 27n-y Pﬁ:n—j_, ﬁﬁ:l, P-ﬁ-n-:O, Pn=n. (16
a6y) =3 h',b(x)exp(i b y), ) “ i—b Pam=0. Bynny. (19
n We then redefine the fields
- 27Tﬁ~)7 - - nR - -
. _ n ; ~n _ i
ALi(X.y) % A#.(X)eXp(l R ) ) hy,=h),—i Zwﬁz(aMAgﬁ&vAzi)
- 2@n-y - - (24,9, 1 ,
Py (Y= ¢{}<x>eXp(| = ) —(P{}+3P{}->(§—mg =37 | B
n
n={n;,n,, ....Ny} 9) ~ - - R -
i ALi=Pi AZ;"ﬁ%‘/”Jﬂk ,
where the modes oh#0 are the KK states, and all the
compactification radii are assumed to be the same. The gen- ~n " N ANy 40
b J ¢l = 2(P{P]i +aP}PR) i, 17

eralization to an asymmetric torus with different radii is

straightforward. From the transformation properties unde{yherea is the solution of the equation B¢ 1)a2+6a=1.

the general coordinate transfoImatngIQ:{gM £il it should This form of?j;ﬁ- is chosen to make its kinetic term canonical,

be clear that the zero modes-0 correspond to the massless ;4 will be seen in Eq(24). It is obvious that tilded fields

graviton, U1) gauge bosons, and scalarsd 4. . satisfy the same equations of motion as untilded fields. Fur-
The KK modes satisfy the following equation of motions, \harmore. from Eqs(11), (13), (14), and(17), we have
from Eq. (5): ' co e '

A" =0, R=0, (18)

- 1 R -
2 2
(@+md)| "~y 0| =0, (O+mdAT,=0, . i .
AR e A =0, mAL=0, n@=0.
(19
2 ﬁ 2 477262 - -
(L+mD¢;=0, where m:= Rz 10 This verifies thath’,, are massive spin-2 particled;,; are

(n—1) massive spin-1 particles, aﬁﬂj aren(n—1)/2 mas-
and O is the four-dimensional d’Alembert operator. The sive spin-0 particles, all with the same masg.
gauge condition in Eq(4) reduces to the following two This redefinition of fields is associated with spontaneous
equations: symmetry breaking. It was shown for=1 that there is an
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infinite-dimensional symmetrythe loop algebra or§") at The equation of motion dTﬁiV from Eq.(24) is the Fierz-

the Lagrangu:m leve[18], but it is broken by the vacuum pgii equation for massive spin-2 particles:

configurationg,,;= 7,;. Similar to the Higgs mechanism, . .. . o .

the massless spin-2 fields,, absorb the spin-1 and spin-0 M9, X 0y = OvXp— IpXot X1+ Mi(HG — 7,,h™) =0,

fields at the same KK leveh and become massive. It is (29

remarkable that this mechanism is geometrical in nature angare

does not need any scalar Higgs field. We here explicitly find

the composition for massive spin-2, -1, and -0 fields rior ~

=2. . ~ ~ X,LLV: h,uV_
One can further show thaf,,, A7, andéj} are invariant ) )

under the general coordinate transformation, which has thandA?,; and ¢} satisfy

following linearized form:

PEL+mAL=0, (O+mdd[=0.  (27)

N - SO 21Tni -

5h2”:&“§g+a”§z+' TR & 20 These equations can be recast into the form in Ef8),
(18), and(19).

R 2mn; - . The propagators and polarizations of the physitided)
OALi=—i—g= a4, (21)  fields will be given in Appendix A 1.

- - - B. Coupling of the KK states to matter
Sy =i ?Ig?_i ?]é“in: (22) The basic picture for our physical world, as considered in

this paper, is that all standard model fields are confined to a
where we have assumed the transformation parametefgur-dimensional brane world volume. As we showed in the
é,ﬁ g,; to have the same mode expansion as in () previous section, from the four-dimensional perspective, the

msi . N ’ zero modes of the (#n)-dimensional graviton become the
We should note that the field redefinition in Ed7) does (#n) 9

not depend on the particular gauge choice. To see this raviton, n massless W) gauge bosons, and(n+1)/2
Jep particuar gaug ice. 1 IS, assless scalar bosons, while the KK modes in each level
rewrite the Lagrangian in Eq2) without imposing the de

Donder gauge. For the zero modes, it simply follows fromreorganize themselves into a massive spin-2 partiate, (
gauge. ' Py ’ —1) massive vector bosons, andn—1)/2 massive scalar

