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Vacuum energy, variational methods, and the Casimir energy
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Following the subtraction procedure for manifolds with boundaries, we calculate by variational methods the
Schwarzschild and flat space energy difference. The one-loop approximation for TT tensors is considered here.
An analogy between the computed energy difference in momentum space and the Casimir effect is illustrated.
We find a singular behavior in the UV limit, due to the presence of the horizon wh&m. Whenr >2m this
singular behavior disappears, which is in agreement with various other models previously presented.
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I. INTRODUCTION t X
An interesting problem appearing in Einstein gravity is
the computation of quantum corrections to a classical energyn terms of these coordinates we have
A possible approach is the analysis of the thermodynamical
guantities that characterize the system under consideration. r
This analysis can be carried out by computing the system dszzfexp{ B m>dXdy+r2dQZ' )
free energy at a given volume and temperature by means of a
partition function and the Euclidean action. Following the The only true singularities are at curveg=—1, wherer
background method, we fix a metric and look at quantum=0. The region{x>0yy>0} is the “outside regiori’ the
fluctuations with respect to such a background with the apenly region from which distant observers can obtain any in-
propriate boundary conditions; then we functionally integrateformation. The liney=0, wherer=2MG, is the “future
such metric fluctuations which are strictly periodic in Euclid- horizori’; the line x=0 where alsa =2MG, is the “past
ean timet. In particular, the only feasible way to treat func- horizon” We will consider a sliceX, of the Schwarzschild
tional integration is by saddle-point methods. This is ad-manifold representing a constant time sectionMf. This
equate for the treatment of the small perturbation concerningurface is an Einstein-Rosen bridge with wormhole topol-
Minkowski space and for a semiclassical analysis of vacuunogy S?x R* which defines a bifurcation surface, dividity
stability. However, a different point of view based on theinto two parts denoted by, and>_. Our purpose is to
Hamiltonian approach could be considered. In this frameconsider perturbations & with t constant, which naturally
work, quantum corrections to classical energy can be comdefine quantum fluctuations of the Einstein-Rosen bridge. In
puted by means of expectation values of the total Hamilparticular we will focus our attention on tf¥, sector of the
tonian with respect to some states. It is clear that the problemanifold, corresponding to the dutside regioi of the
is too large to be completely solved. To this end we mightkruskal manifold. The explicit expression of the Hamil-

take into consideration the simplest nontrivial saddle pointonian can be calculated by considering the line element
we can extract from vacuum Einstein equations, the

Schwarzschild solution ds’=—N?(dx?)?+g;;(N'dx’+dx)(Ndx’+dx), (4)
MG MG\ 1 whereN is called thelapsefunction andN; is theshift func-
dsz=—(1— T)dt2+(1— T) dr?+r2d0?, tion. When N=1-2MG/r, N;=0, and g;;dx'dx =(1

1 M G/r)~dr2+r2dQ?, we recover the Schwarzschild so-
lution. On the sliceX, deviations from the Schwarzschild
where dQ2=d 62+ sirfad¢? is the line element of the unit Metric spatial section will be considered:
sphereG is Newton’s constant, anill is a parameter repre- —
senting the mass of the wormhole. This metric is asymptoti- 9i=0i; T hyj, ®)
cally flat. The apparent singularity locatedrat 2MG can . _ _ . i
be removed by a suitable definition of the coordinates, e.g.Wlth Ni=0 andN=N(r). Then the line element (4) be
; L . comes

the Kruskal-Szekeres coordinates, which is written as

ds?=—N3(r)(dx%)?+g;;dx'dx’ (6)

r r
(ZMG - 1) exp( oM G) =X, and the total Hamiltonian is

Hr=Hs+H =fd3x NH+NHY+Hys, 7
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here tions, in Sec. Il we give some of the basic rules to perform
the functional integration and we define the Hamiltonian ap-

) 12 Jg proximated up to second order, and in Sec. IV we analyze
H=Gjjqm' mI| =] — — |R® (super Hamiltoniah the spin-2 operator acting on transverse traceless tensors,
\/5 15 only for positive values oE2. We summarize and conclude
®  in Sec. V.
M'=—2m|l (super momentujn ©) Il. ENERGY DENSITY CALCULATION IN

SCHRODINGER REPRESENTATION
while H s represents the energy stored in the boundaries. In ) ] .
this respect, we will follow the Arnowitt-Deser-Misner _ AS already mentioned, we would like to discuss the pos-

(ADM) approach1], even though the quasilocal energy con-Sibility of generalizing the boundary subtraction procedure.
text gives a more general treatment with the possibility of!© this end, by looking at the Hamiltonian structure, we see
looking at the gravitational thermodynami@3]. Moreover, ~ that there are two classical constraints

since the space under investigation is asymptotically flat in

spacelike directions, the quasilocal energy agrees with the H=0,
results of the ADM approach in the limit that the boundary
tends to spatial infinity. In any case, to correctly compute Hi=0, (13

