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Particlelike solutions of the Einstein-Dirac equations
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The coupled Einstein-Dirac equations for a static, spherically symmetric system of two fermions in a singlet
spinor state are derived. Using numerical methods, we construct an infinite number of solitonlike solutions of
these equations. The stability of the solutions is analyzed. For weak coupling~i.e., small rest mass of the
fermions!, all the solutions are linearly stable~with respect to spherically symmetric perturbations!, whereas
for stronger coupling, both stable and unstable solutions exist. For the physical interpretation, we discuss how
the energy of the fermions and the~ADM ! mass behave as functions of the rest mass of the fermions. Although
gravitation is not renormalizable, our solutions of the Einstein-Dirac equations are regular and well behaved
even for strong coupling.@S0556-2821~99!00708-0#
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I. INTRODUCTION

In recent years, there has been much interest in the
pling of Einstein’s field equations to Yang-Mills equation
In this case, the attractive gravitational force is balanced
the repulsive Yang-Mills force, and this interaction has led
many interesting and surprising results; see for exam
@1–10#. In this paper, we consider the coupling of Einstein
equations to the Dirac equation. Here the necessary repu
mechanism is provided by the Heisenberg uncertainty p
ciple.

The Einstein-Dirac equations take the form

Rj
i 2

1

2
Rd j

i 528pTj
i , ~D” 2m!C50, ~1.1!

whereTj
i is the energy-momentum tensor of the Dirac p

ticle, D” denotes the Dirac operator~see@13#!, andC is the
wave function of a fermion of massm. As in the above-
mentioned earlier studies, we consider static, spheric
symmetric solutions. Since the spin of a fermion has an
trinsic orientation in space, a system consisting of a sin
Dirac particle cannot be spherically symmetric. In order
maintain the spherical symmetry, we are led to the study
two fermions having opposite spin, i.e., to a singlet spin
state. Of course, such a configuration does not represe
realistic physical system due to the absence of the elec
magnetic interaction. More precisely, neglecting the elec
magnetic interaction corresponds to the limiting case wh
the masses of the fermions become so large@of the order
(Planck length)21# that the gravitational interaction becom
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the dominant force. Nevertheless, we view this study a
model problem worth considering in order to get some u
derstanding of the equations and their solutions. In a fut
publication, we will consider the more physically realist
situation where the Einstein-Dirac equations are coupled
an electromagnetic field~Maxwell’s equations!.

Our results are based on a certain ansatz, whereby
reduce the 4-component Dirac spinors to a 2-compon
spinor system,F5(a,b) with real functionsa,b. We show
numerically that particlelike solutions of this type exist, bo
in the ground state, and in the excited states. For weak c
pling, i.e., small massm, the different solutions are charac
terized by the ‘‘rotation number,’’n50,1,2, . . . , of thevec-
tor (a,b) ~we work in standard units\5c5G51). The
solution withn50 is the ground state, and the solutions w
n51,2, . . . describe the excited states. For smallm, the so-
lutions are~linearly! stable with respect to spherically sym
metric perturbations. However, asm gets large, several state
appear for eachn. In fact, for everyn, the mass spectrum
~i.e., the plot of the binding energy vs the rest mass! is a
spiral curve which tends to a limiting configuration. Th
surprising result shows that for parameter values on this l
iting configuration, there is an infinite number of excite
states ‘‘in thenth mode,’’ while for parameter values nea
this limiting configuration, there are still a large, but fini
number of such excited states. Furthermore, using topol
cal methods and bifurcation theory~see @14# part IV!, we
show that in every mode, the stable solutions must beco
unstable as the binding energy increases. Although grav
tion is not renormalizable~which means that the problem
cannot be treated in a perturbation expansion!, our solutions
of the Einstein-Dirac equations are regular and well-beha
even for strong coupling.

II. THE DIRAC OPERATOR

In this section, we shall derive the form of the Dirac o
erator in the presence of a static, spherically symme
©1999 The American Physical Society20-1
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gravitational field. In preparation, we first give a brief mat
ematical introduction of the Dirac theory in curved spac
time. The Dirac operatorD” is a differential operator of firs
order

D” 5 ig j~x!
]

]xj
1B~x!, ~2.1!

where the Dirac matricesg j (x), ( j 50,1,2,3), andB(x) are
(434) matrices, which depend on the space-time poinx.
The Dirac matrices and the Lorentzian metric are related

gjk5
1

2
$g j ,gk%, ~2.2!

where$.,.% is the anticommutator

$g j ,gk%5~g jgk1gkg j !.

The basic difficulty with Dirac spinors in curved space-tim
is that, for a given Lorentzian metric, the Dirac matrices
not uniquely determined by the anticommutation relatio
~2.2!. One way of fixing the Dirac matrices is provided b
the formalism of spin and frame bundles~see, e.g., the firs
section of @11#!. In this formulation, one chooses a fram
(ua)a50, . . . ,3 and represents the Dirac matrices as lin
combinations of the Dirac matricesḡa of Minkowski space,

g j~x!5 (
a50

3

ua
j ~x!ḡa. ~2.3!

The matrixB(x) is composed of the so-called spin conne
tion coefficients, involving first partial derivatives of th
metric and of the frame. It is quite common to choose
(ua) a Newman-Penrose null frame; this choice is parti
larly convenient for metrics of Petrov type D~see@12# for an
introduction to the Newman-Penrose formalism and ma
applications, especially in the Kerr background!. More gen-
erally, it is shown in@13# that all choices of Dirac matrice
satisfying Eq.~2.2! yield unitarily equivalent Dirac opera
tors. Furthermore,@13# gives explicit formulas for the matrix
B in terms of the Dirac matricesg j . We shall work with the
formalism of@13# in the following, because it gives us mor
flexibility in choosing the Dirac matrices. For better cons
tency with the standard literature, we use the notationD” and
g j instead of the symbolsG andGj used in@13#. To avoid
confusion between the Dirac matrices of curved and
space-time, we label the Dirac matrices of Minkowski spa
as in Eq.~2.3! with an additional bar.

The wave functionC of a Dirac particle is a solution o
the Dirac equation

~D” 2m!C50. ~2.4!

On the wave functions, two different scalar products can
defined. In the first, we integrate the wave functions over
of space-time,

^CuF&5E C̄FAugud4x, ~2.5!
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whereC̄5C* (0
1

21
0 ) is the adjoint spinor@whose definition

does not depend on the gravitational field; 0,1 are (232)
submatrices#, and g denotes the determinant of the metr
gjk . The scalar product~2.5! is indefinite, but it is neverthe-
less useful to us because the Dirac operator is Hermitian w
respect to it. The second scalar product is defined on
solutions of the Dirac equation. For this we choose a spa
like hypersurfaceH together with a~future-directed! normal
vector fieldn, and set

~CuF!5E
H

C̄g jFn jdm, ~2.6!

wheredm is the invariant measure on the hypersurfaceH,
induced by the metricgi j . This scalar product is positive
definite, and, as a consequence of the current conserva
~cf. @13#!

¹ jC̄g jF50, ~2.7!

it is independent of the choice of the hypersurfaceH. In

direct generalization of the expressionC̄ḡ0C in Minkowski

space~see, e.g.,@15#!, the integrandC̄g jCn j is interpreted
as the probability density of the particle. This leads us
normalize solutions of the Dirac equation by requiring

~CuC!51. ~2.8!

We now return to the Dirac operator~2.1!. Suppose that a
4-dimensional space-time with metricgi j is given. Accord-
ing to @13#, we can choose forg j any 434 matrices which
are Hermitian with respect to the scalar product~2.5! and
satisfy the anticommutation relations~2.2!. The matrixB(x)
involves first derivatives of the Dirac matricesg j , and from
@13#, we have the explicit formulas

B~x!5g j~x!Ej~x! ~2.9!

with

Ej5
i

2
r~] jr!2

i

16
Tr~gm¹ jg

n!gmgn1
i

8
Tr~rg j¹mgm!r ,

~2.10!

r5
i

4!
e i jkl g

ig jgkg l ~2.11!