Eq. (6), that bosons. In the following, we will formulate the coupling of
1 these physical KK modes to matter. Although these interac-
L‘,O:—(a“hwaﬂhw—a#ha#h—Zh“h#Jr 2h#3 ,h) tions only have gravitational strength, they can be enhanced
4 in the case of large size extra dimensions, due to the many

n g 1 n(n+1)/2 available K_K states. o .
_Zl ZFi;wFWiJr §5M¢3M¢+ (ij)E:l i, bij We begin with the minimal gra\(ltatloznal coupling of the
general scala§, vectorV, and fermionF,
(23)
o | f d*x\~gL(@.SV.F), (29)
where F,,i=d,A,—d,A, . We see it indeed describes

massless graviton, vectors, and scalars. ~ . . o A
The Lagrangian for the massive KK modes can be rewrit"Vhereg is the induced metric i=4, g,,,=7,,+ «(h,,
ten in terms of the tilded fields according to Ej7). Aftera T 7w®), ¢=¢ii. The d=4 Newton constant «
tedious calculation, we find = /167Gy, is related tok by k=V Y%, whereV,=R" for
the torusT".

e VO The O(«) term of Eq.(28) can be easily shown to be
/J“:z(a“h“"“ﬁ#hyp —d*h"9,h™"=2h*"h
K

P PR =7 ~ - — = | d*%X(h*"T,,,+¢TH), 29
+2hﬂ,naﬂh—n_m§'ﬁﬂv,nh;3+m§'ﬁ h—n) zf ( 14 ¢ ,u,) ( )

n 1 L. L. where

= i 2% i

+Z‘1 — SFIF i mEARTALT sr

n(n+1)/2 R ) ) ) TMV(S’V'F): _77#”£+25é,uu ! (30)

~7 e ~ g=

+ > (04PN, b "-mEBN A (24) 7

(ij)=1

the fieldsA”,; and ¢} are subjected to the constraints in Eq. 2For the fermion, one should use the vierbein formalism, but our
(19). result in Eq.(33) is still true.
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mj

and we have used v 1 )
T,0= v ZFP"FM 5 APAP)—(FjFVp—mAAMAV)

= K -
V—g=1+ §h+2K¢, gh’= g’ — kh*?— k p*? .

. PITAA S ()2
(31) ~ T PITAGA,+ 5(6' o)
For the KK modes, we should repla )V and ¢" by the 1
he KK modes, we replat;,, and 4" by AN IBN,), (37)
physical fieldsh;,, and ¢" according to Eq(17). Using

- - 3o.- where theé-dependent terms correspond to adding a gauge-
Pij &l :7¢n, (32  fixing term — (9*A,—T*/A*)?2¢, with T#)="T'*  the
Christoffel symbol(affine connection The Lagrangian for a

where ?&”Eaﬂ . w=\23{[+2), and the conservation of leveln KK state coupled to the gauge bosons is

the energy-momentum tensor, we obtain i 1
. ) ) kTLY(k) = — g (R —dRerMF R
- 525 f d*x (AT, + 0 d"TH). (33 L Q
) + 7 (A= 2h*"Mm3A A,
It is remarkable that the vector KK modés,; decouple and -
~ ~ n
the scalar KK modea&i”j only couple through their trace", n h_ PN A + E(apA )2
the dilaton mode. 2¢ Th 2 P
We now present the Lagrangian to the orderfk); a

complete list of vertex functions will be given in Appendix
A2.

'F],u.v,ﬁ

w ~
3" A AT S TRGARA,,

1. Coupling to scalar bosons _ %ﬂ“?&ﬁ&”AVAM- (38)

For a general complex scalar fiefe, we have the con-

served energy-momentum tensor ) )
The corresponding Feynman rules for three-point KK-

TS =— 5, DP®'D &+ 5, m2d'®+D,d'D,d vertices as well as the contact interactions of KI”R-A and
wy mr P pre " v KK-AAAA are given in Appendix A 2.
+D,®'D,®, (34
3. Coupling to fermions
where the gauge-covariant derivative is defined as To describe a fermion in the gravitation theory, one needs
. to use the vierbein formalism. The fermion Lagrangian is
D,=d,+igAT?, (35
—ed(i VD —
with g the gauge couplingAf‘L the gauge fields, andi® the Le=ediy Du=my) (39)
Lie algebra generators. The gauge-invariant Lagrangian for a

7 wheree=det(e ?), e2en.,=9g,,, y*=e“~? anda,b are
i ulr Cu®y fab Qv a’l f
leveln KK state coupled to the scalar bosons is Lorentz indices. The covariant derivative on the fermion

field is defined by
D,®'D,®

- - -1 -
Klﬁg(K)=_<hMV’n—§77’thn
D, =

1
L ] D,+5 wf‘f’aab) W, (40)
— "M@+ w"(D P 'D, P
whereo,p,= [ ¥a, vs]- In the absence of a spin-3/2 field, the
—2m3®Td). (36)  spin connectiorwib can be solved in terms of the vierbein,

From this, one finds the Feynman rules for KIKb vertices 1 , ,
as well as the contact interactions of KiK® with additional wp,abzz(a,uebv_ 3,8pu)€q — 5(!9Meav_ 3,€a,)€
gauge bosons. They are listed in Appendix A 2.