H,s=Hapm We have to fix a reference frame to normalize
the energy value on the boundary to zero. This brings aboughich are satisfied both by the Schwarzschild and flat met-
the problem of the subtraction procedure investigated irtics and twoquantumconstraints
Refs.[3,4]. In this paper we would like to apply such a
procedure extended to the volume term, at least at one loop. ~
Since the reference space for the Schwarzschild metric is flat
space, the contribution to the energy term is .
H'¥=0. 14
HADM:JE Lz 99"[ Gk~ GijWdS'=M, (10 HY =0 is known as th&Vheeler-DeWit{WDW) equation.
Nevertheless, we are interested in assigning a meaning to

whereéij is the metric induced on a spacelike hypersurface Schw 1 1 flat
4%, which has a boundary at infinity like?. Following the (WIHS™=HW)  (V[Hapm| V)
result of Ref[4], we see thaH spy is completely equivalent (¥|¥) (¥|wy
to

(15

whereV is a wave functional whose structure will be deter-
o o mined later andH$*™(H™%) is the total Hamiltonian referred
T 8aG az[ K—="Kol, (1) to the different spacetimes for the volume term. This has to
be meant in this way: it is true that the WDW equation refers
where the subtraction structure is evident. The one-loop corf® the space of metrics, but the space O.f metrics possesses
tribution to the zero-point energy for gravitons embedded indlfferent _sectors[S] anc_l we are_con5|der|ng th_e sector O.f
flat space is asy_mptotu;ally flat metncs,_ in wh|ch the zero-point energy is
defined with respect to Minkowski space. For the de Sitter
sector, we have to substract the energy of de Sitter back-
1 _d% d and Note that if th tation value is cal-
X_f JK (12  9round and so on. Note that if the expectation value is ca
2 (2m)3 culated on the wave functional solution of the WDW equa-
tion, we obtain only the boundary contribution. However, in
It is clear that this term is UV divergent. We will show that this context boundaries are at infinity in spacelike directions;
the same kind of divergence is present when the curvethatis, itis equivalent to considering the unphysical situation
background is considered. In the spirit of the subtraction proof computing energy excitation in the asymptotic region.
cedure we will compute the difference between zero-poiniThen to give meaning to Eq15), we adopt the semiclassical
energies. Their difference at one loop represents a Casimiptrategy of the WKB expansion. By observing that the ki-
like computation. The paper is structured as follows: in Sechetic part of the super Hamiltonian is quadratic in the mo-
Il we define the Gaussian wave functional for gravity and wementa, we expand the three-scalar curvagigex/gR® up
analyze the orthogonal decomposition of the metric deformato o(h®) and we get

J d3x

1 1 li 1 ij | 1 li 1 ij a 1 ij
— Zhah+ Zh' ARy = Sh1V bl + SV, Vil = ShiRgh+ ShR;hT |, (16)
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whereh is the trace oh;; . On the other hand, following the R 1
usual WKB expansion, we will considél =C exp(S). In Vlhij(x)]=N exp — P[<hK71h>§,y
this context, the approximated wave functional will be sub- p
stituted by atrial wave functionalaccording to the varia-
tional approach we would like to implement as regards this +((Lg)K—l(Lg)y)\('ij(hK—1h>;fyace] ,
problem.
(24)
Ill. GAUSSIAN WAVE FUNCTIONAL FOR
TRANSVERSE-TRACELESS TENSORS which will be used as a probe for the gravitational ground

: state. This particular expression is useful because the func-
To actually make such calculations, we need an orthogo, P P

. . fional can be represented as a product of three functionals
nal decomposition for bothr;; andh;; to disentangle gauge defined on the decomposed tensor field
modes from physical deformations. We define the inner
product R ) 1 R
q’[hij(x)]:N\I’[hﬁ(x)]q’[(Lf)ij]q’[ggijh(X)]

