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Holographic probes of anti–de Sitter spacetimes
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We describe probes of anti–de Sitter spacetimes in terms of conformal field theories on the AdS boundary.
Our basic tool is a formula that relates bulk and boundary states—classical bulk field configurations are dual
to expectation values of operators on the boundary. At the quantum level we relate the operator expansions of
bulk and boundary fields. Using our methods, we discuss the CFT description of local bulk probes including
normalizable wave packets, fundamental and D-strings, and D-instantons. Radial motions of probes in the bulk
spacetime are related to motions in scale on the boundary, demonstrating a scale-radius duality. We discuss the
implications of these results for the holographic description of black hole horizons in the boundary field theory.
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I. INTRODUCTION

A recurring theme of recent work is that gravitation
theories can sometimes be formulated as gauge theorie
fewer dimensions. This point of view has had some enco
aging successes, but we still do not understand how the
mous problems of quantum gravity—for example, inform
tion loss in black hole evaporation—are solved. All of o
intuitions about gravity and spacetime physics is based o
classical, geometric picture valid when\ is small and the
field configurations macroscopic. In this regime the spa
time physics displays at least approximate locality and c
sality, and a well-defined geometry in which free partic
follow geodesics. These properties seem obscure in
gauge theory formulation. Once we understand their orig
we can investigate precisely when and how they break do

An important avenue for understanding these issues is
most recent manifestation of the gravity-gauge theory c
nection: the conjecture@1# that string theory on an anti–d
Sitter ~AdS! background is dual to a conformal field theo
residing on the spacetime boundary. So far, the proposal
been checked by comparing spectra and low-order corr
tion functions of the dual theories. Such checks are base
a remarkably compact and powerful statement of the equa
between certain path integrals in the dual theories@2,3#. We
would like to use this equality to learn how the classic
geometric description of the bulk emerges and ultimat
breaks down in the holographic boundary representation

This article begins such a study by describing a variety
spacetime probes from the boundary perspective. Our b
tool is a compact formula relating bulk and boundary sta
specifically, the asymptotic behavior of fluctuating, classi
bulk fields is related to expectation values of the dual bou
ary operators in excited boundary states. At the oper
level we relate the quantized mode expansion of bulk fie
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to a mode expansion of boundary operators; so bulk qua
are dual to conformal field theory~CFT! states created by
modes of boundary operators acting on the vacuum. We
velop this formalism in Sec. II and, more carefully, in Ap
pendix A. This development continues the work in@4# which
identified fluctuating supergravity modes as dual to bound
states and nonfluctuating modes implementing bound
conditions as dual to boundary sources. Here, we will
interested mainly in the classical limit of the fluctuatin
states and in bulk configurations generated by brane sou

Using the methods of Sec. II, we discuss the bound
description of three kinds of probes: D-instantons, F- a
D-strings, and dilation wave packets. In all cases the cha
teristic radial position of the bulk probe is mapped to t
characteristic scale of the boundary configuration, as un
stood on general grounds by comparing the action of b
isometries with conformal transformations on the bound
@1#. This scale-radius duality gives rise to pleasantly physi
interpretations of bulk dynamics. For instance, strings or p
ticles move in AdS spacetime to reduce gravitational pot
tial energy; this is dual in the boundary theory to the spre
ing of localized field distributions to reduce gradient energ
In Euclidean AdS53S5 it has been conjectured that
D-instanton at radial positionz is dual to an instanton ind
54 super Yang-Mills~SYM! theory with scale sizez @5–8#.
As an application of our methods wederive this correspon-
dence from the fundamental formulation of the AdS-CF
conjecture given in@2,3#. We conclude by discussing th
meaning of the classical limit on both sides of the AdS-C
duality and by discussing the implications of our results
the holographic representation of black hole horizons in
boundary gauge theory.

II. RELATING BULK AND BOUNDARY STATES

In order to study how bulk geometry is encoded in t
boundary description, we wish to introduce probes into
AdS spacetime. In this section we develop methods t
identify boundary configurations corresponding to the
©1999 The American Physical Society21-1
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BALASUBRAMANIAN, KRAUS, LAWRENCE, AND TRIVEDI PHYSICAL REVIEW D 59 104021
probes. Our basic technique is to study the response o
bulk probe to a small change in boundary conditions. T
formulation of the AdS-CFT correspondence in@2,3# then
provides the expectation values of operators in the co
sponding boundary states. This will also allow us to arrive
a quantized formulation of the bulk theory from the boun
ary perspective. In this section we will ignore some sub
ties @9# which are unimportant for most of the consideratio
of this paper. A more careful treatment is provided in A
pendix A.

We work with Poincare´ coordinates for anti–de Sitte
space. The metric of AdSd11 in these coordinates is

ds25
R2

z2 ~2dt21dxWd21
2 1dz2!. ~1!

~We set R51 in this section.! Poincare´ coordinates only
cover a patch of the global spacetime, andz50 is the bound-
ary of AdS spacetime whilez5` is the horizon.~See@4# for
more details and Penrose diagrams.! Euclidean AdS space
time is obtained by takingt to i t .

A. Euclidean signature

The AdS-CFT correspondence is formulated in@2,3# as

Z~f i !5e2S~f i !5K expS E
B
f0,iO i D L , ~2!

whereS(f i) is the effective action as a function of the bu
field f i , f0,i is the boundary value off i ~up to a scaling
with the radial coordinate!, andO i is the dual operator in
CFT. The expectation value on the right is evaluated in
CFT vacuum. We can read Eq.~2! as saying that boundar
conditions for the bulk theory are dual to sources in
boundary theory. In other words, field theory in Euclide
AdS spacetime, expanded around a background approac
f0,i at the boundary, is described by a CFT deformed by
addition of a source. By functionally differentiating we fin
that

d

df0,i~x!
@2S~f i !#5^O i~x!&f0,i

, ~3!

where the subscriptf0,i indicates that the expectation valu
on the right hand side is computed in the presence of
source term*f0,iO i . We will use this relation to learn abou
the expectation values of boundary operators in the pres
of bulk probes.

Massive scalar.As an example, let us study a massi
scalar field with a quadratic bulk action:

S~f!5
1

2E dd11xAg~ udfu21m2f2!. ~4!

Consider a solution to the bulk equations of motion that
proachesf0(x) at the boundary~up to a scaling with the
radial coordinatez). The unique solution regular in the bul
10402
he
e

e-
t

-
-

-

e

e

ing
e

e

ce

-

behaves asf(z,x)5z2h2f0(x) asz→0 and can be written
as

f~z,x!5cE ddx8
z2h1

~z21ux2x8u2!2h1
f0~x8!, ~5!

where we have used the bulk-boundary propagator@3# and

h65
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4
6

Ad214m2

4
[

d

4
6

n

2
. ~6!

The presence of this classical configuration correspond
the addition of a source*f0O to the boundary theory.

We now apply Eq.~3! by computing the functional de
rivative on the left hand side. To do so we perturb arou
f(z,x) by a small fluctuationdf and evaluate the resultin
change in the action. After integrating Eq.~4! by parts and
using the equations of motion, the variation becomes a
face term at the boundary:

dS~f!5E
B
dSm]mfdf. ~7!

Evaluating this quantity near the boundary atz50 is delicate
@9#. In this section we will follow@3# by considering contri-
butions to the integrand of Eq.~5! from the regionux2x8u
Þ0. This procedure amounts to ignoring certain cont
terms and normalization issues as we discuss in Append
and gives, asz→0,

]f

]z
5c~2h1!z2h121E ddx8

f0~x8!

ux2x8u2~2h1!
. ~8!

The perturbation is written asdf5z2h2df0, and we use
dS05z12dddx8. Then

dS~f!5c~2h1!E ddxddx8
f0~x8!df0~x!

ux2x8u2~2h1!
. ~9!