2. Coupling to gauge bosons - §eapeb0( 0p€co— 04€cp) €, - (41

The conserved energy-momentum tensor for a gauge vec-
tor boson is We find the conserved energy-momentum tensor

105006-5
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1. Spin-2 KK states

_ _ 1
T ==, (4iy"D y—m +=¢iy,D, -
w= " Tl YYD =My + 291, D We first consider a massive spin-2 KK stat® decay to

1 7 1 gauge bosons:
+ SU1 YD b+ =5 Py ) = 70, (Y, )

h—VV. (45)
- Eav(% Yuth), (42)  Itis straightforward to work out the partial decay width to
4 massless gauge bosons:
where we have used the linearized vierbein _ szg
2= 52+ ~(h 2+ 524) (43
IR A R A whereN=1(8) for photons(gluons.

Because of the universal coupling to all gauge bosons,

The Lagrangian for a level-KK state coupled to fermions is the two-photon mod&— yy is kinematically most favored
for the lower-lying KK states. The lifetime is estimated to be

100 MeV\®

My

. 10 - - I
~1pn =2 (A" v — vy i D,—m [N 10°
K F(K) 2 ( 7 )w ‘y'u. ¢ P l/jw Ty-y~ 5 3~6><1()9 yr
K mﬁ

: (47)

1 ~= ~ 3w~ -—
+ syiy*(a,h"=a"h" + —¢" i y*D
217" (O w¥ 2 P YDy where we have taken the reduced Planck mas},
=2k 1=2.4x10'® GeV. Itis very long lived via this de-
gy S0 ) B u cay mode. For a KK state heavier than the lower-lying had-
—Zwmwd) lﬂlﬂ‘i‘ T(?,_L(ﬁ lﬂl’y lﬂ (44) .

rons, its lifetime viah—gg would be shorter:

The Feynman rules for KKsy vertices as well as contact 1 GeV\®
interactions of KKy with additional gauge bosons are rgg~7><105 yr . (48
listed in Appendix A 2. M

If kinematically allowed, the KK mode can decay to massive

Il. APPLICATION TO PHYSICAL PROCESSES gauge bosons and the decay width is
We are interested in a scenario in which the experimen- 2m3
tally accessible energy is larger than the compactification rh-vv)=s h(1—4r )12 1—3+Er +ir2)
scale 1R (from ~10"% eV to 100 MeV forn=2-7) but 160w Viol12 39V 13'v)
lower-than the ultraviolet cutofA. We first consider how (49

the KK states decay to the SM particles. We then outline i i i
some low-energy phenomenology and formulate eﬁectivé’Vhere5: 1/2 for identical particles. Here and henceforth, we

; . ) . ; : L9 2 2/0.2
amplitudes relevant to further studies at colliders. Finally, weWill use a notation for the mass ratip=m;/m or mj/ms .
evaluate typical one-loop corrections from virtual KK statesThe lifetime through this decay channel is

to a scalar propagator. For simplicity, we will take the ultra-

violet cutoff A to be the string scal®élg. A more general 5X 107 ’(100 GeV° 50
) . X : T A ~ _
choice of A can be obtained by simple scaling. vV Kgmg y -
A. Decay of the massive KK states The other decay channel goes through fermions:
A massive KK state may decay to a pair of SM patrticles, -
beside its normal decay modes to massless gravitons and the h—ff. (51)

lighter KK states. Depending on its mass, it can goytg

ff, WW, ZZ, and hh. While the decay of an individual
massive KK state may not be much of interest for the current 5 3
high-energy experiments since it must be gravitationally sup- I'(h—ff)=N K_mﬁ(l_m )32
pressed, cosmological considerations of their lifetimes may ©640m f
have significant implications for their masses and interac-

tions. Without speculating on the production and freeze-ouwhere the color factoN, is 3 for the quark pair mode. The
of the KK modes at the early Universe with extra dimen-lifetime for this channel is of the same order of magnitude as
sions, we simply evaluate their decay widths and lifetimes tdhat of Eq.(47).

