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We describe probes of anti—de Sitter spacetimes in terms of conformal field theories on the AdS boundary.
Our basic tool is a formula that relates bulk and boundary states—classical bulk field configurations are dual
to expectation values of operators on the boundary. At the quantum level we relate the operator expansions of
bulk and boundary fields. Using our methods, we discuss the CFT description of local bulk probes including
normalizable wave packets, fundamental and D-strings, and D-instantons. Radial motions of probes in the bulk
spacetime are related to motions in scale on the boundary, demonstrating a scale-radius duality. We discuss the
implications of these results for the holographic description of black hole horizons in the boundary field theory.
[S0556-282(199)03808-4

PACS numbg(s): 04.65+e, 11.15.Pg, 11.25.Hf

I. INTRODUCTION to a mode expansion of boundary operators; so bulk quanta
are dual to conformal field theor§CFT) states created by
A recurring theme of recent work is that gravitational modes of boundary operators acting on the vacuum. We de-
theories can sometimes be formulated as gauge theories uelop this formalism in Sec. Il and, more carefully, in Ap-
fewer dimensions. This point of view has had some encourpendix A. This development continues the work4i which
aging successes, but we still do not understand how the fadentified fluctuating supergravity modes as dual to boundary
mous problems of quantum gravity—for example, informa-states and nonfluctuating modes implementing boundary
tion loss in black hole evaporation—are solved. All of our conditions as dual to boundary sources. Here, we will be
intuitions about gravity and spacetime physics is based on gterested mainly in the classical limit of the fluctuating
classical, geometric picture valid whénis small and the states and in bulk configurations generated by brane sources.
field configurations macroscopic. In this regime the space- ysing the methods of Sec. I, we discuss the boundary
time physics displays at least approximate locality and caugescription of three kinds of probes: D-instantons, F- and
sality, and a well-defined geometry in which free particlesp_gyings, and dilation wave packets. In all cases the charac-
follow geodesics. These properties seem obscure in the i "ragial position of the bulk probe is mapped to the

gauge theory_formulathn. Once we understand their ONgINenaracteristic scale of the boundary configuration, as under-
we can investigate precisely when and how they break dowr%tood on general grounds by comparing the action of bulk

An important avenue for understanding these issues is the : : :
. . . iISometries with conformal transformations on the boundary
most recent manifestation of the gravity-gauge theory con-:

nection: the conjecturgl] that string theory on an anti—de .[1]' This S(_:ale—radius duality gives risg to pleasan.tly physical
Sitter (AdS) background is dual to a conformal field theory |nterpretat|ops of bulk dyngmms. For mstance,. strmgs or par-
residing on the spacetime boundary. So far, the proposal hd&!€S move in AdS spacetime to reduce gravitational poten-
been checked by comparing spectra and low-order correldi@l €nergy; this is dual in the boundary theory to the spread-
tion functions of the dual theories. Such checks are based dRd Of localized field distributions to reduce gradient energy.
a remarkably compact and powerful statement of the equality? Euclidean Ad$xS° it has been conjectured that a
between certain path integrals in the dual theofs8]. We  D-instanton at radial positiom is dual to an instanton id
would like to use this equality to learn how the classical=4 super Yang-MillS(SYM) theory with scale size[5-8].
geometric description of the bulk emerges and ultimatelyAs an application of our methods vekerive this correspon-
breaks down in the holographic boundary representation. dence from the fundamental formulation of the AdS-CFT
This article begins such a study by describing a variety otconjecture given in2,3]. We conclude by discussing the
spacetime probes from the boundary perspective. Our basigeaning of the classical limit on both sides of the AdS-CFT
tool is a compact formula relating bulk and boundary statesguality and by discussing the implications of our results for

specifically, the asymptotic behavior of fluctuating, classicakhe holographic representation of black hole horizons in the
bulk fields is related to expectation values of the dual boundpoundary gauge theory.

ary operators in excited boundary states. At the operator
level we relate the quantized mode expansion of bulk fields

II. RELATING BULK AND BOUNDARY STATES

*Email address: vijayb@curie.harvard.edu In order to study how bulk geometry is encoded in the
"Email address: perkraus@theory.caltech.edu boundary description, we wish to introduce probes into the
*Email address: lawrence@string.harvard.edu AdS spacetime. In this section we develop methods that
$Email address: trivedi@fnth23.fnal.gov identify boundary configurations corresponding to these
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probes. Our basic technique is to study the response of theehaves agh(z,x) =z2"-¢o(x) asz—0 and can be written
bulk probe to a small change in boundary conditions. Theas
formulation of the AdS-CFT correspondence [B3] then
provides the expectation values of operators in the corre- dor ,
sponding boundary states. This will also allow us to arrive at ¢(Z'X)=Cf d®x (Z2+ [x—x'[2)2+ bo(x'), (5
a quantized formulation of the bulk theory from the bound-

ary perspective. In this section we will ignore some subtlewwhere we have used the bulk-boundary propagi&band
ties[9] which are unimportant for most of the considerations

2h,

of this paper. A more careful treatment is provided in Ap- d Jd*+4m* d
pendix A. ht:ZiTEZi_' ©
We work with Poincarecoordinates for anti—de Sitter
space. The metric of A4S, in these coordinates is The presence of this classical configuration corresponds to
the addition of a sourcé ¢,O to the boundary theory.
R2 . We now apply Eq.(3) by computing the functional de-
d§=;z(—dt2+ dxi_1+d2). (1) rivative on the left hand side. To do so we perturb around

#(z,x) by a small fluctuationS¢ and evaluate the resulting
change in the action. After integrating E@) by parts and
using the equations of motion, the variation becomes a sur-
face term at the boundary:

(We setR=1 in this section. Poincarecoordinates only
cover a patch of the global spacetime, a0 is the bound-
ary of AdS spacetime while= is the horizon(See[4] for

more details and Penrose diagrantuclidean AdS space-
time is obtained by takingto it. 8S(¢) = JBdE“&M(b(S(b. (7)
A. Euclidean signature Evaluating this quantity near the boundaryatO is delicate

[9]. In this section we will follow[3] by considering contri-
butions to the integrand of Eg5) from the region|x—x’|
) #0. This procedure amounts to ignoring certain contact
Z(p))=e NP = < exp( f d’o,iOI) > : (20 terms and normalization issues as we discuss in Appendix A
B and gives, ag—0,

The AdS-CFT correspondence is formulated 2r3] as

whereS(¢,) is the effective action as a function of the bulk Py

field ¢;, o, is the boundary value of; (up to a scaling E=c(2h+)22h+*lj ddx’
with the radial coordinaje and ©' is the dual operator in

CFT. The expectation value on the right is evaluated in thepy,q perturbation is written ag¢=2z2"- 5,
CFT vacuum. We can read E(R) as saying that boundary d30=71-dgdy’ Then

conditions for the bulk theory are dual to sources in the

boundary theory. In other words, field theory in Euclidean bo(X') Sho(X)

AdS spacetime, expanded around a background approaching 5S(¢)=c(2h+)f ddxddx’m. 9
bo; at the boundary, is described by a CFT deformed by the |x—x[ 2=

a;}ddition of a source. By functionally differentiating we find Using the relatior(3) we derive

that

$o(X")
|X_X/|2(2h+)' (8)

and we use

(00} g,=—c(2h.) | d o (10

- s(g)1=(0'(x) (3 X=X 220
8¢0i(X) ! %oj°

We have learned that in the presence of the source term
where the subscripp,; indicates that the expectation value [ ¢$,O the operatorO has acquired an expectation value
on the right hand side is computed in the presence of thgiven by the right hand side of E(L0). This matches what
source terny ¢;O'. We will use this relation to learn about we expect from CFT by direct calculation:
the expectation values of boundary operators in the presence
of bulk probes. (O(X)) 4 =<(’)(x)ex;{J ¢,O@)>

