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Particlelike solutions of the Einstein-Dirac equations
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The coupled Einstein-Dirac equations for a static, spherically symmetric system of two fermions in a singlet
spinor state are derived. Using numerical methods, we construct an infinite number of solitonlike solutions of
these equations. The stability of the solutions is analyzed. For weak coupbngsmall rest mass of the
fermiong, all the solutions are linearly stablevith respect to spherically symmetric perturbatipnshereas
for stronger coupling, both stable and unstable solutions exist. For the physical interpretation, we discuss how
the energy of the fermions and tteDM) mass behave as functions of the rest mass of the fermions. Although
gravitation is not renormalizable, our solutions of the Einstein-Dirac equations are regular and well behaved
even for strong couplind.S0556-282199)00708-0

PACS numbd(s): 04.40.Nr

[. INTRODUCTION the dominant force. Nevertheless, we view this study as a
model problem worth considering in order to get some un-
In recent years, there has been much interest in the co@lerstanding of the equations and their solutions. In a future
pling of Einstein’s field equations to Yang-Mills equations. publication, we will consider the more physically realistic
In this case, the attractive gravitational force is balanced byituation where the Einstein-Dirac equations are coupled to
the repulsive Yang-Mills force, and this interaction has led to@ €lectromagnetic fieltMaxwell's equations
many interesting and surprising results; see for example OUr results are based on a certain ansatz, whereby we
[1-10. In this paper, we consider the coupling of Einstein’s'¢duce the 4-component Dirac spinors to a 2-component

equations to the Dirac equation. Here the necessary repulsii@inor systeme =(a, 5) with real functionsa, 5. We show

mechanism is provided by the Heisenberg uncertainty prinpumerically that particlelike solutions of this type exist, both

ciple in the ground state, and in the excited states. For weak cou-
The Einstein-Dirac equations take the form pling, i.e., small massn, the different solutions are charac-

terized by the “rotation number,n=0,1,2 .. ., of thevec-

1 tor («,B) (we work in standard unit¢=c=G=1). The
R—-—-R&=-8xT, (D-m)¥=0, (1.1)  solution withn=0 is the ground state, and the solutions with

b2 ' n=1,2,... describe the excited states. For snrmllthe so-

) lutions are(linearly) stable with respect to spherically sym-
whereT; is the energy-momentum tensor of the Dirac par-metric perturbations. However, asgets large, several states
ticle, D denotes the Dirac operat¢see[13]), and¥ is the  appear for eachn. In fact, for everyn, the mass spectrum
wave function of a fermion of mass. As in the above- (i.e., the plot of the binding energy vs the rest massa
mentioned earlier studies, we consider static, sphericallgpiral curve which tends to a limiting configuration. This
symmetric solutions. Since the spin of a fermion has an insurprising result shows that for parameter values on this lim-
trinsic orientation in space, a system consisting of a singléting configuration, there is an infinite number of excited
Dirac particle cannot be spherically symmetric. In order tostates “in thenth mode,” while for parameter values near
maintain the spherical symmetry, we are led to the study ofhis limiting configuration, there are still a large, but finite
two fermions having opposite spin, i.e., to a singlet spinofumber of such excited states. Furthermore, using topologi-
state. Of course, such a configuration does not represent@! Methods and bifurcation theofgee[14] part 1V), we
realistic physical system due to the absence of the electr¢OW that in every mode, the stable solutions must become
magnetic interaction. More precisely, neglecting the electroUnstable as the binding energy increases. Although gravita-
magnetic interaction corresponds to the limiting case wherd®n iS not renormalizabléwhich means that the problem
the masses of the fermions become so Idifethe order cannot be treated in a perturbation expangionr solutions

(Planck lengthy 1] that the gravitational interaction becomes of the Einstein-Dirac gquations are regular and well-behaved
even for strong coupling.

Il. THE DIRAC OPERATOR
*Email address: felix@math.harvard.edu

"Email address: smoller@umich.edu In this section, we shall derive the form of the Dirac op-
*Email address: yau@math.harvard.edu erator in the presence of a static, spherically symmetric
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gravitational field. In preparation, we first give a brief math-ynerew = g+ (1(1) (11) is the adjoint spinofwhose definition

gmatical introduction of the Dirac theqry in curved SPaCe-goes not depend on the gravitational field;10are (2x2)
time. The Dirac operatdd is a differential operator of first submatricel and g denotes the determinant of the metric
order gj« - The scalar produd®.5) is indefinite, but it is neverthe-
less useful to us because the Dirac operator is Hermitian with
. d : , .
D=iyl(x) — +B(x), (2.1)  respect to it. The second scalar product is defined on the
ax! solutions of the Dirac equation. For this we choose a space-

. o _ like hypersurfacé together with &future-directed normal
where the Dirac matriceg’(x), (j=0,1,2,3), andB(x) are  vector fieldv, and set

(4x4) matrices, which depend on the space-time paint

The Dirac matrices and the Lorentzian metric are related by —
(¥|D)= | ¥y Dydu, (2.6
H

R
K==1y), 94, 2.2
g 2{7 v 23 wheredy is the invariant measure on the hypersurféte

induced by the metrig;; . This scalar product is positive
definite, and, as a consequence of the current conservation
(cf. [13])

where{.,.} is the anticommutator

Y Y I=( YA,
The basic difficulty with Dirac spinors in curved space-time VJ-\Ifyifb=0, 2.7
is that, for a given Lorentzian metric, the Dirac matrices are

not uniquely determined by the anticommutation relationgt is independent of the choice of the hypersurfage In
(2.2). One way of fixing the Dirac matrices is provided by direct generalization of the expressi@hy°¥ in Minkowski

the formalism of spin and frame bundlésee, e.g., the first space(see, e.g.[15]), the integrandlfyj\lfvj is interpreted

section of[11)). In this formulat|on,_one choc_Jses a frgme as the probability density of the particle. This leads us to
(Ug)a=o,... 3 and represents the Dirac matrices as linear

— normalize solutions of the Dirac equation by requiring
combinations of the Dirac matriceg, of Minkowski space,
5 (V|P)=1. (2.9
Y (x)= 20 uh(x) ¥ 2.3 We now return to the Dirac operat(®.1). Suppose that a
= 4-dimensional space-time with metrig; is given. Accord-
The matrixB(x) is composed of the so-called spin connec-ing t0[13], we can choose foy! any 4x4 matrices which
tion coefficients, involving first partial derivatives of the are Hermitian with respect to the scalar prod2®) and
metric and of the frame. It is quite common to choose forSatisfy the anticommutation relatiof.2). The matrixB(x)
(ua) a Newman-Penrose nu” frame; th|s Choice is partiqunvolves f|rSt der|Vat|Ve.S.Of the Dirac mat“c@é, and from
larly convenient for metrics of Petrov type ®ee[12] for an  [13], we have the explicit formulas
introduction to the Newman-Penrose formalism and many o
applications, especially in the Kerr backgrolnifiore gen- BOX) =¥ (X)E;(x) (2.9
erally, it is shown in[13] that all choices of Dirac matrices with
satisfying Eq.(2.2) yield unitarily equivalent Dirac opera-
tors. Furthermord,13] gives explicit formulas for the matrix i i i
B in terms of the Dirac matriceg’. We shall work with the  Ej=5p(9jp) = 75Tr(¥"V; ¥ ) ymynt g Tr(py;Vmy™p,
formalism of[13] in the following, because it gives us more (2.10
flexibility in choosing the Dirac matrices. For better consis- '
tency with the standard literature, we use the notaloand i o
¥ instead of the symbol& and G’ used in[13]. To avoid p=meijk|y' Y95y (2.11
confusion between the Dirac matrices of curved and flat ’
space-time, we label the Dirac matrices of Minkowski spaceteijkI is the totally antisymmetric tensor density

as in Eq.(2.3) with an additional bar. _ Now we will specify these formulas for the Dirac operator
The wave function¥” of a Dirac particle is a solution of 4 gtatic, spherically symmetric space-times. In polar coordi-

the Dirac equation nates €,r,9,¢), the metric can be written asf. [16,7])
(D—m)¥=0. (2.9 1 1

o diag| = T 2 2

On the wave functions, two different scalar products can be 9ij d'ag(-rz' AT szﬁ) ' (212
defined. In the first, we integrate the wave functions over all
of space-time, 1 1
I =diag| T2, -A,— —=,— ———
J g( r2 rzsin219>