Using the relation~3! we derive

^O~x!&f0
52c~2h1!E ddx8

f0~x8!

ux2x8u2~2h1!
. ~10!

We have learned that in the presence of the source t
*f0O the operatorO has acquired an expectation valu
given by the right hand side of Eq.~10!. This matches what
we expect from CFT by direct calculation:

^O~x!&f0
5 KO~x!expS E f0OD L
'E ddx8f0~x8!^O~x!O~x8!&

'2E ddx8
f0~x8!

ux2x8u2~2h1!
, ~11!

where the form of the two-point correlator follows from
scale invariance.
1-2



a
ce

no
e
u
s
d-

io

th

-

he
in

re

we
m
uc
t

r
a
tio

ha
b
ow
v

e
on

o

-
p
ke
ive

ul
w

om-
ow
zed

e
-

ry
e in

is
the
tact

ibu-
ee

ate
n-
has

tion

-
and

ation
ver-
total
e
-

ates

r-
to

u-
tion
is

ent

HOLOGRAPHIC PROBES OF ANTI–de SITTER SPACETIMES PHYSICAL REVIEW D59 104021
Interpretation.The AdS-CFT correspondence in Eq.~2!
states that turning on a bulk mode which behaves
z2h2f0(x) near the boundary is dual to including a sour
term *f0O in the CFT. As discussed in@4#, the growth of
such modes near the boundary indicates that they are
fluctuating classical backgrounds. In effect, the presenc
the mode redefines the Hamiltonian of the theory, since fl
tuations should take place on top of this background. Thi
mirrored in CFT by a modification of the action by the a
dition of a source term.

In the bulk, a mode with leading boundary behav
z2h2f0 induces asubleadingcomponent behaving asz2h1f̃.
@This is seen by expanding Eq.~5! in powers of z.# The
corresponding statement in CFT is that the addition of
source induces an expectation value forO. In fact, our analy-
sis showed that̂O(x)&f0

;f̃(x), so that operator expecta

tion values and bulk field components behaving asz2h1 are
precisely dual. This duality is the prevailing theme of t
present work. A related connection between sublead
terms in the AdS3 metric and the stress tensor in the cor
sponding boundary theory has appeared recently in@10#.

Bulk sources.In the above example, the solutionf(z,x)
was completely determined by the boundary valuef0 and
the requirement of regularity in the bulk. However, as
shall see in Sec. III, this uniqueness fails when we ad
singular fields corresponding to sources in the bulk. S
bulk sources contribute subleading pieces to the fields at
boundary which modify Eq.~5! and contribute to operato
expectation values. So once again we will find that suble
ing pieces of the bulk fields are dual to boundary expecta
values. In this way, we will show in Sec. III that Eq.~3!
implies that a bulk D-instanton in AdS5 is dual to an instan-
ton in boundary Yang-Mills theory.

B. Lorentzian signature

The crucial new feature of the Lorentzian signature is t
the bulk wave equation admits propagating, normaliza
mode solutions. Such modes describe the physical, l
energy excitations of the spacetime; their explicit forms ha
been worked out in@11–13,4# and they behave asz2h1 near
the boundary. These normalizable modes form the Hilb
space of the bulk theory. The possible boundary conditi
for fields in AdS spacetime are encoded by the choice
non-normalizable mode solutions behaving asz2h2 near the
boundary. As argued in@4#, the normalizable and non
normalizable solutions are dual to states and sources res
tively in the boundary conformal field theory. Here we ma
explicit the map between bulk and boundary states. So g
a bulk field f i approachingz2h2f0,i at the boundary, we
write the Lorentzian bulk-boundary correspondence as

Z~f i !5eiS~f i !5K sUexpS i E
B
f0,iO i D UsL . ~12!

Here us& represents the CFT state that is dual to the b
state. Operator expectation values in excited CFT states
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differ from their vacuum values; we write

d

df0,i~x!
S~f i !5^suO i~x!us&f0,i

, ~13!

where the subscript indicates that the expectation is c
puted in the presence of a source term. We will also sh
that this can be turned into a statement relating quanti
field operators in the bulk to operators in the boundary.

Massive scalar.As an example, we return again to th
free massive scalar with action~4!. Now a general nonsingu
lar solution of the bulk equations approachingz2h2f0(x) at
the boundary can be written as

f~z,x!5fn~z,x!1cE ddx8
z2h1

~z21ux2x8u2!2h1
f0~x8!,

~14!

where fn is a normalizable mode, andux2x8u252(t
2t8)21( i 51

d21(xi2xi8)
2. Here we have used a bulk-bounda

propagator obtained by continuation from Euclidean spac
@3#. There are ambiguities in this choice whose meaning
discussed in Sec. III C and Appendix A. We now repeat
procedure used in the Euclidean signature, dropping con
terms as before, and paying attention to the extra contr
tion from fn . ~There are subtleties in this procedure—s
Appendix A.! Using fn(z,x)→z2h1f̃n(x) asz→0, we find

^f̃nuO~x!uf̃n&f0
5~2h1!f̃n~x!

1c~2h1!E ddx8
f0~x8!

ux2x8u2~2h1!
,

~15!

where we have indicated that CFT is in the excited st
uf̃n&.

1 SoO gets an expectation value from two distinct co
tributions: from the excited state and from the source that
been turned on. Note thatuf̃n& is a ‘‘coherent’’ state on the
boundary in which operators have nonvanishing expecta
values.

Interpretation. In Lorentzian AdS spacetime, normaliz
able and non-normalizable modes are dual to states
sources, respectively. As we have seen, operator expect
values are affected by both the state and the source. Ne
theless, as in the Euclidean case, the component of the
bulk field behaving asz2h2 defines the source while th
component behaving asz2h1 gives rise to the boundary ex
pectation value. We are free to setf0 to zero if we wish, so
that the sources are turned off—then we are studying st
of the original unmodified CFT.

Bulk sources.In the example above, we considered linea
ized wave equations for a massive scalar. It is possible
consider fully nonlinear solutions with possible bulk sing
larities due to sources. For instance, the field configura
arising from a D-brane in the AdS geometry would be of th

1The normalizations produced by this naive Lorentzian treatm
are not correct—see Appendix A.
1-3
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BALASUBRAMANIAN, KRAUS, LAWRENCE, AND TRIVEDI PHYSICAL REVIEW D 59 104021
type. The treatment based on Eq.~13! is equally valid in this
case—linearized fluctuations around the fully nonlinear
lution lead by integration by parts to the same surface in
grals. Whenf0 vanishes Eq.~15! will also continue to hold,
but in general nonvanishingf0 will push the field configu-
ration into the nonlinear regime and bulk interactions w
become important. Equipped with Eq.~15!, in the next sec-
tions we will determine the dual boundary description
various solitonic objects in the bulk.

