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Dynamics in the conformal window in QCD-like theories

V. A. Miransky
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The dynamics with an infrared stable fixed point in the conformal window in QCD-like theories~with a
relatively large number of fermion flavors! is studied. The dependence of masses of colorless bound states on
a bare fermion mass is described. In particular it is shown that in such dynamics glueballs are much lighter than
bound states composed of fermions, if the value of the infrared fixed point is not too large. This yields a clear
signature for the conformal window, which in particular can be useful for lattice computer simulations of these
gauge theories.@S0556-2821~99!04408-2#

PACS number~s!: 11.30.Rd, 11.30.Qc, 12.38.Aw
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Recently, there has been considerable interest in the e
tence of a nontrivial conformal dynamics in~311!-
dimensional nonsupersymmetric vectorlike gauge theor
with a relatively large number of fermion flavorsNf @1–6#.
The roots of this problem go back to a work by Banks a
Zaks @7# who were the first to discuss the consequences
the existence of an infrared-stable fixed pointa5a* for
Nf.Nf* in vectorlike gauge theories. The valueNf* depends
on the gauge group: in the case of the SU~3! gauge group,
Nf* 58 in the two-loop approximation. New insight in th
problem @1,2# has been, on the one hand, connected w
using the results of the analysis of the Schwinger-Dys
~SD! equations describing chiral symmetry breaking in QC
~for a review, see Refs.@8,9#! and, on the other hand, wit
the discovery of the conformal window inN51 supersym-
metric QCD@10#.

In particular, Appelquist, Terning, and Wijewardhana@1#
suggested that, in the case of the gauge group SU(Nc), the
critical valueNf

cr.4Nc separates a phase with no confin
ment and chiral symmetry breaking (Nf.Nf

cr) and a phase
with confinement and with chiral symmetry breaking (Nf

,Nf
cr). The basic point for this suggestion was the obser

tion that atNf.Nf
cr the value of the infrared fixed pointa*

is smaller than a critical value

acr.
2Nc

Nc
221

p

3
,

presumably needed to generate the chiral condensate@8,9#.
The authors of Ref.@1# considered only the case when th

running coupling constanta(m) is less than the fixed poin
a* . In this case the dynamics is asymptotically free~at short
distances! both atNf,Nf

cr andNf
cr,Nf,Nf** [11Nc/2.

Yamawaki and the author@2# analyzed the dynamics in
the whole (a,Nf) plane and suggested the (a,Nf)-phase dia-
gram of the SU(Nc) theory~see Fig. 1 below!.1 In particular,

1This phase diagram is essentially different from the origi
Banks-Zaks diagram@7#. For details, see Sec. VII in Ref.@2#.
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it was pointed out that one can get an interesting nonasy
totically free dynamics when the bare coupling constanta (0)

is larger thana* , though not very large.
The dynamics witha (0).a* admits a continuum limit

and is interesting in itself. Also, its better understanding c
be important for establishing the conformal window in latti
computer simulations of the SU(Nc) theory with such large
values ofNf . In order to illustrate this, let us consider th
following example. ForNc53 andNf516, the value of the
infrared fixed pointa* is small: a* .0.04 ~see below!. To
reach the asymptotically free phase, one needs to take
bare couplinga (0) less than this value ofa* . However, be-
cause of large finite size effects, the lattice computer sim
lations of the SU~3! theory with such a smalla (0) would be
unreliable. Therefore, in this case, it is necessary to cons
the dynamics witha(m).a* .

One of the goals of this paper is establishing a clear s
nature of the existence of the infrared fixed pointa* , which
would be useful for lattice computer simulations. The sign
ture we will suggest is the spectrum of low-energy exci
tions in the presence of a bare fermion mass. In particu
we will show that in this case, unlike the familiar QCD wit
a small Nf (Nf52 or 3!, glueballs are much lighter tha
bound states composed of fermions, if the value of the in
red fixed point is not too large. Another characteristic po
is a strong~and simple! dependence of the masses of all t
colorless bound states on the bare fermion mass, even i
latter is tiny.

We begin by recalling the basic facts concerning the tw
loop b function in an SU(Nc) theory. Theb function is

b52ba22ca3 ~1!

with @11#

b5
1

6p
~11Nc22Nf !, ~2a!

c5
1

24p2S 34Nc
2210NcNf23

Nc
221

Nc
Nf D . ~2b!l
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While these two coefficients are invariant under change o
renormalization scheme, the higher-order coefficients
scheme dependent. Actually, there is a renormaliza
scheme in which the two-loopb function is~perturbatively!
exact@12#. We will use such a renormalization scheme.