<xp|q>>=f ¥ [gld*x, (2.5 (2.13
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with volume element anti-symmetry of thes-tensor, we can, in the contribution of
the fourth summand, replace the covariant derivative by a

partial derivative. This gives
Vg|=T 1A~ Y2 2sin 9|,

i ‘ 1
WhereA=A(r) andeT(r) are posi.ti\./e functions. We sh_aII B= §Tr( Y'V; y')yn+1—651minr( Ymdj 'yn)ys'yp.
use this form of the metric to explicitly calculate the Dirac (2.20
operator(2.1). For the Dirac matricesy!(x), we take an ’

ansatz as a linear combination of the usyahatrices in the  The second summand in E@.20 is zero. Namely, the trace

Dirac representation always vanishes if the tensor indices are all different,
7 = 1 'Y = i ) 1= 1699,
0 -1 —o 0 TH(Ymd; ¥n) =0
(2.14 Ym% ¥Yn
where o1,02,0° are the Pauli matrices. In order to satisfy for m,j,n=tr,9,0r ¢ and m#j#n#m; (2.21)

Eq. (2.2, we must transform these Dirac matrices of the o _ _
vacuum into polar coordinates and multiply them by the facthis can be verified directly using our special ang&ta5—

tors T and A, (2.18 for the Dirac matrices. In the first summand in Eq.
(2.20, we can use thaV;y' is a linear combination of the
Y=TH°, (2.15  Dirac matricesy!, and thus
r 1 2 3 H
v = JA(y! cosd+ y2 sind cose + y3 sind sing) , . .
(2.16 Tr(¥"Viy) ya=4V;y.
P B 2 3 ;
yv= F(_ v sind+ v cosd cose + y° cosd sine) , We conclude that
(2.17
ot ¥2sing+y° 2.1 B | Viyl 2.2
Y= aing (T Y Sine+y cose). (2.18 =5V (2.22

This choice is convenient, because it greatly simplifies EQs. Thjs form of B(x) as a divergence of the Dirac matrices

(2.9—(2.11). Namely, the matrixp becomes independent of ajlows us to easily check that the Dirac operator is Hermitian
x and coincides with the usual “pseudoscalar” matsixin  \ith respect to the scalar produgct.); indeed

the Dirac representation,

o (0] = i Ji I_ ] 4
,Jzysz.yoylyzyrs:(]l o)' <mqf|q>>—f (I’yaxj-i-zvj‘y v \/|g|d*x
As a consequence, the first and last summands iHZE#0 I e _i i 4
vanish and thus = | iy 5= 5V | lgldx

i | +f Wi0,(\[gly))Pdx
B=—15TH YV Y)Y Ym¥n

— 9 i .
i o ; . s =f«1r iy —+5Vy @ \/[g|d*x=(¥|DD).
:_1_6Tr(’)’ Vivy") (0m¥n= Onym* ')’ngn"HSmnp'y ¥P). 2

(2.19 In order to calculate the divergen¢2.22), we first com-
pute
Using Ricci’'s Lemma
1
—=a(\[g[¥)=0,
0=4V,g™"=V,; Tr(y™y") =Tr((V;y") ¥+ Tr(y"(V;9"), Vgl
we conclude that the contributions of the first and second 5 T
summands in the right bracket in B@.19 coincide and that _—_ 5 (\/[g[y")=AY2Tr 24, (r2A~ Y271, :(___) r
the contribution of the third summand vanishes. Using the/|g| (el ) 3 7) roT)7
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1
—=ds(\lglv")

Vil
————94(— ¥t siP9+ y2 sin ¥ cosd cose

rsmﬂ

(=29 sin9 cosd

_ 1
+ 93 si inp)=—
v sind cosvY sing) o

+ y%(co€ Y — sirt ) cose + y3(coL Y — sirtd)sing)

—a,(\lgly") =

(=7 cose—y*sing),

r sind

r

and thus obtain
B 2 T ]
2 F T

i — — _
— F(yl cosd+ 2 sind cose+ y° sind sing)

i i T
— Y Nt VA R ¢
(1A Y S5y
We conclude that the Dirac operator has the form

!

D=i i+ |i+ (1 A~12)
Yoty 2T

+iy? (2.23

—+ ‘Pﬁ
I —
o9 7 dp’

Ill. THE DIRAC EQUATIONS

PHYSICAL REVIEW [19 104020
Furthermore,
O'ﬁ((?ﬂa'r):O'(P((ng'r):], (3.1

Tr(o?(9,0"))=2 sin® cosd( —cose sing

+sing cosp)=0, (3.2
Tr(ao?(d r)—2—COS —si
r(c?(dga'’))= sinﬂ( sing cosep
+cose sing)=0. (3.3

In analogy to the ansatz for the Dirac spinors in the hy-
drogen atom for zero angular momenti{see, e.g.[17]), we
write the wave functions in the form

U €,

qfazeiwt( ) a=1,2, (3.9

O'rUZGa
whereu;(r) andu,(r) are complex-valued functions, and
the (e,)a—1, denote the standard basis;=(1,0), e,
=(0,1) of the two-component Pauli spinors. This ansatz is

quite useful, because the Dirac equations¥grand¥, are
independent of each other,

!

i T
3 TVA

0

DV,=

r a(;)<i\/xar+:._(\/z_1)_

OU"P
0O O

where we have used E¢3.1). This allows us to view the
Dirac equation as a two-component equationuinu,. In
order to simplify the radial dependence, we choose new

+wT’y + (3.5

In this section, we shall separate out angular momenturfdnctions®, and®, defined by
from the Dirac equatioii2.4) and reduce the problem to one

on real 2-spinors. Oy =rT Yoy, @p=—irT 2y, (3.6
We first introduce some formulas involving Pauli matri- d ite the Di .

ces. These will be used in this section for the separation of"d rewrite the Dirac equation as
the angular dependence, and then, in the next section, for th

) A 1 0 01 0 —-1\1
computation of the energy-momentum tensor needed in Ein- wT— A, + i
stein’s equations. We introduce the following notation: 0 -1 10 l1 or

(3.7

' (9,¢)= o' cosd+ o sind cose+ a2 sind sing,

This equation is real; thus we may assume thaitself is
real. Leaving out the time integration, the scalar prodyc}
takes on these two-componnent spinors form.

o¥(9,¢)=—o'sind+ o2 cosd cosp+ o cosd sing,

o?(d,¢)=

smﬁ( a?sing+ o cose). . L
(<I>|\If):f dVA Y(r, d=do>.
These matrices are orthogonal, 0

The “Dirac operator” in Eq.(3.7) is Hermitian with respect
to this scalar product, and the normalization condit{@r8)
for the wave functions transforms into