C. Operator formulation

We would also like a more microscopic mapping at t
level of individual quantum states. This is obtained by
garding fields as quantized operators. In particular, we m
write fn in terms of a mode expansion,

f̂n5(
k

@akfn,k1ak
†fn,k* #, ~16!

and similarly for the boundary operatorO,

Ô5(
k

@bkf̃n,k1bk
†f̃n,k* #, ~17!

where, as before,f̃(x) is the boundary value of the compo
nent of the bulk modef(z,x) scaling asz2h1 asz→0. Note
that the modes appearing in the expansion off̂n satisfy an
on-shell condition (h2m2)fn,k50, whereas the mode
f̃n,k do not satisfy any wave equation on the boundary,
are instead a fully complete set of functions. Interpreting
~15! as an operator statement we conclude thatak5bk and
that ak

†u0&5uk& where uk& is a ‘‘one particle’’ state created
by a single application ofbk

† . ~It is intriguing that creation
and annihilation operators of elementary bulk fields are
lated to composite operators on the boundary, leading u
identify (kbk

†bk as a particle number operator.! In other
words, bulk states described by quanta occupying norma
able modes are dual to CFT states described by acting on
vacuum with modes of the appropriate boundary opera
This provides a direct correspondence between bulk
CFT states.2

Choice of vacuum.Quantum field theory in curved spac
can usually accomodate a variety of inequivalent vacua,
responding to different definitions of positive frequency.
the present context, the choice of vacuum affects the form
ism in two places. First, mode solutions in Eqs.~16!, ~17!
have positive frequency with respect to a particular time
ordinate, here taken to be Poincare´ time. A different choice
of time can lead to an inequivalent vacuum state, relate
the original vacuum by a Bogoliubov transformation. Se
ond, we have made a particular choice for the form of
bulk-boundary propagator in Eq.~14! which we obtained by
continuation from Euclidean space. This is the appropr
propagator to use when perturbing around the Poinc´

2Related issues are discussed in@14#.
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vacuum. However, alternative vacua can be chosen
changing the mode expansions~16!,~17! and modifying the
bulk-boundary propagator. The latter modification will in
volve adding a normalizable mode to the original propaga
which leaves unchanged itsz2h2 dependence nearz50.
These issues are discussed in greater detail in Appendix

D. Radial isometry and boundary scale transformation

In subsequent sections we will use the formalism dev
oped above to study the boundary representation of probe
the bulk. A recurring theme will be a duality between cha
acteristic radial positions in the bulk and characteristic sca
in the boundary. Let us review how this arises. The Poinc´
metric ~1! has a radial isometry:

~xW ,t !5x→lx, z→lz. ~18!

As we have discussed, boundary expectation values fo
massive scalar are dual to the component of the bulk fi
scaling asz2h1f̃(x) near the boundary. So consider a on
parameter family of bulk solutions of the form

fl~z,x!5f~lz,lx!. ~19!

According to Eq.~15!, the expectation value of the bounda
operator in the corresponding state behaves as

^fluO~x!ufl&5l2h1^O~lx!&. ~20!

So the radial isometry generates scale transformations on
boundary. In the examples studied below we will explicit
see that the boundary configuration spreads out as the
probe falls towards the Poincare´ horizon.

III. INSTANTON PROBES

Our first example of a bulk probe is a D-instanton
AdS53S5. The methods developed in the previous sect
will show that it is dual to a boundary Yang-Mills instanto
A particular consequence is a duality between the radial
sition of the bulk object and the scale size on the bounda
D-instanton solutions in AdS space have been discusse
@6–8# where the close similarity between the bulk dilato
profile and the boundary instanton was noted. Our m
point in this section is that this fact follows from the gene
considerations of Sec. II. Thisderives the duality between
the D-instanton and the Yang-Mills instanton from the fu
damental formulation of the AdS-CFT correspondence in
~2!.

According to the methods of Sec. II, to determine t
boundary expectation values corresponding to a D-instan
we require a form of the bulk solution near the boundary. W
will use Poincare´ coordinates for AdS5, so that the metric is
given by Eq.~1! with R454pgsNa82. D-instanton solutions
have been presented in@6–8#; only the dilaton (f) and the
axion (x) are turned on, while the AdS53S5 Einstein metric
is unchanged. Dimensional reduction of these fields onS5

produces a Kaluza-Klein tower of modes on AdS5. Here we
are only interested in the behavior asz→0 of the massless
1-4
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HOLOGRAPHIC PROBES OF ANTI–de SITTER SPACETIMES PHYSICAL REVIEW D59 104021
five dimensional dilaton and axion that couple to Tr(F2) and
Tr(FF̃) on the boundary.3 This is given by4

ef5gs1c
z4z̃4

@ z̃21uxW2xWau2#4
•••, ~21!

x5x`6~e2f21/gs!. ~22!

Herez̃ is the radial position of the D-instanton. The consta
c in Eq. ~21! can be determined by requiring that th
D-instanton carry the correct axionic charge, that is,

1

2k10
2 E e2f]mxdSm52p, ~23!

yielding

c5
24p

N2 . ~24!

Boundary expectations.We can now use the methods
Sec. II to derive the expectation values of boundary ope
tors. The five-dimensional dilaton action is

Sf52
1

4k5
2 E d5xAggmn]mf]nf1•••, ~25!

where 1/k5
25V5R5/k10

2 , k10 is the ten-dimensional Newto
constant, andV55p3 is the volume of the unit five-sphere
We start with the dilaton background for the D-instant
~21! and add a small perturbationdf. The resulting change
in the action is a boundary term

dS52
1

2k5
2 E d4x

R3

z3 df]zf. ~26!

It follows that the functional derivative with respect to th
boundary configurationf0 is (dS/df0)52(1/2k5

2)R3]zf.
Using f in Eq. ~21! and the relationR45k10N/2p5/2 gives

dS

df0~xW !
52

48

4pgs

z̃4

@ z̃21uxW2xWau2#4
. ~27!

3These couplings were first studied in@15#.
4There is some disagreement between@6,7# and @8# concerning

whether the the D-instanton should be localized on theS5. The
difference will lie in the excitation of the Kaluza-Klein harmonic
that are massive fields on AdS5. Including these excitations which
fall off faster at the boundary will give expectation values to du
higher-dimension operators that were identified in@3#. The authors
of @6–8# all agree on the asymptotic form of the massless Ad5

fields which is all that we require here.
10402
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We learn from@3,2# that the AdS5 massless dilaton couple
to Tr(F2) in boundary CFT. Choosing the normalizatio
SY M5(1/4gY M

2 )*d4xTr(F2)1••• for the Yang-Mills action
gives

dSY M

df0~xW !
52

1

4gY M
2 ^Tr@F2~xW !#&. ~28!

Equating Eqs.~27! and~28! and using 4pgs5gY M
2 , we find

1

4gY M
2 ^TrF2~xW !&5

48

gY M
2

z̃4

@ z̃21uxW2xWau2#4
, ~29!

which is exactly the classical Yang-Mills field strength in a
instanton background. So, as advertised, a D-instanton in
bulk is precisely dual to a Yang-Mills instanton in th
boundary theory.

The reader may be surprised that the expression
^TrF2& that we have computed agrees withclassicalinstan-
ton background although we are in a limit with largeN and
largegY M

2 N. Many classical quantities receive large quantu
corrections in such limits. However, the functional form
the instanton is essentially determined by conformal inva
ance, given the single length scale. The coeffiecient in fr
determines the topological charge and is protected b
Bogomol’nyi-Prasad-Sommerfield~BPS! bound. This seems
to be the reason why the large-N result implied by super-
gravity agrees with the weak-coupling classical Yang-Mi
calculation.

This discussion of the dilaton can be extended to the
ion which yields the expected̂FF̃& for an instanton. Since
the AdS5 metric is unchanged, we learn that the expectat
value of the stress tensor^Tmn& vanishes in an instanton
background. This is easily checked; the stress tensor is

Tmn5
1

4
gmnTrFrsFrs2TrFm

r Frn . ~30!

The two terms cancel for the Yang-Mills instanton. Sim
larly, the Neveu-Schwarz–Neveu-Schwarz~NS-NS! B field
in an S wave onS5 is known to be dual to a dimension-
operator in Yang-Mills theory@16#. This operator was de
rived in @17,18#:

O mn
~6!}trF1

2
F [naFabFbm]1

1

8
FabFabFmnG , ~31!

where we have antisymmetrized the indicesm,n. Again, it is
simple to check that the first term vanishes upon antisym
trization and the second term vanishes identically.5 Finally,

l

5Note, however, that the symmetrized part of the first term d
not vanish. In general we expect that there will be all sorts
combinations ofF that will not vanish in this background. This i
not a surprise—for example, in the presence of a classical b
configuration, we expect that many operators corresponding to m
tiparticle bulk states will have expectation values.
1-5
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the D-instanton actionSD-inst52p/gs coincides with the
YM instanton actionSY M58p2/gY M

2 using 4pgs5gY M
2 .