If b.0 (Nf,Nf** [11Nc/2) and c,0, the b function
has a zero, corresponding to a infrared-stable fixed poin

a5a* 52
b

c
. ~3!

When Nf is close toNf** , the value ofa* is small. For
example, from Eqs.~2a!, ~2b!, and ~3!, one getsa* .0.04,
0.14, 0.28, and 0.47 forNc53 andNf516, 15, 14, and 13
respectively.

The value ofa* becomes equal to

acr5
2Nc

Nc
221

p

3

at Nf close toNf.4Nc and the fixed point disappears at th
valueNf5Nf* , when the coefficientc becomes positive (Nf*
is Nf* .8.05 for Nc53). The b function ~1! leads to the
following solution for the running coupling:

b logS q

m D5
1

a~q!
2

1

a~m!
2

1

a*
logS a~q!@a~m!2a* #

a~m!@a~q!2a* #
D .

~4!

We emphasize that this solution is valid both fora(m)
,a* anda(m).a* .

Let us first consider the case witha(m),a* . It is con-
venient to introduce the parameter@1#

L[m expF2
1

ba*
logS a* 2a~m!

a~m! D2
1

ba~m!G . ~5!

Then, Eqs.~4! and ~5! imply that

1

a~q!
5b logS q

L D1
1

a*
logS a~q!

a* 2a~q!
D . ~6!

Taking q5L, we find that

a*

11e21
.0.73a* ,a~L!,a* . ~7!

One may think thatL plays here the same role asLQCD in
the confinement phase. However, as we will see, its phys
meaning is somewhat different.

Equation~6! implies that

a~q!.
1

b log~q/L!
~8!

for q@L ~the usual behavior in asymptotically free theorie!,
and
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a~q!.
a*

11e21~q/L!ba* ~9!

for q!L, governed by the infrared fixed pointa* . Let us
turn to a less familiar case witha(m).a* . One still can use
Eq. ~4!. Introduce now the parameterL̃ as

L̃[m expF2
1

ba*
logS a~m!2a*

a~q! D2
1

ba~m!G ~10!

@compare with Eq.~5!#. Then, Eqs.~4! and ~10! imply

1

a~q!
5b log

q

L̃
1

1

a*
logS a~q!

a~q!2a*
D . ~11!

What is the meaning ofL̃? It is a Landau pole at which
a(q)uq5L̃5`. Indeed, takingq5L̃ in Eq. ~11!, one gets

1

a~L̃!
5

1

a*
log

a~L̃!

a~L̃!2a*
. ~12!

The only solution of this equation isa(L̃)5`.
The presence of the Landau pole implies that the dyna

ics is not asymptotically free. To get more insight into th
dynamics, let us introduce an ultraviolet cutoffM with the
bare coupling constanta (0)[a(q)uq5M . Now all momenta
q satisfyq<M .

Equation~11! implies that at finitea (0)5a(M ), the cut-
off M is less thanL̃, with a(L̃)5`. Therefore the Landau
pole is unreachable in the theory with cutoffM and with
a (0),`. Still one can of course useL̃ ~10! for a convenient
parametrization of the running couplinga(q) @see Eq.~11!#.
However, one should remember that momentaq satisfy q

<M,L̃.
Equation~11! implies that

a2~q!.
a*

2b log~L̃/q!
~13!

for a(q)@a* , and

a~q!.
a*

12e21~q/L̃ !ba* ~14!

whena(q) is close toa* , i.e., whena(q)2a* !a* . Thus,
now a(q) approaches the fixed pointa* from above@com-
pare with Eq.~9!#. And, in general, Eq.~11! implies that
a(q) monotonically decrease withq, from a(q)5a (0) at q
5M to a(q)5a* at q50.

Does a meaningful continuum limit exist in this case? T
answer is of course ‘‘yes.’’ As it follows from Eq.~11!,
when M ~and thereforeL̃) goes to infinity, and the bare
couplinga (0).a* is arbitrary but fixed,a(q) is equal to the
fixed value,a(q)5a* , for all q,`. Therefore it is a non-
trivial conformal field theory.
3-2
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So far we considered the solution fora(q) connected
with the perturbative~and perturbatively exact in the ’t Hoof
renormalization scheme@12#! b function ~1!. However, un-
like ultraviolet stable fixed points, defining dynamics at hi
momenta, infrared-stable fixed points~defining dynamics at
low momenta! are very sensitive to nonperturbative dyna
ics leading to the generation of particle masses. For exam
if fermions acquire a dynamical mass, they decouple fr
the infrared dynamics, and therefore the perturbative infra
fixed point ~3! will disappear.