Massive scalarAs an example, let us study a massive 0

scalar field with a quadratic bulk action:

mf A9’ (X' HOX)O(X'))

%—f ddX'M (1)

|X—X'|2(2h+)'

1
@)= | d g, @

Consider a solution to the bulk equations of motion that ap-

proachesgy(x) at the boundaryup to a scaling with the where the form of the two-point correlator follows from
radial coordinatez). The unique solution regular in the bulk scale invariance.
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Interpretation. The AdS-CFT correspondence in EQ) differ from their vacuum values; we write
states that turning on a bulk mode which behaves as s
7°"- ¢o(x) near the boundary is dual to including a source —S(¢i)=<s|(’)i(x)|s>¢ , (13)
term [ ¢,© in the CFT. As discussed if4], the growth of O¢ho(X) oi
such mlodes hear the boundary indicates that they are no /here the subscript indicates that the expectation is com-
fluctuating classical backgrounds. In effect, the presence gf ;o1 in the presence of a source term. We will also show
the mode redefines the Hamiltonian of the theory, since fluCqat this can be turned into a statement relating quantized
tuations should take place on top of this background. This igjg|q operators in the bulk to operators in the boundary.
dition of a source term. . _ free massive scalar with actigd). Now a general nonsingu-
In the bulk, a mode with leading boundary behaviorjar solution of the bulk equations approachirfg- ¢o(x) at
72"~ ¢, induces aubleadingcomponent behaving af"+¢$.  the boundary can be written as
[This is seen by expanding E@5) in powers ofz.] The
corresponding statement in CFT is that the addition of the 725)= b (2.X +CJ’ dox’ X'
source induces an expectation value@rin fact, our analy- $(2.) = $n(2,X) (zz+|x—x’|2)2h+ $o(X'),
sis showed tha((’)(x))¢0~?¢'5(x), so that operator expecta- (14
tion values and bulk field components behavingg®s are  \where ¢, is a normalizable mode, an¢k—x'|?=—(t
precisely dual. This duality is the prevailing theme of the /)2 s971(x,—x/)2 Here we have used a bulk-boundary
present work. A related connection between subleadingyopagator obtained by continuation from Euclidean space in
terms in the Ad§ metric and the stress tensor in the corre-[3]. There are ambiguities in this choice whose meaning is
sponding boundary theory has appeared recentyl G discussed in Sec. lIC and Appendix A. We now repeat the
Bulk sourcesin the above example, the soluti@h(z,x)  procedure used in the Euclidean signature, dropping contact

was completely determined by the boundary vaiiieand  terms as before, and paying attention to the extra contribu-
the requirement of regularity in the bulk. However, as Wetion from ¢,,. (There are subtleties in this procedure—see

shall see in Sec. lll, this uniqueness fails when we admi . ; 2h, :
singular fields corresponding to sources in the bulk. Sucéﬂ\ppendlx A) Using ¢n(2,x) =27 ¢n(x) as2—0, we find

bulk sources contribute subleading pieces to the fields at the /% |O(x)1%.) . =(2h.)d.(x
boundary which modify Eq(5) and contribute to operator (O )|¢n>¢° () $nlx)
expectation values. So once again we will find that sublead-

2h,

X!
ing pieces of the bulk fields are dual to boundary expectation + c(2h+)f ddx’%,
values. In this way, we will show in Sec. Il that EQ) |x—x"|#=
implies that a bulk D-instanton in AdSs dual to an instan- (15)

ton in boundary Yang-Mills theory. o o .
where we have indicated that CFT is in the excited state
|§5n).1 So O gets an expectation value from two distinct con-
B. Lorentzian signature tributions: from the excited state and from the source that has

The crucial new feature of the Lorentzian signature is thabeen turned on. Note thap,) is a “coherent” state on the
the bulk wave equation admits propagating, normalizabléoundary in which operators have nonvanishing expectation
mode solutions. Such modes describe the physical, lowalues.
energy excitations of the spacetime; their explicit forms have Interpretation. In Lorentzian AdS spacetime, normaliz-
been worked out ifil1-13,4 and they behave a&"+ near able and non-normalizable modes are dual to states and
the boundary. These normalizable modes form the Hilbersources, respectively. As we have seen, operator expectation
space of the bulk theory. The possible boundary conditionyalues are affected by both the state and the source. Never-
for fields in AdS spacetime are encoded by the choice otheless, as in the Euclidean case, the component of the total
non-normalizable mode solutions behavingzds near the  bulk field behaving as®"~ defines the source while the
boundary. As argued if4], the normalizable and non- component behaving a"+ gives rise to the boundary ex-
normalizable solutions are dual to states and sources respeRectation value. We are free to sgj to zero if we wish, so
tively in the boundary conformal field theory. Here we makethat the sources are turned off—then we are studying states
explicit the map between bulk and boundary states. So giveaf the original unmodified CFT.
a bulk field ¢; approachingz?"~ ¢; at the boundary, we Bulk sourcesln the example above, we considered linear-
write the Lorentzian bulk-boundary correspondence as ized wave equations for a massive scalar. It is possible to

consider fully nonlinear solutions with possible bulk singu-
exp(if ¢O,ioi)
B

(12) larities due to sources. For instance, the field configuration
S/ arising from a D-brane in the AdS geometry would be of this
Here |s) represents the CFT state that is dual to the bulk The normalizations produced by this naive Lorentzian treatment
state. Operator expectation values in excited CFT states willre not correct—see Appendix A.

Z<¢i>=eis<¢i>=<s
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type. The treatment based on EfJ) is equally valid in this  vacuum. However, alternative vacua can be chosen by
case—linearized fluctuations around the fully nonlinear so€hanging the mode expansiofi6),(17) and modifying the
lution lead by integration by parts to the same surface intebulk-boundary propagator. The latter modification will in-
grals. Wheng, vanishes Eq(15) will also continue to hold, volve adding a normalizable mode to the original propagator,
but in general nonvanishing, will push the field configu- which leaves unchanged 5"~ dependence neaz=0.
ration into the nonlinear regime and bulk interactions will These issues are discussed in greater detail in Appendix A.
become important. Equipped with E@.5), in the next sec-

tions we will determine the dual boundary description of  p. Radial isometry and boundary scale transformation

various solitonic objects in the bulk. . . .
In subsequent sections we will use the formalism devel-

oped above to study the boundary representation of probes in

the bulk. A recurring theme will be a duality between char-
We would also like a more microscopic mapping at theacteristic radial positions in the bulk and characteristic scales

level of individual quantum states. This is obtained by re-in the boundary. Let us review how this arises. The Poincare

garding fields as quantized operators. In particular, we maynetric (1) has a radial isometry:

write ¢, in terms of a mode expansion,

C. Operator formulation

(X,H)=X—=AX, Z—\Z (18
P +
d’n_zk [yt 2kl (16 As we have discussed, boundary expectation values for a
massive scalar are dual to the component of the bulk field
and similarly for the boundary operat6t, scaling asz?+¢(x) near the boundary. So consider a one-
parameter family of bulk solutions of the form
©:§k: [bibn i+ bbr i, 17 dNZ,X) = P(NZ,\X). (19