Scale-radius duality and bulk locality.The above duality
between the D-instanton and YM instanton provides the fi
example of a phenomenon we will call scale-radius dual
The characteristic radial position of the D-instanton isz̃. On
the boundaryz̃ is the characteristic scale of the YM insta
ton. A D-instanton closer to the horizon atz̃5` is mapped
into a fatter boundary object@5#. More specifically, the ac-
tion of the isometries~18! translates the D-instanton bot
radially and parallel to the boundary. The corresponding c
formal transformation of the boundary instanton rescale
and translates it at the same time.

This relation has interesting consequences for the em
gence of local physics in the bulk when we apply our te
niques to multi-instanton solutions. Consider tw
D-instantons at very different radial positionsz, but at the
same coordinatexW parallel to the boundary. These are dual
two coincident YM instantons with widely different sca
sizes. Locality of the bulk objects is expected at largeN
when classical physics is valid. In this limit the collectiv
coordinates of the boundary configuration should appro
mately decouple into two separate sets associated with
stantons of two different scale sizes~i.e., the metric on the
moduli space is block diagonal in this region!. Such behavior
typically occurs for instantons at large spatial distances. H
we learn that a large difference in scale size will also caus
separation of collective coordinates. Turning this around,
approximate noninteraction of collective coordinates of
incident instantons at widely different scales translates
approximate locality of the bulk physics.

We can also consider the interaction between instan
and anti-instantons. By evaluating the probe action o
D-instanton in the background of the anti-D-instanton,
find a bulk interaction of the form

dS;
~z1z2!4

~z12z2!8
, ~32!

where the D-instantons are at coincidentxW positions andz1,2
are their radial positions. In deriving Eq.~32! we have used
the asymptotic form of the dilaton, which follows from th
required falloff of the dilaton and SO~1,5! invariance~it is
also consistent with@6–8#!. From Eq.~32! it follows that in
the conformal large-N Yang-Mills theory we expect the in
teraction between coincident instantons and anti-instan
to fall off as the eighth power of difference in scale siz
Such behavior is not evident in perturbative gauge theo
and presumably arises from the sum of planar diagram
the largeN limit.

IV. STRING PROBES

Fundamental strings and D-strings are particularly int
esting probes of Lorentzian AdS5. Working in Poincare´ co-
ordinates~1!, we will find the Yang-Mills description of
string solitons stretched parallel to the AdS boundary a
placed at fixed radial positionsz̃. Once again, the characte
10402
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istic position in the bulk will be mapped to the characteris
scale on the boundary, and motion towards the Poincare´ ho-
rizon appears as a fattening of the boundary flux tube
string placed at a fixed radial position is not a solution to
equations of motion since it can reduce its potential ene
by falling towards the horizon. Nevertheless, since the an
sis of a static string is technically clearer, we imagine tha
is stabilized by an external force. We will find that the co
responding boundary flux could reduce its energy by spre
ing and must be similarly stabilized.6 This analysis is readily
generalized to slowly moving strings.

Strings as fluxes.First, we establish that fundamental~F!
and Dirichlet ~D! strings in AdS5 are described by electric
and magnetic fluxes in the boundary gauge theory. Thi
easily shown by starting with the world volume action f
D3-branes~with Higgs fields suppressed!:

SD352T3TrE d4sH e2fA2det~Gmn12pa8Fmn1Bmn!

2
1

4
emnpqCmn

~2!FpqJ . ~33!

~We have written the non-Abelian Born-Infeld action appr
priate to commuting background fields@19#.! The action in-
cludes terms of the form:

E d4sBmnTrFmn and E d4semnpqCmn
~2!TrFpq ,

~34!

where Bmn and Cmn
(2) are the NS-NS and Ramond-Ramon

~RR! two-forms, respectively. An F-string extended in thexi

direction should couple toBti , and so is described by
nonvanishing value ofEi5TrFti , in other words an electric
flux.7 Similarly, the D-string corresponds to a magnetic fl
Bi5e i jkTrF jk . This is consistent with S-duality, which in
terchanges F- and D-strings in the bulk, and electric a
magnetic fields in Yang-Mills theory.

6Related discussions appear in@14#.
7The source for the U~1! electric flux in the Yang-Mills theory is

not associated with the dynamical part ofBmn , which couples to a
dimension-6 operator in CFT@16,17#, but rather with pure gauge
degrees of freedom which contribute to surface integrals for c
served charges at infinity. It may seem surprising that Eq.~34!
shows that bulk strings are related to the U~1! part of the U(N)
boundary theory since this factor has been argued to deco
@20,3,21#. However, it is more accurate to consider the U~1! as
‘‘frozen’’ after inclusion of all external probes and vacuum expe
tation values~VEVs!. The remainingSU(N) part of the theory is
dynamical and the rest of this section studies the expectatio
Tr(F2) with a trace in SU(N). We are grateful to O. Aharony fo
correspondence regarding this issue.
1-6
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Bulk strings:To describe bulk F- and D-strings we sta
with their world sheet actions, which include the terms

SF52
1

2pa8
E d2sHA2detgmn]mXm]nXn

2
1

2
emnBmn]mXm]nXnJ , ~35!

SD52
1

2pa8gs
E d2sH e2fA2detgmn]mXm]nXn

2
1

2
emnCmn

~2!]mXm]nXnJ . ~36!

We have included couplings due to the string frame me
gmn , the dilatonf, and the two-formsBmn , Cmn

(2) . Now con-
sider static strings extended in thex1 direction, parallel to the
boundary. In a static gauge,

t~sm!5s0, z~sm!5 z̃5const,

x1~sm!5s1, xW'~sm!5xWa' . ~37!

HerexWa' are directions orthogonal to the string but paral
to the boundary. EvaluatingSF , SD in the AdS5 background
~1! gives the potential energy of the static strings~per unit
coordinate length!:

VF5
gY M

2p
N1/2

1

z̃2
, VD5

2

gY M
N1/2

1

z̃2
. ~38!

Here we used the relationsR454pgsNa82 and 4pgs

5gY M
2 that are appropriate to AdS5. The F- and D-string

potentials are related by S-duality:gY M
2 /4p→(gY M

2 /4p)21.
Boundary expectations.A bulk string is dual to a bound

ary CFT state in which various operators have expecta
values. For example, the actions~35!,~36! will induce long-
range fields for Btx1, Ctx1

(2) in the presence of F- an
D-strings, respectively. The results of Sec. II and the c
plings ~34! then yield nonvanishing values for^TrFtx1&F and
^TrFx2x3&D , corresponding to electric and magnetic fluxe
Rather than evaluating these explicitly, we focus on the
pectation value for TrF2, which couples to the dilatonf.
Note that this trace is in the SU(N) part of the gauge group
First we work out the long-range dilaton field produced
string sources via their linear coupling to the dilaton. A
though it may appear from Eq.~35! that the F-string does no
couple to the dilaton, this is simply because the actions
written in the string frame. Working instead in the Einste
frame, withgmn

E 5(gse
f)1/2gmn , we find the couplings

SF52
gY M

4p
N1/2E d2s

f

z̃2
, SD5

1

gY M
N1/2E d2s

f

z̃2
.

~39!

In order to obtain the long-range dilaton field we will ne
the asymptotic form of a Green’s function, satisfying Diric
let boundary conditions, for the equation
10402
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1

2k5
2 ¹2GD~xW' ,z!5

z5

R5d~z2 z̃!d~xW'2xWa'!, ~40!

where the right hand side contains a delta function transv
to the direction in which the string extends. This is read
solved to give

GD~xW ,z!52
4p

N2

z4z̃4

@ z̃21uxW'2xWa'u2#3
. ~41!

