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We consider the novel Kaluza-Klein~KK ! scenario where gravity propagates in the (41n)-dimensional
bulk of spacetime, while gauge and matter fields are confined to the (311)-dimensional world volume of a
brane configuration. For simplicity we assume compactification of the extran dimensions on a torus with a
common scaleR, and identify the massive KK states in the four-dimensional spacetime. For a given KK level

nW there is one spin-2 state, (n21) spin-1 states, andn(n21)/2 spin-0 states, all mass degenerate. We
construct the effective interactions between these KK states and ordinary matter fields~fermions, gauge
bosons, and scalars!. We find that the spin-1 states decouple and that the spin-0 states only couple through the
dilaton mode. We then derive the interacting Lagrangian for the KK states and standard model fields, and
present the complete Feynman rules. We discuss some low-energy phenomenology for these new interactions
for the case when 1/R is small compared to the electroweak scale, and the ultraviolet cutoff of the effective KK
theory is on the order of 1 TeV.@S0556-2821~99!05408-9#

PACS number~s!: 11.10.Kk, 11.25.Mj, 13.90.1i
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I. INTRODUCTION

Kaluza-Klein ~KK ! reduction@1# has always been an im
portant ingredient in our attempts to related54 physics to
d510 superstrings, as well as tod511 supergravity, which
is now recognized as the low-energy effective description
d511 M theory @2#. It has become clear, however, that
much more general notion of Kaluza-Klein reduction is a
plicable in certain regions of the moduli space of consist
superstring or M theory vacua. This occurs when vario
matter and/or gauge fields are confined to heavy solito
membranes. These recent developments@3# in superstring
theory have led to a radical rethinking of the possibilities
new particles and dynamics arising from extra compactifi
spatial dimensions@4–15#.

To appreciate this radical change of view, it is useful
review the conventional Kaluza-Klein scenario@16#. One be-
gins with ad541n dimensional spacetime action, descri
ing a coupled gravity1gauge1matter system. Since field
theories of gravity are poorly behaved in the ultraviol
Kaluza-Klein formulations should be generically regarded
effectiveactions, with an implicit or explicit ultraviolet cutof
L. One expands this theory around a vacuum metric whic
the product of d54 Minkowski space with some
n-dimensional compact manifold, obtained by stationariz
this higher-dimensional effective action. For consistency,
characteristic length scalesRi of the compact manifold
should be larger than 1/L. In the shifted vacuum all fields ar
expanded in normal modes of then-dimensional compac
manifold; the coefficients of this harmonic expansion a
conventionald54 fields. This Kaluza-Klein reduction re
sults in an effective d54 theory of gravity1gauge
1massless matter coupled to towers of massive Kalu
0556-2821/99/59~10!/105006~14!/$15.00 59 1050
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Klein states, where the massive spectrum is cutoff at the h
scaleL.

Letting E denote the energy scale of some experime
and assuming for simplicity that the compactification sca
Ri;R are all roughly equal, one can distinguish three ge
eral phenomenological regimes.

~1! E!1/R&L. This case is relevant to compactification
of the weakly coupled heterotic string, withL equal to the
string scale, approximately 1018 GeV. In such a case mas
sive Kaluza-Klein modes only impact low-energy physi
indirectly, through threshold effects on couplings at the h
scale.

~2! E,1/R!L. This encompasses Kaluza-Klein sc
narios where the cutoff scaleL is still very high, but some
dynamics fixes 1/R to a much lower scale, perhaps as low
a few TeV. In this case a very large number;(LR)n of
massive KK states are integrated out in evolving the eff
tive action from the high scale to the low scale. Thus,
though the couplings of individual massive KK modes a
Planck suppressed, they may contribute non-neglig
higher-dimensional operators to the effective low-ene
theory@4#. Furthermore, they may have strong effects on
running of the renormalizable standard model~SM! cou-
plings @5# above the scale 1/R.

~3! 1/R!E,L. In this case a large number;(ER)n of
massive KK states are kinematically accessible. This eff
tively makes physics look (41n)-dimensional at the energ
scaleE@1/R. There are severe constraints from experim
on such scenarios. We know thatd54 electrodynamics can
be distinguished in collider experiments fromd541n elec-
trodynamics down to very short length scales. There is als
strong bound from the nonobservance of mirror copies
standard model chiral fermions. Consider for exampled55
©1999 The American Physical Society06-1



av
lly

tio

e
th
em
n
te

r
s
nt

ac
in
a
re

ib
i

e
ra

ti
io
ou

d

ld

er

ed

e
a
rg
o

4

-

are

II,

ion
are
s
great

e
in-
n-2,
-
en

ses
to

gi-
ion

or
the

-
ne-
KK
the

me
e
ical

a-
ro-

ity

t
ral

the
e
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fermions, which are pseudo Majorana fermions and h
four ~on-shell! real degrees of freedom. When dimensiona
reduced tod54, each splits into two Weyl fermions with
opposite chirality but the same gauge group representa
therefore one expects mirror fermions with masses&1/R.

Recently it was observed@6# that this last case can b
phenomenologically viable if we assume that the fields of
standard model are confined to a three-dimensional m
brane or intersection of membranes in the larger dimensio
space. Assuming further that the scale of the membrane
sion is on the order of the cutoffL or larger, the resulting
effective theory consists of (311)-dimensional standard
model fields coupled to 41n gravity and, perhaps, othe
(41n)-dimensional ‘‘bulk’’ fields. With these assumption
the phenomenological constraints from gravity experime
collider physics, and astrophysics are much weaker@6#, al-
lowing 1/R scales as low as 1024 eV (;1 mm21), for
cutoff scalesL in the range 1–10 TeV.

In superstring theory there are regions of moduli sp
where compactification radii become large while the str
coupling, gauge couplings, and Newton’s constant rem
fixed @7,8#. The scale of these large extra dimensions is
lated to the string scaleMS :

1

GN
;MS

n12Rn, ~1!

where GN is the Newton constant. Roughly speaking,MS
plays the role of the ultraviolet cutoffL. This reproduces the
relationship of scales assumed in the scenario just descr

It has also been shown in superstring theory that it
possible to obtaind54 N51 supersymmetric chiral gaug
theories confined to the world volumes of stable configu
tions of intersecting D-branes@9#. The region of string
moduli space where such configurations have a perturba
description is not necessarily incompatible with the reg
where large extra dimensions may occur. Thus within
current knowledge~or ignorance! of superstrings it is not
implausible to imagine that the standard model is confine
a brane configuration@10,11#, while large compactified di-
mensions are probed only by gravity and other bulk fie
@6,12#.

