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Vacuum energy, variational methods, and the Casimir energy

Remo Garattini*
Mécanique et Gravitation, Universite´ de Mons-Hainaut, Faculte´ des Sciences, 15 Avenue Maistriau, B-7000 Mons, Belgium

and Facoltàdi Ingegneria, Universita` degli Studi di Bergamo, Viale Marconi, 5, 24044 Dalmine (Bergamo) Italy
~Received 4 September 1998; published 26 April 1999!

Following the subtraction procedure for manifolds with boundaries, we calculate by variational methods the
Schwarzschild and flat space energy difference. The one-loop approximation for TT tensors is considered here.
An analogy between the computed energy difference in momentum space and the Casimir effect is illustrated.
We find a singular behavior in the UV limit, due to the presence of the horizon whenr 52m. Whenr .2m this
singular behavior disappears, which is in agreement with various other models previously presented.
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I. INTRODUCTION

An interesting problem appearing in Einstein gravity
the computation of quantum corrections to a classical ene
A possible approach is the analysis of the thermodynam
quantities that characterize the system under considera
This analysis can be carried out by computing the sys
free energy at a given volume and temperature by means
partition function and the Euclidean action. Following t
background method, we fix a metric and look at quant
fluctuations with respect to such a background with the
propriate boundary conditions; then we functionally integr
such metric fluctuations which are strictly periodic in Eucli
ean timet. In particular, the only feasible way to treat fun
tional integration is by saddle-point methods. This is a
equate for the treatment of the small perturbation concern
Minkowski space and for a semiclassical analysis of vacu
stability. However, a different point of view based on t
Hamiltonian approach could be considered. In this fram
work, quantum corrections to classical energy can be c
puted by means of expectation values of the total Ham
tonian with respect to some states. It is clear that the prob
is too large to be completely solved. To this end we mig
take into consideration the simplest nontrivial saddle po
we can extract from vacuum Einstein equations,
Schwarzschild solution

ds252S 12
2MG

r Ddt21S 12
2MG

r D 21

dr21r 2dV2,

~1!

wheredV25du21sin2udf2 is the line element of the uni
sphere,G is Newton’s constant, andM is a parameter repre
senting the mass of the wormhole. This metric is asympt
cally flat. The apparent singularity located atr 52MG can
be removed by a suitable definition of the coordinates, e
the Kruskal-Szekeres coordinates, which is written as

S r

2MG
21DexpS r

2MGD5xy,
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expS t

2MGD5
x

y
. ~2!

In terms of these coordinates we have

ds25
32~MG!3

r
expS 2

r

2MGDdxdy1r 2dV2. ~3!

The only true singularities are at curvesxy521, wherer
50. The region$x.0,y.0% is the ‘‘outside region,’’ the
only region from which distant observers can obtain any
formation. The liney50, wherer 52MG, is the ‘‘future
horizon’’; the line x50 where alsor 52MG, is the ‘‘past
horizon.’’ We will consider a sliceS of the Schwarzschild
manifold representing a constant time section ofM . This
surfaceS is an Einstein-Rosen bridge with wormhole topo
ogy S23R1 which defines a bifurcation surface, dividingS
into two parts denoted byS1 and S2 . Our purpose is to
consider perturbations atS with t constant, which naturally
define quantum fluctuations of the Einstein-Rosen bridge
particular we will focus our attention on theS1 sector of the
manifold, corresponding to the ‘‘outside region’’ of the
Kruskal manifold. The explicit expression of the Ham
tonian can be calculated by considering the line element

ds252N2~dx0!21gi j ~Nidx01dxi !~Njdx01dxj !, ~4!

whereN is called thelapsefunction andNi is theshift func-
tion. When N5A122MG/r , Ni50, and gi j dxidxj5(1
22MG/r )21dr21r 2dV2, we recover the Schwarzschild so
lution. On the sliceS, deviations from the Schwarzschil
metric spatial section will be considered:

gi j 5ḡi j 1hi j , ~5!

with Ni50 and N[N(r ). Then the line element (4) be
comes

ds252N2~r !~dx0!21gi j dxidxj ~6!