Tr(o" o) =Tr(o"o®)=Tr(c%c¥)=0,

and their square is a multiple of the identity
(0)2=(c"?=1, (07)?=—3=

1 J'w|(I)|2 T q 1
. —_— r:_
Sintd 0 N/

104020-4
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Finally, we write the Dirac equation as the ordinary differ- Dirac equation for the unperturbed Dirac operaldr we
ential equationODE) must only consider the variation @f; thus

0 -1 1 0 01
“’T<1 0 0 —1>_m(1 o”@‘
3.9

We remark that, instead of taking the ansg@2) for the
wave functions, we could just as well have put the matfix \ve calculate the variation of the matri using Eq.(4.1)

1
+ —
r

VAD' =

— 9
5s:f ReW i(671);+55 vy|gld*x. (4.2
X

into the upper component, i.e., and Egs(2.9), (2.10),
—iot o-rulea
Va=e ™| e |1 12 (3.19 ReW SBW = —Im S(TH (Y™ ;Y)W Y Yy ®)

This ansatz can be reduced to E8.4) by changing the sign
of the mass in the Dirac equation. To see this, we transform
the wave function according to

1 — .
= 1—65(Tr( ymVj YOHIM (VY ymya¥))

1 . —
= E(s(,EJmnp'rr( YV 7)Y ¥y, V)

V,= yS\Ifa.

1 . —
R =—8(E™PTr(ymd ) ¥ ¥y, W)
Then sinceW is of the form(3.4) and satisfies the Dirac 16 mn P
equation (2291 —
) ) = g€ ST (Ymd; ¥n) W ¥y ¥
:YS(D_m)'yS\Pa: _(D"_m)q’a 1
o = 75" (0Gm0 Tr(¥9; ) ¥ ¥y, ¥
we can again simplify to the two-component equati8ry).
We conclude that it also makes physical sense to look at the (4.3
solutions of Eq(3.9) with negativem (and positivew); they
can be interpreted as solutions corresponding to the ansatz _ _ _
(3.10. Notice that the trace in the last equation does not necessarily
In Append|x A, we Study the Sp|nor dependence of gen_Va.r“Sh But we can use the fact that we are deallng with a
eral static, spherically symmetric solutions of the Einstein-SPin singlet; this implies that the expectation value of the
Dirac equations, and we give a more systematic Just|f|cat|orP59Ud0VeCt0f)’ Yp is zero:
for the two ansat£3.4) and(3.10.
2
IV. CALCULATION OF THE ENERGY-MOMENTUM 2
TENSOR a=1

\I,a'yS?’p\Pa: 0

We derive the form of the energy-momentum tensor by
considering an arbitrary variatiofg;; of the metric tensor. (this can be checked by a short explicit calculatiarhus we

The variation of its inverse is given b§g' = —g'*g!' gy, . only have to consider the variatiaty’ of the Dirac matrices
In order to satisfy Eq.(2.2), we vary the Dirac matrices in Eq.(4.2). We substitute Eq4.1) into Eg.(4.2) and obtain,
according to for the spin singlet,
sy'=- EQl“‘(égm)V' 57-=£(59-k)y"- (4.0

2 ' 172 i 5sf ERe\Ifan - | Wa59™ V[gld*x.
The energy-momentum tensor is obtained as the variation of
the classical Dirac actio(see, e.g.[15]): Thus the energy-momentum tensor has the form

=f\1f<w—m>WHd“x. 12 N

Tw==2 ReV,|iyi— +iye— |V, (4.9
! a=1 Foxk ax!

This action is real; therefore it suffices to consider the real
part of the integrand. Since the wave functiénsolves the We compute

104020-5
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2
Re Y, W,iy'9,¥,=20T|V[2=20wT?r "2|®|?,
a=1

ReE V,iy'9,¥,=Re AT(r " LJyTd)a,(r LyTd)=0,

2
AT 0 1
Rez Wiy oW, = RewE Yy, ReZwLQ)( L 0)<1>:0,
r
1\
Rez Wiy, W= ReE i VAW, 1 o) 7 Ya
0 i 0 -1
=Re 2JA(r " 1J/Td) o 3,(r"1JTd)=Re 2JATr 2® L o |%®
(3.9
= 20T 2| O2+4Tr 30D, +2mTr 2(d2—d3),
a— 2 0 il
Re Y, V,iy?as¥,=Rer 1>, ¥, . ooy,
a=1 a=1 —il 0
(3.1
= _2r_3T(1)1(I)2,
Rez W,iy9,¥,=Rer” 12 )oa‘lfa
(3.1
= —2r_3T<I>1¢>2.
|
All other combinations of the indices vanish because of Egs. V. THE FIELD EQUATIONS
H r 9 e _ . . .
(3.2), (3.3, and the orthogonality of",o",a¥. We con The Einstein tensoG!=R;—1RéS; has the form(see,
clude that iT N i
e.g.,[16])
Ti=r"2diag RT3 ®|?,— 20 T3 ®|2+4Tr 10, d,
. v 1 A A
+2mT(D2— D), —2Tr ld,d,,—2Tr 10,d,). Go=— 3t 3t
(4.9
_ . 1 A AT
As a check, we calculate the trace Bf directly from Eq. Gi=— 5+~ T
(4.4), T
2 2 , 3 A AT AT 2AT? AT
T}=g Re(W,(iy1d,)W,)= 2 Re(W,(iyld,+B)W,) GC=vs=5 77 " o7 M-I
2
=mY, ¥, ¥,=2mTr 3(d3—d32), with all other components vanishing. Thus, using E45),
a=1 Einstein’s field equatlonéa' —87rT' become
and we see that it agrees with taking the trace of (Bdp). —16rwT?|®|?=rA'—(1-A) (5.2

104020-6
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— 167w T?|®|%+ 3271 1 TD D, + 1@an(<I>§—<I>§) where a4, Ty, @ andm are (rea) parameters. We also re-
quire that our solutions have finitADM) mass; namely

=2rA=+(1-A), (5.2 o

pi= I|m§(1—A(r))<oo. (5.13
r—oe
. ZTH ) T’ ) T 2
—16mTr Ty Py= AT 217 This implies that

A’ T’ limA(r)=1. (5.19

—rﬁJrr? (5.3 r—oo

Finally, in order that the metric be asymptotically

Using the notatiorw=®,,8=®,, Egs.(3.9), (5.1), and Minkowskian, we require that

(5.2 can be written as

1 IimT(r)=1. (5.15
\/Ka'zra—(wT—F m)83, (5.9 o
1 VI. SCALING OF THE EQUATIONS
VAB' =(oT-ma——8, (5.9 For the numerical computations, it is difficult to take into
account condition(5.15 and the integral conditior{5.8).
rA'=1—A—1670T2(a?+ B?) Therefore we find it convenient to temporarily replace these
' (5.6) constraints by the weaker conditions
' limT(r)< drq>2Td< 6.1
o0 E— [ee)
21A ==A~1-1670T%(a?+ 57 fim (r)<ee and | |®| = (6.2)
1 d instead set
+327TFTC¥,3 and instead se

To=1 and m==+1. (6.2
+16mmT(a?— B?). (5.7
This is justified by the following scaling argument which
By direct computatiorfor, e.g., by usingiATHEMATICA ), we  shows that there is a one-to-one correspondence between so-
see that Eq(5.3) is implied by this set of equations. It is lutions satisfying Eqs(6.1), (6.2) and solutions satisfying
sometimes useful to rewrite the Dirac equatidbsd) and  Egs.(5.195 and(5.9).