In this paper we will consider the simplest case wh
gravity is the onlyd541n bulk field. The couplings of
gravity tod54 gauge and matter fields are completely fix
by the general coordinate invariance in thed541n space-
time and thed54 world volume. This allows us to deduc
the complete Feynman rules for the couplings of stand
model particles to the massive KK states. The low-ene
phenomenology is then calculable modulo the details of h
to treat the cutoffL, which truncates the KK mode sums.

In the following, we will use a caret to denote the (
1n)-dimensional quantities; e.g.,ĝm̂n̂ denotes the metric
tensor ind541n. Greek letters (m,n, . . . ) andRoman let-
ters from the beginning (a,b, . . . ) and in the middle
( i , j , . . . ) of the alphabet will be used to label four
dimensional Einstein, Lorentz, and~the compactified!
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n-dimensional indices, respectively. Repeated indices
summed. Our convention for the signature is (1,2,
2, . . . ).

The rest of the paper is organized as follows: In Sec.
we compactifyd541n gravity on ann-dimensional torus
Tn and perform a mode expansion. A torus compactificat
is perhaps not realistic, since the bulk fields which we
ignoring are potential sources ofn-dimensional curvature, a
are the branes themselves. However, the torus has the
advantage of conceptual and calculational simplicity. W
find that the massive KK modes have a simple physical
terpretation. For each KK level, there are one massive spi
(n21) massive spin-1, andn(n21)/2 massive spin-0 par
ticles. We find the general form for the interactions betwe
matter~scalars, gauge bosons, and fermions! and the massive
KK states. In Sec. III, we examine a few physical proces
involving the KK states. We calculate their decay widths
the light SM particles; this could have important cosmolo
cal consequences. We then construct effective four-ferm
and f̄ f VV interactions; this provides a useful formalism f
studying some high-energy processes. We next study
processe1e2→g1KK, whereKK are spin-0 and -2 mas
sive KK states. In the final example, we calculate the o
loop corrections to the scalar boson masses due to virtual
states; we find that the corrections are proportional to
scalar mass, instead of the ultraviolet cutoffMS . Section IV
is reserved for a discussion and conclusions. We list so
useful formulas in two appendixes. In Appendix A, w
present the propagators and polarizations for the phys
KK states, and show the complete leading-order@O(k)# ver-
tex Feynman rules. In Appendix B, we discuss the summ
tion over KK states which appears in many physical p
cesses.

II. GENERAL FORMALISM

A. Decomposition of the massive KK states

The starting point for our analysis is the linearized grav
Lagrangian, i.e., the Fierz-Pauli Lagrangian@17#:

1

k̂2
AuĝuR̂5

1

4
~]m̂ĥn̂ r̂]m̂ĥn̂ r̂2]m̂ĥ]m̂ĥ22ĥm̂ĥm̂12ĥm̂]m̂ĥ!

1O~ k̂ !, ~2!

where ĥ[ĥ m̂
m̂ ,ĥn̂[]m̂ĥm̂n̂ , and we have usedĝm̂n̂5hm̂n̂

1k̂ĥm̂n̂ , k̂2516pGN
(41n) , with GN

(41n) the Newton constan
in d541n. This Lagrangian is invariant under the gene
coordinate transformation

dĥm̂n̂5]m̂zn̂1]n̂zm̂ . ~3!

After imposing the de Donder gauge condition1

1Here we choose the gauge condition for the sake of clarity;
definitions of physical fields in Eq.~17! do not depend on the gaug
choice.
6-2
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]m̂S ĥm̂n̂2
1

2
hm̂n̂ĥD50, ~4!

the equation of motion is the d’Alembert equation

h ~41n!S ĥm̂n̂2
1

2
hm̂n̂ĥD50. ~5!

The gauge condition, along with the tracelessness cond

ĥ m̂
m̂

50, and the residual general coordinate transformat
Eq. ~3!, with the gauge parameter satisfyingh (41n)zm̂50,
fix all but the (21n)(31n)/221 physical degrees of free
dom for a massless graviton in 41n dimensions.

Now we proceed to perform the KK reduction of th
Fierz-Pauli Lagrangian tod54. We shall assume

ĥm̂n̂5Vn
21/2S hmn1hmnf Am i

An j 2f i j
D , ~6!

whereVn is the volume of thed5n compactified space,f
[f i i , m,n50,1,2,3 andi , j 55,6, . . . ,41n, and thehmnf
term in the~11!-entry is a Weyl rescaling. These fields a
compactified on ann-dimensional torusTn and have the fol-
lowing mode expansions:

hmn~x,y!5(
nW

hmn
nW ~x!expS i

2pnW •yW

R
D , ~7!

Am i~x,y!5(
nW

Am i
nW ~x!expS i

2pnW •yW

R
D , ~8!

f i j ~x,y!5(
nW

f i j
nW ~x!expS i

2pnW •yW

R
D ,

nW 5$n1 ,n2 , . . . ,nn%, ~9!

where the modes ofnW Þ0 are the KK states, and all th
compactification radii are assumed to be the same. The
eralization to an asymmetric torus with different radii
straightforward. From the transformation properties un
the general coordinate transformationzm̂5$zm ,z i%, it should
be clear that the zero modesnW 50W correspond to the massles
graviton, U~1! gauge bosons, and scalars ind54.

The KK modes satisfy the following equation of motion
from Eq. ~5!:

~h1mnW
2
!S hmn

nW 2
1

2
hmnhnW D50, ~h1mnW

2
!Am i

nW 50,

~h1mnW
2
!f i j

nW 50, where mnW
2
5

4p2nW 2

R2
, ~10!

and h is the four-dimensional d’Alembert operator. Th
gauge condition in Eq.~4! reduces to the following two
equations:
10500
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]mhmn
nW 2

1

2
]nhnW1 i

2pni

R
An i

nW 50, ~11!

]mAm i
nW 1 i

4pnj

R
f i j

nW 1 i
pni

R
hnW1 i

2pni

R
fnW50. ~12!

From Eq.~12!, it follows that

fnW1
2ninj

nW 2
f i j

nW 1
1

2
hnW2 i

niR

2pnW 2
]mAm i

nW 50, ~13!