~ ) According to Eq.(15), the expectation value of the boundary

where, as beforep(x) is the boundary value of the compo- operator in the corresponding state behaves as
nent of the bulk modep(z,x) scaling asz®"+ asz—0. Note
that the modes appearing in the expansionpgfsatisfy an (M OX)| Py =N2"+{O(NX)). (20
on-shell condition r(j—m2)¢n,k=o, whereas the modes o .
<~f>n,k do not satisfy any wave equation on the boundary, buﬁ'o the radial isometry generates scale transform_anons.o.n the
are instead a fully complete set of functions. Interpreting EqPoundary. In the examples studied below we will explicitly
(15) as an operator statement we conclude thatb, and  S€€ that the boundary con_ﬁgyratpn spreads out as the bulk
that a}|0)=|k) where|k) is a “one particle” state created probe falls towards the Poincaherizon.
by a single application obl. (It is intriguing that creation
and annihilation operators of elementary bulk fields are re- IIl. INSTANTON PROBES
lated to composite operators on the boundary, leading us to 5 - first example of a bulk probe is a D-instanton in
identify =byby as a particle number operatorin other  aqg x S5 The methods developed in the previous section
words, bulk states described by quanta occupying normaliz;i| show that it is dual to a boundary Yang-Mills instanton.
able modes are dual to CFT states described by acting on the narticular consequence is a duality between the radial po-
vacuum with modes of the appropriate boundary operatorgition of the bulk object and the scale size on the boundary.
This provides a direct correspondence between bulk angh_instanton solutions in AdS space have been discussed in
CFT states. _ _ [6—8] where the close similarity between the bulk dilaton

Choice of vacuumQuantum field theory in curved space hrofile and the boundary instanton was noted. Our main
can usually accomodate a variety of inequivalent vacua, colsgint in this section is that this fact follows from the general
responding to different definitions of positive frequency. Ingnsiderations of Sec. II. Thigerivesthe duality between
the present context, the choice of vacuum affects the formakpe p_instanton and the Yang-Mills instanton from the fun-
ism in two places. First, mode solutions in E@$6), (17)  jamental formulation of the AdS-CFT correspondence in Eq.
have positive frequency with respect to a particular time co{p).
ordinate, here taken to be Poincdie. A different choice According to the methods of Sec. II, to determine the

of time can lead to an inequivalent vacuum state, related tg,ndary expectation values corresponding to a D-instanton
the original vacuum by a Bogoliubov transformation. Sec-ye require a form of the bulk solution near the boundary. We
ond, we have made a particular choice for the form of they| yse Poincarecoordinates for AdS so that the metric is
bulk-boundary propagator in E¢L4) which we obtained by given by Eq.(1) with R*=4mgNa'2. D-instanton solutions
continuation from Euclidean space. This is the appro{priatehave been presented [6—8]; only the dilaton ¢) and the
propagator to use when perturbing around the Poincargyi,, (x) are turned on, while the Ad S° Einstein metric

is unchanged. Dimensional reduction of these fieldsS®n
produces a Kaluza-Klein tower of modes on AdBere we
°Related issues are discussedid]. are only interested in the behavior as:0 of the massless
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five dimensional dilaton and axion that couple toAf{ and ~ We learn from[3,2] that the Adg massless dilaton couples

Tr(FF) on the boundary.This is given by to Tr(F?) in boundary CFT. Choosing the normalization
SYM=(1/4g$M)fd4xTr(F2)+ -- - for the Yang-Mills action
o gives
ef=g+tc——77—— -, (21
9s [22+|X_Xa|2]4 6SYM 1 -
> (TITFE(X) ). (28)

5o(X)  Agly

~ Equating Eqs(27) and(28) and using 4rgs=g%,,, we find
Herez is the radial position of the D-instanton. The constant _
c in Eq. (21) can be determined by requiring that the 1 48 z*

D-instanton carry th ioni i (TIFA(X))=—— =,
y the correct axionic charge, that is, 42, 92y [22+]X— x| 2]
a

X:Xxi(e_¢_1/gs)- (22

(29

1 26 B which is exactly the classical Yang-Mills field strength in an
WJ &0, xdS*=2m, (23 instanton background. So, as advertised, a D-instanton in the
10 bulk is precisely dual to a Yang-Mills instanton in the

boundary theory.
The reader may be surprised that the expression for
(TrF?) that we have computed agrees wilassicalinstan-

(24) ton background although we are in a limit with lariyeand
Iargeg%MN. Many classical quantities receive large quantum
corrections in such limits. However, the functional form of

Boundary expectationdVe can now use the methods of the instanton is essentially determined by conformal invari-

Sec. Il to derive the expectation values of boundary operaance, given the single length scale. The coeffiecient in front

tors. The five-dimensional dilaton action is determines the topological charge and is protected by a

Bogomol'nyi-Prasad-Sommerfiel@PS bound. This seems

yielding

24+

CZW.

1 to be the reason why the largeresult implied by super-
Sp=— F d5x\/§g“”aﬂ¢av¢+ cee (25 gravity agrees with the weak-coupling classical Yang-Mills
Ks calculation.

This discussion of the dilaton can be extended to the ax-

2_ 2 - - - : o = : :
where 1k5—V5R5/'<319, x10 is the ten-dimensional Newton jon which yields the expecte¢FF) for an instanton. Since
constant, and/s =" is the volume of the unit five-sphere. the AdS metric is unchanged, we learn that the expectation
We start with the dilaton background for the D-instantonygjye of the stress tensdiT,,) vanishes in an instanton

(21) and add a small perturbatiofxp. The resulting change background. This is easily checked; the stress tensor is
in the action is a boundary term

1
T =7 Qs TIFP7F o~ TIFLF (30)

1 R® ooy
8S=—— | d* 306024, (26)
2K The two terms cancel for the Yang-Mills instanton. Simi-

. o ] larly, the Neveu-Schwarz—Neveu-SchwdNsS-NS B field
It follows that the functional derivative with respect to the iy an S wave on<S® is known to be dual to a dimension-6

boundary configuratiomb, is (8S/8¢po) = — (1/2«2)R%3,¢b.  operator in Yang-Mills theorj16]. This operator was de-
Using ¢ in Eq. (21) and the relatiorR*= k;oN/27°% gives  rived in[17,18;

5S 48 Pat

OOt L PR, 4 CF. FesE 31
= :_4 ~ = = 294" (27) uv NS Fra Bul T g aB uv|s ( )
Spo(X) T0s [2°+[X—X,|?]