(5.5 in matrix notation as Thus, suppose we have a solutioa,3,T,A) of Egs.
(5.9—(5.7), (5.13 satisfying Eqs(6.1), (6.2). Then, with the
JAD = 1 —oT—-m ® parameters. and = defined by
NoT-m -1k ' T 112
- 24 p2y___
The normalization conditior2.8) takes the form A= ( 47Tf0 (a”+p )\/Kdr) :
* T 1 =i
2 0 g T 7= limT(r),
fo 9 dr= 5.9 fim

If we assume regularity of the solutionat 0, we obtain we introduce the new functions

the following Taylor series expansions
~ _\/E
a(r)=ayr +0(1%), (5.9 )=y,
1 ~ T
B()= 3 (@To—mair®+0(r?), (5.10 B(r)z\[xﬁ()\r),
2 Alr)—
AN =1~ z0Tgair2+0(r%), (5.11) A(r)=A(Ar),

- T(n=7"1T(r).
— _ _ 2.2.2 3
TN =To 6 (40To=3m)Toair™+ O(r), A direct calculation shows that these functions satisfy Egs.
(5.12  (5.9—(5.7) with m,w replaced by

104020-7
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FIG. 1. The ground state fon=1, a;=0.02; scaled parameter valugs=0.5340,0=0.4994.

ﬁ1=)\m, Vv=)\w7'.

Moreover, it is easy to check that

1

T
ﬁdI’ZE,

Iim?(r)zl,

r—oc

f (@)

and Iimﬁx(r/Z)(l—hA(r))<oo. We note that, as long as
\,7 are positive and nonzero, the transformation from theT(r) have the same qualitative form for all values. The
un-tilde variables to the tilde variables is one-to-one.

Finally, we point out that for the physical interpretation, , : indeed, for thenth excited state, the graph & has
the conditiong5.8) and(5.15 must hold and hencenly the

scaled solutions can have physical sign

ificance

VII. EXISTENCE AND PROPERTIES OF THE SOLUTIONS

Using the local Taylor expansion about=0, (5.9)—
(5.12), and settingl(0)=1 andm= =1, we construct initial
data atr=10"° and then use the standaMhTHEMATICA
ODE solver. We shoot for numerical solutions by fixing
and varyingw. Using an accuracy of 10, we found that
solutions varied continuously witly; (and ), indicating

that this procedure is well behaved. The solutions we find

satisfy
limr2(a(r)?+ B(r)»)=0, IlimA(r)=1,
Iim%(l—A(r))<oo, IimT(r)=7>0,

0.06 -0.04 -0.02 0. alpha

<0.002

02 0.04

-0.004

T

1.15

1.125

1.1

1.075

1.05

1.025

and, in addition,T and A stay positive for allr. In order to
satisfy the other two important conditioris.8), (5.15, we
merely scale our variables in the manner described in Sec.
VI.

For any givena;>0, we found a unique ground state
corresponding to the parameter valug, together with a
countable number of distinct excited states corresponding to
parameter valuesw,, n=1,2,..., where wg<w;<---
<wmax(@1). For a;=0.02 andm=1, the scaledsolutions
for the ground state and for the first and second excited states
are depicted in Figs. 1, 2 and'3These solutions have the
following general characteristics: The graphs of the functions

functions A(r), however, have their graphs changing with

preciselyn+1 minima. The tangent vector to the curve
[a(r),B(r)] for larger lies alternately in either the first or
third quadrants.

For larger values ofr; (andm=1), the solutions have a
similar form, but thea-B graphs of the ground state have
self-intersections and are thus of a different shape. This is
illustrated for three different values af; in Fig. 4. We
found that for the ground state,

lim Ty(aq)=> and

ap—»

lim To(a1)=1.

a;—0

Iwe point out that we also plot treealedvariables in all the other
figures.

10 20 30 40 50 60

10

20

30

40 50 60 T 0.9

FIG. 2. The first excited state fon=1, a;=0.02; scaled parameter values=0.7779,0=0.7326.

104020-8



PARTICLELIKE SOLUTIONS OF THE EINSTEIN- ... PHYSICAL REVIEW [39 104020

beta T A
1.175
0.008 10 20 30 40 50 60 70

0.006

0.004 1.125

0.002 1.1 0.96

alpha 1.075

20.04  -0.02 0.02  0.04 0,86
-0.002 1.05

1.025 0.92

-0.004

10 20 30 40 50 60 70 T oo.9

FIG. 3. The second excited state for=1, @, =0.02; scaled parameter values=0.9616,w=0.9080.

Moreover, in every casél, is a monotone decreasing func- function p—2|m| is negative, which shows that one gains
tion of r. energy by forming the singlet stat€lhis gives a first hint
We also obtained solutions fon=—1 by using similar that these states might be stable, because energy is needed to
methods. The results are qualitatively the same with the exbreak up the bindingFor large values ofn, however,(more
ception that, in this case, the tangent vector to theg| precisely, shortly after the “turning point” ofn;, see Fig.
curve for larger lies alternatively in quadrants two and four; 10), p—2|m| becomes positive. This indicates that the solu-
see Figs. 5 and 6. tions should no longer be stable. This is indeed true and will
The mass and the energy of the solutions we found havbe shown in the next section.
some interesting and surprising features, which we shall now We note that our scaling technique is essential for obtain-
describe. We consider the fixath excited state and, by ing the mass spectrum—the unscaled variables do not have
varying a; and adjustings (for fixed m=*1), we obtain a  “spirals.”
one-parameter family of solutiongarametrized, e.g., by
aq). After scaling, we find that solutions can only exist for a VIIl. STABILITY OF THE SOLUTIONS
bounded range ain. For every value ofn in this range, we ) ) ) B
obtain an at most countable number of solutions, which can N this section, we shall consider the stability of our solu-
be characterized by two physical parameters: the energfy tions undt_ar spherically sy_mmetnc perturb_aﬂons. To this end,
the fermions, and thBArnowitt-Deser-Misne(ADM)] mass W€ con5|der the spherically symmetric, time-dependent
(5.13. We find that we always have<|m|, which means Lorentzian metric of the form
that the fermions are in a bound state. If we plot the binding ds2=T2(r,H)d2— A~ X(r,t)dr?— r%(d 92+ sirt 9d o?).
energy w—|m| vs the massn (i.e., the mass-energy spec-
trum), we find that this curve is a spiral which tends to aThe time-dependent Dirac operator can again be calculated
I|m|t|ng Configuration. This is shown in Flg 7 for the ground using Eq(zzz One gets the f0||owing genera"zaﬂon of
state(G), the first and second excited stat€s S), and the Eq. (2.23 (the dot denotes t-derivatives
lowest and next excited states for negative masiN). The
spirals seem to have a self-similarity; this is illustrated in g iA PR i T
Fig. 8 (we stopped the computation when the limitations of D=19! i aalt yr< i—+-(1-A"1?)— 5T
our numerics were reachedThe (ADM) massp can be at T
viewed as the total energy of both the gravitational field and +iyPay+i y¥d,.
the fermions. Thus the quantiy— 2w gives the energy of
the gravitational field. As is shown in Fig. 9, it is always As in Sec. lll, we separate out the angular momentum by
positive and, if plotted versus, gives curves which again setting[cf. Eq.(3.4)]
look like spirals. Furthermore, one can ask how much energy
is gained(or needeglito form the singlet state. For this, we ﬁ( zy(r,t)e, )

T lioTzy(r te,

!

a=1,2.

must compare théd ADM) mass with the total rest mass r
2|m[; i.e., the energy of two fermions at rest which are so

much delocalized in space that their gravitational interactiorThis gives the two-component, time-dependent Dirac equa-
becomes zero. This is plotted in Fig. 10. For snmajlthe  tion

0.0 0.05 0.05
0.04 0.04 0.04
0.03 0.03 0.03
0.02 0.02 0.02

0.02 0.04 0.06 0.08 0.1 0.02 0.04 0.06 0.08 0.1 0.02 0.04 0.06 0.08 0.1 0.12 0.14

FIG. 4. a-B plot for the ground states at parameter valoes1 and«;=0.31, 0.35, 0.45.
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beta T a

0.005 0.01 0.015 0.0z 0.025 21Pha 5 10 15 20 25

FIG. 5. The lowest state fan=—1, @;=0.02; scaled parameter values= —0.7567,0=0.6302.