Pik
nW S ]mAm i

nW 1 i
4pnj

R
f i j

nW D50, ~14!

where we have defined the projectors

Pi j
nW 5d i j 2

ninj

nW 2
, P̃i j

nW 5
ninj

nW 2
; ~15!

they satisfy

Pi j
nW Pjk

nW 5Pik
nW , P̃i j

nW P̃jk
nW 5 P̃ik

nW ,

Pi j
nW P̃jk

nW 50, Pi j
nW 1 P̃i j

nW 5d i j ,

Pii
nW 5n21, P̃ii

nW 51, Pi j
nW ni50, P̃i j

nW ni5nj . ~16!

We then redefine the fields

h̃mn
nW 5hmn

nW 2 i
niR

2pnW 2
~]mAn i

nW 1]nAm i
nW !

2~Pi j
nW 13P̃i j

nW !S 2

3

]m]n

mnW
2 2

1

3
hmnD f i j

nW ,

Ãm i
nW 5Pi j

nW S Am j
nW 2 i

nkR

pnW 2
]mf jk

nW D ,

f̃ i j
nW 5A2~Pik

nW Pjl
nW 1aPi j

nW Pkl
nW !fkl

nW , ~17!

wherea is the solution of the equation 3(n21)a216a51.

This form off̃ i j
nW is chosen to make its kinetic term canonica

as will be seen in Eq.~24!. It is obvious that tilded fields
satisfy the same equations of motion as untilded fields. F
thermore, from Eqs.~11!, ~13!, ~14!, and~17!, we have

]mh̃mn
nW 50, h̃nW50, ~18!

]mÃm i
nW 50, niÃm i

nW 50, nif̃ i j
nW 50.

~19!

This verifies thath̃mn
nW are massive spin-2 particles,Ãm i

nW are

(n21) massive spin-1 particles, andf̃ i j
nW aren(n21)/2 mas-

sive spin-0 particles, all with the same massmnW .
This redefinition of fields is associated with spontaneo

symmetry breaking. It was shown forn51 that there is an
6-3
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TAO HAN, JOSEPH D. LYKKEN, AND REN-JIE ZHANG PHYSICAL REVIEW D59 105006
infinite-dimensional symmetry~the loop algebra onS1) at
the Lagrangian level@18#, but it is broken by the vacuum
configurationĝm̂n̂5hm̂n̂ . Similar to the Higgs mechanism

the massless spin-2 fieldshmn
nW absorb the spin-1 and spin-

fields at the same KK levelnW and become massive. It i
remarkable that this mechanism is geometrical in nature
does not need any scalar Higgs field. We here explicitly fi
the composition for massive spin-2, -1, and -0 fields forn
>2.

One can further show thath̃mn
nW , Ãm i

nW , andf̃ i j
nW are invariant

under the general coordinate transformation, which has
following linearized form:

dhmn
nW 5]mzn

nW1]nzm
nW 1 ihmn

2pni

R
z i

nW , ~20!

dAm i
nW 52 i

2pni

R
zm

nW 1]mz i
nW , ~21!

df i j
nW 52 i

pni

R
z j

nW2 i
pnj

R
z i

nW , ~22!

where we have assumed the transformation parame

zm
nW ,z i

nW to have the same mode expansion as in Eq.~9!.
We should note that the field redefinition in Eq.~17! does

not depend on the particular gauge choice. To see this
rewrite the Lagrangian in Eq.~2! without imposing the de
Donder gauge. For the zero modes, it simply follows, fro
Eq. ~6!, that

L 0W5
1

4
~]mhnr]mhnr2]mh]mh22hmhm12hm]mh!

2(
i 51

n
1

4
Fi

mnFmn i1
1

2
]mf]mf1 (

~ i j !51

n~n11!/2

]mf i j ]mf i j ,

~23!

where Fmn i5]mAn i2]nAm i . We see it indeed describe
massless graviton, vectors, and scalars.

The Lagrangian for the massive KK modes can be rew
ten in terms of the tilded fields according to Eq.~17!. After a
tedious calculation, we find

L nW5
1

2
~]mh̃nr,nW]mh̃nr

2nW2]mh̃nW]mh̃2nW22h̃m,nW h̃m
2nW

12h̃m,nW]mh̃2nW2mnW
2
h̃mn,nW h̃mn

2nW1mnW
2
h̃nW h̃2nW !

1(
i 51

n S 2
1

2
F̃ i

mn,nW F̃mn i
2nW 1mnW

2
Ãi

m,nWÃm i
2nW D

1 (
~ i j !51

n~n11!/2

~]mf̃ i j
nW ]mf̃ i j

2nW2mnW
2
f̃ i j

nW f̃ i j
2nW !; ~24!

the fieldsÃm i
nW andf̃ i j

nW are subjected to the constraints in E
~19!.
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The equation of motion ofh̃mn
nW from Eq.~24! is the Fierz-

Pauli equation for massive spin-2 particles:

]m]mx̃nr
nW 2]nx̃r

nW2]rx̃n
nW1]mx̃m

nW hnr1mnW
2
~ h̃nr

nW 2hmnh̃nW !50,
~25!

where

x̃mn
nW 5h̃mn

nW 2
1

2
h̃nWhmn , x̃m

nW 5]nx̃mn
nW , ~26!

and Ãm i
nW and f̃ i j

nW satisfy

]mF̃mn i
nW 1mnW

2
Ãn i

nW 50, ~h1mnW
2
!f̃ i j

nW 50. ~27!

These equations can be recast into the form in Eqs.~10!,
~18!, and~19!.

The propagators and polarizations of the physical~tilded!
fields will be given in Appendix A 1.

B. Coupling of the KK states to matter

The basic picture for our physical world, as considered
this paper, is that all standard model fields are confined
four-dimensional brane world volume. As we showed in t
previous section, from the four-dimensional perspective,
zero modes of the (41n)-dimensional graviton become th
graviton, n massless U~1! gauge bosons, andn(n11)/2
massless scalar bosons, while the KK modes in each l
reorganize themselves into a massive spin-2 particle,n
21) massive vector bosons, andn(n21)/2 massive scala
bosons. In the following, we will formulate the coupling o
these physical KK modes to matter. Although these inter
tions only have gravitational strength, they can be enhan
in the case of large size extra dimensions, due to the m
available KK states.