(e i jkl is the totally antisymmetric tensor density!.
Now we will specify these formulas for the Dirac operat

to static, spherically symmetric space-times. In polar coo
nates (t,r ,q,w), the metric can be written as~cf. @16,7#!

gi j 5diagS 1

T2
,2

1

A
,2r 2,2r 2 sin2q D , ~2.12!

gi j 5diagS T2,2A,2
1

r 2
,2

1

r 2 sin2q
D

~2.13!
0-2
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with volume element

Augu5T21A21/2r 2usinqu,

whereA5A(r ) andT5T(r ) are positive functions. We sha
use this form of the metric to explicitly calculate the Dira
operator ~2.1!. For the Dirac matricesg j (x), we take an
ansatz as a linear combination of the usualḡ-matrices in the
Dirac representation

ḡ05S 1 0

0 21D , ḡ i5S 0 s i

2s i 0 D , i 51,2,3,

~2.14!

wheres1,s2,s3 are the Pauli matrices. In order to satis
Eq. ~2.2!, we must transform these Dirac matrices of t
vacuum into polar coordinates and multiply them by the f
tors T andAA,

g t5Tḡ0 , ~2.15!

g r5AA~ ḡ1 cosq1ḡ2 sinq cosw1ḡ3 sinq sinw! ,
~2.16!

gq5
1

r
~2ḡ1 sinq1ḡ2 cosq cosw1ḡ3 cosq sinw! ,

~2.17!

gw5
1

r sinq
~2ḡ2 sinw1ḡ3 cosw!. ~2.18!

This choice is convenient, because it greatly simplifies E
~2.9!–~2.11!. Namely, the matrixr becomes independent o
x and coincides with the usual ‘‘pseudoscalar’’ matrixg5 in
the Dirac representation,

r[g55 i ḡ0ḡ1ḡ2ḡ35S 0 1

1 0D .

As a consequence, the first and last summands in Eq.~2.10!
vanish and thus

B52
i

16
Tr~gm¹ jg

n!g jgmgn

52
i

16
Tr~gm¹ jg

n!~dm
j gn2dn

j gm1g jgmn1 i«mnp
j g5gp!.

~2.19!

Using Ricci’s Lemma

054¹ jg
mn5¹ j Tr~gmgn!5Tr„~¹ jg

m!gn
…1Tr„gm~¹ jg

n!…,

we conclude that the contributions of the first and seco
summands in the right bracket in Eq.~2.19! coincide and that
the contribution of the third summand vanishes. Using
10402
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anti-symmetry of thee-tensor, we can, in the contribution o
the fourth summand, replace the covariant derivative b
partial derivative. This gives

B5
i

8
Tr~gn¹ jg

j !gn1
1

16
e jmnpTr~gm] jgn!g5gp .

~2.20!

The second summand in Eq.~2.20! is zero. Namely, the trace
always vanishes if the tensor indices are all different,

Tr~gm] jgn!50

for m, j ,n5t,r ,q, or w and mÞ j ÞnÞm; ~2.21!

this can be verified directly using our special ansatz~2.15!–
~2.18! for the Dirac matrices. In the first summand in E
~2.20!, we can use that¹ jg

j is a linear combination of the
Dirac matricesg j , and thus

Tr~gn¹ jg
j !gn54¹ jg

j .

We conclude that

B5
i

2
¹ jg

j . ~2.22!

This form of B(x) as a divergence of the Dirac matrice
allows us to easily check that the Dirac operator is Hermit
with respect to the scalar product^.u.&; indeed

^D” CuF&5E S ig j
]

]xj
1

i

2
¹ jg

j D CFAugud4x

5E C̄S ig j
]

]xj
2

i

2
¹ jg

j D FAugud4x

1E C̄„i ] j~Augug j !…Fd4x

5E C̄S ig j
]

]xj
1

i

2
¹ jg

j D FAugud4x5^CuD” F&.

In order to calculate the divergence~2.22!, we first com-
pute

1

Augu
] t~Augug t!50 ,

1

Augu
] r~Augug r !5A1/2Tr22] r~r 2A21/2T21g r !5S 2

r
2

T8

T Dg r ,
0-3
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1

Augu
]q~Augugq!

5
1

r sinq
]q~2ḡ1 sin2q1ḡ2 sinq cosq cosw

1ḡ3 sinq cosq sinw!5
1

r sinq
„22ḡ1 sinq cosq

1ḡ2~cos2q2sin2q!cosw1ḡ3~cos2q2sin2q!sinw…

1

Augu
]w~Augugw!5

1

r sinq
~2ḡ2 cosw2ḡ3 sinw!,

and thus obtain

B5
i

2S 2

r
2

T8

T Dg r

2
i

r
~ ḡ1 cosq1ḡ2 sinq cosw1ḡ3 sinq sinw!

5
i

r
~12A21/2!g r2

i

2

T8

T
g r .

We conclude that the Dirac operator has the form

D” 5 ig t
]

]t
1g r S i

]

]r
1

i

r
~12A21/2!2

i

2

T8

T D
1 igq

]

]q
1 igw

]

]w
. ~2.23!

III. THE DIRAC EQUATIONS

In this section, we shall separate out angular momen
from the Dirac equation~2.4! and reduce the problem to on
on real 2-spinors.

We first introduce some formulas involving Pauli mat
ces. These will be used in this section for the separation
the angular dependence, and then, in the next section, fo
computation of the energy-momentum tensor needed in
stein’s equations. We introduce the following notation:

s r~q,w!5s1 cosq1s2 sinq cosw1s3 sinq sinw ,

sq~q,w!52s1 sinq1s2 cosq cosw1s3 cosq sinw ,

sw~q,w!5
1

sinq
~2s2 sinw1s3 cosw!.

These matrices are orthogonal,

Tr~s rsq!5Tr~s rsw!5Tr~sqsw!50,

and their square is a multiple of the identity

~s r !25~sq!251, ~sq!25
1

sin2q
.

10402
m

of
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n-

Furthermore,

sq~]qs r !5sw~]ws r !51 , ~3.1!

Tr„sq~]ws r !…52 sinq cosq~2cosw sinw

1sinw cosw!50 , ~3.2!

Tr„sw~]qs r !…52
cosq

sinq
~2sinw cosw

1cosw sinw!50. ~3.3!

In analogy to the ansatz for the Dirac spinors in the h
drogen atom for zero angular momentum~see, e.g.,@17#!, we
write the wave functions in the form

Ca5e2 ivtS u1ea

s ru2ea
D , a51,2, ~3.4!

where u1(r ) and u2(r ) are complex-valued functions, an
the (ea)a51,2 denote the standard basise15(1,0), e2
5(0,1) of the two-component Pauli spinors. This ansatz
quite useful, because the Dirac equations forC1 andC2 are
independent of each other,

D” Ca5F S 0 s r

2s r 0 D S iAA] r1
i

r
~AA21!2

i

2

T8

T
AAD

1vTḡ01
2i

r S 0 s r

0 0 D GCa , ~3.5!

where we have used Eq.~3.1!. This allows us to view the
Dirac equation as a two-component equation inu1 ,u2 . In
order to simplify the radial dependence, we choose n
functionsF1 andF2 defined by

F15rT21/2u1 , F252 irT 21/2u2 , ~3.6!

and rewrite the Dirac equation as

F S 1 0

0 21DvT2S 0 1

1 0DAA] r1S 0 21

1 0 D 1

r
2mGF50.

~3.7!