and the total Hamiltonian is

HT5HS1H]S5E
S
d3x~NH1NiH i !1H]S , ~7!
©1999 The American Physical Society19-1



.
r
n
o

t i
th
ry

ut
ze
o
i

a
oo
fl

c

t

o
i

at
ve
ro
in
m
ec
w

a

rm
p-

yze
sors,
e

os-
re.
ee

et-

to

r-

to
rs
sses
of
is
ter
ck-
al-
a-
in
ns;
ion
n.
l

ki-
o-

REMO GARATTINI PHYSICAL REVIEW D 59 104019
here

H5Gi jkl p
i j pklS l p

2

Ag
D 2S Ag

l p
2 D R(3) ~super Hamiltonian!,

~8!

H i522p u j
i j ~super momentum!, ~9!

while H]S represents the energy stored in the boundaries
this respect, we will follow the Arnowitt-Deser-Misne
~ADM ! approach@1#, even though the quasilocal energy co
text gives a more general treatment with the possibility
looking at the gravitational thermodynamics@2,3#. Moreover,
since the space under investigation is asymptotically fla
spacelike directions, the quasilocal energy agrees with
results of the ADM approach in the limit that the bounda
tends to spatial infinity. In any case, to correctly comp
H]S5HADM we have to fix a reference frame to normali
the energy value on the boundary to zero. This brings ab
the problem of the subtraction procedure investigated
Refs. @3,4#. In this paper we would like to apply such
procedure extended to the volume term, at least at one l
Since the reference space for the Schwarzschild metric is
space, the contribution to the energy term is

HADM5 lim
r→`

E
]S

Aĝĝi j @ ĝik, j2ĝi j ,k#dSk5M , ~10!

whereĝi j is the metric induced on a spacelike hypersurfa
]S which has a boundary at infinity likeS2. Following the
result of Ref.@4#, we see thatHADM is completely equivalen
to

2
1

8pGE
]S

@2K22K0#, ~11!

where the subtraction structure is evident. The one-loop c
tribution to the zero-point energy for gravitons embedded
flat space is

23
1

2E d3k

~2p!3
Ak2. ~12!

It is clear that this term is UV divergent. We will show th
the same kind of divergence is present when the cur
background is considered. In the spirit of the subtraction p
cedure we will compute the difference between zero-po
energies. Their difference at one loop represents a Casi
like computation. The paper is structured as follows: in S
II we define the Gaussian wave functional for gravity and
analyze the orthogonal decomposition of the metric deform
10401
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tions, in Sec. III we give some of the basic rules to perfo
the functional integration and we define the Hamiltonian a
proximated up to second order, and in Sec. IV we anal
the spin-2 operator acting on transverse traceless ten
only for positive values ofE2. We summarize and conclud
in Sec. V.

II. ENERGY DENSITY CALCULATION IN
SCHRÖDINGER REPRESENTATION

As already mentioned, we would like to discuss the p
sibility of generalizing the boundary subtraction procedu
To this end, by looking at the Hamiltonian structure, we s
that there are two classical constraints

H50,

H i50, ~13!

which are satisfied both by the Schwarzschild and flat m
rics and twoquantumconstraints

HC̃50,

H iC̃50. ~14!

HC̃50 is known as theWheeler-DeWitt~WDW! equation.
Nevertheless, we are interested in assigning a meaning

^CuHS
Schw2HS

flatuC&

^CuC&
1

^CuHADMuC&

^CuC&
, ~15!

whereC is a wave functional whose structure will be dete
mined later andHS

Schw(HS
flat) is the total Hamiltonian referred

to the different spacetimes for the volume term. This has
be meant in this way: it is true that the WDW equation refe
to the space of metrics, but the space of metrics posse
different sectors@5# and we are considering the sector
asymptotically flat metrics, in which the zero-point energy
defined with respect to Minkowski space. For the de Sit
sector, we have to substract the energy of de Sitter ba
ground and so on. Note that if the expectation value is c
culated on the wave functional solution of the WDW equ
tion, we obtain only the boundary contribution. However,
this context boundaries are at infinity in spacelike directio
that is, it is equivalent to considering the unphysical situat
of computing energy excitation in the asymptotic regio
Then to give meaning to Eq.~15!, we adopt the semiclassica
strategy of the WKB expansion. By observing that the
netic part of the super Hamiltonian is quadratic in the m
menta, we expand the three-scalar curvature*d3xAgR(3) up
to o(h3) and we get
E d3xF2
1