2 8

where we have antisymmetrized the indiges. Again, it is
simple to check that the first term vanishes upon antisymme-
3These couplings were first studied [ib5]. trization and the second term vanishes identicalinally,

“There is some disagreement betwdét] and [8] concerning
whether the the D-instanton should be localized on $fie The
difference will lie in the excitation of the Kaluza-Klein harmonics °Note, however, that the symmetrized part of the first term does
that are massive fields on Agl9ncluding these excitations which not vanish. In general we expect that there will be all sorts of
fall off faster at the boundary will give expectation values to dualcombinations of~ that will not vanish in this background. This is
higher-dimension operators that were identified3h The authors not a surprise—for example, in the presence of a classical bulk
of [6-8] all agree on the asymptotic form of the massless AdS configuration, we expect that many operators corresponding to mul-
fields which is all that we require here. tiparticle bulk states will have expectation values.
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the D-instanton actiorSp_jn,s;=27/gs coincides with the istic position in the bulk will be mapped to the chargcteristic
YM instanton actiorSYM=87r2/g$M using 4mrgs= g%M_ s_cale on the boundary, anq motion towards the Poinlcare
Scale-radius duality and bulk localitifthe above duality fizon appears as a fattening of the boundary flux tube. A
between the D-instanton and YM instanton provides the firsBtring placed at a fixed radial position is not a solution to the
example of a phenomenon we will call scale-radius duality€quations of motion since it can reduce its potential energy
The characteristic radial position of the D-instantomz.i©n by talling towards the horizon. Nevertheless, since the analy-

~ . ) sis of a static string is technically clearer, we imagine that it
the boundaryz is the characteristic scale of the YM instan- js stapilized by an external force. We will find that the cor-

ton. A D-instanton closer to the hOfiZO”&?" is mapped  responding boundary flux could reduce its energy by spread-

into a fatter boundary obje¢6]. More specifically, the ac- ing and must be similarly stabilizédThis analysis is readily

tion of the isometrieg18) translates the D-instanton both generalized to slowly moving strings.

radially and parallel to the boundary. The corresponding con-  Strings as fluxesFirst, we establish that fundament&)

formal transformation of the boundary instanton rescales itnd Dirichlet(D) strings in Adg are described by electric

and translates it at the same time. and magnetic fluxes in the boundary gauge theory. This is
This relation has interesting consequences for the emegasily shown by starting with the world volume action for

gence of local physics in the bulk when we apply our tech-D3-branegwith Higgs fields suppressgd
nigues to multi-instanton solutions. Consider two

D-instantons at very different radial positioas but at the

same coordinate parallel to the boundary. These are dual to
two coincident YM instantons with widely different scale
sizes. Locality of the bulk objects is expected at lafge
when classical physics is valid. In this limit the collective
coordinates of the boundary configuration should approxi-
mately decouple into two separate sets associated with in-
stantons of two different scale sizése., the metric on the
moduli space is block diagonal in this regjoSuch behavior (We have written the non-Abelian Born-Infeld action appro-
typically occurs for instantons at large spatial distances. Herpriate to commuting background fiel$9].) The action in-
we learn that a large difference in scale size will also cause aludes terms of the form:
separation of collective coordinates. Turning this around, the
approximate noninteraction of collective coordinates of co-
incident instantons at widely different scales translates into
approximate locality of the bulk physics. J d*¢B™TrF,,, and J d*ae™MPCRTIF
We can also consider the interaction between instantons (39
and anti-instantons. By evaluating the probe action of a
D-instanton in the background of the anti-D-instanton, we

Sp3= —T3Tl'f d40’[ e ?J—de(Gyat+2ma’ Frnt By

1 mn (2)
€ PCmnFpal - (33

find a bulk interaction of the form where B,,, and C?) are the NS-NS and Ramond-Ramond
4 (RR) two-forms, respectively. An F-string extended in the

5SS (2125) (39  direction should couple t@,, and so is described by a
(21_22)8’ nonvanishing value oE;=TrF,;, in other words an electric

flux.” Similarly, the D-string corresponds to a magnetic flux
where the D-instantons are at coincidempositions andz; ,  Bi= € TrFjx. This is consistent with S-duality, which in-
are their radial positions. In deriving E(32) we have used terchanges F- and D-strings in the bulk, and electric and
the asymptotic form of the dilaton, which follows from the magnetic fields in Yang-Mills theory.
required falloff of the dilaton and SQ@,5) invariance(it is
also consistent with6—8]). From Eq.(32) it follows that in
the conformal largeN Yang-Mills theory we expect the in-  6Rejated discussions appear[itd].
teraction between coincident instantons and anti-instantons,
to fall off as the eighth power of difference in scale size.
Such behavior is not evident in perturbative gauge theor
and presumably arises from the sum of planar diagrams
the largeN limit.

The source for the (1) electric flux in the Yang-Mills theory is

not associated with the dynamical part®f,,,, which couples to a
%’dimension-G operator in CF[16,17), but rather with pure gauge
Hegrees of freedom which contribute to surface integrals for con-
served charges at infinity. It may seem surprising that ©4)
shows that bulk strings are related to th€llpart of the UN)

IV. STRING PROBES boundary theory since this factor has been argued to decouple

. . . . [20,3,21. However, it is more accurate to consider th€llJas
Fundamental strings and D-strings are particularly Inter"‘frozen” after inclusion of all external probes and vacuum expec-

esti_ng probes of Lo_ren_tzian AgSWOrkin_g in Poin_ca_ra:o- tation values(VEVs). The remainingSU(N) part of the theory is
Orqmates_(l)’ we will find the Yang-Mills description of dynamical and the rest of this section studies the expectation of
string solitons stretched pargllel to the AdS boundary anq-r(,:z) with a trace in SUK). We are grateful to O. Aharony for
placed at fixed radial positiors Once again, the character- correspondence regarding this issue.
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Bulk strings: To describe bulk F- and D-strings we start 1 z°

with their world sheet actions, which include the terms ZZVZGD()ZJ_ Z)= @5(2—2) 8(X,—Xa), (40
5
S—— 1 J dzo[ J=deg,,, X", X" where the right hand side contains a delta function transverse
27a’ e to the direction in which the string extends. This is readily
1 solved to give
— EemHB'M])(9mX:“&nXV] , (35 6ol ) : 4 75 -
X,2)=— ———— .
1 ° WZ[ZZ+|XL_XaL|2]3
=_ 2 —-¢ [ “w v
Sp ZWQIQSJ’ d U( eV —de,,,dnX" X [This can can also be obtained from our earlier results for the
D-instanton by integrating Eq21) with respect to the posi-
_ 1 mNC(2) 5 Wiy XV (36) tionst, and x; and multiplying by the appropriate normal-
2€ “uwyOmAOnA ization.] Now it follows from Egs.(39) and(41) that

We have included couplings due to the string frame metric 2472

_Ovym

9. the dilatong, and the two-forms,,,, C{2). Now con- b= = T 53 (42)
sider static strings extended in tkkdirection, parallel to the N2 [2° X, =X ]
boundary. In a static gauge, and
t(eM=0", z(oc™)=z=const, . 4 7452 w“
xHo™=0t X (6™ =Xa, . 37 Y gy uNT (224X, —Xa |

Herex,, are directions orthogonal to the string but parallel These asymptotic fields yield the expectation values
to the boundary. Evaluating:- , Sp in the AdS background

(1) g(ijyes thle potential energy of the static stringer unit (T 293 N2 72 4
coordinate lengt] F ~2.1C _< '
gth m? [22+|XL_XaL|2]3
Oywm 1 2 1 -
Ve=——N¥2=, Vp=—N¥2_. (39) 8gy N2 7
2m 7 Ovm 72 (TrF2%)p=— P 2 v —x. 1213
: T [ZPH X = Xa %]
Here we used the relation®*=47gNa'? and 4mg, (45)
=g$M that are appropriate to AdSThe F- and D-string
potentials are related by S—dualiigiM/4w—>(g$M/4w)*1. We see that the boundary configuration corresponding to a

Boundary expectationg bulk string is dual to a bound- ftatic string in the bulk is spread over a region with scale size
ary CFT state in which various operators have expectatio. This analysis can be generalized to a slowly moving string
values. For example, the actio(®5),(36) will induce long- by using retarded Green’s functions instead of @&d); Z is
range fields forBi,a, CEQ in the presence of F- and then replaced by its value at retarded time.

