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Dynamics in the conformal window in QCD-like theories
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The dynamics with an infrared stable fixed point in the conformal window in QCD-like the(witis a
relatively large number of fermion flavoris studied. The dependence of masses of colorless bound states on
a bare fermion mass is described. In particular it is shown that in such dynamics glueballs are much lighter than
bound states composed of fermions, if the value of the infrared fixed point is not too large. This yields a clear
signature for the conformal window, which in particular can be useful for lattice computer simulations of these
gauge theoried.S0556-282(99)04408-2

PACS numbgs): 11.30.Rd, 11.30.Qc, 12.38.Aw

Recently, there has been considerable interest in the exi#-was pointed out that one can get an interesting nonasymp-
tence of a nontrivial conformal dynamics if3+1)- totically free dynamics when the bare coupling constafit
dimensional nonsupersymmetric vectorlike gauge theorieds larger than a*, though not very large.
with a relatively large number of fermion flavoié [1-6). The dynamics witha9> o* admits a continuum limit
The roots of this problem go back to a work by Banks andand is interesting in itself. Also, its better understanding can
Zaks[7] who were the first to discuss the consequences dfe important for establishing the conformal window in lattice
the existence of an infrared-stable fixed point-a* for  computer simulations of the SN() theory with such large
N;>N¥ in vectorlike gauge theories. The vald§ depends values ofN;. In order to illustrate this, let us consider the
on the gauge group: in the case of the(SUgauge group, following example. FoN.=3 andN;= 16, the value of the
N§ =8 in the two-loop approximation. New insight in this infrared fixed pointa* is small: «* =0.04 (see below. To
problem[1,2] has been, on the one hand, connected withreach the asymptotically free phase, one needs to take the
using the results of the analysis of the Schwinger-Dysorbare couplingz(?) less than this value oi*. However, be-
(SD) equations describing chiral symmetry breaking in QCDcause of large finite size effects, the lattice computer simu-
(for a review, see Refg8,9]) and, on the other hand, with lations of the S(B) theory with such a smat(®) would be
the discovery of the conformal window IN=1 supersym- unreliable. Therefore, in this case, it is necessary to consider
metric QCD[10]. the dynamics witha(u)>a*.

In particular, Appelquist, Terning, and Wijewardhdria One of the goals of this paper is establishing a clear sig-
suggested that, in the case of the gauge groupNglJ(the  nature of the existence of the infrared fixed pairit, which
critical value N{'=4N, separates a phase with no confine-would be useful for lattice computer simulations. The signa-
ment and chiral symmetry breakinl(>N¢") and a phase ture we will suggest is the spectrum of low-energy excita-
with confinement and with chiral symmetry breakinly;( tions in the presence of a bare fermion mass. In particular,
<N?r) The basic point for this Suggestion was the ObservaWe will show that in this case, unlike the familiar QCD with

tion that atN;>N¢" the value of the infrared fixed poimt* @ SmallN; (Ny=2 or 3, glueballs are much lighter than
is smaller than a critical value bound states composed of fermions, if the value of the infra-

red fixed point is not too large. Another characteristic point
is a strong(and simplé dependence of the masses of all the
2Nc ™ colorless bound states on the bare fermion mass, even if the
NZ-1 3 ' latter is tiny.
We begin by recalling the basic facts concerning the two-
loop B function in an SUN,) theory. Theg function is

A=

presumably needed to generate the chiral condef8gk
The authors of Ref.1] considered only the case when the 5 s
running coupling constant(u) is less than the fixed point B=—ba’—ca @
a* . In this case the dynamics is asymptotically ftaeshort
distancepboth atN;<N$" and N§'<N;<NF* =11N/2. with [11]
Yamawaki and the authd2] analyzed the dynamics in
the whole @,N;) plane and suggested the,(N;)-phase dia- 1
gram of the SUK,) theory(see Fig. 1 below! In particular, b= @(11Nc_2Nf)’ (2a)

NG

1
This phase diagram is essentially different from the original c= 34N§_1chf_3

Ns | . (2b)
Banks-Zaks diagrarfi7]. For details, see Sec. VIl in Rdi2]. 247

Nc
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While these two coefficients are invariant under change of a
renormalization scheme, the higher-order coefficients are
scheme dependent. Actually, there is a renormalization

scheme in which the two-loop function is(perturbatively
exact[12]. We will use such a renormalization scheme.