This equation is real; thus we may assume thatF itself is
real. Leaving out the time integration, the scalar product^.u.&
takes on these two-componnent spinors form.

^FuC&5E
0

`

F̄CA21/2dr, F̄5Fs3.

The ‘‘Dirac operator’’ in Eq.~3.7! is Hermitian with respect
to this scalar product, and the normalization condition~2.8!
for the wave functions transforms into

E
0

`

uFu2
T

AA
dr5

1

4p
. ~3.8!
0-4
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Finally, we write the Dirac equation as the ordinary diffe
ential equation~ODE!

AAF85FvTS 0 21

1 0 D 1
1

r S 1 0

0 21D 2mS 0 1

1 0D GF.

~3.9!

We remark that, instead of taking the ansatz~3.4! for the
wave functions, we could just as well have put the matrixs r

into the upper component, i.e.,

Ca5e2 ivtS s ru1ea

u2ea
D , a51,2. ~3.10!

This ansatz can be reduced to Eq.~3.4! by changing the sign
of the mass in the Dirac equation. To see this, we transf
the wave function according to

Ĉa5g5Ca .

Then sinceĈ is of the form ~3.4! and satisfies the Dirac
equation

05g5~D” 2m!g5Ĉa52~D” 1m!Ĉa ,

we can again simplify to the two-component equation~3.7!.
We conclude that it also makes physical sense to look at
solutions of Eq.~3.9! with negativem ~and positivev); they
can be interpreted as solutions corresponding to the an
~3.10!.

In Appendix A, we study the spinor dependence of ge
eral static, spherically symmetric solutions of the Einste
Dirac equations, and we give a more systematic justifica
for the two ansatz~3.4! and ~3.10!.

IV. CALCULATION OF THE ENERGY-MOMENTUM
TENSOR

We derive the form of the energy-momentum tensor
considering an arbitrary variationdgi j of the metric tensor.
The variation of its inverse is given bydgi j 52gikgjl dgkl .
In order to satisfy Eq.~2.2!, we vary the Dirac matrices
according to

dg j52
1

2
gjk~dgkl!g

l , dg j5
1

2
~dgjk!gk. ~4.1!

The energy-momentum tensor is obtained as the variatio
the classical Dirac action~see, e.g.,@15#!:

S5E C̄~D” 2m!CAugud4x.

This action is real; therefore it suffices to consider the r
part of the integrand. Since the wave functionC solves the
10402
m

e
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of

l

Dirac equation for the unperturbed Dirac operatorD” , we
must only consider the variation ofD” ; thus

dS5E ReC̄S i ~dg j !
]

]xj
1dBD CAugud4x. ~4.2!

We calculate the variation of the matrixB using Eq.~4.1!
and Eqs.~2.9!, ~2.10!,

ReC̄dBC5
1

16
Im d„Tr~gm¹ jg

n!C̄g jgmgnC…

5
1

16
d„Tr~gm¹ jg

n!Im ~C̄g jgmgnC!…

5
1

16
d„e jmnpTr~gm¹ jgn!C̄g5gpC…

5
1

16
d„e jmnpTr~gm] jgn!C̄g5gpC…

5
~2.21! 1

16
e jmnpd Tr~gm] jgn!C̄g5gpC

5
1

16
e jmnp~dgmk!Tr~gk] jgn!C̄g5gpC.

~4.3!

Notice that the trace in the last equation does not necess
vanish. But we can use the fact that we are dealing wit
spin singlet; this implies that the expectation value of t
pseudovectorg5gp is zero:

(
a51

2

Caḡ5gpCa50

~this can be checked by a short explicit calculation!. Thus we
only have to consider the variationdg j of the Dirac matrices
in Eq. ~4.2!. We substitute Eq.~4.1! into Eq.~4.2! and obtain,
for the spin singlet,

dS5E 1

2(
a51

2

ReCa
¯S ig j

]

]xkD CadgjkAugud4x.

Thus the energy-momentum tensor has the form

Tjk5
1

2(
a51

2

ReCa
¯S ig j

]

]xk
1 igk

]

]xj D Ca. ~4.4!

We compute
0-5
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Re (
a51

2

Caīg t] tCa52vTuCu252vT2r 22uFu2 ,

Re (
a51

2

Caīg t] rCa5Re 2iT~r 21ATF!] r~r 21ATF!50 ,

Re (
a51

2

Caīg r] tCa5Rev (
a51

2

Caḡ rCa5Re 2iv
AAT

r 2
FS 0 1

21 0DF50 ,

Re (
a51

2

Caīg r] rCa5Re (
a51

2

iAACaS̄ 0 1

21 0D xWsW

r
] rCa

5Re 2iAA~r 21ATF!S 0 i

2 i 0D ] r~r 21ATF!5Re 2AATr22FS 0 21

1 0 D ] rF

5
~3.9!

22vT2r 22uFu214Tr23F1F212mTr22~F1
22F2

2! ,

Re (
a51

2

Caīgq]qCa5Rer 21(
a51

2

CaS̄ 0 i 1

2 i 1 0 Dsq]qCa

5
~3.1!

22r 23TF1F2 ,

Re (
a51

2

Caīgw]wCa5Rer 21(
a51

2

CaS̄ 0 i 1

2 i 1 0 Dsw]wCa

5
~3.1!

22r 23TF1F2 .
q
All other combinations of the indices vanish because of E
~3.2!, ~3.3!, and the orthogonality ofs r ,sq,sw. We con-
clude that

Tj
i 5r 22diag„2vT2uFu2,22vT2uFu214Tr21F1F2

12mT~F1
22F2

2!, 22Tr21F1F2 ,22Tr21F1F2….

~4.5!

As a check, we calculate the trace ofTj
i directly from Eq.

~4.4!,

Tj
j5 (

a51

2

Re„Ca~̄ ig j] j !Ca…5 (
a51

2

Re„Ca~̄ ig j] j1B!Ca…

5m(
a51

2

CaC̄a52mTr22~F1
22F2

2!,

and we see that it agrees with taking the trace of Eq.~4.5!.
10402
s. V. THE FIELD EQUATIONS

The Einstein tensorGj
i 5Rj

i 2 1
2 Rd j

i has the form~see,
e.g.,@16#!

G0
052

1

r 2
1

A

r 2
1

A8

r
,

G1
152

1

r 2
1

A

r 2
2

2AT8

rT
,

G2
25g3

35
A8

2r
2

AT8

rT
2

A8T8

2T
1

2AT82

T2
2

AT9

T
,

with all other components vanishing. Thus, using Eq.~4.5!,
Einstein’s field equationsGj

i 528pTj
i become

216pvT2uFu25rA82~12A! ~5.1!
0-6
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216pvT2uFu2132pr 21TF1F2116pmT~F1
22F2

2!

52rA
T8

T
1~12A! , ~5.2!

216pTr21F1F25AF r 2
T9

T
1r 2

A8T8

2AT
22r 2S T8

T D 2

2r
A8

2A
1r

T8

T G . ~5.3!

Using the notationa5F1 ,b5F2 , Eqs.~3.9!, ~5.1!, and
~5.2! can be written as

AAa85
1

r
a2~vT1m!b , ~5.4!

AAb85~vT2m!a2
1

r
b , ~5.5!

rA8512A216pvT2~a21b2! ,
~5.6!

2rA
T8

T
5A21216pvT2~a21b2!

132p
1

r
Tab

116pmT~a22b2!. ~5.7!

By direct computation~or, e.g., by usingMATHEMATICA !, we
see that Eq.~5.3! is implied by this set of equations. It i
sometimes useful to rewrite the Dirac equations~5.4! and
~5.5! in matrix notation as

AAF85S 1/r 2vT2m

vT2m 21/r DF.

The normalization condition~2.8! takes the form

E
0

`

uFu2
T

AA
dr5

1

4p
. ~5.8!