D-strings, respectively. The results of Sec. Il and the cou- Scale-radius duality and bulk localityVe have learned
plings (34) then yield nonvanishing values f¢TrF ) and  that a bulk string placed atis dual to a flux tube spread over

(TrFy2.e)p, corresponding to electric and magnetic fluxes.a yegion with characteristic scale—another example of
Rather than evaluating these explicitly, we focus on the exgcale-radius duality. In the bulk a string will fall towards the

pectation value for T2, which couples to the dilatogp. horizon (lar ~ S o .

! I gez) to minimize gravitational potential energy.
Note that this trace is in the SO part of thg gauge group. Correspondingly, the gauge field strength in the boundary
First we work out the long-range dilaton field produced bytheory will spread out to minimize gradient energy, asymp-

string sources via their linear coupling to the dilaton. Al-__: . .
. . totically going to zero. The AdS-CFT correspondence im-
though it may appear from E85) that the F-string does not lies that the equation governing the spreading in the bound-

couple to the dilaton, this is simply because the actions argry is the geodesic equation for strings in the bulk. At

written n theEstrmg f;arlrllze. Workmg instead in t_he Einstein present it is difficult to analyze this directly from the bound-
frame, withg,,,=(9s€”)“g,.,, we find the couplings ary perspective, but we gain some insights fi@#], where
g & 1 b a system ofp+2 andp branes in flat space is studied. The
Se=— ﬂNUZf d?o—, SD:_NUZJ d?0—. authors found that a D-string can be included in a D3-brane
4m z? 9vym z SU(N) gauge theory as 4y flux after compactifying two
(39 directions transverse to the D-string. Their analysis showed

w1

In order to obtain the long-range dilaton field we will need
the asymptotic form of a Green'’s function, satisfying Dirich-
let boundary conditions, for the equation 8We thank A. Sen for bringing this reference to our notice.
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that the minimum energy configuration with fix&g, flux is Bulk wavepacketsA normalizable dilaton wave packet
pure gauge, with vanishing field strength. Taking a largec@n be constructed by superimposing mode solutdris-
compactification radius, this agrees with the picture in Eqs.1314]1

(44),(45) where(Tr(F?)) vanishes ag— . For a classical, . . P

static field configuration which is purely electric or magnetic, ~ é\(Z.X,t)= j d®kdpCy(K,p)(p2)23x(pz)e' kb,
(1/9\2(M)TrF2 is proportional to the energy densftOne ex- (46)
pects that the total energy for a field configuration of fixed

~ ~ ; ; 2_ 2 _p2_ ;
flux and sizez goes like 17, in agreement with the bulk HereJ, is a Bessel function and”—p”—k*=0. The profile

C, is a Gaussian centered atky,\ po) with a width oA ?:

potentials(38).

Two strings at large radial separations do not interact very R 1 (K— )\IZO)2+ (p—\po)? pa
much. This feature can be seen by examining the collective C,(k,p)= s ex;{ - 5 =i ~
coordinates of the bulk solitons—each string has an approxi- 2\ o

mately independent set. On the boundary the corresponding (47)
statement is that flux tubes of very different scale sizes haveyith this definitition, wave packets with different values of
approximately independent collective fluctuations, everh are related by the radial isomet($8):

when they have coincident centéfsThe interactions of bulk . .

strings are also causal in the classical limit. For instance, a AN(ZX,1) = b =1)(NZ,AXA D). (48)
fluctuation on one string will only affect the other after a 55 we expect to see a manifestation of the scale-radius du-
time lag. This translates into a typical interval required forajity in the dual boundary dynamics.

the spread of boundary fluctuations from one scale to an- For sufficiently early or late timéSwe can use the sta-
other. As in the case of D-instantons, the separation ofionary phase approximation and the asymptotic form of the
boundary collective fluctuations and the time lag for interac-Bessel function for large arguments to study E4g). We
tions between scales are only expected to emerge in an afind, self-consistently, that that at largé, the packeip, is
proximate sense. At a more fundamental level, the exact dycentered at
namics dictated by the CFT description will imply deviations R
from bulk locality and causality. X= w—ot, z= —0|t| 1 (49

As \ increases, the center of the wave packet moves radially
V. DILATON WAVE PACKET away from the horizon. At large times the detailed form of
the wave packet is still somewhat complicated but the key
Finally we study massless dilaton wave packets in thdeatures can be understood by setting 0. This gives
bulk of AdS;. In previous sections we studied pointlike o 32
sources and found that the bulk position translated into a b2 (Z,%; ,t)=a\/;(p02)3’2(—0)
boundary scale. The situation is more complicated for wave t

packets because the bulk object already has a characteristic oN2 | .

scale which will also get reflected on the boundary. The cor- ><exr< - T(X' éo—t)z)

rect approach is to study a family of objects related in the

bulk by the AdS isometry(18). For the D-instanton and 1 X3wd i X2\
string probes, this isometry simply translates the bulk obects. XeXF‘( T2, ) F{E t )

The component of the translation parallel to the boundary

becomes a translation in CFT, while the radial translation xexg (Ao X—Nwgt)]. (50)

becomes apatial rescaling. We will see that the isometry . L

(18) both translates and changes the size of dilaton wav&lere x is the four-vector £,x), {o is the four-vector,

packets. This is reflected in the boundary theory indha-  (po.Ko), andxy stands for the spatial distance in four dimen-

tiotemporalwidth of <Tr(F2)>. sions transverse to the wave packet's momentum an,ng
So ast— — o the wave packet is a shock wave that emerges

from the horizon travelling along. Initially its energy is

%Since we do not expect classical Yang-Mills theory to be accul@rge and it travels like a massless particle along the light

rate in this context, the following discussion is meant only to indi- CON€. But with time the pull of gravity gets stronger and
cate the qualitative behavior of the field configuration. begins to reflect the wave packet back. As this happens the

10 - _ _shock wave contracts into a localized lump in the direction
Of course, an object like a flux tube, not being a stable SO"tonperpendicular to its motion. At this stage E(O) is no
does not have collective coordinates in the usual sense. By “collecl—onger valid. Eventually the state turns around completely

tive coordinates” we mean fluctuations of the boundary fields thavt%athering itself into a shock wave again, this time hurtling
preserve the overall scale and shape of the tube. For example,

can imagine endowing the tube with a ripple in its shape or a trans-
verse velocity. Such motions would occur on time scales distinct
from the rate of spreading of the tube. we need\t|> wo/p3 and|\t|> wylo.
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towards the horizon in the far future and spreading out trans-

verse to its direction of motion. This spreading transverse to F2(x)= > (NTHLF2(X)IIN)
the direction of motion will be familiar to reader as the stan- Ovm
dard behavior of relativistic wave packets in flat space. N
In Eq. (500 we have seta=0; reinstating it does not :J d3kdp4cx(|2,p)p4e‘W"‘*“")_ (51)

change the qualitative features of the wave packet. In par-
ticular the widthsoA? and w3/t?c, which govern the spread-
ing parallel and perpendicular to the direction of motion stay
the same. Thus, shock waves closer to the horjizorallern Pere E{he s(';ateﬂ} ?r:e _relate(il t08?a_<|:_h otlher_tby a scale trans-
from Eg.(49)] are also more spread out along their direction_Orrna 'c_m ua (3 e 1some [Vl - WO limiting cases are
of motion. instructive: py> |ko| and pg<<|Kg|.