4
hDh1

1

4
hli Dhli 2

1

2
hi j ¹ l¹ ihj

l 1
1

2
h¹ l¹ ih

li 2
1

2
hi j Riahj

a1
1

2
hRi j h

i j G , ~16!
9-2
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VACUUM ENERGY, VARIATIONAL METHODS, AND THE . . . PHYSICAL REVIEW D 59 104019
whereh is the trace ofhi j . On the other hand, following the
usual WKB expansion, we will considerC̃.C exp(iS). In
this context, the approximated wave functional will be su
stituted by atrial wave functionalaccording to the varia-
tional approach we would like to implement as regards t
problem.

III. GAUSSIAN WAVE FUNCTIONAL FOR
TRANSVERSE-TRACELESS TENSORS

To actually make such calculations, we need an ortho
nal decomposition for bothp i j andhi j to disentangle gauge
modes from physical deformations. We define the in
product

^h,k&ªE
M

AgGi jkl hi j ~x!kkl~x!d3x, ~17!

by means of the inverse WDW metricGi jkl , to have a metric
on the space of deformations, i.e., a quadratic form on
tangent space ath, with

Gi jkl 5~gikgjl 1gil gjk22gi j gkl!. ~18!

The inverse metric is defined on co-tangent space and i
sumes the form

^p,q&ªE
M

AgGi jkl p
i j ~x!qkl~x!d3x, ~19!

so that

Gi jnmGnmkl5
1

2
~dk

i d l
j1d l

idk
j !. ~20!

Note that in this scheme the ‘‘inverse metric’’ is actually t
WDW metric defined on phase space. Now, we have
desired decomposition on the tangent space of three-m
deformations@6,7#:

hi j 5
1

3
hgi j 1~Lj! i j 1hi j

' , ~21!

where the operatorL mapsj i into symmetric trace-free ten
sors,

~Lj! i j 5¹ ij j1¹ jj i2
2

3
gi j ~¹•j!. ~22!

Then the inner product between three-geometries becom

^h,h&ªE
M

AgGi jkl hi j ~x!hkl~x!d3x

5E
M

AgF2
2

3
h21~Lj! i j ~Lj! i j 1hi j'hi j

'G . ~23!

With the orthogonal decomposition in hand we can defin
‘‘ vacuum trial state’’
10401
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C@hi j ~xW !#5N expH 2
1

4l p
2 @^hK21h&x,y

'

1^~Lj!K21~Lj!&x,y
i 1^hK21h&x,y

Trace#J ,

~24!

which will be used as a probe for the gravitational grou
state. This particular expression is useful because the fu
tional can be represented as a product of three functio
defined on the decomposed tensor field

C@hi j ~xW !#5NC@hi j
'~xW !#C@~Lj! i j #CF1

3
gi j h~xW !G .

~25!

hi j
' is the trace-free transverse part of the 3D quantum fie

(Lj) i j is the longitudinal part, and finallyh is the trace part
of the same field.̂•,•&x,y denotes space integration andK21

is the inverse propagator containing variational paramet
The main reason for a similar ‘‘ansatz’’ comes from the
observation that the quadratic part in the momenta of
Hamiltonian decouples in the same way as Eq.~23!. Note
that the decomposition related to the momenta is indep
dent of the choice of the functional. To calculate the ene
density, we need to know the action of some basic opera
on C@hi j #. The action of the operatorhi j on uC&5C@hi j # is
realized by

hi j ~x!uC&5hi j ~xW !C@hi j #. ~26!

The action of the operatorp i j on uC&, in general, is

p i j ~x!uC&52 i
d

dhi j ~xW !
C@hi j #. ~27!