(h,k):= fM@Gijklhij(X)kkl(X)dSX, 17 (25

] _ hi is the trace-free transverse part of the 3D quantum field,
by means of the inverse WDW meti@&, , to have a metric (L&)yj is the longitudinal part, and finallly is the trace part

on the space of de_formations, i.e., @ quadratic form on thes ine same field(-,- )., denotes space integration alid L
tangent space dt, with is the inverse propagator containing variational parameters.
The main reason for a similardhsat? comes from the

ikl — ( qiKeyil 2+ il ik — 2¢ii k!
G (979" +9 g7 —29"9"). (18 observation that the quadratic part in the momenta of the
The inverse metric is defined on co-tangent space and it aé—jamntoman decoup!es in the same way as aﬁ): Note
sumes the form that the decomposition related to the momenta is indepen-
dent of the choice of the functional. To calculate the energy
. density, we need to know the action of some basic operators
<D,Q>==f VOGP (x)g4(x)d%, (19 onW[h;]. The action of the operatdr; on|¥)=W[h;]is
M realized by
so that -
hi; ()| ¥)=h;;(x)¥[h;;]. (26)
. i .
G'J“mGnmk,zi(é'k5{+ 500). (200  The action of the operatar;; on |[¥), in general, is
Note that in this scheme the “inverse metric” is actually the i (X)|[ W)= —i =—Wlh;]. (27
WDW metric defined on phase space. Now, we have the oh;j(x)
desired decomposition on the tangent space of three-metric ] ] ) ) ]
deformationg6,7]: The inner product is defined by the functional integration
1
hij=§hgij+(L§)ij+hﬁ, (21 <‘I’1|‘I’2>:f [Dh ]I {hi}¥athg}, (28
where the operatdr mapsé; into symmetric trace-free ten- and the energy eigenstates satisfy the stationary 8utger
sors, equation
2 J x| —i—— b0 | wih = EWih 1 (29)
(LEij=Vi§+V&i—39i(V-9). (22) ohy(x) i ijs

Then the inner product between three-geometries becomesvhere{ —i[ 6/ 5h;;(x) ],h;;(x)} is the Hamiltonian density.
Note that the previous equation in the general context of
Einstein gravity is devoid of meaning, because of the con-
straints. However, in the semiclassical context, we can give a
meaning to Eg.(29), where asemiclassical timés intro-
duced in the same manner of Ref8,9]. There, a Schro
dinger equation of the form

<h,h>==JM@G”k'hi,«x)hk'(x)df’x

2
3

.

h2+ (L&) (L&) +hlth ).

(23

1

With the orthogonal decomposition in hand we can define a i = H Wt (30)

“vacuum trial staté
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is recovered by the WDW equation approximated to seconevhere 7T|] is the TT momentum. In Appendix B, we will

order for a perturbed minisuperspace Friedmann model withshow that

out boundary terms. When asymptotically flat boundary

terms are present we have to take account of such contribu-

tions in the WKB expansion such as in REI0]. However,

in this paper only gravitational transverse-tracel€$3)

modes are considered on the fixed curved background andhoice (37) is related to the form of the Hamiltonian ap-

W+ is substituted by a trial wave functional. To further pro- proximated to quadratic order in the metric deformations.

ceed, instead of solving E¢R9), which is of course impos- Indeed, up to this order we have a harmonic oscillator whose

sible, we can formulate the same problem by means of ground state has a Gaussian form. By means of decomposi-

variational principlg14]. We demand that tion (21), we extract the TT sector contribution in the previ-
ous expression. Moreover, the functional representa@én

n Boatrdk [l n eliminates every interaction between gauge and the other

(V[H|WP) f [Dgii]f d*xVTigi PRV {gia} @31 terms. Then for the TT sectdspin 2, one gets

1 .
(Wl () mg (W) = Z K (x.Y). (39)

(V]¥)
J[Dgﬁ]lw{gﬁ}|2 3 3 3 L ap L Lij
d X\/gR >~— d x\o[h1(Az)2hi, —2hR;h* 117,
be stationary against arbitrary variations¥fh;;}. The form (40)
of (W|H|¥) can be computed as follows. We define normal-
ized mean values where (A,)f:=—A67+2R?. The latter term disappears be-
cause the Gaussian integration does not mix the components.
n 30 1.2 112 Then by collecting together Eq&20) and (39), one obtains
P f [Dgij]f d Xgij(x)|q,{gij}| (32 the one-loop-like Hamiltonian form for TT deformations:
gij(X)= ,
[Dgij 1| P {gij}? 1 )
J ] ij Hi= P d3X\/§G”kI[K71L(X,X)ij|d
x_% ok (v 4+ KL .V

gl](X)gkl(y) Kljk|(X1y) (33) + (AZ)TIKJ_(X X iak|]- (41)

f [Dgiij]f d3X9ﬁ(£)9i|()7)|‘P{gﬁ}|2 The propggatol(i(x,x)iak, comes from a functional integra-
(34) tion and it can be represented as
f[Dgﬁ]|q’{9ﬁ}|2 hi (X)hi; (
- Kl y)
KEOGY)iaki= 20— (42
N 2\n(pP)

It follows that, by defininghﬁj =0jj —Ej , we have
where h;; (x) are the eigenfunctions oi and \y(p) are
J [Dh (X)|\p{h” +g”}|2 0 (35)  infinite varlatlonal parameters.