If b>0 (N;<Nf*=11IN./2) andc<0, the 8 function
has a zero, corresponding to a infrared-stable fixed point,

)

When N; is close toNf* , the value ofa* is small. For
example, from Eqs(2a), (2b), and(3), one getsa* =0.04,
0.14, 0.28, and 0.47 fal.=3 andN;=16, 15, 14, and 13,
respectively.

The value ofa* becomes equal to

2N
NZ-1 3

ko

Qer

at N; close toNs=4N, and the fixed point disappears at the
valueN¢= N7 , when the coefficient becomes positiveN;
is Nf =8.05 for N.=3). The 8 function (1) leads to the
following solution for the running coupling:

4

1 1 1

g a(q)[a(p)—a™]
a(p)la(q)—a*]

)

We emphasize that this solution is valid both fafu)
<a* anda(uw)>a*.

Let us first consider the case with(u)<a™*. It is con-
venient to introduce the parametdr

1
A=uexg — lo
e g

Then, Egs(4) and(5) imply that

b Iog(

1
ba(u)

|

. (5

a*—a(,u))
a(p)

a(q)
a* —a(q)

(q) b log

(6)

q 1
N a—*log<

Takingg=A, we find that

*

I —=0.7%* <a(A)<a*.
e

(@)

One may think that\ plays here the same role As,cp in
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*

a(q)= (€)

1+e Yg/A)Pe”

for g<A, governed by the infrared fixed poiat*. Let us
turn to a less familiar case witla( ) > «* . One still can use

&£0. (4). Introduce now the parametdr as

~ B 1 a(p)—a* B
Az“ex’{ e e s
[compare with Eq(5)]. Then, Eqs(4) and(10) imply
o9 1 [ o
Tq)—blogf+a*log(—a(q _a*). (11

What is the meaning ofA? It is a Landau pole at which
a(q)|q-%=2°. Indeed, takingy=A in Eq. (11), one gets

1 —i| a(A) 12
a(A) ot a(A)—a*’

The only solution of this equation i8(A)=o.

The presence of the Landau pole implies that the dynam-
ics is not asymptotically free. To get more insight into this
dynamics, let us introduce an ultraviolet cutdff with the
bare coupling constant®=a(q)|q-y . Now all momenta
g satisfyq=M.

Equation(11) implies that at finitea(®= (M), the cut-
off M is less tham\, with a(A)=co. Therefore the Landau
pole is unreachable in the theory with cutdff and with
(@<, Still one can of course usk (10) for a convenient
parametrization of the running coupling q) [see Eq(1D)].
However, one should remember that momeaqtaatisfy q
<M<A.

Equation(11) implies that

a*

= (13
2blog(A/q)

a?(q)

for a(q)>a*, and

*

a(q)= (14

1-e L(g/A)be”

whena(q) is close toa™, i.e., whena(q) — a* <a*. Thus,
now «(q) approaches the fixed poiat* from above[com-

the confinement phase. However, as we will see, its physicdare with Eq.(9)]. And, in general, Eq(11) implies that

meaning is somewhat different.
Equation(6) implies that

a(q)= blog(a/A) (8)

for g> A (the usual behavior in asymptotically free theoyjes
and

a(q) monotonically decrease witty from a(q)=«(® atq
=M to a(q)=a* atq=0.

Does a meaningful continuum limit exist in this case? The
answer is of course “yes.” As it follows from Eq(ll),
when M (and thereforeAd) goes to infinity, and the bare
couplinga'©> o* is arbitrary but fixede(q) is equal to the
fixed value,a(q) = o*, for all g<«. Therefore it is a non-
trivial conformal field theory.
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N, ' and the different structure of the equation for the divergence
of the dilatation currenti.e., with essentially different real-
izations of the conformal symmeiry2]. It was called the

Ny conformal phase transition in RdE].

At present it is still unclear whether the phase transition
s, on the lineN;=Nf{" is indeed a continuous phase transition
N with an essential singularity or it is a first order phase tran-
sition[3,6]. However, anyway, the two propertiébe abrupt

A change of the spectrum of excitations and the different struc-
ture of the equation for the divergence of the dilatation cur-
rent in those two phasghave to take place.