We begin with the minimal gravitational coupling of th
general scalarS, vectorV, and fermionF,2

E d4xA2ĝL~ ĝ,S,V,F !, ~28!

where ĝ is the induced metric ind54, ĝmn5hmn1k(hmn

1hmnf), f[f i i . The d54 Newton constant k

5A16pGN is related tok̂ by k5Vn
21/2k̂, whereVn5Rn for

the torusTn.
TheO(k) term of Eq.~28! can be easily shown to be

2
k

2E d4x~hmnTmn1fT m
m !, ~29!

where

Tmn~S,V,F !5S 2hmnL12
dL

dĝmnD U
ĝ5h

, ~30!

2For the fermion, one should use the vierbein formalism, but
result in Eq.~33! is still true.
6-4
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and we have used

A2ĝ511
k

2
h12kf, ĝmn5hmn2khmn2khmnf.

~31!

For the KK modes, we should replacehmn
nW and fnW by the

physical fieldsh̃mn
nW and f̃nW according to Eq.~17!. Using

Pi j
nW f i j

nW 5
3v

2
f̃nW , ~32!

where f̃nW[f̃ i i
nW , v5A2/3(n12), and the conservation o

the energy-momentum tensor, we obtain

2
k

2(nW
E d4x~ h̃mn,nWTmn1vf̃nWT m

m !. ~33!

It is remarkable that the vector KK modesÃm i
nW decouple and

the scalar KK modesf̃ i j
nW only couple through their tracef̃nW ,

the dilaton mode.
We now present the Lagrangian to the order ofO(k); a

complete list of vertex functions will be given in Append
A 2.

1. Coupling to scalar bosons

For a general complex scalar fieldF, we have the con-
served energy-momentum tensor

Tmn
S 52hmnDrF†DrF1hmnmF

2 F†F1DmF†DnF

1DnF†DmF, ~34!

where the gauge-covariant derivative is defined as

Dm5]m1 igAm
a Ta, ~35!

with g the gauge coupling,Am
a the gauge fields, andTa the

Lie algebra generators. The gauge-invariant Lagrangian f
level-nW KK state coupled to the scalar bosons is

k21L S
nW~k!52S h̃mn,nW2

1

2
hmnh̃nW DDmF†DnF

2
1

2
h̃nWmF

2 F†F1vf̃nW~DmF†DmF

22mF
2 F†F!. ~36!

From this, one finds the Feynman rules for KK-FF vertices
as well as the contact interactions of KK-FF with additional
gauge bosons. They are listed in Appendix A 2.

2. Coupling to gauge bosons

The conserved energy-momentum tensor for a gauge
tor boson is
10500
a

c-

Tmn
V 5hmnS 1

4
FrsFrs2

mA
2

2
ArArD 2~Fm

rFnr2mA
2AmAn!

2
1

j
hmnS ]r]sAsAr1

1

2
~]rAr!2D

1
1

j
~]m]rArAn1]n]rArAm!, ~37!

where thej-dependent terms correspond to adding a gau
fixing term 2(]mAm2G n

mnAm)2/2j, with G n
mn5hnrG nr

m the
Christoffel symbol~affine connection!. The Lagrangian for a
level-nW KK state coupled to the gauge bosons is

k21L V
nW ~k!52

1

8
~ h̃nWhmn24h̃mn,nW !Fm

rFnr

1
1

4
~ h̃nWhmn22h̃mn,nW !mA

2AmAn

1
h̃nW

2jS ]r]sAsAr1
1

2
~]rAr!2D

2
h̃mn,nW

j
]m]rArAn1

v

2
mA

2f̃nWAmAm

2
v

j
]mf̃nW]nAnAm . ~38!

The corresponding Feynman rules for three-point KK-AA
vertices as well as the contact interactions of KK-AAA and
KK-AAAA are given in Appendix A 2.

3. Coupling to fermions

To describe a fermion in the gravitation theory, one nee
to use the vierbein formalism. The fermion Lagrangian is

LF5ec̄~ igmDm2mc!c, ~39!

wheree5det(em
a), em

aen
bhab5gmn , gm5e a

m ga, anda,b are
Lorentz indices. The covariant derivative on the fermi
field is defined by

Dmc5S Dm1
1

2
vm

absabDc, ~40!

wheresab5 1
4 @ga ,gb#. In the absence of a spin-3/2 field, th

spin connectionvm
ab can be solved in terms of the vierbein

vmab5
1

2
~]mebn2]nebm!ea

n2
1

2
~]mean2]neam!eb

n

2
1

2
ea

reb
s~]recs2]secr!e m

c . ~41!

We find the conserved energy-momentum tensor
6-5
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Tmn
F 52hmn~c̄ igrDrc2mcc̄c!1

1

2
c̄ igmDnc

1
1

2
c̄ ignDmc1

hmn

2
]r~c̄ igrc!2

1

4
]m~c̄ ignc!

2
1

4
]n~c̄ igmc!, ~42!

where we have used the linearized vierbein

em
a5dm

a1
k

2
~hm

a1dm
af!. ~43!

The Lagrangian for a level-nW KK state coupled to fermions is

k21LF
nW~k!5

1

2F ~ h̃nWhmn2h̃mn,nW !c̄ igmDnc2mch̃nW c̄c

1
1

2
c̄ igm~]mh̃nW2]nh̃mn

nW !c G1
3v

2
f̃nW c̄ igmDmc

22vmcf̃nW c̄c1
3v

4
]mf̃nW c̄ igmc. ~44!

The Feynman rules for KK-cc vertices as well as contac
interactions of KK-cc with additional gauge bosons ar
listed in Appendix A 2.

III. APPLICATION TO PHYSICAL PROCESSES

We are interested in a scenario in which the experim
tally accessible energy is larger than the compactifica
scale 1/R ~from ;1024 eV to 100 MeV forn52 –7) but
lower-than the ultraviolet cutoffL. We first consider how
the KK states decay to the SM particles. We then outl
some low-energy phenomenology and formulate effec
amplitudes relevant to further studies at colliders. Finally,
evaluate typical one-loop corrections from virtual KK stat
to a scalar propagator. For simplicity, we will take the ultr
violet cutoff L to be the string scaleMS . A more general
choice ofL can be obtained by simple scaling.

A. Decay of the massive KK states

A massive KK state may decay to a pair of SM particle
beside its normal decay modes to massless gravitons an
lighter KK states. Depending on its mass, it can go togg,
f f̄ , WW, ZZ, and hh. While the decay of an individua
massive KK state may not be much of interest for the curr
high-energy experiments since it must be gravitationally s
pressed, cosmological considerations of their lifetimes m
have significant implications for their masses and inter
tions. Without speculating on the production and freeze-
of the KK modes at the early Universe with extra dime
sions, we simply evaluate their decay widths and lifetimes
SM particles.
10500
-
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1. Spin-2 KK states

We first consider a massive spin-2 KK state (h̃) decay to
gauge bosons:

h̃→VV. ~45!