SM particles. Finally, the decay width to a pair of Higgs bosons is

The decay width is

8
1+§rf), (52
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2 3
Km’F1

rﬁHHm=1%%

(1—4r )2 (53 ) W) TN ke Vel

. f,(k,) f(q,)  f,(k,), Viap
We notice the threshold effects for the above three modes as o S .

S, P, andD waves.
(@ (b)

2. Spin-0 KK states FIG. 1. Feynman diagrams féa) four-fermion interactions and

The spin-0 KK state @) couplings to massless gauge (b) ffVV interactions. We represent KK states by double-sinusoidal

bosons vanish at tree level, so thaiadoes not decay to CUrVes:
photons nor to gluons at the leading order. If kinematically

allowed, a massiveh can decay to massive gauge bosons: iM,u(h)y=— 777(34 (Ky+Kp)- (qq+ qz)f_zyﬂfzf_:Lnyl

H—VV. (54) — —
+ okt ko) fof1(d1+d2) 4
The partial decay width is calculated to be

8 _
sz% - §mf1mf2f2f2flf1}: (61)
B - _ 1204 _ 2
F'(¢—VV) 12 96 (1—=4ry)"91—4ry+12r), e
. ~ - TCy rarire
(55) |M4(¢): m)Tmflmfzfzfzflfl, (62)
where, again,6=1/2 for identical particles. The lifetime
based on this decay channel is about the same order of maghere
nitude as that of Eq(50).
On the other hand, a lighp can still decay to a pair of K?
light fermions: Ca=15, P (63
$—1f. (56)  ands=(k;—k,)?=(g,—q;)2. The functionD(s) counts for

the exchange of virtual KK states. In principle, all the con-
tributing KK modes in a tower should be summed coher-
N, szfzm:ﬁ ently. However, the summation would be ultravioletly diver-
———(1-4rpYa1-2rs). (570 gent forn=2. We have chosen to introduce an explicit
n+2 48w cutoff Mg in the summation. The full derivation and expres-
sion of D(s) is given in Appendix B. Taking the leading
contribution inM g>s, combining with the coupling by tak-

The decay width is given by

[(p—ff)=

The width for this channel is rather different fromdecay,
being proportional linearly tany and quadratically tan; .

This is because of the fermion spin-flip interactions by amg
scalar. The lifetime ofp for this channel is estimated to be K?’R"=16m(4m)"?T(nl2)Mg "2, (64)
6x 107 100 MeV)® ici
2 a0 yr( i V) . 59) the coefficientC, reads
K mf m;} mf m;j, . 4 2
Cy~—iMg"log(Mgs) (n=2) (65)
The decay width to a pair of Higgs bosons is given by
. —2iMg*
- _ S sz:b o 5 ~ W (n>2). (66)
F(¢—>HH)—m 96 (1=4r )" 9(1+2ry)°.

(59  We see that the amplitude has the dimensionful prefactor
Mg“, instead of the Planck mass suppression. We also note
B. Effective four-fermion interactions thatC, remains the same with— |t| or |u| for t,u channels.
_Thus Egs.(61) and (62) are indeed the appropriate low-
£energy effective Lagrangians. On the other hand, if the cutoff
scale is not too far away from the c.m. energs, then the
resonant contribution in thechannel should be included, as
fl(kl)f_l(kZ)_’fZ(ql)f_Z(qZ) (60) given by t_he reallpart in EqB6) of Appen.d.ix B
These interactions would lead to modifications to decays
in Fig. 1(a), where the fermion momenta are chosen to beof quarkonia via
along the fermion line direction. The effective amplitudes are o .
calculated to have the forms (qq)—Il, mm, (67)

The most basic contribution for KK states to current high
energy phenomenology would be the effects on four-fermio
interactions. Consider a generic four-fermion process

105006-7
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where (q) denotes a quarkonium such¥sJ/ i, ¢°, 7, p°, C. Effective ffVV interactions

etc.,|=e,u,7 and mm are light meson pairs. They would

. . ! Exchanges of virtual KK states can also contribute to pro-
also modify the scattering cross sections such as

cesses such as
ete —ll,qq, (68) _ _
L f1(ky) (k) —Vi(01)Va(02), (70)
qg—I1,qaq. (69)
As a result of the particular structure of the contact interacas in Fig. 1b), where the fermion momenta are chosen to be
tions in Eq.(61), analyses on the final state angular distribu-along the fermion line direction, and the gauge boson mo-

tions may reveal deviations from the standard model predicmenta are incoming to the vertex. The effective amplitudes
tions. for fermion-gauge bosons should have the general form of