@This can can also be obtained from our earlier results for
D-instanton by integrating Eq.~21! with respect to the posi-
tions ta and xa

1 and multiplying by the appropriate norma
ization.# Now it follows from Eqs.~39! and ~41! that

fF5
gY M

N3/2

z4z̃2

@ z̃21uxW'2xWa'u2#3
~42!

and

fD52
4p

gY MN3/2

z4z̃2

@ z̃21uxW'2xWa'u2#3
. ~43!

These asymptotic fields yield the expectation values

^TrF2&F5
2gY M

3 N1/2

p2

z̃2

@ z̃21uxW'2xWa'u2#3
, ~44!

^TrF2&D52
8gY MN1/2

p

z̃2

@ z̃21uxW'2xWa'u2#3
.

~45!

We see that the boundary configuration corresponding
static string in the bulk is spread over a region with scale s
z̃. This analysis can be generalized to a slowly moving str
by using retarded Green’s functions instead of Eq.~41!; z̃ is
then replaced by its value at retarded time.

Scale-radius duality and bulk locality.We have learned
that a bulk string placed atz̃ is dual to a flux tube spread ove
a region with characteristic scalez̃—another example of
scale-radius duality. In the bulk a string will fall towards th
horizon~large z̃) to minimize gravitational potential energy
Correspondingly, the gauge field strength in the bound
theory will spread out to minimize gradient energy, asym
totically going to zero. The AdS-CFT correspondence i
plies that the equation governing the spreading in the bou
ary is the geodesic equation for strings in the bulk.
present it is difficult to analyze this directly from the boun
ary perspective, but we gain some insights from@22#,8 where
a system ofp12 andp branes in flat space is studied. Th
authors found that a D-string can be included in a D3-bra
SU(N) gauge theory as aZN flux after compactifying two
directions transverse to the D-string. Their analysis show

8We thank A. Sen for bringing this reference to our notice.
1-7
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that the minimum energy configuration with fixedZN flux is
pure gauge, with vanishing field strength. Taking a la
compactification radius, this agrees with the picture in E

~44!,~45! where^Tr(F2)& vanishes asz̃→`. For a classical,
static field configuration which is purely electric or magnet
(1/gY M

2 )TrF2 is proportional to the energy density.9 One ex-
pects that the total energy for a field configuration of fix

flux and sizez̃ goes like 1/z̃2, in agreement with the bulk
potentials~38!.

Two strings at large radial separations do not interact v
much. This feature can be seen by examining the collec
coordinates of the bulk solitons—each string has an appr
mately independent set. On the boundary the correspon
statement is that flux tubes of very different scale sizes h
approximately independent collective fluctuations, ev
when they have coincident centers.10 The interactions of bulk
strings are also causal in the classical limit. For instanc
fluctuation on one string will only affect the other after
time lag. This translates into a typical interval required
the spread of boundary fluctuations from one scale to
other. As in the case of D-instantons, the separation
boundary collective fluctuations and the time lag for inter
tions between scales are only expected to emerge in an
proximate sense. At a more fundamental level, the exact
namics dictated by the CFT description will imply deviatio
from bulk locality and causality.

V. DILATON WAVE PACKET

Finally we study massless dilaton wave packets in
bulk of AdS5. In previous sections we studied pointlik
sources and found that the bulk position translated int
boundary scale. The situation is more complicated for w
packets because the bulk object already has a characte
scale which will also get reflected on the boundary. The c
rect approach is to study a family of objects related in
bulk by the AdS isometry~18!. For the D-instanton and
string probes, this isometry simply translates the bulk obe
The component of the translation parallel to the bound
becomes a translation in CFT, while the radial translat
becomes aspatial rescaling. We will see that the isometr
~18! both translates and changes the size of dilaton w
packets. This is reflected in the boundary theory in thespa-
tiotemporalwidth of ^Tr(F2)&.

9Since we do not expect classical Yang-Mills theory to be ac
rate in this context, the following discussion is meant only to in
cate the qualitative behavior of the field configuration.

10Of course, an object like a flux tube, not being a stable solit
does not have collective coordinates in the usual sense. By ‘‘co
tive coordinates’’ we mean fluctuations of the boundary fields t
preserve the overall scale and shape of the tube. For example
can imagine endowing the tube with a ripple in its shape or a tra
verse velocity. Such motions would occur on time scales dist
from the rate of spreading of the tube.
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Bulk wavepackets.A normalizable dilaton wave packe
can be constructed by superimposing mode solutions@11–
13,4#:

fl~z,xW ,t !5E d3kdrCl~kW ,r!~rz!2J2~rz!ei ~kW•xW2vt !.

~46!

HereJ2 is a Bessel function andv22r22kW250. The profile
Cl is a Gaussian centered at (lkW0 ,lr0) with a width sl2:

Cl~kW ,r!5
1

l4 a expF2
~kW2lkW0!21~r2lr0!2

2l2s
2 i

ra

l G .

~47!

With this definitition, wave packets with different values
l are related by the radial isometry~18!:

fl~z,xW ,t !5f~l51!~lz,lxW ,lt !. ~48!

So we expect to see a manifestation of the scale-radius
ality in the dual boundary dynamics.

For sufficiently early or late times11 we can use the sta
tionary phase approximation and the asymptotic form of
Bessel function for large arguments to study Eq.~46!. We
find, self-consistently, that that at largeutu, the packetfl is
centered at

xW5
kW0

v0
t, z5

r0

v0
utu1

a

l
. ~49!

As l increases, the center of the wave packet moves rad
away from the horizon. At large times the detailed form
the wave packet is still somewhat complicated but the k
features can be understood by settinga50. This gives

fl~z,xi ,t !5aAs~r0z!3/2S v0

t D 3/2

3expS 2
sl2

2
~xW• ẑ02t !2D

3expS 2
1

2

xT
2v0

2

t2s DexpS i

2

xT
2lv0

t D
3exp@ i ~lzW0•xW2lv0t !#. ~50!

Here xW is the four-vector (z,xi), zW0 is the four-vector,
(r0 ,kW0), andxT stands for the spatial distance in four dime
sions transverse to the wave packet’s momentum alongzW0.
So ast→2` the wave packet is a shock wave that emerg
from the horizon travelling alongẑ. Initially its energy is
large and it travels like a massless particle along the li
cone. But with time the pull of gravity gets stronger an
begins to reflect the wave packet back. As this happens
shock wave contracts into a localized lump in the direct
perpendicular to its motion. At this stage Eq.~50! is no
longer valid. Eventually the state turns around complete
gathering itself into a shock wave again, this time hurtli

-
-

,
c-
t
we
s-
t

11We needultu@v0 /r0
2 and ultu@v0/s.
1-8
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towards the horizon in the far future and spreading out tra
verse to its direction of motion. This spreading transverse
the direction of motion will be familiar to reader as the sta
dard behavior of relativistic wave packets in flat space.

In Eq. ~50! we have seta50; reinstating it does no
change the qualitative features of the wave packet. In p
ticular the widthssl2 andv0

2/t2s, which govern the spread
ing parallel and perpendicular to the direction of motion s
the same. Thus, shock waves closer to the horizon@smallerl
from Eq.~49!# are also more spread out along their directi
of motion.

Boundary description.Using the results of Sec. II we re
late the asymptotic behavior of the dilaton wave packet
the expectation value of̂TrF2&:
g

ry

y
g

da
e

a

pa
ho

th

10402
s-
to
-

r-

y

o

F2~xW ![
1

4gY M
2 ^luTr@F2~xW !#ul&

5E d3kdr4Cl~kW ,r!r4ei ~kW•xW2vt !. ~51!