If we assume regularity of the solution atr 50, we obtain
the following Taylor series expansions

a~r !5a1r 1O~r 3! , ~5.9!

b~r !5
1

3
~vT02m!a1r 21O~r 3! , ~5.10!

A~r !512
2

3
vT0

2a1
2r 21O~r 3! , ~5.11!

T~r !5T02
m

6
~4vT023m!T0

2a1
2r 21O~r 3!,

~5.12!
10402
wherea1 , T0 , v and m are ~real! parameters. We also re
quire that our solutions have finite~ADM ! mass; namely

rª lim
r→`

r

2
„12A~r !…,`. ~5.13!

This implies that

lim
r→`

A~r !51. ~5.14!

Finally, in order that the metric be asymptotical
Minkowskian, we require that

lim
r→`

T~r !51. ~5.15!

VI. SCALING OF THE EQUATIONS

For the numerical computations, it is difficult to take in
account condition~5.15! and the integral condition~5.8!.
Therefore we find it convenient to temporarily replace the
constraints by the weaker conditions

lim
r→`

T~r !,` and E
0

`

uFu2
T

AA
dr,` ~6.1!

and instead set

T051 and m561. ~6.2!

This is justified by the following scaling argument whic
shows that there is a one-to-one correspondence betwee
lutions satisfying Eqs.~6.1!, ~6.2! and solutions satisfying
Eqs.~5.15! and ~5.8!.

Thus, suppose we have a solution (a,b,T,A) of Eqs.
~5.4!–~5.7!, ~5.13! satisfying Eqs.~6.1!, ~6.2!. Then, with the
parametersl andt defined by

l5S 4pE
0

`

~a21b2!
T

AA
dr D 1/2

,

t5 lim
r→`

T~r !,

we introduce the new functions

ã~r !5At

l
a~lr ! ,

b̃~r !5At

l
b~lr ! ,

Ã~r !5A~lr ! ,

T̃~r !5t21T~lr !.

A direct calculation shows that these functions satisfy E
~5.4!–~5.7! with m,v replaced by
0-7
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FIG. 1. The ground state form51, a150.02; scaled parameter values:m50.5340,v50.4994.
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Moreover, it is easy to check that

E
0

`

~ã21b̃2!
T̃

AÃ

dr5
1

4p
,

lim
r→`

T̃~r !51 ,

and limr→`(r /2)„12Ã(r )…,`. We note that, as long a
l,t are positive and nonzero, the transformation from
un-tilde variables to the tilde variables is one-to-one.

Finally, we point out that for the physical interpretatio
the conditions~5.8! and~5.15! must hold and henceonly the
scaled solutions can have physical significance.

VII. EXISTENCE AND PROPERTIES OF THE SOLUTIONS

Using the local Taylor expansion aboutr 50, ~5.9!–
~5.12!, and settingT(0)51 andm561, we construct initial
data atr 51025 and then use the standardMATHEMATICA

ODE solver. We shoot for numerical solutions by fixinga1
and varyingv. Using an accuracy of 1028, we found that
solutions varied continuously witha1 ~and v), indicating
that this procedure is well behaved. The solutions we fi
satisfy

lim
r→`

r 2
„a~r !21b~r !2

…50, lim
r→`

A~r !51 ,

lim
r→`

r

2
„12A~r !…,`, lim

r→`

T~r !5t.0,
10402
e

d

and, in addition,T andA stay positive for allr. In order to
satisfy the other two important conditions~5.8!, ~5.15!, we
merely scale our variables in the manner described in S
VI.

For any givena1.0, we found a unique ground stat
corresponding to the parameter valuev0 , together with a
countable number of distinct excited states correspondin
parameter valuesvn , n51,2, . . . , where v0,v1,•••
,vmax(a1). For a150.02 andm51, the scaledsolutions
for the ground state and for the first and second excited st
are depicted in Figs. 1, 2 and 3.1 These solutions have th
following general characteristics: The graphs of the functio
T(r ) have the same qualitative form for all valuesvn . The
functions A(r ), however, have their graphs changing wi
vn ; indeed, for thenth excited state, the graph ofA has
precisely n11 minima. The tangent vector to the curv
@a(r ),b(r )# for large r lies alternately in either the first o
third quadrants.

For larger values ofa1 ~andm51), the solutions have a
similar form, but thea-b graphs of the ground state hav
self-intersections and are thus of a different shape. Thi
illustrated for three different values ofa1 in Fig. 4. We
found that for the ground state,

lim
a1→`

T0~a1!5` and lim
a1→0

T0~a1!51.

1We point out that we also plot thescaledvariables in all the other
figures.
FIG. 2. The first excited state form51, a150.02; scaled parameter values:m50.7779,v50.7326.
0-8
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FIG. 3. The second excited state form51, a150.02; scaled parameter values:m50.9616,v50.9080.
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Moreover, in every case,T is a monotone decreasing fun
tion of r.

We also obtained solutions form521 by using similar
methods. The results are qualitatively the same with the
ception that, in this case, the tangent vector to the (a,b)
curve for larger lies alternatively in quadrants two and fou
see Figs. 5 and 6.

The mass and the energy of the solutions we found h
some interesting and surprising features, which we shall n
describe. We consider the fixednth excited state and, by
varying a1 and adjustingv ~for fixed m561), we obtain a
one-parameter family of solutions~parametrized, e.g., by
a1). After scaling, we find that solutions can only exist for
bounded range ofm. For every value ofm in this range, we
obtain an at most countable number of solutions, which
be characterized by two physical parameters: the energyv of
the fermions, and the@Arnowitt-Deser-Misner~ADM !# mass
~5.13!. We find that we always havev,umu, which means
that the fermions are in a bound state. If we plot the bind
energyv2umu vs the massm ~i.e., the mass-energy spe
trum!, we find that this curve is a spiral which tends to
limiting configuration. This is shown in Fig. 7 for the groun
state~G!, the first and second excited states~F, S!, and the
lowest and next excited states for negative mass~L, N!. The
spirals seem to have a self-similarity; this is illustrated
Fig. 8 ~we stopped the computation when the limitations
our numerics were reached!. The ~ADM ! massr can be
viewed as the total energy of both the gravitational field a
the fermions. Thus the quantityr22v gives the energy of
the gravitational field. As is shown in Fig. 9, it is alway
positive and, if plotted versusm, gives curves which again
look like spirals. Furthermore, one can ask how much ene
is gained~or needed! to form the singlet state. For this, w
must compare the~ADM ! mass with the total rest mas
2umu; i.e., the energy of two fermions at rest which are
much delocalized in space that their gravitational interact
becomes zero. This is plotted in Fig. 10. For smallm, the
10402
x-

ve
w

n

g

f

d

y

n

function r22umu is negative, which shows that one gain
energy by forming the singlet state.~This gives a first hint
that these states might be stable, because energy is need
break up the binding.! For large values ofm, however,~more
precisely, shortly after the ‘‘turning point’’ ofm; see Fig.
10!, r22umu becomes positive. This indicates that the so
tions should no longer be stable. This is indeed true and
be shown in the next section.

We note that our scaling technique is essential for obta
ing the mass spectrum—the unscaled variables do not h
‘‘spirals.’’

VIII. STABILITY OF THE SOLUTIONS

In this section, we shall consider the stability of our so
tions under spherically symmetric perturbations. To this e
we consider the spherically symmetric, time-depend
Lorentzian metric of the form

ds25T22~r ,t !dt22A21~r ,t !dr22r 2~dq21sin2qdw2!.

The time-dependent Dirac operator can again be calcul
using Eq.~2.22!. One gets the following generalization o
Eq. ~2.23! ~the dot denotes t-derivatives!:

D” 5g tS i
]

]t
2

i

4

Ȧ

A
D 1g r S i

]

]r
1

i

r
~12A21/2!2

i

2

T8

T D
1 igq]q1 igw]w.