Boundary descriptionUsing the results of Sec. Il we re- When p0>|I20| the wave packet starts at early times with
late the asymptotic behavior of the dilaton wave packet tanost of its momentum in the radial direction. Then Esfl)
the expectation value dfTrF?): gives

|)\t|>ﬁ' F2(x)oc @0 3lze —0—)\2 t+g i e —Eizwg e i_)?zwo)\ exd —iwg(At+a) (52
put (x n X 5 X X 2 o X 51 X —iwg( a)l,

) . o\? a\? 1.
|7\t|<70: Fz(x)ocex;{—T t+ ex;{—E(XZU)\Z))eXF[—in(M-i-a)]. (53

At early and late times|{t|>wq/0) the bulk state looks like a shock wave moving in the radial direction and at small
intermediate times|it|<wy/0o) the bulk state is being reflected by the AdS geometry and turned around.

Whenp0<|IZO| the wave packet starts at early times with most of its momentum parallel to the boundary. Then we find

wg 32 oN? L ) 1 X-zrw(z) i X-2|-w0)\
ex —T(X~k0—t) ex —ETQF ex E t

w -
|>\t|>?°: F2(x) o

exgiN(Ko-X—wot)], (54)

exi\ (Ko X— wot)]. (55)

w - oN? L 1
|)\t|<;0: Fz(x)ocexp(—T(xko—t)z)exp{—E(xﬁ)\za)

Here X%:)ZZ_()Z.RO)ZJF(OZ/)\)Z_ At early and late times F2? is a Gaussian in space and at late times the amplitude
. ; i B2 i

(I\t|> wo/ o) the bulk state looks like a shock wave moving decreases again while” spreads in space. The temporal

parallel to the boundary. profile, like the intermediate-time spatial profile, is Gaussian

with a scale set by. Since\ also indexes the radial isom-

Scale-radius dualityWe have just derived the boundary " . ; i
etries relating bulk packets, we are once again seeing a scale-

description of a class of wave packefs that are related by radius dualit
the radial isometry(18). We learned from Eq(49) that the A h Y- | ider th 1 Now th
characteristic spatial center of the packet depends linearly Onulks 22Eetesrtaer):r2§ g' scr?onsll v?/;vee ;?gfell t(g .the?vk\)/ouﬁdar
1/\. Packets that are closer to the horizon also have biggé? fﬁ’ d ) di . P q h yl;
bulk widths. The basic lesson we learn from E@R2)—(55) Is reflected at Intermediate times, and returns as a shoc
. . wave to the future horizon. From Eq$4) and(55) we learn

is that these characteristic bulk features map on the boundamat the boundar§2 is a shock wave spreading out spatiall

to a characteristispatiotemporalscale. Packets which are P g P y

h reristically ¢l to the hori d tally wid in the directions perpendicular to the motion at early and late
characteristically closer to the horizdand spatially wider t(iJnes. Other than this, the behavior is exactly parallel to the

map to boundary fields with a greater spread in space an - o . . . .
timg y 9 P P casepg>|Kq|. The profile in time, like the intermediate time

o . - spatial profile, is a Gaussian with a scale sei\by
To see this, first consider the capg>|ko|. The bulk The analysis of this section is only a first step in a more
packet starts as a radial shock wave coming from the paglomplete study. For example, it would be interesting to un-
horizon, reflects at intermediate timeS, and returns as a Sho%rstand how the bulk Scattering of two shock waves in mir-
wave to the future horizon. From E¢52) the boundarym®>  rored in the boundary theory. Understanding this would help
starts with a very small amplitude and a huge spread in thencover how bulk locality emerges from the boundary de-
spatial directions. At intermediate times E§3) tells us that  scription.
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VI. DISCUSSION AND CONCLUSIONS B. Holographic description of horizons

A. Bulk versus boundary dynamics We have accumulated enough tools to suggest how space-

C : . time causal structure will be reflected in the boundary theory.
The classical limitMuch of this article has addressed the | g present a qualitative discussion—further details will

CFT description of classical bulk probes. These states argppear elsewhere

“classical” because they contain a very large number of * gj,ck holes and thermal statedS-Schwarzchild black
particles, and propagate in backgrounds with small CUVapgles[25] and the Banados-Teitelboim-ZanelBTZ) black
ture. There is a subtlety in defining such a limit in view of pgle [26] (see[27] for a review both have maximally ex-
the “stringy exclusion principle” advocated ifi24] for  tended solutions with two asymptotic regions, each with a
AdS;. Given the AdS-CFT correspondence, this “exclusiontimelike boundary at spatial infinitf? In such spacetimes,
principle” imposes a bound on the occupancy of certain bulkhe bulk Hilbert space is a product of two identical copies,
states. Nevertheless, Bdncreases, the maximum occupancy each accessed by a single asymptotic red@®. For ex-
increases also. So in the laryelimit our considerations are ample, thermal states such as the Hartle-Hawking vacuum

valid. are written as correlated tensor products of states:
Hairy holography We have provided an explicit prescrip-

tion for relatlng states in the_ b_ulk and boundary theorle_s. |HH>=E e Ponln, o), ® N, wn) | (56)

Roughly speaking, the prescription works because normaliz- n

able modes in the bulk extend to the boundary and serve as a

kind of “hair,” determining the boundary state. Each mode \here Hilpert spacesandi| are formally identical. Tracing
falls off exponentially(in physical .d|stanc)e but the vc_)lume over one copy in the product produces the thermal ensemble
of the boundary grows exponentially as well, allowing for & accessible to the other asymptotic observer. In fact, this con-
significant effect. We have found that the asymptotic valuestryction is a standard method of describing real-time, finite-
of the “hair” appears directly in the expectation values of temperature field theories; one studies operators that access
operators in the boundary state, giving a precise realizatioBne Hilbert space that is correlated appropriately with an-
of the holographic proposal of 't Hooft and Susskif&8].  other. The auxiliary Hilbert space then functions as an exter-
Our analysis has been mainly at a linearized level and theal bath which thermalizes the system. The situation is en-
back reaction on the metric was neglected. We hope to exirely parallel from the boundary perspective. The boundary
tend our work in the future to situations like the formation of of spacetime has two disconnected components and so the
a black hole where the nonlinearities of gravity are moreCFT Hilbert space factorizes into a product of two identical
important. pieces. The choice of bulk vacuum is reflect in the CFT
S-matrix, bulk commutators, and local physitsing the ~ vacuum as discussed in Sec. IIC and Appendix A. Tracing
operator relation between bulk and boundary fields, we cafver one boundary component leaves a thermal state acces-
reiterate some points made [i6,4]. It is apparent that tran- Sible to one asymptotic region. _
sition amplitudes between physical states in the bulk can be Scale-radius duality We would like to use the scale-
computed from the boundary theory. Specifically, prepare Ladius duality _d|scussed in this paper to study_ motions to-
bulk state|¥)=a/ - --aj} |0) and evolve it forward in time wards the horizon from the boundary perspective. For pure
it T “n ) AdS spacetime, scale-radius duality originates in the dual
as|W)—e "W). Precisely the same operation can be per-action of the bulk radial isometry and the boundary scale
formed in the boundary theory: the expansid?) and the  transformations. In fact, these are not symmetries of the
equivalencea,=by allow one to prepare the intitial state, plack hole. The curvature of Schwarzchild and the discrete
and time evolution with respect to the CFT Hamiltonian isidentifications of BTZ break the isometry group, and the cor-
identified with time evolution in the bulk. Thus transition responding thermal boundary state breaks conformal invari-
amplitudes in the boundary theory can be reinterpreted asnce. Nevertheless, there are arguments that the bulk-
amplitudes in the bulk. boundary duality continues to hold since the spacetime is
An unusual feature of this map is that the radial coordi-asymptoticallyAdS [1,3,30,3]. What is more, BTZ black
nate in the bulk does not appear in the boundary mode exoleslocally enjoy the same symmetries as AdS spacetime
pansion(17). This makes it difficult to check aspects of bulk and so motions of local probes continue to map to motions in
locality such as the commutation of operators at spacelik@oundary scale(These points can be made quantitatively
separation. However, as we have explicitly shown, theising the methods of this paper, as we hope to discuss else-