Here the statesul& are related to each other by a scale tra
formation dual to the isometry~18!. Two limiting cases are
instructive:r0@ukW0u andr0!ukW0u.

Whenr0@ukW0u the wave packet starts at early times wi
most of its momentum in the radial direction. Then Eq.~51!
gives
mall

find
ultu@
v0

s
: F2~xW !}S v0

t D 3/2

expF2
sl2

2 S t1
a

l D 2GexpS 2
1

2

xW2v0
2

t2s
D expS i

2

xW2v0l

t
D exp@2 iv0~lt1a!#, ~52!

ultu!
v0

s
: F2~xW !}expF2

sl2

2 S t1
a

l D 2GexpS 2
1

2
~xW2sl2! Dexp@2 iv0~lt1a!#. ~53!

At early and late times (ultu@v0 /s) the bulk state looks like a shock wave moving in the radial direction and at s
intermediate times (ultu!v0 /s) the bulk state is being reflected by the AdS geometry and turned around.

Whenr0!ukW0u the wave packet starts at early times with most of its momentum parallel to the boundary. Then we

ultu@
v0

s
: F2~xW !}S v0

t D 3/2

expS 2
sl2

2
~xW• k̂02t !2DexpS 2

1

2

xT
2v0

2

t2s DexpS i

2

xT
2v0l

t Dexp@ il~kW0•xW2v0t !#, ~54!

ultu!
v0

s
: F2~xW !}expS 2

sl2

2
~xW• k̂02t !2DexpS 2

1

2
~xT

2l2s! Dexp@ il~kW0•xW2v0t !#. ~55!
ude
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Here xT
25xW22(xW• k̂0)21(a/l)2. At early and late times

(ultu@v0 /s) the bulk state looks like a shock wave movin
parallel to the boundary.

Scale-radius duality.We have just derived the bounda
description of a class of wave packetsfl that are related by
the radial isometry~18!. We learned from Eq.~49! that the
characteristic spatial center of the packet depends linearl
1/l. Packets that are closer to the horizon also have big
bulk widths. The basic lesson we learn from Eqs.~52!–~55!
is that these characteristic bulk features map on the boun
to a characteristicspatiotemporalscale. Packets which ar
characteristically closer to the horizon~and spatially wider!
map to boundary fields with a greater spread in space
time.

To see this, first consider the caser0@ukW0u. The bulk
packet starts as a radial shock wave coming from the
horizon, reflects at intermediate times, and returns as a s
wave to the future horizon. From Eq.~52! the boundaryF2

starts with a very small amplitude and a huge spread in
spatial directions. At intermediate times Eq.~53! tells us that
on
er

ry

nd

st
ck

e

F2 is a Gaussian in space and at late times the amplit
decreases again whileF2 spreads in space. The tempor
profile, like the intermediate-time spatial profile, is Gauss
with a scale set byl. Sincel also indexes the radial isom
etries relating bulk packets, we are once again seeing a s
radius duality.

As another example, consider the caser0!ukW0u. Now the
bulk packet starts as a shock wave parallel to the bound
is reflected at intermediate times, and returns as a sh
wave to the future horizon. From Eqs.~54! and~55! we learn
that the boundaryF2 is a shock wave spreading out spatia
in the directions perpendicular to the motion at early and l
times. Other than this, the behavior is exactly parallel to
caser0@ukW0u. The profile in time, like the intermediate tim
spatial profile, is a Gaussian with a scale set byl.

The analysis of this section is only a first step in a mo
complete study. For example, it would be interesting to u
derstand how the bulk scattering of two shock waves in m
rored in the boundary theory. Understanding this would h
uncover how bulk locality emerges from the boundary d
scription.
1-9
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VI. DISCUSSION AND CONCLUSIONS

A. Bulk versus boundary dynamics

The classical limit.Much of this article has addressed th
CFT description of classical bulk probes. These states
‘‘classical’’ because they contain a very large number
particles, and propagate in backgrounds with small cur
ture. There is a subtlety in defining such a limit in view
the ‘‘stringy exclusion principle’’ advocated in@24# for
AdS3. Given the AdS-CFT correspondence, this ‘‘exclusi
principle’’ imposes a bound on the occupancy of certain b
states. Nevertheless, asN increases, the maximum occupan
increases also. So in the large-N limit our considerations are
valid.

Hairy holography.We have provided an explicit prescrip
tion for relating states in the bulk and boundary theori
Roughly speaking, the prescription works because norma
able modes in the bulk extend to the boundary and serve
kind of ‘‘hair,’’ determining the boundary state. Each mo
falls off exponentially~in physical distance!, but the volume
of the boundary grows exponentially as well, allowing for
significant effect. We have found that the asymptotic va
of the ‘‘hair’’ appears directly in the expectation values
operators in the boundary state, giving a precise realiza
of the holographic proposal of ’t Hooft and Susskind@23#.
Our analysis has been mainly at a linearized level and
back reaction on the metric was neglected. We hope to
tend our work in the future to situations like the formation
a black hole where the nonlinearities of gravity are mo
important.

S-matrix, bulk commutators, and local physics.Using the
operator relation between bulk and boundary fields, we
reiterate some points made in@5,4#. It is apparent that tran
sition amplitudes between physical states in the bulk can
computed from the boundary theory. Specifically, prepar
bulk stateuC&5ak1

†
•••akn

† u0& and evolve it forward in time

asuC&→e2 iHt uC&. Precisely the same operation can be p
formed in the boundary theory: the expansion~17! and the
equivalenceak5bk allow one to prepare the intitial state
and time evolution with respect to the CFT Hamiltonian
identified with time evolution in the bulk. Thus transitio
amplitudes in the boundary theory can be reinterpreted
amplitudes in the bulk.

An unusual feature of this map is that the radial coor
nate in the bulk does not appear in the boundary mode
pansion~17!. This makes it difficult to check aspects of bu
locality such as the commutation of operators at space
separation. However, as we have explicitly shown,
boundary theory has access to data on the radial positio
localized bulk probes in the characteristic scale of th
boundary images. As we have discussed, classical localit
the bulk physics is mapped, at largeN, into the approximate
independence of collective fluctuations of objects at differ
boundary scales. So the breakdown of locality in quant
gravity should be understood in terms of incomplete dec
pling of scales in the boundary theory at finiteN. We are
investigating this issue and hope to report on it elsewher
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B. Holographic description of horizons

We have accumulated enough tools to suggest how sp
time causal structure will be reflected in the boundary theo
Here we present a qualitative discussion—further details
appear elsewhere.

Black holes and thermal states.AdS-Schwarzchild black
holes@25# and the Banados-Teitelboim-Zanelli~BTZ! black
hole @26# ~see@27# for a review! both have maximally ex-
tended solutions with two asymptotic regions, each with
timelike boundary at spatial infinity.12 In such spacetimes
the bulk Hilbert space is a product of two identical copie
each accessed by a single asymptotic region@29#. For ex-
ample, thermal states such as the Hartle-Hawking vacu
are written as correlated tensor products of states:

uHH&5(
n

e2bvnun,vn& I ^ un,vn& II , ~56!

where Hilbert spacesI andII are formally identical. Tracing
over one copy in the product produces the thermal ensem
accessible to the other asymptotic observer. In fact, this c
struction is a standard method of describing real-time, fin
temperature field theories; one studies operators that ac
one Hilbert space that is correlated appropriately with
other. The auxiliary Hilbert space then functions as an ex
nal bath which thermalizes the system. The situation is
tirely parallel from the boundary perspective. The bound
of spacetime has two disconnected components and so
CFT Hilbert space factorizes into a product of two identic
pieces. The choice of bulk vacuum is reflect in the C
vacuum as discussed in Sec. II C and Appendix A. Trac
over one boundary component leaves a thermal state ac
sible to one asymptotic region.