It is straightforward to work out the partial decay width
massless gauge bosons:

G~ h̃→VV!5N
k2mh̃

3

320p
, ~46!

whereN51(8) for photons~gluons!.
Because of the universalh̃ coupling to all gauge bosons

the two-photon modeh̃→gg is kinematically most favored
for the lower-lying KK states. The lifetime is estimated to b

tgg'
103

k2mh̃
3 '63109 yrS 100 MeV

mh̃
D 3

, ~47!

where we have taken the reduced Planck massMPl*
5A2k2152.431018 GeV. It is very long lived via this de-
cay mode. For a KK state heavier than the lower-lying ha
rons, its lifetime viah̃→gg would be shorter:

tgg'73105 yrS 1 GeV

mh̃
D 3

. ~48!

If kinematically allowed, the KK mode can decay to massi
gauge bosons and the decay width is

G~ h̃→VV!5d
k2mh̃

3

160p
~124r V!1/2S 13

12
1

14

39
r V1

4

13
r V

2 D ,

~49!

whered51/2 for identical particles. Here and henceforth, w
will use a notation for the mass ratior i5mi

2/mh̃
2 or mi

2/mf̃
2 .

The lifetime through this decay channel is

tVV'
53102

k2mh̃
3 '30 yrS 100 GeV

mh̃
D 3

. ~50!

The other decay channel goes through fermions:

h̃→ f f̄ . ~51!

The decay width is

G~ h̃→ f f̄ !5Nc

k2mh̃
3

640p
~124r f !

3/2S 11
8

3
r f D , ~52!

where the color factorNc is 3 for the quark pair mode. The
lifetime for this channel is of the same order of magnitude
that of Eq.~47!.

Finally, the decay width to a pair of Higgs bosons is
6-6
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G~ h̃→HH̄ !5
k2mh̃

3

1920p
~124r H!5/2. ~53!

We notice the threshold effects for the above three mode
S, P, andD waves.

2. Spin-0 KK states

The spin-0 KK state (f̃) couplings to massless gaug
bosons vanish at tree level, so that af̃ does not decay to
photons nor to gluons at the leading order. If kinematica
allowed, a massivef̃ can decay to massive gauge boson

f̃→VV. ~54!

The partial decay width is calculated to be

G~f̃→VV!5
d

n12

k2mf̃
3

96p
~124r V!1/2~124r V112r V

2 !,

~55!

where, again,d51/2 for identical particles. The lifetime
based on this decay channel is about the same order of m
nitude as that of Eq.~50!.

On the other hand, a lightf̃ can still decay to a pair o
light fermions:

f̃→ f f̄ . ~56!

The decay width is given by

G~f̃→ f f̄ !5
Nc

n12

k2mf
2mf̃

48p
~124r f !

1/2~122r f !. ~57!

The width for this channel is rather different fromh̃ decay,
being proportional linearly tomf̃ and quadratically tomf .
This is because of the fermion spin-flip interactions by
scalar. The lifetime off̃ for this channel is estimated to b

t'
63102

k2mf
2mf̃

'431010 yr
~100 MeV!3

mf
2mf̃

. ~58!

The decay width to a pair of Higgs bosons is given by

G~f̃→HH̄ !5
d

n12

k2mf̃
3

96p
~124r H!1/2~112r H!2.

~59!

B. Effective four-fermion interactions

The most basic contribution for KK states to current hig
energy phenomenology would be the effects on four-ferm
interactions. Consider a generic four-fermion process

f 1~k1! f̄ 1~k2!→ f 2~q1! f̄ 2~q2! ~60!

in Fig. 1~a!, where the fermion momenta are chosen to
along the fermion line direction. The effective amplitudes a
calculated to have the forms
10500
as

y

g-

-
n

e
e

iM4~ h̃!52
pC4

2 F ~k11k2!•~q11q2! f̄ 2gm f 2 f̄ 1gm f 1

1 f̄ 2~k” 11k” 2! f 2 f̄ 1~q” 11q” 2! f 1

2
8

3
mf 1

mf 2
f̄ 2f 2 f̄ 1f 1G , ~61!

iM4~f̃ !5S n21

n12D8pC4

3
mf 1

mf 2
f̄ 2f 2 f̄ 1f 1 , ~62!

where

C45
k2

16p
D~s! ~63!

ands5(k12k2)25(q22q1)2. The functionD(s) counts for
the exchange of virtual KK states. In principle, all the co
tributing KK modes in a tower should be summed coh
ently. However, the summation would be ultravioletly dive
gent for n>2. We have chosen to introduce an explic
cutoff MS in the summation. The full derivation and expre
sion of D(s) is given in Appendix B. Taking the leading
contribution inMS@s, combining with the coupling by tak-
ing

k2Rn516p~4p!n/2G~n/2!MS
2~n12! , ~64!

the coefficientC4 reads

C4'2 iM S
24log~MS

2/s! ~n52! ~65!

'
22iM S

24

~n22!
~n.2!. ~66!

We see that the amplitude has the dimensionful prefa
MS

24 , instead of the Planck mass suppression. We also
thatC4 remains the same withs→utu or uuu for t,u channels.
Thus Eqs.~61! and ~62! are indeed the appropriate low
energy effective Lagrangians. On the other hand, if the cu
scale is not too far away from the c.m. energyAs, then the
resonant contribution in thes channel should be included, a
given by the real part in Eq.~B6! of Appendix B.

These interactions would lead to modifications to dec
of quarkonia via

~qq̄!→ l l̄ , mm̄, ~67!

FIG. 1. Feynman diagrams for~a! four-fermion interactions and

~b! f̄ f VV interactions. We represent KK states by double-sinuso
curves.
6-7
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where (qq̄) denotes a quarkonium such asY,J/c,f0,p0,r0,
etc., l 5e,m,t and mm̄ are light meson pairs. They woul
also modify the scattering cross sections such as

e1e2→ l l̄ ,qq̄, ~68!

qq̄→ l l̄ ,qq̄. ~69!