The inner product is defined by the functional integration

^C1uC2&5E @Dhi j #C1* $hi j %C2$hkl%, ~28!

and the energy eigenstates satisfy the stationary Schro¨dinger
equation

E d3xHH 2 i
d

dhi j ~xW !
,hi j ~xW !J C$hi j %5EC$hi j %, ~29!

whereH$2 i @d/dhi j (x)#,hi j (x)% is the Hamiltonian density.
Note that the previous equation in the general context
Einstein gravity is devoid of meaning, because of the c
straints. However, in the semiclassical context, we can giv
meaning to Eq.~29!, where asemiclassical timeis intro-
duced in the same manner of Refs.@8,9#. There, a Schro¨-
dinger equation of the form

i
]C'

]t
5H u2C' ~30!
9-3
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REMO GARATTINI PHYSICAL REVIEW D 59 104019
is recovered by the WDW equation approximated to sec
order for a perturbed minisuperspace Friedmann model w
out boundary terms. When asymptotically flat bounda
terms are present we have to take account of such cont
tions in the WKB expansion such as in Ref.@10#. However,
in this paper only gravitational transverse-traceless~TT!
modes are considered on the fixed curved background
C' is substituted by a trial wave functional. To further pr
ceed, instead of solving Eq.~29!, which is of course impos-
sible, we can formulate the same problem by means o
variational principle@14#. We demand that

^CuHuC&

^CuC&
5

E @Dgi j
'#E d3xC1* $gi j

'%HC$gkl
' %

E @Dgi j
'#uC$gi j

'%u2

~31!

be stationary against arbitrary variations ofC$hi j %. The form
of ^CuHuC& can be computed as follows. We define norm
ized mean values

ḡi j
'~xW !5

E @Dgi j
'#E d3xgi j

'~xW !uC$gi j
'%u2

E @Dgi j
'#uC$gi j

'%u2

, ~32!

3ḡi j
'~xW !ḡkl

' ~yW !1Ki jkl
' ~xW ,yW ! ~33!

5

E @Dgi j
'#E d3xgi j

'~xW !gkl
' ~yW !uC$gi j

'%u2

E @Dgi j
'#uC$gi j

'%u2
. ~34!

It follows that, by defininghi j
'5gi j 2ḡi j , we have

E @Dhi j
'#hi j

'~xW !uC$hi j
'1ḡi j

'%u250 ~35!

and

E @Dhi j
'#E d3xhi j

'~xW !hkl
' ~yW !uC$hi j

'1ḡi j
'%u2

5Ki jkl
' ~xW ,yW !E @Dhi j

'#uC$hi j
'1ḡi j

'%u2. ~36!

Nevertheless, the application of the variational principal
arbitrary wave functional does not improve the situation
scribed by Eq.~29!. To this purpose, we give to the tria
wave functional the form

C@hi j
'#5N expH 2

1

4l p
2 ^~g2ḡ!K21~g2ḡ!&x,y

' J . ~37!

We immediately conclude that

^Cup i j
'~xW !uC&50, ~38!
10401
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where p i j
' is the TT momentum. In Appendix B, we wil

show that

^Cup i j
'~xW !pkl

' ~yW !uC&5
1

4
Ki jkl

21 ~xW ,yW !. ~39!

Choice ~37! is related to the form of the Hamiltonian ap
proximated to quadratic order in the metric deformatio
Indeed, up to this order we have a harmonic oscillator wh
ground state has a Gaussian form. By means of decomp
tion ~21!, we extract the TT sector contribution in the prev
ous expression. Moreover, the functional representation~25!
eliminates every interaction between gauge and the o
terms. Then for the TT sector~spin 2!, one gets

E
S
d3xAgR(3).

1

4l p
2E

S
d3xAg@h' i j ~D2! j

ahia
' 22hRi j h

' i j #,

~40!

where (D2) j
a
ª2Dd j

a12Rj
a . The latter term disappears be

cause the Gaussian integration does not mix the compon
Then by collecting together Eqs.~40! and ~39!, one obtains
the one-loop-like Hamiltonian form for TT deformations:

H'5
1

4l p
2EMd3xAgGi jkl @K21'~x,x! i jkl

1~D2! j
aK'~x,x! iakl#. ~41!