Scale-radius duality.We would like to use the scale
radius duality discussed in this paper to study motions
wards the horizon from the boundary perspective. For p
AdS spacetime, scale-radius duality originates in the d
action of the bulk radial isometry and the boundary sc
transformations. In fact, these are not symmetries of
black hole. The curvature of Schwarzchild and the discr
identifications of BTZ break the isometry group, and the c
responding thermal boundary state breaks conformal inv
ance. Nevertheless, there are arguments that the b
boundary duality continues to hold since the spacetime
asymptoticallyAdS @1,3,30,31#. What is more, BTZ black
holes locally enjoy the same symmetries as AdS spaceti
and so motions of local probes continue to map to motion
boundary scale.~These points can be made quantitative
using the methods of this paper, as we hope to discuss e
where.!

Horizons from the boundary perspective.Armed with the
scale-radius duality, we introduce a bulk probe that sta
near the boundary and falls towards the horizon. From
boundary perspective, the position of the horizon is rep

12The disconnected topology of the boundary in the BTZ case
be seen directly from its orbifold construction@28#.
1-10
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sented by the thermal scale. The boundary probe starts li
a very high scale much above the thermal bath. This sep
tion of scales allows it to spread unimpeded as though
bath was absent. As the bulk object falls through the horiz
its boundary dual reaches the thermal scale. Falling thro
the horizon in the bulk is reflected on the boundary as th
malization due to interaction with the thermal bath. Note t
this does not mean that the probe state has ‘‘mixed’’ with
density matrix describing the black hole. Rather, interacti
with the thermal bath make the probe state look like a typ
state in the ensemble. As the bulk object penetrates to
singularity increasing the black hole mass, thermalization
its boundary dual raises the boundary temperature. The
rizon as a causal construct preventing extraction of inform
tion is only ‘‘real’’ to the degree that thermalization obscur
the history of a state.

Black holes from collapse.We can also consider blac
holes formed from collapsing shells of matter. Again, fro
the boundary perspective, the state will spread out unt
reaches the scale characteristic of the temperature of
black hole it has created. The degree to which the resul
horizon is sharp will be the degree to which the final state
difficult to measure due to the complicated way that the
formation about the configuration is spread out over mo
at low spatiotemporal scales. The causal structure of
black hole appears as a statistical phenomenon and is pr
in the thermodynamic limit.

C. Conclusions

In summary, we have developed techniques for describ
bulk probes from the boundary perspective. Using our me
ods, properties of solutions to the bulk equations of mot
can be translated into properties of states and expecta
values in the boundary theory. We have argued that ther
a map between the quantized mode expansions of bulk fi
and boundary operators and used our approach to dem
strate a scale-radius duality for several probes. Finally,
outlined the application of our methods to the study of bla
hole causal structure. This work constitutes a prelimin
attempt to address the emergence and eventual breakdow
local spacetime from the gauge theory perspective towa
quantum gravity.
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APPENDIX A: CORRELATORS AND PROPAGATOR
AMBIGUITIES

In this appendix we will give a more careful discussion
the methods illustrated in Sec. II. In particular we will di
cuss the meaning of the ambiguities in defining the bu
boundary propagator for Lorentzian spacetimes. We w
continue to work in Poincare´ coordinates~1!.

1. Euclidean signature

As in Sec. II we study the bulk-boundary corresponden
~2! for a classical massive scalar with action~4! that couples
to an operator with dimension 2h1 Eq. ~6!. In Sec. II we
worked in position space and followed the procedure of@3#
relating the boundary contribution to the bulk action to CF
correlators. In fact, as discussed in@9# this procedure violates
Ward identities and must be modified. The correct algorit
is to evaluate a suitably normalized bulk action atz5e prior
to takinge→0.

Improved procedure in momentum space.The improved
procedure of@9# is easiest to implement in momentum spac
The unique solution to the wave equation (h2m2)f50
with momentumkW parallel to the boundary is the Bess
function @2,9,4#

f}eikW•xWzd/2Kn~ ukuz!f0~kW !. ~A1!

At the boundaryz→0, f→A(z)1B(z) where A5z2h2(1
1•••) andB5z2h1(11•••) and the ellipses indicate serie
in even powers ofz.13 For m2.0 this is divergent asz→0
and requires regulation. According to@9# we work atz5e

with the normalizationf5C(e)f0(kW )eikW•xW. The authors of
@9# setC(e)51, but since the scaling off as it approaches
the boundary is important, we chooseC5e2h2:

f~z,kW !5e2h2
zd/2Kn~ ukuz!

ed/2Kn~ ukue!
f0~kW !eikW•xW. ~A2!

The bulk action~4! then reduces to a boundary term@2,9#:

S5 lim
z→e

z12dd~kW1kW8!f0~kW8!e2h2
~ uk8uz!d/2Kn~ uk8uz!

~ uk8ue!d/2Kn~ uk8ue!

3]ze
2h2

~ ukuz!d/2Kn~ uk8uz!

~ ukue!d/2Kn~ uk8ue!
. ~A3!

As we discussed,zd/2Kn(z)→A(z)1B(z)5z2h2(11•••)
1z2h1(11•••). Putting this in Eq.~A3! as e→0 yields
some singular contact terms that we drop and a finite te
arising from the mixture of theA andB terms in the numera-
tor and denominator. These give the expected behavior o
two-point function:

13For integraln there are some logarithm terms also, but they
not change the basic argument.
1-11



re
s

n
th

n
ff

n

st
m
n—
ic
ts
e

en

ld
v

s-
l-
te
th
ar

o
or
as
rre
or
ec

ca
ic
c-

-

liz-
e

g
ent

ld

rm
in

BALASUBRAMANIAN, KRAUS, LAWRENCE, AND TRIVEDI PHYSICAL REVIEW D 59 104021
^O~kW8!O~kW !&}d~kW81kW !uku2n. ~A4!

The position space procedure used in Sec. II gives diffe
normalizations because the bulk-boundary propagator u
there approaches a delta function at thez50 boundary rather
than atz5e.

Operator expectation valuesFrom Sec. II we know that
turning on source in the boundary theory will lead to no
trivial operator expectation values. These are given by
first variation ofS(f):

dS~f!5E
z→0

dSm]mfdf, ~A5!

where, as in Sec. II, we have added a small perturbatio
the formdf5z2h2df0. In momentum space, with the cuto
procedure prescribed above,df(z5e,kW )5e2h2df0(kW ).
Combining this with]zf at z5e, using Eq.~A5!, and drop-
ping contact terms as before, we get a finite one-point fu
tion

^O~kW !&f0~kW !5^O~kW !O~2kW8!&f0~kW8!, ~A6!

where the two-point function was given in Eq.~A4! and is
evaluated here in the absence of a source. So the intere
part of the one-point function—the part which does not co
from coincidence of the source and the operator insertio
arises from the subleading part of the source term wh
scales asz2h1 at the boundary. The bulk of this paper res
on the independent specification of this subleading part n
z50 via the addition of bulk probes and the consequ
modifications of operator expectations on the boundary.

2. Lorentzian signature

We again begin by discussing free, massive scalar fie
In Lorentzian signature, normalizable solutions to the wa
equation exist; so specifying the fields atz50 does not
uniquely specify the field configuration in the bulk. As di
cussed in@4# the normalizable solutions form the bulk Hi
bert space which is dual to the space of boundary sta
There is also a spectrum of non-normalizable modes
implement boundary conditions and are dual to bound
sources.

In the supergravity effective action, the normalizable s
lutions can appear in two places. First, classical field the
in the bulk involves expanding the bulk action around cl
sical, normalizable backgrounds. We will see that this co
sponds to turning on expectation values for CFT operat
Second, the bulk-boundary propagator is not unquiely sp
fied by the asymptotic behaviorz2h2dd(xW2xW8) as z→0,
since a normalizable solution vanishing at the boundary
always be added to it. This ambiguity is related to the cho
of vacuum for the theory and will affect the correlation fun
tions.