As a result of the particular structure of the contact inter
tions in Eq.~61!, analyses on the final state angular distrib
tions may reveal deviations from the standard model pre
tions.
x-
pr

e
lly
rs

t
t
n

e

10500
-
-
c-

C. Effective f̄ fVV interactions

Exchanges of virtual KK states can also contribute to p
cesses such as

f 1~k1! f̄ 1~k2!→V1~q1!V̄2~q2!, ~70!

as in Fig. 1~b!, where the fermion momenta are chosen to
along the fermion line direction, and the gauge boson m
menta are incoming to the vertex. The effective amplitud
for fermion-gauge bosons should have the general form
iMV~ h̃!52 2pC4 F2mf~q1•V2!~q2•V1! f̄ f 1S 4

3
mV

2mf2smf D ~V1•V2! f̄ f 12~k1•q22k1•q1!~V1•V2! f̄ q” 1f 12~k1•V1!

3~q1•V2! f̄ q” 1f 22~k1•V2!~q2•V1! f̄ q” 1f 22~k1•q2!~q1•V2! f̄ V” 1f 1s~k1•V2! f̄ V” 1f 22~k1•q1!~q2•V1! f̄ V” 2f

1s~k1•V1! f̄ V” 2f G , ~71!

iMV~f̃ !52S n21

n12D16p

3
C4 mV

2mf~V1•V2! f̄ f , ~72!
o-
the
he

ium
where C4 is the same as in Eq.~63!, s5(q11q2)25(k1
2k2)2, andV1 ,V2 represent polarization vectors of the e
ternal gauge bosons. Examples for the induced physical
cesses include

e1e2, qq̄→gg, W1W2, ZZ, gg, ~73!

gg, gg→ l l̄ , qq̄. ~74!

D. KK state real emission

Since the KK states couple to all the SM particles, th
may be radiated from quarkonium decays if kinematica
allowed or be copiously produced at high-energy collide
Consider the process

f f̄→V1KK, ~75!

whereV is a SM gauge boson. There are four diagrams
contribute to the process:s,t,u channels plus a four-poin
contact diagram as shown in Fig. 2. For simplicity, we co
sider a massless gauge boson~a photon or a gluon!.

For thef̃ emission, it is interesting to note that only th
fermion-mass-dependent terms survive from thet andu dia-
grams. The amplitude for the emission off̃ of massmnW is

iM~f̃ !5d i j

2 i

2
vgVmfkū~k2!S łgr

t
1

gr j”

u Du~k1!er~q2!,

~76!
o-

y

.

o

-

wherev is the normalization factor in Eq.~33!, gV5eQf for
a photon andgsTnm

a for a gluon, andl 5k11q2 , j 5k11q1.
Again, our momentum convention is that the fermion m
menta follow the fermion line and the gauge boson and
KK state have their momenta incoming to the vertices. T
amplitude forh̃ emission is calculated to be

iM~ h̃!5
2 i

2
gVkū~k2!F1

u
gr j”gmk1n1

1

t
gmk2nłgr

1
2

s
gs~q1•q2hmshnr1hmrknq2s2hmsq1rq2n

2hrskmq2n!2gmhnrGu~k1!er~q2!emn~q1!,

~77!

with k5k12k2. The amplitudes of Eqs.~76!, ~77! are di-
rectly applicable to physical processes such as quarkon

FIG. 2. Feynman diagrams fore2e1→g1KK.
6-8
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radiative decays ande1e2,qq̄→g(g)1KK, or eg→e
1KK andqg→q1KK. Similar calculations can be carrie
out for W,Z1KK processes.

Unlike processes with internal KK exchanges, the d
grams for the external emission of KK modes with differe
masses do not interfere. Instead, contributions from differ
KK modes will have to be summed up at the cross-sec
level. A general discussion of the KK state summation
presented in Appendix B. As an illustration, we calculate
cross section for Eq.~76!. The cross section is given by

s5S n21

n12D4pc2

3Nc

mf
2

s2 ~s/MS
2!n/211I uI y , ~78!

wherec25Qf
2a for a photon, (Nc

221)as for a gluon, andNc

is the number of colors. The integrals are

I u5E
211d

12d d cosu

12cos2u
5 logS 22d

d D ,

I y5E
0

1

dy2
yn22~11y4!

~12y2!1/2
, ~79!

whereu is the photon scattering angle in the c.m. frame w
respect to the beam direction andy25mnW

2/s. The integralI 0

is logarithmically divergent, corresponding to the colline
singularity ~d→0! associated with massless gauge bos
emission. From Eq.~78!, we see once again that the cros
section rate is not suppressed by the Planck scale rather
power ofs/MS

2 , due to the summation over the large numb
of KK states. However, the additional factormf

2/s signifi-

cantly suppresses thef̃ emission off light fermions. On the
other hand, theh̃ emission would not have this suppressi
and may be phenomenologically more interesting to stud

E. One-loop corrections from virtual KK states

It is of great interest to ask what radiative effects the S
fields may receive from the virtual KK states. As an e

ample, we calculate the massive spin-2 KK stateh̃mn
nW contri-

bution to the one-loop self-energy for a scalar boson. T
momentum integrals involved have much worse ultravio
behavior than their four-dimensional counterparts; we n
to introduce an explicit cutoffMS to regularize the ultravio-
let divergence.

There are two contributing diagrams, as shown in Fig
The first one@Fig. 3~a!# originates from the KK-FF vertex.
The complete expression for this diagram is very com
cated. However, to see the leading behavior, it is sufficien
evaluate the self-energy at zero external momentum. A
some algebra, it can be simplified to

FIG. 3. One-loop self-energy diagrams of the scalar particle
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2 iP~0!5 i
k2

16p2E
0

`

dk2k2S 1

k21mF
2 D(

nW
F S 1

k21mnW
2D

3S 2mF
4

3
2

k4mF
2

2mnW
2 1

k2mF
2

2 D G , ~80!

where we have performed the Wick rotation.
Since the spacing between adjacent KK states is of o

O(1/R) and small, one can approximate the summation o
the KK states by an integration, as shown in the Appen
B.3 This reduces the above self-energy to

2 iP~0!5
i

p S I 1~n!2
I 2~n!

2 DmF
2 , ~81!

where we have introduced an explicit ultraviolet cutoffMS
for the momentum integration and used the relation~64!. The
integralsI 1(n) and I 2(n) are

I 1~n!5E
0

1E
0

1

dxdy
S x1

2

3
r FD xyn/221

~x1r F!~x1y!
, ~82!