The propagatorK'(x,x) iakl comes from a functional integra
tion and it can be represented as

K'~xW ,yW ! iaklª(
N

hia
' ~xW !hkl

' ~yW !

2lN~p!
, ~42!

wherehia
' (xW ) are the eigenfunctions ofD2 j

a and lN(p) are
infinite variational parameters.

IV. SPECTRUM OF THE SPIN-2 OPERATOR
AND THE EVALUATION OF THE ENERGY DENSITY

IN MOMENTUM SPACE

The spin-2 operator is defined by

~D2! j
a
ª2Dd j

a12Rj
a , ~43!

whereD is the curved Laplacian~Laplace-Beltrami operator!
on a Schwarzschild background andRj

a is the mixed Ricci
tensor whose components are

Rj
a5diagH 22m

r 3
,
m

r 3
,
m

r 3J , ~44!

where 2m52MG. This operator is similar to the Lichner
owicz operator provided that we substitute the Riemann t
sor by the Ricci tensor. This is essentially due to the fact t
the Riemann tensor in three dimensions is a linear comb
tion of the Ricci tensor. In Eq.~45! the Ricci tensor acts as
9-4
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potential on the space of TT tensors; for this reason we
led to study the following eigenvalue equation:

~2Dd j
a12Rj

a!ha
i 5E2hj

i , ~45!

whereE2 is the eigenvalue of the corresponding equation
doing so, we follow Regge and Wheeler in analyzing t
equation as modes of definite frequency, angular momen
and parity. We can specialize to the case where the quan
number corresponding to the projection of the angular m
mentum on thez axis is zero, without altering the contribu
tion to the total energy because of the spherical symmetr
the problem. In this case, Regge-Wheeler decomposi
@11# shows that the even-parity three-dimensional pertur
tion is

hi j
even~r ,q,f!

5diagFH~r !S 12
2m

r D 21

,r 2K~r !,r 2 sin2 qK~r !G
3Yl0~q,f!. ~46!

Representation~46! shows a gravitational perturbation d
coupling. For a generic value of the angular momentuml,
one gets

2D lH~r !2
4m

r 3
H~r !5El

2H~r !,

2D lK~r !1
2m

r 3
K~r !5El

2K~r !,

2D lK~r !1
2m

r 3
K~r !5El

2K~r !. ~47!

The Laplacian in this particular geometry can be written

D l5S 12
2m

r D d2

dr2
1S 2r 23m

r 2 D d

dr
2

l ~ l 11!

r 2
. ~48!

Defining reduced fields, such as

H~r !5
h~r !

r
, K~r !5

k~r !

r
, ~49!

and changing variables to

x52mHA r

2m
A r

2m
211 lnSA r

2m
1A r

2m
21D J ,

~50!

the system~47! becomes

2
d2

dx2
h~x!1V2~x!h~x!5El

2h~x!,
10401
re

n
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m
-

of
n
-

2
d2

dx2
k~x!1V1~x!k~x!5El

2k~x!,

2
d2

dx2
k~x!1V1~x!k~x!5El

2k~x!, ~51!

where

V7~x!5
l ~ l 11!

r 2~x!
7

3m

r ~x!3
. ~52!

This new variable represents the proper geodesic dista
from the wormhole throat such that

when r→`, x.r and V7~x!→0

when r→r 0 , x.0 and V7~x!→
l ~ l 11!

r 0
2

7
3m

r 0
3

5const,

~53!

wherer 0 satisfies the conditionr 0.2m. The solution of Eq.
~51!, in both cases~flat and curved one!, is the spherical
Bessel function of the first kind:

j 0~px!5A2

p
sin~px!. ~54!

This choice is dictated by the requirement that

h~x!,k~x!→0 when x→0 ~alternatively r→2m!.
~55!

Then

K~x,y!5
j 0~px! j 0~py!

2l

1

4p
. ~56!