Working in momentum space and in Poincare´ coordinates
~1!, we writekW5(v,qW ) for the momentum parallel to bound
ary (yW5(t,xW )). For k2.0 ~spacelike momenta! the solutions
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are identical to the Euclidean case and there is no norma
able solutions. Fork2,0, there are two solutions which ar
smooth in the interior@4#. One solution is

f2~kW ,z!}zd/2J2n~ ukuz!eikW•yW ~A7!

when n is nonintegral.14 This solution is not normalizable
~for n.1—see@4# for a discussion of the casen,1); it
behaves asz2h2 whenz→0. So the mode is nonfluctuatin
and is dual to a source term at the boundary. An independ
solution is

f1~kW ,z!5zd/2Jn~ ukuz!eikW•yW , ~A8!

which is normalizable and behaves asz2h1 whenz→0.
Operator expectation values.The most general solution

f(kW ,z) which is asymptotic to toe2h2f0(kW )eikW•yW when z
5e is

f~kW ,z!5F~kW !eikW•yWf1~kW ,z!

1e2h2
f2~kW ,z!1A~kW !f1~kW ,z!

f2~kW ,e!1A~kW !f1~kW ,e!
eikW•yWf0~kW !.

~A9!

Here F(kW ) is the Fourier component of the classical fie
configuration we wish to study and

KA~kW ,e,z!5e2h2
f2~kW ,z!1A~kW !f1~kW ,z!

f2~kW ,e!1A~kW !f1~kW ,e!
~A10!

is the bulk-boundary Green’s function. As we can see,KA

has an ambiguity which is encoded byA(kW ). Once again, we
insert this into the~quadratic! action and integrate by parts.15

The result is

SA~F,f0!5
1

2Ez5e
ddkddk8dd~kW1kW8!z12d]z

3@F~kW !f1~kW ,z!KA~kW8,e,z!f0~kW8!

1f0~kW !KA~kW8,e,z!f0~kW8!#. ~A11!

From this we can read off the one-point function

^O~kW !&f0
5 lim

z→e
]z$@F~2kW !f1~2kW ,z!

1f0~2kW !#K~kW ,e,z!%. ~A12!

Whenf050, it is easy to see that

^O~kW !&5
d

2
F~2kW !. ~A13!

The two-point function is

14Whenn is integral,f2(kW ,z)}zd/2Yn(ukuz)eikW•yW.
15In fact the integration by parts gives an oscillating surface te

at z→`. This should be understood in terms of an infrared cutoff
the gauge theory.
1-12
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^O~kW !O~kW8!&f0
5^O~kW !&f0

^O~kW8!&f0

1 lim
z→e

dd~kW1kW8!]zK~kW ,e,z!. ~A14!

In this case, the parts ofK which behave asz2h1 andz2h2 are
explicitly labeled byf1 andf2. As in the Euclidean case
after dropping contact terms the finite piece ase→0 comes
combinations off2 terms in the numerator andf1 terms in
the denominator~and vice versa! of Eq. ~A10!. Thus the
connected part of the two-point function will depend qu
strongly onA(kW ).

Interpretation of propagator ambiguities.The dependence
of these correlators onF is easy to understand. Turning o
such a classical background implies that the bulk theory i
a ‘‘coherent’’ state in which many modes have an expec
tion value. The map between bulk and boundary states
cussed in Sec. II implies that the CFT should also be i
‘‘coherent’’ state built from the modes of the dual bounda
operator. Not surprisingly, the CFT operator has an expe
tion value in this state. Roughly speaking, the expecta
value is dual the part off that behaves asz2h1 at the bound-
ary.

In addition to the freedom to specify a classic
background-coherent state viaF, there is an ambiguity aris
ing from the freedom to specifyA(kW ).16 The origin of the
ambiguity is the freedom to specify a vacuum state. In st
dard field theory, Wick rotation from a Euclidean signatu
specifies a certain propagator. But if we were simply to a
that the two-point function satisfy the appropriate inhomo
enous differential equation, we would have a much wid
range of choices; we could pick some combination of
advanced, retarded, and Feynman propagators, and we c
add propagators that solved the associated homogenou
ferential equation. Our choice would depend on bound
conditions and the choice of vacuum. Here we chooseA via
analytic continuation from the Euclidean case; the combi
tion of Jn(ukW uz) and J2n(ukW uz) will be that equal to
Kn( i ukW uz):

Kn~ i ukW uz!5
p

2

eipn/2J2n~2ukW uz!2e2 ipn/2Jn~2ukW uz!

sin~np!
.

~A15!

In some spacetimes~e.g., those containing black holes! there
are inequivalent vacua defined with respect to differ
times. Presumably this would be reflected in the the bu
boundary propagator.

APPENDIX B: THE BULK RESPONSE: ANOTHER
METHOD

The relation between the dilaton field and the vev of TrF2

was obtained in Sec. III by considering the response of
bulk and boundary theories to small perturbations. An al
nate method for computing the bulk response in the prese
of branes is to do things in the opposite order. Instead

16We are grateful to Tom Banks and Emil Martinec for a discu
sion of this issue.
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starting with the bulk soliton and evaluating the effect of
perturbation, we could consider a perturbation of AdS a
ask about the change in the action on including the solit
Here we study the D-instaton using the latter technique.

Consider a perturbation of the dilaton in AdS5 which re-
duces to a delta function atxW5xWa on the boundary. The bulk
value of this perturbation is

df5
6

p2

z4

@z21uxW2xWau2#4
. ~B1!

The D-instanton is a source for the dilaton and axion and
the linearized effects of a D-instanton atz5 z̃ andxW5xW1 can
be incorporated by adding a term in the action of the for

SD-isnt52pE J~e2f1 ix!, ~B2!

where J5d(x02 x̃0)d(xW2xWa) stands for the D instanton
source. The coefficient in front of the integral in Eq.~B2! is
obtained by requiring that the D-instanton action be given
S52p/gs . Writing e2f5(1/gs)(12df) and susbtituting
for df from Eq. ~B1! gives

SD-isnt52
48

4pgs

x0
4

@x0
21uxW2xWau2#4

. ~B3!

This is exactly equal to the bulk response in Eq.~27!.
This method gives the same bulk response as in Sec

because we are working in the linearized limit. An analo
with electrodynamics is useful. Introduce a small perurbat
of the electrostatic potential surrounding a system of charg
The energy of the resulting system can be computed from
action for the electromagnetic field and the source coup
to the field. Then the bulk contribution vanishes by the eq
tions of motion and we are left with a surface integral li
Eq. ~26!. This method is followed in most of this pape
Alternatively, the energy isE5( iqiVi , whereqi andVi are
the charge and the potential at the position of each cha
respectively. So the change in energy is determined by
perturbation of the potential at the location of each char
This is exactly analogous to Eq.~B2!.

The same reasoning works for a general linear syst
The supergravity theory under consideration here is certa
not linear, but the D-branes act as small sources. Since
carry a charge of order;1/gs , the corresponding changes
the supergravity fields are of orderO(gs

231/gs). In the
large-N limit that we are working in, these changes are
orderO(1/N) and are therefore small.17 Thus to leading or-
der in 1/N ~and for purposes of calculating the one-po
functions! one can work with a supergravity action expand
to quadratic order about the AdS background. The resul
system is in effect linear and the two methods for evaluat
the bulk response must then agree.

-

17For example, from Eq.~21!, Eq. ~23!, we see that the dilaton is
changed from its asymptotic value by an amountds5(1/N)
3(24p/g2N)x0

4x0
24/@ x̃0

221uxW2xWau2#4. In the large-N limit where
gsN is kept fixed this is ofO~1/N!.
1-13
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