As in Sec. III, we separate out the angular momentum
setting@cf. Eq. ~3.4!#

C5
AT

r S z1~r ,t !ea

is rz2~r ,t !ea
D , a51,2.

This gives the two-component, time-dependent Dirac eq
tion
FIG. 4. a-b plot for the ground states at parameter valuesm51 anda150.31, 0.35, 0.45.
0-9
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FIG. 5. The lowest state form521, a150.02; scaled parameter values:m520.7567,v50.6302.
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F S 1 0

0 21D S iT] t2
i

4
T

Ȧ

A
1

i

2
ṪD 2S 0 1

1 0DAA] r

1S 0 21

1 0 D 1

r
2mG S z1

z2
D 50.

Observe that, in contrast to Eq.~3.7!, this equation is com-
plex, and thus we cannot assume here that the spinors
real. Calculation of the energy-momentum tensor and
Einstein tensor gives the equations

2
1

r 2
1

A

r 2
1

A8

r
528p

2iT2

r 2
Re~z1]̄ tz11z2]̄ tz2! ,

T2Ȧ

rA
528p ReS iT2

r 2
~z1]̄ rz11z2]̄ rz2!1

T3A21/2

r 2

3~z1]̄ tz22z2]̄ tz1!D 2
1

r 2
1

A

r 2
2

2AT8

rT

58p
2TA1/2

r 2
Re~z1]̄ rz22z2]̄ rz1! ,

A8

2r
2

AT8

rT
2

A8T8

2
1

2AT8

T2
2

AT9

T
2

3T2Ȧ2

4A2
1

TȦṪ

2A
1

T2Ä

2A

58p
2

r 3
T Re~z1z̄2!.

Suppose that a solution@a(r ),b(r ),A(r ),T(r )# of Eqs.
~5.4!–~5.7! and~5.8!, ~5.14!, ~5.15! is given for some values
of the parametersm, v. Before making an ansatz for a time
10402
are
e

dependent perturbation of this solution, it is convenient
introduce new spinor variablesa(r ,t), b(r ,t) by setting

z1~r ,t !5e2 ivta~r ,t !, z2~r ,t !5e2 ivtb~r ,t !. ~8.1!

This has the advantage that we get the ansatz~3.4! simply by
assuming thata and b are time independent. We consid
spherically symmetric, time-dependent perturbations of
form

a~r ,t !5a~r !1«„a1~r ,t !1 ia2~r ,t !… , ~8.2!

b~r ,t !5b~r !1«„b1~r ,t !1 ib2~r ,t !… ,
~8.3!

A~r ,t !5A~r !1«A1~r ,t ! , ~8.4!

T~r ,t !5T~r !1«T1~r ,t !, ~8.5!

where we look at the real and imaginary parts separatelyaj
and bj are real functions!. Substituting into the Einstein
Dirac equations and only considering the first order terms
« gives~usingMATHEMATICA ! a system of linear differentia
equations. If these equations admitted solutions with an
ponentially growing time dependence, the original soluti
would be unstable. Therefore we separate out the time
pendence by writing

aj~r ,t !5ektaj~r !, bj~r ,t !5ektbj~r !, j 51,2,
~8.6!

A1~r ,t !5ektA1~r !, T1~r ,t !5ektT1~r !. ~8.7!

This gives the following system of five ordinary differenti
equations:
FIG. 6. The next excited state form521, a150.02; scaled parameter values:m520.9742,v50.8391.
0-10
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AAa185
a1

r
2~m1vT!b11kTb2

2
A1

2AS a

r
2~m1vT!b D2vT1b , ~8.8!

AAa285
a2

r
2~m1vT!b22kTb11k

A1

4A
Tb2k

T1

2
b ,

~8.9!

AAb1852~m2vT!a12
b1

r
2kTa2

2
A1

2AS 2~m2vT!a2
b

r D1vT1a , ~8.10!

AAb2852~m2vT!a22
b2

r
1kTa12k

A1

4A
Ta1k

T1

2
a ,

~8.11!

FIG. 7. Binding energyumu2v of the fermions.
10402
2rAT185
A1T

A
2T11AT11

32pT2

r
~a1b1b1a!

116pT2a~2ma122vTa11kTa2!

216pT2b~2mb112vTb12kTb2!

216pT1S 3vT2~a21b2!2
4

r
Tab22mT

3~a22b2! D116p
A1T

A S wT2~a21b2!

2
2

r
Tab2mT~a22b2! D , ~8.12!

together with the algebraic equation

A1516p
AAT

kr
„2~kb112vb2!a1~ka112va2!b….

~8.13!

The consistency of these equations~i.e., that the equation
G2

2528pT2
2 is identically satisfied! was again checked with

MATHEMATICA . We want to show that there are no solutio
for k.0; this implies stability.

The above equations come with initial conditions atr
50 and additional constraints, which we will now describ
A Taylor expansion aboutr 50 gives, similar to Eqs.~5.9!–
~5.12!, the following expansions nearr 50:

a1~r !5a10r 1O~r 2!, a2~r !5a20r 1O~r 2! , ~8.14!

b1~r !5O~r 2!, b2~r !5O~r 2! , ~8.15!

A1~r !5O~r 2!, T1~r !5T101O~r 2!. ~8.16!

We have three parametersa10, a20 and T10 to characterize
the solutions. Since the metric must be asymptotica
FIG. 8. Binding energyumu
2v of the ground state; detailed
pictures.
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lim
r→`

A1~r !50 , ~8.17!

lim
r→`

T1~r !50. ~8.18!

Furthermore, the wave functions must be normalized, wh
means that@cf. Eq. ~3.8!#,

E
0

`

„a2~r ,t !1b2~r ,t !…
T~r ,t !

AA~r ,t !
dr5

1

4p
, ~8.19!

for all t. This time-dependent normalization condition a
pears to make the analysis very complicated. It turns
however, that we do not have to consider it at all, becau
for the perturbations~8.6!, ~8.7!, it is automatically satisfied

To see this, note that, as a consequence of the cu
conservation~2.7!, the normalization integral~8.19! is actu-
ally time-independent. But, in the limitt→2`, the time-
dependent solution~8.2!–~8.5! of the Einstein-Dirac equa
tions goes over into the static, unperturbed solut
(a,b,A,T), and thus Eq.~8.19! holds in this limit. It follows
that Eq. ~8.19! holds for all t. In other words, the linea
contribution in« to Eq. ~8.19! vanishes as a consequence
the linearized Einstein-Dirac equations~8.8!–~8.12!, ~8.13!.
We must only make sure that the integral~8.19! is finite for
all t.

These conditions can be simplified. To see this, we fi
consider the infinitesimal time reparametrization

t→t2«
T1~r 50!

kT~r 50!
ekt.

This transformation does not destroy the ansatz~8.2!–~8.7!;
it only changes the functionsa2 , b2 andT1 according to

T1~r !→T1~r !2T1~0!
T~r !

T~0!
,

a2~r !→a2~r !2
v

k

T1~0!

T~0!
a~r ! ,

~8.20!

FIG. 9. Total energyr22v of the gravitational field.
10402
h

-
t,
e,

nt

n

f

t

b2~r !→b2~r !2
v

k

T1~0!

T~0!
b~r !. ~8.21!

Thus we can arrange thatT1 vanishes at the origin,

T1~r !5O~r !,

provided that Eq.~8.18! is replaced by the weaker conditio

lim
r→`

T1~r !5m for somem, 0,m,`.

This makes the numerics easier, because we now have
two free parametersa10,a20 at the origin to characterize th
solution. Furthermore, using the linearity of the equatio
we can multiply every solution by a~nonzero! arbitrary real
number. This allows us to fix one of the parameters~e.g., by
settinga2051), and thus we end up with only one free p
rameter.