0 1 dependent perturbation of this solution, it is convenient to
_(1 O) \/Kar introduce new spinor variables(r,t), B(r,t) by setting

1 0 ( i A i
0 -1 |T(9t— ZTK‘F ET
0 _1)1 z,(r,ty=e"la(rt), zy(r,t)=e "B(r,t). (8.1

+ —_—
1 O0r

Z3
m =0.
( Zz) This has the advantage that we get the an&aty simply by
assuming thatr and B8 are time independent. We consider

Observe that, in contrast to E(B.7), this equation is com- spherically symmetric, time-dependent perturbations of the
plex, and thus we cannot assume here that the spinors aferm

real. Calculation of the energy-momentum tensor and the

Einstein tensor gives the equations a(r,t)=a(r)+e(@(r,t)+iay(r,t)), (8.2
1 A A 202 — — - ;
A B(r,t)=p(r)+e(by(r,t) +iby(r,t)),
r2+ r2+ _— 8 2 Re(z10,21+ 2,6,2) , 1 2 8.3
T2A T2 T3A-12 A(r,t)=A(r)+eAq(r,t), (8.9
ﬁ: _877 Re<_2(210"rzl+ 2207r22)+
r r T(r,t)=T(r)+&Ty(r,t), (8.5
— — 1 A 2AT . .
X (2101Zp— 250:Z1) | — S+t where we look at the real and imaginary parts separaggly (
= r al and b; are real functions Substituting into the Einstein-

Dirac equations and only considering the first order terms in
& gives(UsingMATHEMATICA ) a system of linear differential
equations. If these equations admitted solutions with an ex-
ponentially growing time dependence, the original solution
would be unstable. Therefore we separate out the time de-
pendence by writing

T Al/ 2

Re&(210,2,—2,,21) ,

=8
r2

A’ AT A'T' 2AT AT’ 3T2A%2 TAT T2A

+ —_— =
2r 1T 2 T2 T aa? | 2A ' 2A

aj(r,ty=ea;(r), bj(r,t)=ebj(r), j=1.2,
82T Rezz 8.6
= ’7Tr3T Re(lez).
A(r,t)=eA (r), Tq(r,t)=e Ty(r). (8.7
Suppose that a solutigrx(r),B(r),A(r),T(r)] of Egs.
(5.49—(5.7 and(5.9), (5.14), (5.15 is given for some values This gives the following system of five ordinary differential
of the parameterm, w. Before making an ansatz for a time- equations:

beta T A
1.5 -

0.05

0.025

-0£015-0.01-0.005 0.005 0.01 0.0i5 0.02 2!Pha

5 10 15 20 25 30

FIG. 6. The next excited state fon=—1, «;=0.02; scaled parameter values=—0.9742,0=0.8391.
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0.075¢}

0.025¢
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FIG. 7. Binding energym|—w of the fermions.

a
\/Ka.i: Tl_(m+ (,()T)b1+ KTb2

PHYSICAL REVIEW [39 104020

AT 327 T2
2AT = =~ T+ AT+ —

(a18+bya)

+167T?a(2ma,—2wTa; + kTay)
—167T?B(2mby+2wTh;— kTh,)

4
- 167TT1( 3wT?(a?+ B?) —FTa,B— 2mT

X(a?—p%) |+ l%%(WTZ(Qz-ﬂBZ)
2
—FTa,B—mT(a2—,82)>, (8.12

together with the algebraic equation

JAT
A= 16’777(_(Kb1+ 2wbs)a+(ka;+2way)B).

Al a
- j(?—(m—kwT)B) ~ T8, 8.8 (8.13
The consistency of these equatiofi®€., that the equation
G3=—8=Ts is identically satisfiefiwas again checked with
. a A T, MATHEMATICA . We want to show that there are no solutions
VAa,= 7 (Mt oT)by=«Thy+ k- TB— k=B, for k>0; this implies stability.
(8.9 The above equations come with initial conditionsrat
=0 and additional constraints, which we will now describe.
A Taylor expansion about=0 gives, similar to Eqs(5.9)—
b, (5.12), the following expansions near=0:
JVAb,=—(m—wT)a;— — —«Ta,
ay(r)=ayf +O(r?), ap(r)=axf+0(r?), (8.14
Al B _ 2 _ 2
oA —(m—wT)a—? +oTia, (8.10 bi(r)=0(r?), by(r)=0(r), (8.15
A(r)=0(r?), Ty(r)=Typ+ O(r?). (8.16
b, A T We have three parametess,, a,o and T, to characterize
" (m— _2 _ 1 1 0: 820 10
VAby= —(m-wT)a, ; trTa g Tat o a, the solutions. Since the metric must be asymptotically
(8.11 Minkowskian, we demand moreover that
0.1 0.078
0.09 0.076
0.074
0.08 0.072
0.07 0.07
0.068
0.06 0.066
0.37 0.38 0.39 0.4 0.41 0.42 0.4% 0.41 0.415 0.42 0.425 0.4% FIG. 8. Binding energy|m|
—w of the ground state; detailed
0.075 0.0728 pictures.
0.074 0.0726
0.073 0.0724
0.072 0.0722
0.071 0.072
0.412 0.414 0.416 m 0.4148 0.4152 0.4156 0.416 ™

104020-11



FELIX FINSTER, JOEL SMOLLER, AND SHING-TUNG YAU PHYSICAL REVIEW [»9 104020

L 0.3
G L
N 0.25
F
0.3}
s 0.2} G
N 0.15
0.2} F

1 I _0.05'
21 -0.5 0.5 1 "

FIG. 9. Total energy— 2w of the gravitational field. FIG. 10. Total binding energy—2|m|.

limA;(r)=0, (8.17) @ Ty(0)
e ba(r)—ba(r) —— T(0) B(r). (8.21)
limT,(r)=0. (8.18  Thus we can arrange th@y vanishes at the origin,

r—oo
Furthermore, the wave functions must be normalized, which Ta(r)=0(r),

means thafcf. Eq. (3.8 provided that Eq(8.18 is replaced by the weaker condition

7o 2 y 1 limT,(r)=p for someu, 0<pu<co.
fo (a(r,)+p (r,t))mdr - (819 im T, M w, 0<u