A At last, the right-hand portion of the curve on the diagram
occurs because at large enough values of the bare coupling,
spontaneous chiral symmetry breaking takes place for any
numberN; of fermion flavors. This portion describes a phase
transition called a bulk phase transition in the literature, and
L it is presumably a first order phase transitfolihe vertical

& 9@ line ends aboveéN;=0 since in pure gluodynamics there is

FIG. 1. The phase diagram in an SUJ gauge model. The apparently no phase transition between weak-coupling and

coupling constanty@ = \47a® and S and A denote symmetric strong-coupling phases. o .
and asymmetric phases, respectively. Up to now we have considered the case of a chiral invari-

ant action. But how will the dynamics change if a bare fer-

So far we considered the solution far(q) connected mion mass term is added in the action? Th_is qugstion is in
with the perturbativéand perturbatively exact in the 't Hooft Particular relevant for lattice computer simulations: for
renormalization schemil2]) B function (1). However, un- studying a ch_lral phase transition on a finite Iattlce, it is
like ultraviolet stable fixed points, defining dynamics at highneécessary to introduce a bare fermion mass. We will show
momenta, infrared-stable fixed poir(eefining dynamics at that adding even an arbitrary small bare fermion mass results
low momenta are very sensitive to nonperturbative dynam-in & dramatic changing the dynamics both in feand S,
ics leading to the generation of particle masses. For exampl@hases. . . .
if fermions acquire a dynamical mass, they decouple from Recall that in the case of confinement S theories,
the infrared dynamics, and therefore the perturbative infrareith a small,N¢<Nf', number of fermion flavors, the role of
fixed point(3) will disappear. a bare fermion mass(® is minor if m®<Aqcp (Where

The phase diagram in thex{®),N;) plane in this theory Aqcpis a confinement scaleThe only relevant consequence
was suggested in RdR]. It is shown in Fig. 1. The left-hand is that massless Nambu-Goldstone pseudoscalars get a small
portion of the curve in this figure coincides with the line of masgthe PCAC(partial conservation of axial vector currgnt
the infrared-stable fixed points* (N;) in Eq. (3). It sepa- dynamic.
rates two symmetric phaseS; and S,, with a(®¥<a* and The reason for that is the fact that the scAlgcp, con-
a(@> o~ respectively. Its lower end idl;=N¢ (with N  nected with a scale anomaly, describes the breakdown of the
~4N, if ag=[2Nc/(N>=1)](7/3)): at N* <N;<N¢ the conformal symmetry connectdabth with perturbative and

infrared fixed point is washed out by generating a dynamicaftonPerturbative dynamics: the running coupling and th‘f for-
fermion mass. mation of bound state. Certainly, a small bare mas$

The horizontalN;=N¢', line describes a phase transition <Aqcp is irrelevant for the dynamics of those bound states.
; ; : Now let us turn to the phas®, andsS,, with Ny>N¢'. At
between the symmetric phaSg and the phase with confine- : o < f—
ment and chiral symmetry breaking. As it was suggested iinite A in S; andA in S, there is still conformal anomaly:
Refs.[1,2], based on a similarity of this phase transition with because of the running of the effe_ctlve coupling constant, the
that in quenched four-dimensional QED (QBD[8,9,13  conformal symmetry is broken. It is restored onlif-0 in
ar;d in QEQ [14], there is the following scaling law for S, and A>M—x in S,. However, the essential difference

N;

Mayn- with respect to confinement theories is that bathand A
c have nothing with the dynamics forming bound states: since
cr . T : .
mﬁyn~A§reX _ ' (15) at Ny>Ny' the effective coupling is relatively weak, it is
va* (Np)/ag—1

where the constant is of order one and\, is a scale at

Wh|ch the running coupling is of'Qfdefc_r- _ . for any number of fermion flavors, & is large enough, is valid

Itis a continuous phase transition with an essential Singuz; jeagt for lattice theories with Kogut-Susskind fermions. Notice,
larity at N¢=N{'. The characteristic point of this phase tran- however. that since the bulk phase transition is a lattice artifact, the
sition is that the critical lineN;=Nf{" separates phases with form of this portion of the curve can depend on the type of fermions
essentially different spectra of low-energy excitati¢fs?] used in simulationgfor details, see Ref2]).