. ~ — (4 — —
iMy(h)=—-2nC, [me(Q1'V2)(QZ'V1)ff+(gm\zlmf_smf)(Vl'VZ)ff+2(k1'QZ_kl'Q1)(V1'V2)fQ1f+2(kl'Vl)

X(Qy- Vo) Flhaf—2(ky- Vo) (G- Vo) Flly f = 2(Ky - 02) (- Vo) FY 1 f +S(ky - Vo) TV f = 2(Ky- 01) (G- V) FYf

+5(ky - Vl)f_wzf} , (71
, - n—1\167 ) _
IMy(@)=—| 5|5 Camyme(Vy- Vo) F, (72

where C, is the same as in Eq63), s=(q;+0,)2=(k;  wherew is the normalization factor in E¢33), g, =eQ for
—k;)?%, andVy,V, represent polarization vectors of the ex- a photon andy T2, for a gluon, and =k;+q,,j =k;+q;.
ternal gauge bosons. Examples for the induced physical prgagain, our momentum convention is that the fermion mo-
cesses include menta follow the fermion line and the gauge boson and the
KK state have their momenta incoming to the vertices. The

e, qgq—yy, W'W~, ZZ gg, (73  amplitude forh emission is calculated to be

e+

yy. gg—Il, dqa. 7 - — J1 1
|M(h): 7gVKu(k2) ayp! ‘yMle—i_ Y 7/Lk2v+ Yo

D. KK state real emission

2
Since the KK states couple to all the SM particles, they + 5 V(A0 Q2700 up+ MpKo G20 Muol1,920
may be radiated from quarkonium decays if kinematically
allowed or be copiously produced at high-energy colliders.

Consider the process — NpoKul2,) = ¥ | U(Ky) €°(02) €47(d1),

ff—V+KK, (75) 77

whereV is a SM gauge boson. There are four diagrams tawith k=k;—k,. The amplitudes of Eqs76), (77) are di-
contribute to the processt,u channels plus a four-point rectly applicable to physical processes such as quarkonium
contact diagram as shown in Fig. 2. For simplicity, we con-
sider a massless gauge bogarphoton or a gluon
For the'$ emission, it is interesting to note that only the ER
fermion-mass-dependent terms survive fromttlaadu dia-
A1
) u(kq) €”(dy), (b) (©) (d)
(76) FIG. 2. Feynman diagrams fe™ e" — y+KK.

grams. The amplitude for the emission dfof massm;; is

D vl
t u

~ —i _
iM(¢):5i17wgvmeU(kz)

105006-8
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k 2
K —iT(0) =iy dekzkz SEEIN b
__E-%__ﬁ-- P e . 167 Jo k2+mq> = k2+m§

(a) (b) 4 4.2 2.2
2m k*m k“m
x( L ) @) , (80)

FIG. 3. One-loop self-energy diagrams of the scalar particle.

+

radiative decays ancete”,qgq— y(g)+KK, or ey—e

+KK andqg—qg+KK. Similar calculations can be carried where we have performed the Wick rotation.

out for W,Z+ KK processes. Since the spacing between adjacent KK states is of order
Unlike processes with internal KK exchanges, the dia-O(1/R) and small, one can approximate the summation over

grams for the external emission of KK modes with differentthe KK states by an integration, as shown in the Appendix

masses do not interfere. Instead, contributions from differenB.® This reduces the above self-energy to

KK modes will have to be summed up at the cross-section

level. A general discussion of the KK state summation is :

presented in Appendix B. As an illustration, we calculate the —iT1(0) = I (I (n)— |2(n)) m2 81)

cross section for Eq.76). The cross section is given by m |t 2 e

(s/M%)“’ZHI olys (78  where we have introduced an explicit ultraviolet cutft;
for the momentum integration and used the rela{@®4). The

wherec?= QZa for a photon, N2— 1)a, for a gluon, andN,  Intégralsl,(n) andl,(n) are
is the number of colors. The integrals are

2—5),

n—1\4mc? m?
n+2) 3N, s

n/2—1

| _flfé d cosé B
07 ) 1. s1—cof6

2
L1 X+ 3T Xy
Iﬂn)=J.J.dxdy L ®
0Jo

(X+Tg)(X+y)
111 x2yn'2-2
I2(n)=f f dxdy(—
whered is the photon scattering angle in the c.m. frame with 0.0 X+l
respect to the beam direction apt= mE/s. The integrall g
is logarithmically divergent, corresponding to the collinearwherer ,=m3/M3.
singularity (6—0) associated with massless gauge boson The second diagraifiFig. 3(b)] comes from the four-point

emission. From Eq(78), we see once again that the cross-KK-KK- dd (seagull vertex. To derive the Feynman rule

section rate iZS not suppressed by the Planck scale rather byf@ this vertex, one has to expand the interaction Lagrangian
power ofs/Mg, due to the summation over the large numberto the order of«x?. After some tedious algebra, it can be

log 5

1 n721+4
- [y

0 y (1_y2)1/2 ! (79)