I 2~n!5E
0

1E
0

1

dxdyS x2yn/222

x1r F
D , ~83!

wherer F5mF
2 /MS

2 .
The second diagram@Fig. 3~b!# comes from the four-point

KK-KK- FF ~seagull! vertex. To derive the Feynman rul
for this vertex, one has to expand the interaction Lagrang
to the order ofk2. After some tedious algebra, it can b
shown that the Feynman rule is

i
k2

4
d i j ~Cmn,rsmF

2 1Cmn,rsulhk1
lk2

h!, ~84!

where k1 ,k2 are four-momentum of the scalars,Cmn,rs is
defined in Eq.~A10! and

Cmn,rsulh5
1

2
@hmlCrs,nh1hslCmn,rh1hrlCmn,sh

1hnlCmh,rs2hlhCmn,rs1~l↔h!#. ~85!

The one-loop self-energy is then

3The summation over the KK states can also be calculated u
the Jacobi theta function@5#.
6-9
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2 iP~p2!5 i
k2

16p2E
0

`

dk2k2(
nW

F S 1

k21mnW
2D

3S 14mF
2

3
1

4k2mF
2

3mnW
2 1

k4p2

3mnW
4 2

2k2p2

mnW
2 D G .

~86!

Again we replace the summation by integration and int
duce a cutoffMS ; the above equation then becomes

2 iP~p2!5
i

p F S 10mF
2

3
1

7p2

3 D I 3~n!

1S 2mF
2

3
2

7p2

6 D I 4~n!1
p2

9
I 5~n!G , ~87!

where

I 3~n!5E
0

1E
0

1

dxdyS xyn/221

x1y D , ~88!

I 4~n!5E
0

1

dx xn/222, I 5~n!5E
0

1

dx xn/223.

~89!

IntegralsI 4(n) and I 5(n) are infrared divergent whenn<2
and 4, respectively.4 This is unphysical since the summatio
should really start at the first nonzero mode. Therefor
natural infrared cutoff 1/(RMS)2 can be included when nec
essary.

It is important to note that the leading one-loop correct
to the scalar-boson mass is proportional tomF

2 , as opposed
to the usual cutoff (MS

2) dependent corrections from othe
particles in loops. We expect this fact to hold as well for t
gauge bosons.

IV. CONCLUSIONS

We have identified the massive KK states in fou
dimensional spacetime from (41n)-dimensional Kaluza-
Klein theory, assuming compactification of the extran di-
mensions on a torus. For a given KK levelnW , we find that
there are one spin-2 state, (n21) spin-1 states, andn(n
21)/2 spin-0 states and they are all mass degenerate.

We have constructed the effective interactions amo
these KK states and ordinary matter fields~fermions, gauge
bosons, and scalars!. We find that the spin-1 states decoup
and the spin-0 states only couple through the dilaton mo
We derived the interacting Lagrangian for the KK states a
standard model fields. These interactions are flavor diag
and thus have no new flavor-changing neutral currents
baryon and lepton number violation. We also obtained

4I 4 and I 5 come from the summations((1/mnW
2) and ((1/mnW

4);
they can be regularized by the Epsteinz function instead of by the
explicit cutoffs.
10500
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corresponding Feynman rules, as given in Appendix
based on which further phenomenological applications
be carried out.

For the interesting scenario when the compactificat
scale 1/R is small compared to experimentally accessible
ergies and the cutoff scale is on the order of 1 TeV,
outlined some low-energy phenomenology for further stu
ies. Examples include quarkonium radiative decays, fo
fermion interactions, and the associated production of ga
bosons and KK states for those new interactions resul
from the massive KK modes. Although formally suppress
by the Planck mass, the typical physical processes are
suppressed by powers ofs/MS

2 after summing over the con
tributing KK states. This implies possibly significant expe
mental signatures. It also recovers the ‘‘decoupling th
rem’’ in the limit MS→`.

We also found that radiative corrections to the scalar s
energy via virtual KK modes are proportional to the sca
mass squared. Finally, based on our discussions for the
decays, cosmology at the early Universe should be caref
examined with the existence of KK states in the extra la
dimensions.

Note added. When we were finishing this work, anothe
article dealing with the same subject appeared@19#.
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APPENDIX A: FEYNMAN RULES

1. Propagators and polarizations

The propagator for the massive spin-2 KK statesh̃mn
nW is

iD
$mn,nW %,$rs,mW %
h̃

~k!5

i

2
dnW ,2mW Bmn,rs~k!

k22mnW
2
1 i«

, ~A1!

where

Bmn,rs~k!5S hmr2
kmkr

mnW
2 D S hns2

knks

mnW
2 D 1S hms2

kmks

mnW
2 D

3S hnr2
knkr

mnW
2 D 2

2

3S hmn2
kmkn

mnW
2 D

3S hrs2
krks

mnW
2 D . ~A2!

It is obvious thatkmBmn,rs50 andB m,rs
m 50 if h̃mn

nW is on
shell,k25mnW

2 .
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The polarization tensors forh̃mn
nW can be constructed from

the polarization vectors of the massive vector bosons,em
6,0 ,

as follows:

emn
s 5H em

1en
1 ,

1

A2
~em

1en
01em

0 en
1!,

1

A6

3~em
1en

21em
2en

122em
0 en

0!,
1

A2
~em

2en
01em

0 en
2!,em

2en
2J .

~A3!

These polarization tensors are traceless, transverse, an
thogonal:

~es!m
m50, kmemn

s 50, es,mnemn
s8* 5dss8. ~A4!

The completeness condition then follows from that ofem
s and

the definition, Eq.~A3!:

(
s51

5

emn
s ers

s* 5
1

2
Bmn,rs~k!. ~A5!

The propagators forf̃ i j
nW andÃm i

nW have the following form:

iD
$ i j ,nW %,$kl,mW %
f̃

~k!5
~ i /2!~Pik

nW Pjl
nW 1Pil

nW Pjk
nW !dnW ,2mW

k22mnW
2
1 i«

, ~A6!

iD
$m i ,nW %,$n j ,mW %
Ã

~k!52
iPi j

nW dnW ,2mW ~hmn2kmkn /mnW
2
!

k22mnW
2
1 i«

,

~A7!

where Pi j
nW are the projectors defined in Eq.~15!. Their ap-

pearance can be understood from the fact thatf̃ i j
nW and Ãui

nW

only couple to the sources which are dressed up by the
jectors.