Our strategy is to show that, for anyk.0, there are no
solutions for which the normalization integral~8.19! is finite;
this will imply stability. In order to explain the technique an
the difficulty for the numerics, we consider Fig. 11, whe
typical plots of (a1 ,b1),(a2 ,b2) for a small value ofk, and
the ground state solution of Fig. 1, are shown. According
Eqs.~8.14!, ~8.15!, both the (a1 ,b1) and the (a2 ,b2) curves
start at the origin. We want to show that at least one of th
curves stays bounded away from the origin asr→`, no
matter how we choosek and the initial valuesa10,a20. This
will imply that the integral~8.19! is unbounded. Figure 11 is
interesting because it almost looks as if this happened:
(a2 ,b2) curve looks like thea-b plot of the ground state
whereas (a1 ,b1) is almost like thea-b plot of the first ex-
cited state. The (a1 ,b1) curve is not quite closed, howeve
and it is difficult to decide whether this is just an artifact
the numerics or whether it actually means that there is
normalizable solution. The numerics are especially delic
because, for small values ofk, the values of (a2 ,b2) are
much larger than (a1 ,b1) ~notice the different scales on th
plots of Fig. 11!. In order to improve the accuracy of th
numerics, it is useful to note that, numerically,a2 andb2 are,
to a very good approximation, multiples of the unperturb
wave functionsa,b, i.e., a2'ma, b2'mb for some real

FIG. 10. Total binding energyr22umu.
0-12
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FIG. 11. Perturbation of the ground state fork51026, variables (a1 ,b1 ,a2 ,b2).
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constantm. We can eliminate this dominant contribution
a2 ,b2 by introducing new variables

â25a22ma, b̂25b22mb ,

and rewriting our ODEs in the functions (a1 ,b1 ,â2 ,

b̂2 ,A1 ,T1); this gives a system of five inhomogeneous, l
ear equations. From these, we obtain the plots in Fig. 12.

(a1 ,b1) curve is similar to that of Fig. 11; the (â2 ,b̂2) plot,
however, gives a much more detailed view of the imagin
part ofa(r ,t),b(r ,t) ~notice again the different scales on th
plot!.

Next we describe our method to determine the initial d
at r 50 for the solutions@i.e., the parametersa10,a20, for the
original equations~8.8!–~8.12!#. It turns out that the integra
~8.19! is only finite for all t if both (a1 ,b1) and (a2 ,b2) tend
to zero for larger; indeed, from the numerics we see th
(a1 ,b1) and (a2 ,b2) cannot have infinite oscillations. It is a
efficient technique to fix the initial values by trying to satis
the first part of these conditions

lim
r→`

„a1~r !,b1~r !…5~0,0!. ~8.22!

This can be done by varying the initial values in such a w
that

„a1~R!21a2~R!2
…→min,

whereR is the value ofr where we stop the numerics (R
must be chosen sufficiently large!. Using the linearity of our
ODEs, this minimizing condition leads to simple algebra
relations between the initial data and the values
10402
-
e

y

a

t

y

f

a1(R),b1(R) for a fundamental set of solutions, from whic
the initial values can be computed numerically. According
Figs. 11 and 12, we already know qualitatively how the
sulting (a1 ,b1) plot is supposed to look. This is helpful fo
checking the numerical results and for finding the best val
for R. @More precisely, the best value forR is, roughly speak-
ing, the value where the (a1 ,b1) plot starts to look like a
closed curve. IfR is chosen much larger than this, the n
merical inaccuracies pile up in a such way that our method
computing the initial data froma1(R) and b1(R) is no
longer reliable.#

This procedure can be carried out for different values
k, and gives the plots of Figs. 13–18. For very small valu
of k, the plots look like those in Fig. 13, and one sees t

„â2(r ),b̂2(r )… does not tend to zero for larger. The shape of

the (â2 ,b̂2) plot does not change over many magnitudes ink
~see Figs. 12, 14, 15!, showing too that our numerics are we
behaved. Fork'0.02, the form of the plots changes dras

cally ~see Figs. 16, 17, 18!. One sees that (â2 ,b̂2) still do not
go to the origin and that it becomes impossible to sati
even condition~8.22!. If k is further increased, both (a1 ,b1)

and (â2 ,b̂2) go to infinity for large r, no matter how the
initial data are chosen. From this, we conclude that
ground state solution of Fig. 1 is linearly stable.

Our method also applies to the excited states. For the
excited state and the lowest negative-mass state~i.e., for the
solutions of Figs. 2 and 5!, the solutions of the linearized
equations for smallk are plotted in Figs. 19 and 20. Th
(a2 ,b2) curves are again of similar shape as the correspo
ing a-b plot; the (a1 ,b1)-curve resembles thea-b plot for
the next higher excited state~i.e., in Fig. 19 for the second
FIG. 12. Perturbation of the ground state fork51026, variables (a1 ,b1 ,â2 ,b̂2).
0-13
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FIG. 13. Perturbation of the ground state fork51028.

FIG. 14. Perturbation of the ground state fork51023.

FIG. 15. Perturbation of the ground state fork50.01.

FIG. 16. Perturbation of the ground state fork50.02.
104020-14
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FIG. 17. Perturbation of the ground state fork50.023.

FIG. 18. Perturbation of the ground state fork50.03.

FIG. 19. Perturbation of the first excited state fork51026.

FIG. 20. Perturbation of the lowest negative-mass state fork51026.
104020-15
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excited state, and in Fig. 20 for the first excited negati
mass state!. It is again useful to introduce the variable

â2 ,b̂2 . A numerical analysis of the equations for differe
values ofk shows that these solutions are also stable.

It might seem a bit surprising that even the excited sta
are linearly stable. Actually, this can already be underst
qualitatively from Fig. 19 and the following heuristic argu
ment. Thus, if the solution~for small coupling! were un-
stable, then the solution (aj ,bj ,A1 ,T1) of the linearized
equations~8.8!–~8.13! would, to first order, describe the de
cay of the bound state. Therefore the (aj ,bj ) plots give us
information into which state the wave functions tend to d
cay. The (a2 ,b2) plot is not interesting in this respect, be
cause it looks like thea-b plot and only yields information
about a time-dependent phase transformation of the w
functions. The (a1 ,b1) plot, however, is helpful. According
to Fig. 19, the wave function tends to decay into the sec
excited state. This is surprising; one might instead have
pected the tendency to decay into the ground state. Since
energy of the second excited state is higher than that of
first excited state, it would seem physically reasonable
this decay cannot happen spontaneously; this gives a sim
explanation for stability.

We point out that these stability results are only valid
weakcoupling, i.e., for small~scaled! massm. If m comes
into the region where the mass spectrum of Fig. 7 start
have the form of a spiral curve, the numerical behavior of
linearized equations becomes much more difficult to anal
and does no longer allow simple conclusions. It is thus v
helpful to study the stability in this regime via a differe
method, which we will now describe.