: (83

of KK states. However, the additional factar?/s signifi-  shown that the Feynman rule is

cantly suppresses thg emission off light fermions. On the

other hand, thd emission would not have this suppression 2

and may be phenomenologically more interesting to study. iZb}-(CW,pomberC#,,,kaﬁk;’), (84)

E. One-loop corrections from virtual KK states

It is of great interest to ask what radiative effects the SMWhereky k; are four-momentum of the scalar§,,,, ,, is
fields may receive from the virtual KK states. As an ex-defined in Eq(A10) and

ample, we calculate the massive spin-2 KK sﬁ@g contri-
bution to the one-loop self-energy for a scalar boson. The
momentum integrals involved have much worse ultraviolet Cw,pamzi[ﬁmcpg,vﬁ NenCrvpnt TACuv.on
behavior than their four-dimensional counterparts; we need
to introduce an explicit cutofi g to regularize the ultravio- + 7, Crunpoe™ MnCurpot (N=mn)]. (85
let divergence.
There are two contributing diagrams, as shown in Fig. 3. )
The first ong[Fig. 3(a)] originates from the KKd® vertex. The one-loop self-energy is then
The complete expression for this diagram is very compli-
cated. However, to see the leading behavior, it is sufficient to
evaluate the self-energy at zero external momentum. After *The summation over the KK states can also be calculated using
some algebra, it can be simplified to the Jacobi theta functiof].
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( : )
2 2
k +mﬁ

k4 2 2k2 2
S _2dcp
3m- m

. . K2 *
—iN(pY)=ige—> fo dk?k?Y,
n

14m3  4k?m3,
X + 5
3 3mﬁ

SN

(86)

Again we replace the summation by integration and intro

duce a cutoffMg; the above equation then becomes

[ 2 7p?
~iTI(p?) = — ( 3“’+Tp)|3<n)
2m3  7p? 2
(T‘I’— §)|4<n>+%ls<n>, (87)
where

1 1 X n/2—1
|3(n):fO fodxdv( )y(+y , (88)
|4(n):foldx X2, |5(n)=foldx X273,

(89

Integralsl ,(n) andls(n) are infrared divergent when<2

PHYSICAL REVIEW 19 105006

corresponding Feynman rules, as given in Appendix A,
based on which further phenomenological applications can
be carried out.

For the interesting scenario when the compactification
scale 1R is small compared to experimentally accessible en-
ergies and the cutoff scale is on the order of 1 TeV, we
outlined some low-energy phenomenology for further stud-
ies. Examples include quarkonium radiative decays, four-
fermion interactions, and the associated production of gauge
bosons and KK states for those new interactions resulting
from the massive KK modes. Although formally suppressed
by the Planck mass, the typical physical processes are only
suppressed by powers s,fMg after summing over the con-
tributing KK states. This implies possibly significant experi-
mental signatures. It also recovers the “decoupling theo-
rem” in the limit Mg—oo.

We also found that radiative corrections to the scalar self-
energy via virtual KK modes are proportional to the scalar
mass squared. Finally, based on our discussions for the KK
decays, cosmology at the early Universe should be carefully
examined with the existence of KK states in the extra large
dimensions.

Note addedWhen we were finishing this work, another
article dealing with the same subject appedrEdl.
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gauge bosons.

APPENDIX A: FEYNMAN RULES

1. Propagators and polarizations

V. CONCLUSIONS The propagator for the massive spin-2 KK std’n@g, is
We have identified the massive KK states in four- '_ S- -B (k)
2 n,—m-=uv,po

dimensional spacetime from {4n)-dimensional Kaluza- r,

Klein theory, assuming compactification of the exirali- 'A{W,ﬁ},{pa,rﬁ}(k): K—mitie | (A1)
mensions on a torus. For a given KK level we find that "

there are one spin-2 staten{1) spin-1 states, and(n  \here

—1)/2 spin-0 states and they are all mass degenerate.

We have constructed the effective interactions among K K K K K
these KK states and ordinary matter fielfisrmions, gauge B, (k)= 7,,— || 7,0— —o | +| Tpo— —5
bosons, and scalarsWe find that the spin-1 states decouple " e m: ; a N
and the spin-0 states only couple through the dilaton mode.