The phase diagram in the (a (0),Nf) plane in this theory
was suggested in Ref.@2#. It is shown in Fig. 1. The left-hand
portion of the curve in this figure coincides with the line
the infrared-stable fixed pointsa* (Nf) in Eq. ~3!. It sepa-
rates two symmetric phases,S1 and S2, with a (0),a* and
a (0).a*, respectively. Its lower end isNf5Nf

cr
„with Nf

cr

.4Nc if acr.@2Nc /(Nc
221)#(p/3)…: at Nf* ,Nf,Nf

cr the
infrared fixed point is washed out by generating a dynam
fermion mass.

The horizontal,Nf5Nf
cr , line describes a phase transitio

between the symmetric phaseS1 and the phase with confine
ment and chiral symmetry breaking. As it was suggested
Refs.@1,2#, based on a similarity of this phase transition w
that in quenched four-dimensional QED (QED4) @8,9,13#
and in QED3 @14#, there is the following scaling law fo
mdyn

2 :

mdyn
2 ;Lcr

2 expS 2
C

Aa* ~Nf !/acr21
D , ~15!

where the constantC is of order one andLcr is a scale at
which the running coupling is of orderacr .

It is a continuous phase transition with an essential sin
larity at Nf5Nf

cr . The characteristic point of this phase tra
sition is that the critical lineNf5Nf

cr separates phases wit
essentially different spectra of low-energy excitations@1,2#

FIG. 1. The phase diagram in an SU(Nc) gauge model. The
coupling constantg(0)5A4pa (0) and S and A denote symmetric
and asymmetric phases, respectively.
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and the different structure of the equation for the diverge
of the dilatation current~i.e., with essentially different real
izations of the conformal symmetry! @2#. It was called the
conformal phase transition in Ref.@2#.

At present it is still unclear whether the phase transit
on the lineNf5Nf

cr is indeed a continuous phase transiti
with an essential singularity or it is a first order phase tra
sition @3,6#. However, anyway, the two properties~the abrupt
change of the spectrum of excitations and the different str
ture of the equation for the divergence of the dilatation c
rent in those two phases! have to take place.

At last, the right-hand portion of the curve on the diagra
occurs because at large enough values of the bare coup
spontaneous chiral symmetry breaking takes place for
numberNf of fermion flavors. This portion describes a pha
transition called a bulk phase transition in the literature, a
it is presumably a first order phase transition.2 The vertical
line ends aboveNf50 since in pure gluodynamics there
apparently no phase transition between weak-coupling
strong-coupling phases.

Up to now we have considered the case of a chiral inv
ant action. But how will the dynamics change if a bare fe
mion mass term is added in the action? This question is
particular relevant for lattice computer simulations: f
studying a chiral phase transition on a finite lattice, it
necessary to introduce a bare fermion mass. We will sh
that adding even an arbitrary small bare fermion mass res
in a dramatic changing the dynamics both in theS1 andS2
phases.

Recall that in the case of confinement SU(Nc) theories,
with a small,Nf,Nf

cr , number of fermion flavors, the role o
a bare fermion massm(0) is minor if m(0)!LQCD ~where
LQCD is a confinement scale!. The only relevant consequenc
is that massless Nambu-Goldstone pseudoscalars get a
mass@the PCAC~partial conservation of axial vector curren!
dynamics#.

The reason for that is the fact that the scaleLQCD, con-
nected with a scale anomaly, describes the breakdown o
conformal symmetry connectedboth with perturbative and
nonperturbative dynamics: the running coupling and the f
mation of bound state. Certainly, a small bare massm(0)

!LQCD is irrelevant for the dynamics of those bound stat
Now let us turn to the phaseS1 andS2, with Nf.Nf

cr . At

finite L in S1 andL̃ in S2, there is still conformal anomaly
because of the running of the effective coupling constant,
conformal symmetry is broken. It is restored only ifL→0 in
S1 and L̃.M→` in S2. However, the essential differenc
with respect to confinement theories is that bothL and L̃
have nothing with the dynamics forming bound states: si
at Nf.Nf

cr the effective coupling is relatively weak, it i

2The fact that spontaneous chiral symmetry breaking takes p
for any number of fermion flavors, ifa (0) is large enough, is valid
at least for lattice theories with Kogut-Susskind fermions. Noti
however, that since the bulk phase transition is a lattice artifact,
form of this portion of the curve can depend on the type of fermio
used in simulations~for details, see Ref.@2#!.
3-3
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V. A. MIRANSKY PHYSICAL REVIEW D 59 105003
impossible to form bound states frommasslessfermions and
gluons~recall that theS1 andS2 phases are chiral invariant!.