Substituting Eq.~56! into Eq.~41! one gets~after normaliza-
tion in spin space and after a rescaling of the fields in suc
way as to absorbl p

2)

E~m,l!5
V

2p2 (
l 50

`

(
i 51

2 E
0

`

dpp2Fl i~p!1
Ei

2~p,m,l !

l i~p!
G ,
~57!

where

E1,2
2 ~p,m,l !5p21

l ~ l 11!

r 0
2

7
3m

r 0
3

, ~58!

l i(p) are variational parameters corresponding to the eig
values for a~graviton! spin-two particle in an external field
andV is the volume of the system.

By minimizing Eq.~57! with respect tol i(p) one obtains
l̄ i(p)5@Ei

2(p,m,l )#1/2 and
9-5
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REMO GARATTINI PHYSICAL REVIEW D 59 104019
E~m,l̄ !5
V

2p2 (
l 50

`

(
i 51

2 E
0

`

dp2AEi
2~p,m,l !, ~59!

with

p21
l ~ l 11!

r 0
2

.
3m

r 0
3

.

Thus, in presence of the curved background, we get

E~m!5
V

2p2

1

2 (
l 50

` E
0

`

dpp2~Ap21c2
2 1Ap21c1

2 !,

~60!

where

c7
2 5

l ~ l 11!

r 0
2

7
3m

r 0
3

,

while when we refer to the flat space, in the spirit of t
subtraction procedure, we havem50 and c25 l ( l 11)/r 0

2.
Then

E~0!5
V

2p2

1

2 (
l 50

` E
0

`

dpp2~2Ap21c2!. ~61!

Now, we are in position to compute the difference betwe
Eqs.~60! and ~61!. Since we are interested in theUV limit,
we have

DE~m!5E~m!2E~0!

5
V

2p2

1

2
(
l 50

` E
0

`

dpp2@Ap21c2
2

1Ap21c1
2 22Ap21c2#

5
V

2p2

1

2
(
l 50

` E
0

`

dpp3FA11S c2

p
D 2

1A11S c1

p
D 2

22A11S c

p
D 2 G ~62!

and, forp2@c7
2 ,c2, we obtain

V

2p2

1

2 (
l 50

` E
0

`

dpp3F11
1

2 S c2

p D 2

2
1

8 S c2

p D 4

111
1

2 S c1

p D 2

2
1

8 S c1

p D 4

222S c

pD 2

2
1

4 S c

pD 4G
52

V

2p2

c4

8 E0

`dp

p
. ~63!
10401
n

We will use a cutoff L to keep under control the UV
divergence:1

E
0

`dp

p
;E

0

L/cdx

x
; lnS L

c D . ~64!

ThusDE(m) for high momenta becomes

DE~m!;2
V

2p2

c4

16
lnS L2

c2 D 52
V

2p2 S 3m

r 0
3 D 2

1

16
lnS r 0

3L2

3m D .

~65!

At this point we can compute the total energy, namely,
classical contribution plus the quantum correction up to s
ond order. Recalling the definition of asymptotic energy
an asymptotically flat background, such as the Schwa
child, one gets

M2
V

2p2 S 3m

r 0
3 D 2

1

16
lnS r 0

3L2

3m D
5M2

V

2p2 S 3MG

r 0
3 D 2

1

16
lnS r 0

3L2

3MGD . ~66!

One can observe that

DE~m!→` when m→0, for r 052m52GM ~67!

and

DE~m!→0 when m→0, for r 0Þ2m52GM. ~68!

We would like to explain the reasons that support t
results of formula~65!. In that formula we introduced a par
ticular value of the radius, which behaves as a regulator w
respect to the horizon approach of the potential. The me
ing of this particular value is related to the necessity of e
plaining the dynamical origin of black hole entropy by th
entanglement entropy mechanism and by the so-ca
‘‘ brick wall model’’ @12,13#. Indeed, the same mechanism
present when one has to regularize entropy by imposin
kind of cutoff, which in coordinate space meansr 0.2m. In
fact, r 0 can be seen as 2m1h, whereh assumes the sam
meaning of Ref.@12#. However, to explicitly relate this quan
tity we have to compare the Bekenstein-Hawking entro
with the result deriving from the evaluation of the free e
ergy for gravitons, in this case. The only difference from t
original calculation is the spin contribution not present f
scalar fields.