We derived the interacting Lagrangian for the KK states and kk,| 2 K.k,
standard model fields. These interactions are flavor diagonal X\ 7p— m2 3| T 7 2
and thus have no new flavor-changing neutral currents nor n n
baryon and lepton number violation. We also obtained the Kk k
X ( 77p0' ;]20) (A2)
n

4, andl5 come from the summationE(l/mE) and E(l/mg);
they can be regularized by the Epstéifunction instead of by the
explicit cutoffs.

=0 andB*

It is obvious thatk“B,,, ,, po

=0 if Flfw is on
shell, k?=m?.
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The polarization tensors fdr” can be constructed from

the polarization vectors of the masswe vector bosegs,,
as follows:

e = (e e+e

P ,LV,J— )\/—

1
+ o= =+ 0_0 -0, 0 _—\ — _—
X(GMGV+6M€V—Zeﬂfv),E(EMEV'FEMEV),EMEV

(A3)
These polarization tensors are traceless, transverse, and ¢
thogonal:
(e9)4=0, k*e;,=0, €7 S =5, (Ad)

The completeness condition then follows from thatipfand
the definition, Eq(A3):

E € er = (A5)

MV pa'( k)

The propagators fo?b,’] andf&“i have the following form:

R _(i12)(PiiP; D PPN O, ”6)

A i C—mitie ,

AR . iP 85— 70— Kk, /m2)

VAo my (K=~ = mtie ,
(A7)

where Pl”l are the projectors defined in EQLS). Their ap-

pearance can be understood from the fact fh{?l—ltand :&[]i

only couple to the sources which are dressed up by the pro-

jectors.

Sinceﬂzi and:ﬁ{} satisfy the divergencelessness condition
in Eq. (19), each external state of these particles should be " o #°
accompanied by an extra-dimension “polarization” vector ’

(&) or tensor g;;), which satisfies

n-1

S n
z eiej P|Ja
s=1

ne’=0, efes* =5 (A8)
| It
nie; =0, elsl =55,
n(n—1)/2
1 - 1 - -
521 ehetf =5 AP+ 2P N (A9)

for each KK level.

2. Vertex Feynman rules

PHYSICAL REVIEW D59 105006

ke M (i), = .
n .
p hwd>d> —ik28 (m "uv+Cuvwk k2)
K, my o
S " ©d |un<3usmn(k1-k2—2mo)
’ i

A° (k) w i), T =
LW —ik2 8 (M 4k oky) Gy o+ Dyy oo (K k)
A"‘p(h) +E7 By o Ky ko))
0T AL 0w E (Mg m? 18 (K, PotiooR,) )

ky, n

wv (i), 0

h ';www: —iw/88, (1, (Kyy + ko) +, (ky, + ko)

ks, m —2n,, K +K-2my))
-
" yy: oK 8, (4K +3M4k-2m,)

FIG. 4. Three-point vertex Feynman rules. The KK states are
plotted in double-sinusoidal curves. The symboB,, .,
D, p0(Ki.Kp), and E,, ,,(Ky,k;) are defined in Eqs(Al10),
(Al11), and(A12), respectivelymg, , m,, andm,, are masses of the
scalar, vector, and fermiom= y2/3(n+2), k= 167Gy, and¢ is

the gauge-fixing parameter.

C,uvpzr 77,up7lmr+ NuwoMvp™ NuvNpo s (AlO)

,uV po'( kl ’ kZ) n,uvkl(kap_ [ nM(rklvk2p+ 7l,u,pkla'k2v
- ank1Mk2V+(/1’<—> V)]! (All)
,u,V p(r( kl ’ kZ) 7],”( klpkl(r+ k2pk20'+ klpk2(r)

- [ nvakluklp—’— ank2,uk20'+ (ILL<—> V)]!
(A12)

in L S 1% 1a
) R GOA: 192G, . (k4K T2
, i 2 T L -
kpn)(« uv (ij), n o ii<I><IZ'A. —iogrd;(ky,+ky) .
o b
RN . ;abc
thAA : g2 ( Cuv, P (kg — ko) + Cuv, o (koo = Kio)
+Chv.on Kap = Kap) + Fuy oo (K12 Ko kg) )
-
3" AAA: O
i
5
o ’ o
B WWA: TgT (G =T, oo ) ¥
" yyA: -i320gx§T Y
i nm

FIG. 5. Four-point vertex Feynman ruleg.is the gauge cou-

In the following we list the complete leading-order Feyn- pling and f2°¢ the structure constant of the Lie algebmd?

man rules in three figures, Figs. 4, 5, and 6. Some of the-eQ; for QED. The symbolC

symbols used are defined as follows:

avpo @NAF 0y (Kq Ky Kg) are

defined in Eqs(A10) and (A13).
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This is the state density function that is to be convoluted with

i BOAA - iR G, o (T T, a physical amplitude or cross section for a KK state with a

- o, e given massmn;.