boundary theory has access to data on the radial position dfhere) _ _
localized bulk probes in the characteristic scale of their orizons from the boundary perspectivemed with the

boundary images. As we have discussed, classical locality gic@le-radius duality, we introduce a bulk probe that starts
the bulk physics is mapped, at larje into the approximate n€ar the boundary_and falls toy\_/ards the honz_on. I_:rom the
independence of collective fluctuations of objects at differenfOundary perspective, the position of the horizon is repre-
boundary scales. So the breakdown of locality in quantum

gravity should be understood in terms of incomplete decou-

pling of scales in the boundary theory at finlke We are 12The disconnected topology of the boundary in the BTZ case can
investigating this issue and hope to report on it elsewhere. be seen directly from its orbifold constructipfs].
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sented by the thermal scale. The boundary probe starts life at APPENDIX A: CORRELATORS AND PROPAGATOR
a very high scale much above the thermal bath. This separa- AMBIGUITIES

tion of scales allows it to spread unimpeded as though the In this appendix we will give a more careful discussion of
bath was absent. As the bulk object falls through the horizon h h gp.” trated i % ] ficul il dis-

its boundary dual reaches the thermal scale. Falling througF1 € mt?] 0ds 1us ra(fathln e%._ .'t'n par |<é|ufar_we t\;nv' blslk

the horizon in the bulk is reflected on the boundary as thergussd € meaning o fe ampiguities in detining the b 'I-I
malization due to interaction with the thermal bath. Note that>Cunoary propagator _or}Lorent;an spacetimes. We wi

this does not mean that the probe state has “mixed” with theContlnue to work in Poincareoordinated1).
density matrix describing the black hole. Rather, interactions

with the thermal bath make the probe state look like a typical 1. Euclidean signature

state in the ensemble. As the bulk object penetrates to the As in Sec. Il we study the bulk-boundary correspondence

singularity increasing the black hole mass, thermalization ofy) for a classical massive scalar with acti@h that couples

its boundary dual raises the boundary temperature. The h@y gn operator with dimensionh2. Eq. (6). In Sec. Il we

rizon as a causal construct preventing extraction of informagorked in position space and followed the procedur3jf

tion is only “real” to the degree that thermalization obscuresrelating the boundary contribution to the bulk action to CFT

the history of a state. _ correlators. In fact, as discussed @] this procedure violates
Black holes from collapsewe can also consider black \yarq identities and must be modified. The correct algorithm

holes formed from collapsing shells of matter. Again, fromis {5 evaluate a suitably normalized bulk actiorzate prior

the boundary perspective, the state will spread out until it taking e—0.

reaches the scale characteristic of the temperature of the Improved procedure in momentum spatle improved

black hole it has created. The degree to which the resultingcedure of9] is easiest to implement in momentum space.

horizon is sharp will be the degree to which the final state ispj,g unique solution to the wave equatiofl £ m2) ¢=0

difficult to measure due to the complicated way that the in- ith momentumk parallel to the boundary is the Bessel
formation about the configuration is spread out over modeﬁ:nction [2.9.4 P y

at low spatiotemporal scales. The causal structure of th
black hole appears as a statistical phenomenon and is precise

in the thermodynamic limit. e’ 727K, (|kl2) ¢°(E)' (A)

At the boundaryz—0, ¢—A(z)+B(z) where A=2"-(1
+...) andB=z>"+(1+--.) and the ellipses indicate series
In summary, we have developed techniques for describingn even powers of.** For m?>0 this is divergent ag—0

bulk probes from the boundary perspective. Using our methand requires regulation. According [8] we work atz=e

ods, properties of solutions to the bulk equations of motionyith the normalizations=C(e€) (k)€ *. The authors of

can be translated into properties of states and expectatiq] setC(e)=1, but since the scaling ap as it approaches
values in the boundary theory. We have argued that there ie poundary is important, we choo€e= €2'-;

a map between the quantized mode expansions of bulk fields
and boundary operators and used our approach to demon- di2
; . . . 2K, (|k|z)
strate a scale-radius duality for several probes. Finally, we b(z,K)=eh-——
outlined the application of our methods to the study of black €K (|k|€)
hole causal structure. This work constitutes a preliminary
attempt to address the emergence and eventual breakdownTifie bulk action(4) then reduces to a boundary teféh9]:
local spacetime from the gauge theory perspective towards
guantum gravity. 115012 /
S=1lim 2! 95(k+K") po(k’) €2"- (|k,|z)d,2K”(|k,|z)
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(O(IZ’)O(IZ))@&(IZ’ +IZ)|k|2V. (A4) are identical to the Euclidean case and there is no normaliz-
able solutions. Fok?<0, there are two solutions which are
The position space procedure used in Sec. Il gives differerfmooth in the interiof4]. One solution is
normalizations because the bulk-boundary propagator used . a2 K.y
there approaches a delta function at kel boundary rather ¢~ (k,2)>z%_,(|k|z)e (A7)
than atz=e. . : 4 s S .
Operator expectation valuegrom Sec. Il we know that when v is nonintegral* This solution is not normalizable
turning on source in the boundary theory will lead to non-(for v>1—see[4] for a discussion of the case<1l); it

2h_ . .
trivial operator expectation values. These are given by ‘h‘gﬁg?;/?u:ﬁo aggﬁ&é;?r}]i? ttr?:brgggga:f nzﬂflil;ggagr?gem
first variation ofS(¢): Y. p

solution is

5S( )= fpodzwf‘(ba‘b’ (A5) ¢* (K2)=292),(|K|2)e*, (A8)

which is normalizable and behaves 28+ whenz—0.
where, as in Sec. I, we have added a small perturbation of Operator expectation valueShe most general solution
the form 8¢ =2z2"- 5¢by. In momentum space, with the cutoff ¢(k,z) which is asymptotic to toe2"- ¢o(K)e'*"Y when z
procedure prescribed abovedd(z= €,k) = 62h,5¢0(|2). =e€is
Combining this withd,¢ at z= €, using Eq.(A5), and drop- Ny -
ping contact terms as before, we get a finite one-point func- ¢(k.2)=0(kje y‘bi(k*z) L
i “(k,z2)+A(k k,z) - - N
tion +62h7¢ (* ) (a)¢> (* )e'k‘y¢o(k).
. . . . o (k,e)+AK) d" (K, €)
(O(K)) g5k =(O(K)O(=K")) po(K"), (A6) (A9)

where the two-point function was given in Egp4) and is  Here ®(k) is the Fourier component of the classical field
evaluated here in the absence of a source. So the interestiggnfiguration we wish to study and

part of the one-point function—the part which does not come _r S e

from coincidence of the source and the operator insertion— Ka(K,€,2)= e ¢ (If’z)+A(|f)¢ (lj’z) (A10)
arises from the subleading part of the source term which ¢ (k,e)+AK) ¢t (K, €)

scales ag®"+ at the boundary. The bulk of this paper rests

on the independent specification of this subleading part neds the bulk-boundary Green’s function. As we can s€g,
z=0 via the addition of bulk probes and the consequentas an ambiguity which is encoded A{(IZ). Once again, we
modifications of operator expectations on the boundary. insert this into théquadratig action and integrate by part3.