SinceÃm i
nW andf̃ i j

nW satisfy the divergencelessness conditi
in Eq. ~19!, each external state of these particles should
accompanied by an extra-dimension ‘‘polarization’’ vect
(ei) or tensor (ei j ), which satisfies

niei
s50, ei

sei
s8* 5dss8, (

s51

n21

ei
sej

s* 5Pi j
nW , ~A8!

niei j
s 50, ei j

s ei j
s8* 5dss8,

(
s51

n~n21!/2

ei j
s ekl

s* 5
1

2
Pik

nW Pjl
nW 1

1

2
Pil

nW Pjk
nW , ~A9!

for each KK level.

2. Vertex Feynman rules

In the following we list the complete leading-order Fey
man rules in three figures, Figs. 4, 5, and 6. Some of
symbols used are defined as follows:
10500
or-
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e

e

Cmn,rs5hmrhns1hmshnr2hmnhrs , ~A10!

Dmn,rs~k1 ,k2!5hmnk1sk2r2@hmsk1nk2r1hmrk1sk2n

2hrsk1mk2n1~m↔n!#, ~A11!

Emn,rs~k1 ,k2!5hmn~k1rk1s1k2rk2s1k1rk2s!

2@hnsk1mk1r1hnrk2mk2s1~m↔n!#,

~A12!

FIG. 4. Three-point vertex Feynman rules. The KK states
plotted in double-sinusoidal curves. The symbolsCmn,rs ,
Dmn,rs(k1 ,k2), and Emn,rs(k1 ,k2) are defined in Eqs.~A10!,
~A11!, and~A12!, respectively.mF , mA , andmc are masses of the
scalar, vector, and fermion.v5A2/3(n12), k5A16pGN, andj is
the gauge-fixing parameter.

FIG. 5. Four-point vertex Feynman rules.g is the gauge cou-
pling and f abc the structure constant of the Lie algebra;gTa

→eQf for QED. The symbolsCmn,rs and Fmn,rsl(k1 ,k2 ,k3) are
defined in Eqs.~A10! and ~A13!.
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Fmn,rsl~k1 ,k2 ,k3!5hmrhsl~k22k3!n1hmshrl~k32k1!n

1hmlhrs~k12k2!n1~m↔n!, ~A13!

Gmn,rsld5hmn~hrshld2hrdhsl!

1@hmrhndhls1hmlhnshrd

2hmrhnshld2hmlhndhrs1~m↔n!#.

~A14!

All of them are symmetric inm↔n. Cmn,rs is the symbol
that appears in the massless graviton propagator in th
Donder gauge.

APPENDIX B: SUMMATION OF THE KK STATES

Since the KK states are nearly degenerate in mass,
would encounter the summation over those modes that
contributing to a given physical process. Consider the nu
ber of KK states within a mass scalemnW

2 . This is equivalent

to counting then-dimensional hypercubic lattice sites innW
5(n1 ,n2 , . . . ,nn) with a relation to the mass:

mnW
2
5

4p2nW 2

R2
or r 2[nW 25

mnW
2
R2

4p2
. ~B1!

Since the mass separation ofO(1/R) is much smaller than
any other physical scale involved in the problem, it is mu
more convenient to consider the discretenW in the continuum
limit. Therefore, the number of states in the mass inter
dmnW

2 can be obtained by

DnW 2'dnr 5r~mnW !dmnW
2 , ~B2!

where the KK state density as a function ofmnW is given by

r~mnW !5
RnmnW

n22

~4p!n/2G~n/2!
. ~B3!

FIG. 6. Five-point vertex Feynman rules.g2$Ta,Tb%→2e2Qf
2

for QED. The symbolsCmn,rs and Gmn,rsld are defined in Eqs.
~A10! and ~A14!.
10500
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This is the state density function that is to be convoluted w
a physical amplitude or cross section for a KK state with
given massmnW .

A less trivial example is when constructing the effecti
interactions due to virtual KK state exchanges, one has
sum over them in the propagator:

D~s!5(
nW

i

s2mnW
2
1 i«

5E
0

`

dmnW
2
r~mnW !

i

s2mnW
2
1 i«

,

~B4!

which may be singular near a real KK state production. U
ing

1

s2m21 i«
5PS 1

s2m2D2 ipd~s2m2!, ~B5!

we find

D~s!5
sn/221

G~n/2!

Rn

~4p!n/2
@p12i I ~MS /As!#, ~B6!

where

I ~MS /As!5PE
0

MS /As
dy

yn21

12y2
. ~B7!

We have introduced an explicit ultraviolet cutoffMS /As in
the integral. It should be understood that a pointy51 has
been removed from the integration path.

The real part proportional top in Eq. ~B6! is from the
narrow resonant production of a single KK mode withmnW

2

5s and the imaginary partI (MS /As) is from the summation
over the many nonresonant states. This principal integra
of Eq. ~B7! can be easily carried out; it gives

I ~MS /As!52 (
k51

n/221
1

2kS MS

As
D 2k

2
1

2
logS MS

2

s
21D

~n5even!

52 (
k51

~n21!/2
1

2k21S MS

As
D 2k21

1
1

2
logS MS1As

MS2As
D ~n5odd!. ~B8!

For MS@As, the leading contribution comes from the no
resonant states and yields
6-12
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D~s!'
2 i

4p
R2 log~MS

2/s! ~n52!

'
22i

~n22!G~n/2!

RnMS
~n22!

~4p!n/2
~n.2!. ~B9!

The summation of spacelike propagators can be evalu
similarly, and it gives

DE~ t !5(
nW

i

t2mnW
2 5(

nW

2 i

utu1mnW
2

5
utun/221

G~n/2!

Rn

~4p!n/2
~22i !I E~MS /Autu!, ~B10!

where the integralI E is
B

,

e

B

s
,

S

h

he

10500
ed

I E~MS /Autu!5E
0

MS /Autu
dy

yn21

11y2

5~2 !n/211F (
k51

n/221
~2 !k

2k S MS

Autu
D 2k

1
1

2
logS MS

2

utu
11D G ~n5even!

5~2 !~n21!/2F (
k51

~n21!/2
~2 !k

2k21S MS

Autu
D 2k21

1tan21~MS
2/utu11!G ~n5odd!.

~B11!

We note that leading terms inDE(t) for MS
2@utu are exactly

of the same form as in Eq.~B9! and lead toDE(t)5D(s
→utu). This shows that the low-energy effective interactio
for s and t channels are equivalent.
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