for all t. This time-dependent normalization condition ap- This makes the numerics easier, because we now have only
pears to make the analysis very complicated. It turns outiwo free parametera,,a,q at the origin to characterize the
however, that we do not have to consider it at all, becausesolution. Furthermore, using the linearity of the equations,
for the perturbation$8.6), (8.7), it is automatically satisfied. we can multiply every solution by @onzero arbitrary real
To see this, note that, as a consequence of the currentimber. This allows us to fix one of the parameterg., by
conservation2.7), the normalization integral8.19 is actu-  settinga,,=1), and thus we end up with only one free pa-
ally time-independent. But, in the limit——c, the time- rameter.
dependent solutiori8.2)—(8.5) of the Einstein-Dirac equa- Our strategy is to show that, for any>0, there are no
tions goes over into the static, unperturbed solutionsolutions for which the normalization integi@.19 is finite;
(a,8,A,T), and thus Eq(8.19 holds in this limit. It follows  this will imply stability. In order to explain the technique and
that Eq.(8.19 holds for allt. In other words, the linear the difficulty for the numerics, we consider Fig. 11, where
contribution ine to Eqg.(8.19 vanishes as a consequence oftypical plots of @;,b;),(a,,b,) for a small value ofk, and
the linearized Einstein-Dirac equatiof8.8)—(8.12, (8.13.  the ground state solution of Fig. 1, are shown. According to
We must only make sure that the integ@l19 is finite for ~ EQs.(8.14), (8.15, both the @,,b;) and the &,,b,) curves
all t. start at the origin. We want to show that at least one of these
These conditions can be simplified. To see this, we firsturves stays bounded away from the originrasc, no
consider the infinitesimal time reparametrization matter how we choose and the initial valuesi p,a5q. This
will imply that the integral(8.19 is unbounded. Figure 11 is
interesting because it almost looks as if this happened: the
(a,,b,) curve looks like thea-B plot of the ground state,
whereas 4,,b;) is almost like thea- g plot of the first ex-
cited state. Thed;,b;) curve is not quite closed, however,
and it is difficult to decide whether this is just an artifact of
the numerics or whether it actually means that there is no
T(r) normalizable solution. The numerics are especially delicate
Ti(r)—=T(r)=T1(0) == because, for small values af, the values of &,,b,) are

Tl(r = 0)

o~ 7 Akt
ET(r=0)°

t—t

This transformation does not destroy the ang8t2)—(8.7);
it only changes the functiore,, b, and T, according to

T(0) much larger thand;,b;) (notice the different scales on the
plots of Fig. 13. In order to improve the accuracy of the
a,(r)—a(r)—2 T.(0) (1) numerics, it is useful to note that, numericaty, andb, are,
2 2 k T(0) ' to a very good approximation, multiples of the unperturbed

(8.20

wave functionse, B, i.e., a,~ua, by,~upB for some real
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bl b2

600000

/7 500000

20 al

400000

300000

200000

100000

a2

1-10° 2- 10° 3- 10° 4 10° 5- 10°

FIG. 11. Perturbation of the ground state for 108, variables &,,b;,a,,b,).

constantu. We can eliminate this dominant contribution to a;(R),b,(R) for a fundamental set of solutions, from which

a,,b, by introducing new variables the initial values can be computed numerically. According to
. . Figs. 11 and 12, we already know qualitatively how the re-
a,=a,—pa, b,=b,—up, sulting (a;,b4) plot is supposed to look. This is helpful for

R checking the numerical results and for finding the best values
and rewriting our ODEs in the functionsa{,b;,a,, for R. [More precisely, the best value f&is, roughly speak-

b,,A;,T1); this gives a system of five inhomogeneous, lin-iNg, the value where theag,b;) plot starts to look like a

ear equations. From these, we obtain the plots in Fig. 12. Thelosed curve. IfR is chosen much larger than this, the nu-

(a,,by) curve is similar to that of Fig. 11; theﬁﬁ b ) plot merical inaccuracies pile up in a such way that our method of
1,M1 . ’ 1M2 ’

however, gives a much more detailed view of the imaginar omputing the initial data froma,(R) and by(R) is no

part ofa(r.t), B(r t) (notice again the different scales on the [ONger reliablel , _
plot). This procedure can be carried out for different values of

Next we describe our method to determine the initial data<: @nd gives the plots of Figs. 13-18. For very small values
atr =0 for the solutiongi.e., the parametes,,a,,, for the of K, trle plots look like those in Fig. 13, and one sees that
original equationg8.8)—(8.12)]. It turns out that the integral (a,(r),b,(r)) does not tend to zero for large The shape of
(8.19 is only finite f_or alltif both (a,,b,) and_ @2,b,) tend the (52,52) plot does not change over many magnitudes in
to zero for larger; indeed, from the numerics we see that (see Figs. 12, 14, 15showing too that our numerics are well

(a;,bq) and @,,b,) cannot have infinite oscillations. It is an behaved. Fok~0.02, the form of the plots changes drasti-
efficient technique to fix the initial values by trying to satisfy

the first part of these conditions cally (see Figs. 16, 17, 380ne sees thaﬁ(z,faz) still do not
go to the origin and that it becomes impossible to satisfy
lim (ay(r),b,(r))=(0,0). (8.22 even condition(8.22. If « is further increased, botha(,b,)

r—o

and @,,b,) go to infinity for larger, no matter how the
This can be done by varying the initial values in such a Wa))n't'al data are chosen. l_:rom_ th_|s, we conclude that the
that ground state solution of Fig. 1 is linearly stable.
Our method also applies to the excited states. For the first
(a1(R)?+ay(R)?)—min, excited state and the lowest negative-mass state for the
solutions of Figs. 2 and)5the solutions of the linearized
whereR is the value ofr where we stop the numericR(  equations for smalk are plotted in Figs. 19 and 20. The
must be chosen sufficiently largeJsing the linearity of our (a,,b,) curves are again of similar shape as the correspond-
ODEs, this minimizing condition leads to simple algebraicing a-8 plot; the @;,b;)-curve resembles the- 3 plot for
relations between the initial data and the values ofthe next higher excited statee., in Fig. 19 for the second

’ //////////””’_ﬂ—\;
1 a2h
20 a. 0.001 0.002 0.003 0.004 0.005 0.006
-0.00005

-0.0001

b2h

-0.00015

-0.0002

FIG. 12. Perturbation of the ground state for 10~°, variables &;,b;,a,,b,).
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FIG. 14. Perturbation of the ground state for 103,

bl b2h
/—w 10 20 30 ) 50 azh
10 2 al
-0.5
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FIG. 15. Perturbation of the ground state for 0.01.
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FIG. 16. Perturbation of the ground state for 0.02.
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FIG. 17. Perturbation of the ground state for 0.023.
bl b2h
0.3 0.15
0.2 0.125
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al
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FIG. 18. Perturbation of the ground state for 0.03.
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0.1 8000
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FIG. 19. Perturbation of the first excited state for 10°.
bl b2
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FIG. 20. Perturbation of the lowest negative-mass statefofl0°.
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m-w sinceQ being stable implies that the Conley index@f is

30 (the pointed zero spherethe continuation theorem im-
plies that the Conley index @@; must also b&°, and thus

Q, is also a stable solutiofMoreover, the same argument
shows that all points on the curve between 0 &jdcorre-
spond to stable solutions; this can also be checked numeri-
cally.) Since the Conley indices @, and Q, must “can-

cel” (i.e., the index 0fQ; andQ, taken together must bg 0
this implies thaQQ, cannot be stable, and in fact, the index of
Q, is 31, the pointed 1-spheréln fact, all points on the
curve betweerP, and P, correspond to unstable solutions;
one can also check this numericalliimilar reasoning can
- m be applied to solutions ned,,P;, ... , and so on(We

remark that onlym, and not w, can serve as a bifurcation

FIG. 21. Mass-energy spectrum for théh excited state. parameter; we show this in Appendix)B.