2The fact that spontaneous chiral symmetry breaking takes place
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impossible to form bound states framassles$ermions and  situation is similar to that in confinement QCD with heavy

gluons(recall that theS; andS, phases are chiral invarignt  quarks,m>Aqcp. However, there is now a new important
Therefore the absence of a mass for fermions and gluongoint: in the conformal windowany value of m(® (and

is a key point fornot creating bound states in those phasesthereforem) is “heavy”: the fermion massm sets a new

The situation changes dramatically if a bare fermion mass iscale in the theory, and the confinement schlg, (20) is

introduced: indeed, even weak gauge, Coulomb-like, interadess, and rather often much less, than this seal€his leads

tions can easily produce bound states composed of massi¥e a spectacular “experimental” signature of the conformal

constituents, as it happens, for example, in QED, whergvindow in lattice computer simulations: glueball masses rap-

electron-positror{positronium bound states are present.  idly, as (m(®)Y(*"m decrease with the bare fermion mass
To be concrete, let us first consider the case when aln(© for all values ofm(® less than cutofiM.

fermions have the same bare mas®). It leads to a mass A few comments are in order.

function m(q?)=B(q?)/A(g?) in the fermion propagator (1) The phases, andS, have essentially the same long

G(q)z[aA(qZ)_B(qZ)]*l_ The current fermion magsis  distance dynamics. They are distinguished only by their dy-

given by the relation namics at short distances: while the dynamics of the pBase
) is asymptotically free, that of the phaSgis not. In particu-
m(q?)|qz=me=m. (16)  lar, when all fermions are massiyith the current massy),

the continuum limitM —« of the S, theory is a honasymp-
lEotically free confinement theory. Its spectrum includes col-
orless bound states composed of fermions and gluons. For
g<m the running couplinga(q) is the same as in pure
€~ SU(N,) Yang-Mills theory, and for alg>m «(q) is very
close toa* (“walking,” actually, “standing” dynamics.

M\ ¥m For those valued\; for which a* is small(asN;=16, 15,
m(qz)zm“))(—) , (17)  and 14 aiN.=3), glueballs are much lighter than the bound

q states composed of fermions. Notice that, unlike the case
with m=0, there exists a% matrix in this theory.

For the clearest exposition, let us consider a particula
theory with a finite cutoffM and the bare coupling constant
a®9=a(q)|4-wm being not far away from the fixed poiat* .
Then, the mass function is changing in the “walking”
gime [15] with a(g?)=a*. It is

where the anomalous dimensiop,=1—(1—a*/ag)?

[8,9]. Equations(16) and (17) imply that (2) In o.rder to get trgre clearest expocfition, we assumed
such estimates asN;{=4N. for N and y,=1
M| 7/ —1—a*/ay, for the anomalous dimensiop,,. While the
m=m ) (18)  latter should be reasonable fei* <« (and especially for

a* <ayg) [8,9], the former is based on the assumption that

There are two main consequences of the presence of the
bare mass.

(a) Bound states, composed of fermions, occur in the
spectrum of the theory. The mass ofidody bound state is
MM =nm. which, though it seems reasonable, might be crude for some

(b) At momentag<m, fermions and their bound states Values ofN.. Itis clear, however, that the dynamical picture
decouple. There is a pure SN Yang-Mills theory with ~ Presented in this paper is essentially independent of those
confinement. Its spectrum contains glueballs. assumptions. _ _

To estimate glueball masses, notice that at momenta (3 So far we have considered the case when all fermions

<m, the running of the coupling is defined by the parametenave the same bare mas”. The generalization to the case
b of the Yang-Mills theory: when different fermions may have different bare masses is

2N, 7
NZ—1 3

Ay

evident.
11 (4) Lattice computer simulations of the &) theory with
= GNc- (19 a relatively large number dfl; [16,17) indeed indicate the
existence of a symmetric phase. However, the value of the
Therefore the glueball massby are of order critical numberN{' is different in different simulations: it
varies fromN{'=6 [17] throughN{'=12 [16].
1 We hope that the signature of the conformal window sug-
Aym=mex _Ea* . (20) gested in this paper can be useful to settle this important
issue.
For N;=3, we find from Eqs.(2a), (2b), and (19) that | thank M. Creutz, D. Sinclair, and K. Yamawaki for use-

exp(—1ba*) is 6x 107, 2x10°2, 101, and 3x10 1 for  ful discussions. | wish to acknowledge the JSB&pan So-
N¢=16, 15, 14, and 13, respectively. ThereforeNgt=16, ciety for the Promotion of Sciengéor its support during my
15, and 14, the glueball masses are essentially lighter thastay at Nagoya University. My special thanks to Koichi
the masses of the bound states composed of fermions. Théamawaki for his warm hospitality.
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