Therefore the absence of a mass for fermions and glu
is a key point fornot creating bound states in those phas
The situation changes dramatically if a bare fermion mas
introduced: indeed, even weak gauge, Coulomb-like, inte
tions can easily produce bound states composed of mas
constituents, as it happens, for example, in QED, wh
electron-positron~positronium! bound states are present.

To be concrete, let us first consider the case when
fermions have the same bare massm(0). It leads to a mass
function m(q2)[B(q2)/A(q2) in the fermion propagato
G(q)5@ q̂A(q2)2B(q2)#21. The current fermion massm is
given by the relation

m~q2!uq25m25m. ~16!

For the clearest exposition, let us consider a particu
theory with a finite cutoffM and the bare coupling consta
a (0)5a(q)uq5M being not far away from the fixed pointa* .
Then, the mass function is changing in the ‘‘walking’’ re
gime @15# with a(q2).a* . It is

m~q2!.m~0!S M

q D gm

, ~17!

where the anomalous dimensiongm.12(12a* /acr)
1/2

@8,9#. Equations~16! and ~17! imply that

m.m~0!S M

m~0!D gm /~11gm!

. ~18!

There are two main consequences of the presence o
bare mass.

~a! Bound states, composed of fermions, occur in
spectrum of the theory. The mass of an-body bound state is
M (n).nm.

~b! At momentaq,m, fermions and their bound state
decouple. There is a pure SU(Nc) Yang-Mills theory with
confinement. Its spectrum contains glueballs.

To estimate glueball masses, notice that at momentq
,m, the running of the coupling is defined by the parame
b̄ of the Yang-Mills theory:

b̄5
11

6p
Nc . ~19!

Therefore the glueball massesMgl are of order

LYM.m expS 2
1

b̄a*
D . ~20!

For Nc53, we find from Eqs.~2a!, ~2b!, and ~19! that
exp(21/b̄a* ) is 631027, 231022, 1021, and 331021 for
Nf516, 15, 14, and 13, respectively. Therefore atNf516,
15, and 14, the glueball masses are essentially lighter
the masses of the bound states composed of fermions.
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situation is similar to that in confinement QCD with hea
quarks,m@LQCD. However, there is now a new importan
point: in the conformal window,any value of m(0) ~and
thereforem! is ‘‘heavy’’: the fermion massm sets a new
scale in the theory, and the confinement scaleLYM ~20! is
less, and rather often much less, than this scalem. This leads
to a spectacular ‘‘experimental’’ signature of the conform
window in lattice computer simulations: glueball masses r
idly, as (m(0))1/(11gm), decrease with the bare fermion ma
m(0) for all values ofm(0) less than cutoffM.

A few comments are in order.
~1! The phasesS1 andS2 have essentially the same lon

distance dynamics. They are distinguished only by their
namics at short distances: while the dynamics of the phasS1
is asymptotically free, that of the phaseS2 is not. In particu-
lar, when all fermions are massive~with the current massm!,
the continuum limitM→` of the S2 theory is a nonasymp
totically free confinement theory. Its spectrum includes c
orless bound states composed of fermions and gluons.
q,m the running couplinga(q) is the same as in pure
SU(Nc) Yang-Mills theory, and for allq.m a(q) is very
close toa* ~‘‘walking,’’ actually, ‘‘standing’’ dynamics!.
For those valuesNf for which a* is small ~as Nf516, 15,
and 14 atNc53), glueballs are much lighter than the boun
states composed of fermions. Notice that, unlike the c
with m50, there exists anS matrix in this theory.

~2! In order to get the clearest exposition, we assum
such estimates asNf

cr.4Nc for Nf
cr and gm51

2A12a* /acr for the anomalous dimensiongm . While the
latter should be reasonable fora* ,acr ~and especially for
a* !acr) @8,9#, the former is based on the assumption th

acr.
2Nc

Nc
221

p

3

which, though it seems reasonable, might be crude for so
values ofNc . It is clear, however, that the dynamical pictu
presented in this paper is essentially independent of th
assumptions.

~3! So far we have considered the case when all fermi
have the same bare massm(0). The generalization to the cas
when different fermions may have different bare masse
evident.

~4! Lattice computer simulations of the SU~3! theory with
a relatively large number ofNf @16,17# indeed indicate the
existence of a symmetric phase. However, the value of
critical numberNf

cr is different in different simulations: it
varies fromNf

cr56 @17# throughNf
cr512 @16#.

We hope that the signature of the conformal window su
gested in this paper can be useful to settle this impor
issue.
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stay at Nagoya University. My special thanks to Koic
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