The existence of the spiral curve~cf. Fig. 21!, enables us
to obtain information regarding the stability properties
these solutions, using Conley index theory~see@14# part IV!.
Indeed, as the figure shows, ifm.m1 , there are no solutions
while at m5m1 , the solutionP1 suddenly appears. This so

lution is ‘‘degenerate,’’ and has Conley index 0¯ ~the homo-
topy type of a one-point, pointed space!. For m,m1 , the
solution P1 bifurcates into two solutionsQ1 and Q2 . The
solution Q1 , being a ‘‘continuation’’ of the stable solution
Q0 (m is near 0!, must also be stable; this follows from
Conley’s continuation theorem~@14# Thm. 23.31!. In fact,

FIG. 21. Mass-energy spectrum for thenth excited state.
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sinceQ0 being stable implies that the Conley index ofQ0 is
S0 ~the pointed zero sphere!, the continuation theorem im
plies that the Conley index ofQ1 must also beS0, and thus
Q1 is also a stable solution.~Moreover, the same argumen
shows that all points on the curve between 0 andP1 corre-
spond to stable solutions; this can also be checked num
cally.! Since the Conley indices ofQ1 and Q2 must ‘‘can-

cel’’ ~i.e., the index ofQ1 andQ2 taken together must be 0)̄,
this implies thatQ2 cannot be stable, and in fact, the index
Q2 is S1, the pointed 1-sphere.~In fact, all points on the
curve betweenP1 and P2 correspond to unstable solution
one can also check this numerically.! Similar reasoning can
be applied to solutions nearP2 ,P3 , . . . , and so on.~We
remark that onlym, and not v, can serve as a bifurcatio
parameter; we show this in Appendix B.!

These general Conley index techniques also enable u
show that for eachn, these spiral curves must tend, asa1

→`, to a limiting configurationḡn , which is either a single
point, or is a ‘‘limit cycle’’ S1; i.e., a topological circle~we
assume, as the numerics indicate, that the curve ‘‘spirals
wards’’!. In fact, were this not the case, then for each va
of m between 0 andm1 , the corresponding solution se
would form an ‘‘isolated invariant set’’~cf. @14#!, and so,
again by Conley’s continuation theorem, their Conley in
ces would all be the same. However, form near 0, the index
of the isolated invariant set isS0, while for m nearm1 , the

corresponding isolated invariant set has index 0.̄ Since these
two indices are different, we have a contradiction.

It follows from this last result that for a point (m̂,m̂

2v̂) on ḡn , there are an infinite number of solutions wi

m5m̂, as well as an infinite number of solutions withm

2v5m̂2v̂. For parameter points not meetingḡn , there are
at most a finite number of solutions.
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APPENDIX A: JUSTIFICATION OF THE ANSATZ
FOR THE SPINOR DEPENDENCE

In this section, we consider the general form of t
spinors in static, spherically symmetric systems and de
the Einstein-Dirac equations for these systems. This anal
will clarify the ansatz~3.4! and ~3.10! for the wave func-
tions, which was made in Sec. III without a detailed exp
nation.

The Dirac wave functionsC1 ,C2 of a general two-
fermion system can be written in the form

Ca~xW ,t !5A~xW ,t !ea , a51,2, ~A1!

where Aa
a5Ca

a is a (432) matrix and where (ea) again
denotes the standard basis of the two-component P
0-16
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spinors. The system beingstatic means that the time depen
dence ofA has the form of a plane wave,

A~xW ,t !5e2 ivtA~xW !.

The simplest way to characterize thespherical symmetryof
the spinors is to demand that the angular dependence ofA is
described only by the submatrices1 ands r ; i.e.

A~xW !5S v1~r !11v2~r !s r

v3~r !11v4~r !s r D ~A2!

with complex functionsv1 , . . . ,v4 . This form of A can be
derived if one requires that the total angular momentum

zero and that all the expectation values^O&5(a51
2 CaŌCa

of the spin matrices are spherically symmetric. In a simp
fied argument, this form can be understood directly from
fact that the presence of any matricessq,sw would destroy
the radial symmetry in Eq.~A2!.

The ansatz~A1!, ~A2! for the wave functions is a linea
combination of Eqs.~3.4! and ~3.10!. From this, we imme-
diately obtain the corresponding Dirac equations. Nam
the complex two-spinorsF5(F1 ,F2) and J5(J1 ,J2)
with

F15rT21/2v1 , J15rT21/2v2 ,

F252 irT 21/2v4 , J252 irT 21/2v3 ,

satisfy @in analogy to Eq.~3.9!#, the equations

AAF85FvTS 0 21

1 0 D 1
1

r S 1 0

0 21D 2mS 0 1

1 0D GF ,

~A3!

AAJ85FvTS 0 21

1 0 D 2
1

r S 1 0

0 21D 2mS 0 1

1 0D GJ.

~A4!

In Sec. III, we argued that the reality of the coefficients
Eq. ~3.9! allows us to choose real spinors. This proced
simplified the Dirac equations considerably, but it might
too restrictive to describe the general solution of t
Einstein-Dirac equations. In order to analyze the situat
more carefully, we first note that the function

F~r !ªF~r !* S 0 2 i

i 0 DF~r !

is independent ofr, as is obvious from Eq.~A3!. The bound-
ary conditions at the origin,F1(0)505F2(0), imply thatF

must vanish identically, and thus the productF1F̄2 is real.
This means thatF1 and F2 must be real up to a commo
phase factor, i.e.

F1~r !5eia f 1~r !, F2~r !5eia f 2~r ! ~A5!
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with real functionsf 1 , f 2 . Again as a consequence of th
Dirac equation~A3!, the phasea is independent ofr. A
similar argument applies toJ and gives

J15eibg1~r !, J25eibg2~r ! ~A6!

with real functionsg1 , g2 andbPR.
We shall now compute the energy-momentum tens

First of all, the spherical symmetry of the spinors impli
that the off-diagonal componentsTq

t ,Tw
t ,Tq

r ,Tw
r ,Tw

q vanish
and thatTq

q5Tw
w . Thus we must only considerTr

t and the
diagonal componentsTt

t ,Tr
r ,Tq

q of the energy-momentum
tensor. As a first step, we verify that the contribution~4.3! of
the variation ofB vanishes: According to Eq.~2.21!, the
trace in Eq.~4.3! is zero if dgmk is diagonal. Thus we mus
only considerTr

t , and we may therefore assume that t
indicesm,k are eitherm5t, k5r or m5r , k5t. Further-
more, the spherical symmetry~A2! implies that the expecta
tion of the pseudovectorg5gp only has a component in th
time and radial directions,

(
a51

2

Caḡ5gpCa50 for p5w or p5q.

We conclude that both indicesm andp in Eq. ~4.3! must be
equal to eitherr or t, and the antisymmetry of thee-tensor
implies that the remaining indicesj ,n must coincide either
with q or w. Thus we must only consider the trace in E
~4.3! for the combination

Tr„gk~]qgw2]wgq!…. ~A7!

But, according to Eqs.~2.17!, ~2.18! and ~2.12!, we have
]qgw5]wgq , so that Eq.~A7! vanishes.

We conclude that the energy-momentum tensor is ag
given by Eq.~4.4!. In order to compute the trace in Eq.~4.4!,
it is useful to first notice that, if we write the Dirac matrice
as (232) block matrices, theng t is diagonal with entries
proportional to the identity, whereasg r is off-diagonal with
submatrices which are multiples ofs r . This implies that the

mixed contribution~i.e., the contribution proportional toF̄J

or J̄F) to Tt
t andTr

r vanish. Using the explicit form ofgq

together with Eq.~3.1!, we conclude that the mixed contr
bution also vanishes inTq

q . Thus the energy-momentum ten
sor of the system is simply the sum of the energy-momen
tensors corresponding to the spinorsF andJ. As a conse-
quence, the constant phase factors in Eqs.~A5!, ~A6! are
irrelevant; we can without loss of generality assume thatF
andJ are real. Using Eq.~4.5!, we end up with the formulas

Tj
i 5Tj

i @F#1Tj
i @J# ~A8!

with

Tj
i @F#5r 22diag„2vT2uFu2,22vT2uFu2

14Tr21F1F212mT~F1
22F2

2!

22Tr21F1F2 ,22Tr21F1F2… , ~A9!
0-17
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Tj
i @J#5r 22diag„2vT2uJu2,22vT2uJu2

24Tr21J1J212mT~J1
22J2

2!

32Tr21J1J2 ,2Tr21J1J2…. ~A10!