These general Conley index techniques also enable us to
excited state, and in Fig. 20 for the first excited negativeshow that for eachn, these spiral curves must tend, ag
mass state It is again useful to introduce the variables o, to a limiting configurationy,, which is either a single
a,,b,. A numerical analysis of the equations for different point, or is a “limit cycle” S'; i.e., a topological circléwe
values ofk shows that these solutions are also stable. assume, as the numerics indicate, that the curve “spirals in-

It might seem a bit surprising that even the excited statesvards”). In fact, were this not the case, then for each value
are linearly stable. Actually, this can already be understoo@f m between 0 andm,, the corresponding solution set
qualitatively from Fig. 19 and the following heuristic argu- would form an “isolated invariant set'(cf. [14]), and so,
ment. Thus, if the solutioffor small coupling were un- again by Conley’s continuation theorem, their Conley indi-
stable, then the solutiona(,b;,A;,T;) of the linearized ces would all be the same. However, fomear 0O, the index
equationg8.8)—(8.13 would, to first order, describe the de- of the isolated invariant set £°, while for m nearm,, the
cay of the bound state. Therefore the (b;) plots give Us  corresponding isolated invariant set has indesSthce these
information into whlch_ state_the wave fgnctl_ons tend to de-o indices are different, we have a contradiction.
cay. The @,,b,) plot is not interesting in this respect, be-
cause it looks like thex- B8 plot and only yields information =
about a time-dependent phase transformation of the wave @) on y,, there are an infinite number of solutions with
functions. The &;,b;) plot, however, is helpful. According m=m, as well as an infinite number of solutions with
to Fig. 19, the wave function tends to decay into the second  ~ - . —
excited state. This is surprising; one might instead have ex. @TM~o. _For parameter points not meeting. there are
pected the tendency to decay into the ground state. Since tl‘?é most a finite number of solutions.
energy of the second excited state is higher than that of the The research of F.F. was supported by the Deutsche For-
first excited state, it would seem physically reasonable thagchungsgemeinschaft and the Schweizerischer National-
this decay cannot happen spontaneously; this gives a simpfends. The research of J.S. was supported in part by the NSF,
explanation for stability. Grant No. DMS-G-9501128. The research of S.Y. was sup-

We point out that these stability results are only valid forported in part by the NSF, Grant No. 33-585-7510-2-30.
weak coupling, i.e., for smal(scaled massm. If m comes
into the region where the mass spectrum of Fig. 7 starts to
have the form of a spiral curve, the numerical behavior of the APPENDIX A: JUSTIFICATION OF THE ANSATZ
linearized equations becomes much more difficult to analyze FOR THE SPINOR DEPENDENCE

and does no longer allow simple conclusions. Itis thus very | this section, we consider the general form of the

helpful to study the stability in this regime via a different gpinors in static, spherically symmetric systems and derive

method, which we will now describe. the Einstein-Dirac equations for these systems. This analysis
The existence of the spiral curvef. Fig. 21), enables us i clarify the ansatz(3.4) and (3.10 for the wave func-

to obtain information regarding the stability properties Oftions, which was made in Sec. Ill without a detailed expla-
these solutions, using Conley index the@sge[14] part IV).  nation.

Indeed, as the figure shows nif>mj, there are no solutions  The Dirac wave functions?;, ¥, of a general two-

lution is “degenerate,” and has Conley index(the homo-
topy type of a one-point, pointed spacé&or m<m,, the
solution P, bifurcates into two solution§,; and Q,. The
solution Q,, being a “continuation” of the stable solution
Qo (m is near 0, must also be stable; this follows from where A;="V7 is a (4xX2) matrix and where &,) again
Conley’s continuation theorerff14] Thm. 23.3). In fact, denotes the standard basis of the two-component Pauli

Py

It follows from this last result that for a pointrAr(,rAn

V. (x,)=A(X,)e,, a=1,2, (A1)
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spinors. The system beirggatic means that the time depen- with real functionsf,,f,. Again as a consequence of the
dence ofA has the form of a plane wave, Dirac equation(A3), the phasex is independent of. A
similar argument applies t& and gives
A(X,t) =€ 1“A(X). o o
oot 0 E,=egy(r),  E,=efgy(r) (A6)

The simplest way to characterize thpherical symmetrpf
the spinors is to demand that the angular dependengef
described only by the submatricésindo'; i.e.

with real functionsg,, g, and 8 R.

We shall now compute the energy-momentum tensor.
First of all, the spherical symmetry of the spinors implies
that the off-diagonal componen®,, T,,, T}, T}, T vanish
(A2) and thatTJ=T¢. Thus we must only considéF; and the

diagonal componentﬁ't,T{,Tg of the energy-momentum

tensor. As a first step, we verify that the contribut{drd) of
with complex functionsy, ... v4. This form of A can be  the variation ofB vanishes: According to Eq2.21), the
derived if one requires that the total angular momentum igrace in Eq.(4.3) is zero if 59, is diagonal. Thus we must
zero and that all the expectation valugd)=32_,¥,0¥, only considerT;, and we may therefore assume that the
of the spin matrices are spherically symmetric. In a simpli-indicesm,k are eitherm=t, k=r or m=r, k=t. Further-
fied argument, this form can be understood directly from themore, the spherical symmetfj2) implies that the expecta-
fact that the presence of any matrice®, o would destroy  tion of the pseudovectoy®y” only has a component in the
the radial symmetry in EA2). time and radial directions,

The ansatdAl), (A2) for the wave functions is a linear
combination of Egs(3.4) and (3.10. From this, we imme-
diately obtain the corresponding Dirac equations. Namely,
the complex two-spinorsb=(®,,®,) and E=(2,,2,)

vl(r)Jl—i-vz(r)O'r)

A(X):(vg(r)l+v4(r)a'r

2
azl V,y°yPP,=0 forp=¢ orp="7.

with We conclude that both indices andp in Eq. (4.3 must be
1 _ 1 equal to either or t, and the antisymmetry of the-tensor
Gy =rT vy, E1=rT "oy, implies that the remaining indicgsn must coincide either
with & or ¢. Thus we must only consider the trace in Eq.
D,=—irT Y2y, EB,=—irT Y2,, (4.3 for the combination
satisfy[in analogy to Eq(3.9)], the equations Tr(¥Y*(d9Ye— 90 79))- (A7)
_ 0 —1 1/1 0 0 1\ But, according to Eqs(2.17), (2.1_8) and (2.12, we have
VAD' =| T += -m @, d9Ye=3,7s9, SO that Eq(A7) vanishes.
! 1 0 ro -1 1 0/ We conclude that the energy-momentum tensor is again

(A3) given by Eq.(4.4). In order to compute the trace in Ed..4),

i ] it is useful to first notice that, if we write the Dirac matrices

N=1= wT(O _1) _ }( 10 )_m<0 1) = as (2x<2) block matrices, then! is diagonal with entries
- 1 0 rro -1 1 0/|™ proportional to the identity, whereas is off-diagonal with

) (A4 submatrices which are multiples of. This implies that the

) o ~ mixed contribution(i.e., the contribution proportional ® =
In Sec. lll, we argued that the reality of the coefficients in _ — t r . . _ 9
Eqg. (3.9 allows us to choose real spinors. This procedureOr =) to _Tt andT; vanish. Using the explicit f_orm of .
simplified the Dirac equations considerably, but it might bet09&ther with Eq(3.1), we conclude that the mixed contri-
too restrictive to describe the general solution of thePution also vanishes . Thus the energy-momentum ten-
Einstein-Dirac equations. In order to analyze the situatiorr Of the system is simply the sum of the energy-momentum
more carefully, we first note that the function tensors corresponding to the splndrsqndz. As a conse-
guence, the constant phase factors in Ed®), (A6) are
irrelevant; we can without loss of generality assume that

)@(r) andE are real. Using Eq4.5), we end up with the formulas

Frymb(rys O

(=)™,
T=T|[®]+T|[E] (A8)

is independent of, as is obvious from EqA3). The bound-

ary conditions at the originb(0)=0=®d,(0), imply thatF  with

must vanish identically, and thus the proddei®, is real.