The result is
. '2. Lore.nt2|an '.5|gnature | . (D, bg) = 1 ddkddk’6d(|2+ E’)Zlfdaz
We again begin by discussing free, massive scalar fields. 2)z-e
In Lorentzian signature, normalizable solutions to the wave . R . R
equation exist; so specifying the fields a0 does not X[D(K)p" (k,2)Ka(K',€,2) po(K")
uniquely specify the field configuration in the bulk. As dis- . . .
cussed inM4] the normalizable solutions form the bulk Hil- + ho(K)Ka(K', €,2) po(k")]. (A11)

bert space which is dual to the space of boundary state]s_.

There is also a spectrum of non-normalizable modes that o this we can read off the one-point function

implement boundary conditions and are dual to boundary (O(K)) g =lim dA[P(—K) " (—K,2)
sources. % 2.
In the supergravity effective action, the normalizable so- + qbo(—IZ)]K(E €2)}. (A12)

lutions can appear in two places. First, classical field theory
in the bulk involves expanding the bulk action around clas\When ¢,=0, it is easy to see that
sical, normalizable backgrounds. We will see that this corre-
sponds to turning on expectation values for CFT operators. <(’)(I2)>= ECI)(—IZ)
Second, the bulk-boundary propagator is not unquiely speci- 2 '
fied by the asymptotic behavia®"-s8%(x—x') as z—0, _ o
since a normalizable solution vanishing at the boundary cari N tWo-point function is
always be added to it. This ambiguity is related to the choice
of vacuum for the theory and will affect the correlation func-
tions. ] Uwhen v is integral, ¢~ (K,z) < 292Y (K| z) ek V.
Working in momentum space and in Poincam®rdinates 15 : . : I
N > In fact the integration by parts gives an oscillating surface term
(D, we Wr'Eekz (,q) for the momentum parallel to bound- 47 . This should be understood in terms of an infrared cutoff in
ary (y=(t,x)). Fork?>0 (spacelike momenjahe solutions the gauge theory.

(A13)
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o\ o _ ” o starting with the bulk soliton and evaluating the effect of a
(o)oK )>¢0 <O(k)>"’0<o(k )>¢° perturbation, we could consider a perturbation of AdS and
ask about the change in the action on including the soliton.
Here we study the D-instaton using the latter technique.

Consider a perturbation of the dilaton in Ad®&hich re-
In this case, the parts #f which behave ag”"+ andz”"- are  quces to a delta function at=x, on the boundary. The bulk
explicitly labeled by¢™ and ¢ . As in the Euclidean case, value of this perturbation is
after dropping contact terms the finite pieceeas0 comes

+lim 8%k+k')a,K(k,e,z). (Al4)

Z—€

combinations of)~ terms in the numerator anfl™ terms in 6 v

the denominatorand vice verspof Eq. (A10). Thus the 5¢=?m- (B1)
connected part of the two-point function will depend quite [ al”]

strongly onA(lZ). The D-instanton is a source for the dilaton and axion and so

Interpretation of propagator ambiguitieShe dependence the linearized effects of a D-instantonzt z andx=x; can
of these correlators o is easy to understand. Turning on pe incorporated by adding a term in the action of the form
such a classical background implies that the bulk theory is in

a “coherent” state in which many modes have an expecta- S —> Je b4
tion value. The map between bulk and boundary states dis- DAsnt= 27 | J(e"+iX),
cussed in Sec. Il implies that the CFT should also be in a - ..
“coherent” state built from the modes of the dual boundarywhere J= §(xo—Xo) 6(X—X,) stands for the D instanton
operator. Not surprisingly, the CFT operator has an expectassource. The coefficient in front of the integral in EB2) is
tion value in this state. Roughly speaking, the expectatiorobtained by requiring that the D-instanton action be given by
value is dual the part op that behaves a&"+ at the bound- S=2m/gs. Writing e #=(1/gs)(1— d¢) and susbtituting
ary. for 6¢ from Eq. (B1) gives

In addition to the freedom to specify a classical 4
background-coherent state W3, there is an ambiguity aris- 48 Xo

! Soisni=
ing from the freedom to specifA(k D-isnt

(B2)

).1® The origin of the 4TG5 [x2+ |X— X4 2]* (B3)
ambiguity is the freedom to specify a vacuum state. In stan- ]

dard field theory, Wick rotation from a Euclidean signature This is exactly equal to the bulk response in E2j7).
specifies a certain propagator. But if we were simply to ask 1his method gives the same bulk response as in Sec. Il
that the two-point function satisfy the appropriate inhomog-because we are working in the linearized limit. An analogy

enous differential equation, we would have a much widerWith electrodynamics is useful. Introduce a small perurbation
' of the electrostatic potential surrounding a system of charges.

range of choices; we could pick some combination of theT e energy of the resulting system can be computed from the
advanced, retarded, and Feynman propagators, and we coﬁg gy gsy P

add propagators that solved the associated homogenous Ction for the electromagnetic field and the source coupling
propagatot : 9 the field. Then the bulk contribution vanishes by the equa-
ferential equation. Our choice would depend on bounda

conditions and the choice of vacuum. Here we chobséa ions of motion and we are left with a surface integral like
analytic continuation from the Euclidéan case; the combina!Eq' (26). This method is followed in most of this paper.
y ' Alternatively, the energy iE=Z2,q;V;, whereq; andV; are

tion of J,(lk|z) and J_,(|k|z) will be that equal t0 the charge and the potential at the position of each charge,

K, (i[K|2): . N - . respectively. So the change in energy is determined by the
K. (i[K|2) = m e (= |klz)—e ™", (~[K[2) perturbation of the potential at the location of each charge.

v 2 sin(v) : This is exactly analogous to E¢B2).
(A15) The same reasoning works for a general linear system.

The supergravity theory under consideration here is certainly
not linear, but the D-branes act as small sources. Since they
tcarry a charge of order 1/g,, the corresponding changes in
the supergravity fields are of ordeﬁﬁ(ggx 1/gy). In the
largeN limit that we are working in, these changes are of
APPENDIX B: THE BULK RESPONSE: ANOTHER order O(1/N) and are therefore smail. Thus to leading or-
METHOD der in 1IN (and for purposes of calculating the one-point
functions one can work with a supergravity action expanded
The relation between the dilaton field and the vev d¥¥r  to quadratic order about the AdS background. The resulting
was obtained in Sec. Ill by considering the response of thgystem is in effect linear and the two methods for evaluating
bulk and boundary theories to small perturbations. An alterthe bulk response must then agree.
nate method for computing the bulk response in the presence
of branes is to do things in the opposite order. Instead of ———

In some spacetimgg.g., those containing black hojekere
are inequivalent vacua defined with respect to differen
times. Presumably this would be reflected in the the bulk
boundary propagator.

YFor example, from Eq(21), Eq. (23), we see that the dilaton is
changed from its asymptotic value by an amouwfit=(1/N)
5we are grateful to Tom Banks and Emil Martinec for a discus- X (24/g,N)xgxo */[Xo >+ |X—X4/2]*. In the largeN limit where
sion of this issue. 9N is kept fixed this is ofO(1/N).
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