Thus the Einstein-Dirac equations take the form~A3!, ~A4!
and

g j
i 528p~Tj

i @F#1Tj
i @J#!

with Tj
i given by Eqs.~A9!, ~A10!. This is a generalization o

the system~5.4!–~5.7!. It is quite remarkable that the energ
momentum tensor is just the sum ofTj

i @F# andTj
i @J#. Simi-

lar to Eq. ~5.8!, the normalization condition for the wav
functions takes the form

E
0

`

~ uFu21uJu2!
T

AA
dr5

1

4p
. ~A11!

We now qualitatively describe how the solutions of th
generalized system can be constructed and how we rec
the solutions of Sec. VII. The scaling technique of Sec.
can again be applied and consequently we can omit the
ditions T(`)51 and Eq.~A11! if we instead setT(0)51
5m. Then the solutions are characterized by the three
rametersv,F18(0), J28(0) @notice that a Taylor expansio
aroundr 50 yields, in analogy to Eq.~5.10!, the constraints
F28(0)505J18(0)#. Compared to the situation in Sec. VI
we thus have one additional continuous parameter to
scribe the solution. At first sight, this might seem to imp
that we can now construct, for givenv, a continuous one-
parameter family of solutions. Then our ansatz~3.4! and
~3.10! would just correspond to two special points of th
continuum of solutions, and it would become unsatisfyi
that we just picked these two special solutions for the d
cussion of the mass spectrum and the stability. However,
additional free parameter is illusory due to the fact that
also have one additional constraint at infinity. Namely,
must ~for given v) adjustF18(0) andJ28(0) in such a way
that both the (F1 ,F2) and the (J1 ,J2) curves tend to zero
for large r. For genericv, these conditions will only be
satisfied for a discrete set of initial values@F18(0),J28(0)#.
The choices@F18(0)50,J28(0)# and@F18(0),J28(0)50# are
both allowable; they correspond to the solutions construc
in Sec. VII. After scaling, this shows that for genericm, the
Einstein-Dirac equations only admit a discrete number
solutions.

We note that these considerations do not rule out the p
sibility that the general ansatz for the spinors might lead
some additional solutions. We did not study the gene
equations systematically and can only say qualitatively tha
seems difficult to arrange that there are simultaneous nor
izable solutions of Eqs.~A3! and ~A4!. The existence of
solutions of this type, however, remains an open questio
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APPENDIX B: JUSTIFICATION OF USING m
AS THE BIFURCATION PARAMETER

We show in this section, first thatv is unsuitable as a
bifurcation parameter, and second thatm can serve as a bi
furcation parameter. In Conley index theory, a parameter
only be used as a bifurcation parameter if it remains w
defined and fixed when perturbations of the solutions
considered. The basic reason whym andv must be treated
differently can already be understood from the general fo
of the Dirac equation in Eq.~1.1!. The massm enters as ana
priori given parameter into the Dirac equation, whereas
energyv of the fermion is only determined by the solutio
C. This means that if we consider a variation of a solutio
m can be considered as a fixed parameter, whilev will in
general change. If the perturbation of the solution is n
static, the energy of the fermion will in general become tim
dependent, andv will no longer be a well-defined paramete

Although being correct in principle, this argument is to
simple and not fully convincing. First of all, the situatio
becomes more complicated by our scaling technique, wh
also changesm and thus makes it impossible to consider t
mass as a fixed parameter throughout. Furthermore,v is
uniquely determined by the solutions (a,b,A,T) of Eqs.
~5.4!–~5.7!. It enters as a parameter into the linearized eq
tions in a similar way asm does, and it is not obvious from
these equations why the two parametersm andv should play
such different roles for stability considerations. Therefore
will show in detail that solutions of the linearized equatio
do not determinev, whereasm is still a well-defined param-
eter.

In order to show thatv is not well defined, we generaliz
the ansatz of Sec. VIII in the way that we also allowv to be
time dependent. In analogy to Eqs.~8.2!–~8.5! and Eqs.
~8.6!, ~8.7!, we consider a perturbation ofv of the form

v~ t !5v1ev1ekt. ~B1!

Sincev represents a frequency, i.e., the time derivative o
phase, the correct generalization of Eq.~8.1! is to replace the
phase factore2 ivt by

expS 2 i E
0

t

v~s!dsD .

The ansatz foraj ,bj ,A1 ,T1 then remains the same as befor
given by Eqs.~8.2!–~8.5! and Eqs.~8.6!, ~8.7!. Thus the
spinorsz1 ,z2 are given by

z1~r ,t !5e2 i *0
t v~s!ds@a~r !1«a1~r ,t !1 ia2~r ,t !# ,

z2~r ,t !5e2 i *0
t v~s!ds@b~r !1«b1~r ,t !1 ib2~r ,t !#.

Into these equations, we substitute Eq.~B1! and consider
only the first-order terms in«. This gives
0-18
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z1~r ,t !5e2 ivtS 12 i«E
0

t

v1eksdsD
3@a~r !1«„a1~r ,t !…1 ia2~r ,t !#

5e2 ivtFa~r !2 i«
v1

k
~ekt21!a~r !

1«„a1~r ,t !…1 ia2~r ,t !G
5e2 ivtF S 11 i«

v1

k Da~r !1«„a1~r ,t !…1 ia2~r ,t !

2 i«
v1

k
ekta~r !G

5e2 i [vt2«~v1 /k!]Fa~r !1«„a1~r ,t !…1 ia2~r ,t !

2 i«
v1

k
ekta~r !G

with a similar expression forz2(r ,t). This looks quite similar
to the original ansatz~8.1! and ~8.2!–~8.5! except for two
differences; namely, there is here an additional cons
phase factor exp„i«(v1 /k)…, together with the term

2 i«
v1

k
ekta~r !. ~B2!

The phase factor exp„i«(v1 /k)… plays no role in our analy-
sis, since it falls out of all the equations@notice that the
energy-momentum tensor~4.4! contains only terms of the

form C̄•••C#. What is interesting about the term~B2!, how-
ever, is that its time dependence is again of the formekt. It is
thus consistent with our ansatz~8.6!, and corresponds to th
transformation
ath

ys

D

s.

th
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a2~r !→a2~r !2«
v1

k
a~r !, ~B3!

and similarly

b2~r !→b2~r !2«
v1

k
b~r !. ~B4!

Thus the more general ansatz foraj ,bj ,A1 ,T1 wherebyv is
replaced by Eq.~B1! is the same as the original ansatz f
these quantities if we transforma2 andb2 according to Eqs.
~B3! and~B4!. Conversely, we may obtain an arbitrary tim
dependence inv, of the form~B1!, merely by transforming
a2 andb2 according to Eqs.~B3! and~B4!. This means that
a solution of the linearized equations only determinesv up
to linear time-dependent perturbations of the form~B1!.
Thusv is not a well-defined parameter.2

For the parameterm, however, the situation is completel
different. Namely ifC is a solution of the time-dependen
Dirac equationD” C5mC, then we see from Eq.~2.8! that
(D” CuD” C)5m2. But, as we noted earlier@after Eq.~8.19!#,
this relation is also valid for the linearized equations. That
m is a well-defined parameter for the linearized equation

2It is interesting to notice that the contribution to (a2 ,b2) propor-
tional to (a,b) which occurs in the transformation~B3!,~B4!
played an important role in our numerics. Namely, we saw in S
VIII that the (a2 ,b2) plot looks very similar to the (a,b) plot ~see
Fig. 11!, which shows that this contribution is actually dominant f
smallk. It caused problems in the numerics and forced us to in

duce the new variablesâ2 ,b̂2 ~see Fig. 12!. According to Eqs.~B3!,
~B4!, we can now understand the dominant contribution to (a2 ,b2)
in Fig. 11 as describing a time-dependent perturbation ofv of the
form ~B1!.
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