1It is known that at one-loop level gravity is renormalizable on
in flat space. In a dimensional regularization scheme its contribu
to the action is, on shell, proportional to the Euler character of
manifold that is nonzero for the Schwarzschild instanton. Althou
in our approach we are working with sections of the original ma
fold to deal with these divergences, one must introduce a regul
that indeed appears in the contribution of energy density.
9-6
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VACUUM ENERGY, VARIATIONAL METHODS, AND THE . . . PHYSICAL REVIEW D 59 104019
V. SUMMARY AND CONCLUSIONS

We started from the problem of defining quantum corr
tions ~semiclassical! to a gravitational energy. By means of
variational approach with Gaussian wave functionals an
tempt to calculate such a correction was made. Despite
constraint equations, this calculation is based on an exten
of the subtraction procedure involving volume terms in t
semiclassical regime. Excitations coming from bound
terms have been neglected to avoid the unphysical situa
of having contributions deriving from infinity. In this contex
the extended subtraction procedure corresponds to the d
ence between zero-point energies calculated in an asymp
cally flat curved background referring to a flat backgroun
This procedure eliminates the UV divergence of the f
gravitons, leaving the contribution of the curved backgrou
related to animposed by handUV cutoff. A strong analogy
with the Casimir vacuum energy calculation is reveal
opening the possibility of understanding several configu
tions and their relationship with the vacuum stability. Inde
this apparatus can be applied also to the Schwarzschild
Sitter background which asymptotically approaches the
Sitter space and so on. Although this evaluation has to
completed with a careful study of the spin-2 operator, we
conclude that the variational approach for the computation
quantum corrections~semiclassical! to a classical energy ca
be thought of as a tool for testing zero-point ener
~Casimir-like energy! in a complicated theory such as Ein
stein gravity.
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APPENDIX A: CONVENTIONS

Riemann tensor, Ricci tensor, and the scalar curvatur
3D:

Ri jm
l 5Gmi, j

l 2G j i ,m
l 1G ja

l Gmi
a 2Gma

l G j i
a Riemann tensor.

Because of the vanishing of the Weyl tensor in 3D, that
Ci jm

l 50 , the Riemann tensor is completely determined
the Ricci tensor:

Rli jm5gl j Rim2glmRi j 2gi j Rlm1gimRl j ,

Rim5Rilm
l Ricci tensor,

R5gl j Rl j scalar curvature.
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APPENDIX B: THE KINETIC TERM

The Schro¨dinger picture representation of the kinetic ter
is

Gi jkl p
i j pkl5Gi jkl S 2

d2

dhi j ~x!dhkl~x! D . ~B1!

We have to apply this quantity to the Gaussian wave fu
tional uC&. This means that

p i j ~x!pkl~x!uC&52
d2C@h#

dhi j ~x!dhkl~x!

5
1

2
K21(kl)( i j )~x,x!@Ag~x!#2C@h#

2
1

4E d3y8d3y9@Ag~x!#2Ag~y8!

3Ag~y9!K21(kl)(k8 l 8)~x,y8!hk8 l 8~y8!

3K21(i j )(k9 l 9)~x,y9!hk9 l 9~y9!C@h#.

~B2!

By functional integrating,

^Cuhk8 l 8~y8!hk9 l 9~y9!uC&5K (k8 l 8)(k9 l 9)~y8,y9!^CuC&.
~B3!

Thus

^Cup i j ~x!pkl~x!uC&

becomes

1

2
K21(kl)( i j )~x,x!@Ag~x!#2

2
1

4E d3y8d3y9@Ag~x!#2Ag~y8!Ag~y9!

3K21(kl)(k8 l 8)~x,y8!K21(i j )(k9 l 9)~x,y9!

3K (k8 l 8)(k9 l 9)~y8,y9!^CuC&

5
1

4
K21(kl)( i j )~x,x!@Ag~x!#2^CuC&. ~B4!

Then the expectation value of the kinetic term, with t
Planck length reinserted, is

^T&5
1

4l p
2E d3xAg@Gi jkl K

21(kl)( i j )~x,x!#. ~B5!
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