This means that; and ®, must be real up to a common

phase factor, i.e. +ATr 10,y + 2mT(D2— D2)
D(r)=€e"f4(r), Dy(r)=e*fy(r) (A5) —2Tr 1, d,,—2Tr 1@ ,d,), (A9)

T[®]=r 2diag (2 T?®|? - 20T ®|?
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TI[E]=r"2diag(2wT?|E|? — 20T E|? APPENDIX B: JUSTIFICATION OF USING m
i s AS THE BIFURCATION PARAMETER
ATr "B E,+2mT(E1—E5 We show in this section, first thas is unsuitable as a
X2Tr 12,5,,2Tr E,5,). (A10)  bifurcation parameter, and second thatan serve as a bi-
furcation parameter. In Conley index theory, a parameter can
) o ) only be used as a bifurcation parameter if it remains well-
Thus the Einstein-Dirac equations take the fai8), (A4)  defined and fixed when perturbations of the solutions are
and considered. The basic reason wimyand » must be treated
differently can already be understood from the general form
y} _ —877(T}[<I>]+T}[E]) of_thg D_irac equation in.Ec{l.l). The massn enters as aa
priori given parameter into the Dirac equation, whereas the
energyw of the fermion is only determined by the solution
with T} given by Eqs(A9), (A10). This is a generalization of ¥. This means that if we consider a variation of a solution,
the systent5.4)—(5.7). It is quite remarkable that the energy- m can be considered as a fixed parameter, whil@ill in

momentum tensor is just the sum'q[CI)] andT}[E]. Simi- general change. If the perturbation of the solution is not
lar to Eq. (5.8, the normalization condition for the wave static, the energy of the fermion will in general become time
functions takes the form dependent, an@ will no longer be a well-defined parameter.

Although being correct in principle, this argument is too
simple and not fully convincing. First of all, the situation
o 5 o T 1 becomes more complicated by our scaling technique, which
fo (|®[*+[E] )ﬁdr: . (A1l)  also changes and thus makes it impossible to consider the
mass as a fixed parameter throughout. Furthermerés
uniquely determined by the solutionsy,3,A,T) of Egs.

We now qualitatively describe how the solutions of this (5.4—(5.7). It enters as a parameter into the linearized equa-
generalized system can be constructed and how we recovéiens in a similar way asn does, and it is not obvious from
the solutions of Sec. VII. The scaling technique of Sec. Vithese equations why the two parametarandw should play
can again be applied and consequently we can omit the coguch different roles for stability considerations. Therefore we
ditions T()=1 and Eq.(A11) if we instead sefl(0)=1 will show in detail that solutions of the linearized equations

=m. Then the solutions are characterized by the three pado not determines, whereasnis still a well-defined param-
rametersw,®;(0), E5(0) [notice that a Taylor expansion eter. _ . .
aroundr =0 yields, in analogy to E¢5.10, the constraints In order to show thaib is not well defined, we generalize
®}(0)=0="=/(0)]. Compared to the situation in Sec. VII, t_he ansatz of Sec. VIl in the way that we also allato be
we thus have one additional continuous parameter to déime dependent. In analogy to Eq8.2)—(8.9 and Egs.
scribe the solution. At first sight, this might seem to imply (8:6, (8.7), we consider a perturbation of of the form

that we can now construct, for given, a continuous one-

parameter family of solutions. Then our ans&®&4) and o(t)=w+ ewe . (B1)
(3.10 would just correspond to two special points of this

continuum of solutions, and it would become unsatisfying _. . . L
Sincew represents a frequency, i.e., the time derivative of a

that we just picked these two special solutions for the dis- h h lizat CERD i | h
cussion of the mass spectrum and the stability. However, thB12€. the correct generalization of Eg1) is to replace the

additional free parameter is illusory due to the fact that wePhase factoe ! by

also have one additional constraint at infinity. Namely, we

must (for given w) adjust®;(0) andZ5(0) in such a way Ot

that both the ¢;,®,) and the E,,E,) curves tend to zero ex;{ - Jow(s)ds).

for large r. For genericw, these conditions will only be

satisfied for a discrete set of initial valug®1(0),Z5(0)]. .

The choiceg ®}(0)=0,25(0)] and[®}(0),E,(0)=0] are The ansatz foa; ,b; ,A1, T, then remains the same as before,

y—D V=D .
both allowable; they correspond to the solutions constructe§iVeN by Eas.(8.2—(8.5 and Egs.(8.6), (8.7). Thus the
spinorsz,; ,z, are given by

in Sec. VII. After scaling, this shows that for genent; the
Einstein-Dirac equations only admit a discrete number of
solutions.

We note that these considerations do not rule out the pos-
sibility that the general ansatz for the spinors might lead to
some additional solutions. We did not study the general
equations systematically and can only say qualitatively that it
seems difficult to arrange that there are simultaneous normal-
izable solutions of Eqs(A3) and (A4). The existence of Into these equations, we substitute EB1l) and consider
solutions of this type, however, remains an open question. only the first-order terms ig. This gives

2,(r ) =e o9 o(r) + gay (r,t) +iay(r,t)],

2,(r )=~ o9 B(r) + sb,(r,t) +iby(r,t)].
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zy(r,t)y=e 1ot

. t wq
1—|eJOw1e"Sds) az(r)eaz(r)—STa(r), (B3)

X[ a(r)+e(a(r,t))+ias(r,t)] and similarly

:efi(u’[

a(t) =it (e~ 1)a(r)
K

by(r)—by() = e (1), (B4)
+s(a1(r,t))+ia2(r,t)}

Thus the more general ansatz &gr,b; ,A;,T; wherebyo is
a(r)+e(ay(r,t))+iay(r,t) replaced by Eq(B1) is the same as the original ansatz for
these quantities if we transforay andb, according to Egs.
(B3) and(B4). Conversely, we may obtain an arbitrary time
dependence im, of the form(B1), merely by transforming
a, andb, according to Eqs(B3) and(B4). This means that
a solution of the linearized equations only determinesp
a(r)+e(a(r,t))+ia(r,t) to linear time-dependent perturbations of the fofBil).
Thusw is not a well-defined parametér.
For the parametan, however, the situation is completely
different. Namely if¥ is a solution of the time-dependent
Dirac equationdV=mW¥, then we see from Ed2.8) that
with a similar expression faz,(r,t). This looks quite similar  (DW¥|DW¥)=m?. But, as we noted earli¢after Eq.(8.19],
to the original ansat#8.1) and (8.2—(8.5) except for two this relation is also valid for the linearized equations. That is,
differences; namely, there is here an additional constaris a well-defined parameter for the linearized equations.
phase factor expe(w,/«)), together with the term

—i . W1
=g ot (1+Is—
K

. Wy
—ie—e a(r)
K

— e—i[wt—s(wl/K)]

. Wq
—ie—ea(r)
K

—j s&e"ta(r). (B2) It is interesting to notice that the contribution ta,(b,) propor-

K tional to (a,B8) which occurs in the transformatiofB3),(B4)
played an important role in our numerics. Namely, we saw in Sec.
VIl that the (a,,b,) plot looks very similar to thed, 8) plot (see
Fig. 11), which shows that this contribution is actually dominant for
small k. It caused problems in the numerics and forced us to intro-

form W ... W]. What is interesting about the terf®2), how-  duce the new variables, b, (see Fig. 12 According to Eqs(B3),
ever, is that its time dependence is again of the fefiitis  (B4), we can now understand the dominant contributiona, )
thus consistent with our ansat2.6), and corresponds to the in Fig. 11 as describing a time-dependent perturbation aff the
transformation form (B1).

The phase factor exjx (w4 /«)) plays no role in our analy-
sis, since it falls out of all the equatiorjsotice that the
energy-momentum tensd#.4) contains only terms of the
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