87, OOAR TOGTD Mo (T Ty A less trivial example is when constructing the effective
interactions due to virtual KK state exchanges, one has to
sum over them in the propagator:

HLAAAAZ iR (PG, t UG,

+H G, ) % i
o 2
2 D(5)-3 —5—= | “antp(my—7—,
o7 AMAA: O n s—m§+is o " s—m§+is

(B4)

wv Gi), B

FIG. 6. Five-point vertex Feynman ruleg{T? T°}—2e°Q?
for QED. The symbolsC
(A10) and (A14).

which may be singular near a real KK state production. Us-

uvpoe AN G, ) s are defined in Egs. ing

1 1
— =P —imd(s—m?), (B5)
-m’+ ( —m2)
F;Lv,po')\(klak21k3): nppn(r)\(kz_ k3)v+ 77,u,u'np)\(k3_ kl)v s 'e s
+ 70 Mpo(Ki—K2), + (n=v), (A13)  we find
G/.LV,pU)\(S: 77,4“/( Noahs™ npﬁna)\) n/2—1 R" \/_
D(S)==—5 ——=[7+2il(Mg/Vys)], (B6)
+[7’,u,p771/§77)x0'+ 7/;m7/uo77p5 F(n/Z) (477)“’2[ s ]
- vo - v (r+ V)]
Np Moo 6™ Tur Mot (V)] where
(A14)
All of them are symmetric inu—v. C,, ,, is the symbol -
that appears in the massless graviton propagator in the de _(Mshs oy
Donder gauge. |(Ms/Vs)=P o dyl_yz' (B7)

APPENDIX B: SUMMATION OF THE KK STATES

We have introduced an explicit ultraviolet cutd#s/+/s in

) ] the integral. It should be understood that a pgirtl has
Since the KK states are nearly degenerate in mass, ONgsen removed from the integration path.

would encounter the summation over those modes that are Tpe reg| part proportional tar in Eq. (B6) is from the

Eontrlfbutlng toa gl_\/ﬁ_n physical procgss.h(_Zo.nader. thf NUMEarrow resonant production of a single KK mode wrdﬁ
er of KK states within a mass scaig: . This is equivalent — s and the imaginary pan(MS/\/E) is from the summation

to counting then-dimensional hypercubic lattice sites m  over the many nonresonant states. This principal integration

=(Nng,Nnz, ... ,ny) with a relation to the mass: of Eq. (B7) can be easily carried out; it gives
- 252
47’n? m;R
2_ 22 ]
m: R? or r°=n 2.2 (B1) . /\/__ n/ZZ:L 1 Mg 2k l| Mé .
(Ms/vs)= =1 2k \/g Eog S

Since the mass separation G{1/R) is much smaller than
any other physical scale involved in the problem, it is much

. . - . n=eve
more convenient to consider the discratén the continuum ( L
limit. Therefore, the number of states in the mass interval
2 . (n-1)12 2k—1
dm- can be obtained by - 1 M_S
=1 2k—1\ s
Anzwd”r=p(m5)dm§, (B2)
+ Liog Ms* s (n=odd) (B8)
Slogl —= n=odd).
where the KK state density as a functionrof is given by 2'%9 Mg— /s
R'm? 2
p(mp)= —————. (B3) ForMg> Vs, the leading contribution comes from the non-
(47)"2T(n/2) resonant states and yields
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D(5)~ 1 Rlog(M¥/s) (n=2) -

Mg/VIT  y"
|E(Ms/m):f ° dy

0 1+y?
—=2i R'M{ 2 2-1 kel
~ (n>2). (B9 it (=) Ms
(N=2)T(N/2) (47)"2 T & 2 T
M3
The summation of spacelike propagators can be evaluated 3109 W+1 (n=even
similarly, and it gives
(D2 k| 2L
:(_)m—l)/z 2 (=) s
& 21| iy
i =i
De(t)=2> 7= 2 —10p2
not=ms TR [t]+m: +tan Y(M¥|t|+1)| (n=odd).
|t|n/271 R"
= (—2D)1eMs/T), (B10) (B1D

~ T(n/2) (47)72 . 2

We note that leading terms Dg(t) for M&>|t| are exactly
of the same form as in EqB9) and lead toDg(t)=D(s
—|t|). This shows that the low-energy effective interactions

where the integralg is for s andt channels are equivalent.
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