IV. SPECTRUM OF THE SPIN-2 OPERATOR
AND THE EVALUATION OF THE ENERGY DENSITY
IN MOMENTUM SPACE

and

Dh: jda hL h Y{h + 2
f [ D] Xt (Ohia(y) 74 1 g”H The spin-2 operator is defined by

=K (X, y)J [Dh: 11w {hi+gi} 2. (36) (A)f=—A&+2RY, 43

whereA is the curved LaplaciafLaplace-Beltrami operatpr

Nevertheless, the application of the variational principal Oy a Schwarzschild background aF\’@ is the mixed Ricci
arbitrary wave functional does not improve the situation detensor whose components are

scribed by Eq.(29). To this purpose, we give to the trial

wave functional the form [-2m m m
R dia r3 ,r—3,r—3 s (44)
Wlhi]= Nexp{ 2<(g—@J)l<’1(g—t91)>i,y . (37
45 where 2n=2MG. This operator is similar to the Lichner-
) _ owicz operator provided that we substitute the Riemann ten-
We immediately conclude that sor by the Ricci tensor. This is essentially due to the fact that
- the Riemann tensor in three dimensions is a linear combina-
(W] m; ()| ¥)=0, (38) tion of the Ricci tensor. In E(45) the Ricci tensor acts as a

104019-4



VACUUM ENERGY, VARIATIONAL METHODS, AND THE . .. PHYSICAL REVIEW D 59 104019

potential on the space of TT tensors; for this reason we are d2
led to study the following eigenvalue equation: - Fk(x)+v+(x)k(x)= E2k(x),
X
(—A&+2RHhL=E?h!, (45) )
d
2
whereEZ is the eigenvalue of the corresponding equation. In - &k(XHVWX)k(X)_ Erk(x), (51)

doing so, we follow Regge and Wheeler in analyzing the
equation as modes of definite frequency, angular momentuny,hare
and parity. We can specialize to the case where the quantum
number corresponding to the projection of the angular mo- I1+1)  3m
mentum on the axis is zero, without altering the contribu- VF(x)= ¥ ]
tion to the total energy because of the spherical symmetry of r’(x) r(x)?*
the problem. In this case, Regge-Wheeler decomposition

[11] shows that the even-parity three-dimensional perturbaThis new variable represents the proper geodesic distance

(52

tion is from the wormhole throat such that
he""(r, 9, ) when r—co, x=r and V*(x)—0
=diag H(r) 1—2—m - r2K(r),r2sin? 9K(r) - I(1+1) _3m
r ! ! when r—rg, x=0 and V*(x)— 5 +—3 =const,
o o
XYio(%, ). (46) (53

Representationt46) shows a gravitational perturbation de- Wherer satisfies the condition,>2m. The solution of Eq.
coupling. For a generic value of the angular momeniym (51), in both casedflat and curved one is the spherical
one gets Bessel function of the first kind:

4m : ]2
—AH(r) = — H(n)=EPH(1), Jo(pX)—\[;sm(px)- (54)
r

) This choice is dictated by the requirement that
m
_ - _E2
AK(r)+ r3 K(r)=E7K(r), h(x),k(x)—0 when x—0 (alternatively r—2m).
(595

—A|K(r)+2r—TK(r)=E|2K(r). (47y  Then

K _Jo(pX)jo(py) 1 56
The Laplacian in this particular geometry can be written as (xy)= 2N an (56)

2m) d? 2r=3m| d I(I1+1) Substituting Eq(56) into Eq.(41) one getgafter normaliza-
A={1-— dr2 TR 2 dr 2 (48 tionin spin space and after a rescaling of the fields in such a

r
way as to absorbf)

Defining reduced fields, such as

v 52 E?(p,m,1)
h(r) k(r) B =25 2 2 fo dppz["( N )
HiN=—> K@=—" (49 7 (57)
and changing variables to where
P Y L AL (O LA L 1) 2|(|+1) 3m

(50)
N\i(p) are variational parameters corresponding to the eigen-
values for a(graviton) spin-two particle in an external field,

P andV is the volume of the system.
_ _ By minimizing Eq.(57) with respect to\;(p) one obtains

— —h(x)+V~(x)h(x)=E?h(x), _

dx? Ni(p)=[E{(p,m,)]** and

the system(47) becomes
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vV We will use a cutoff A to keep under control the UV

% 2
E(m\)= > > fode\/E?(p,m,I), (59)  divergencé:

272 =0 =1
foodp Aledx | (A 64
. —~ —~In| —].
with o P o X C
2, I(1+1) 3m ThusAE(m) for high momenta becomes
3
re r
° ° AE v C4I A2 V [3m 21|(r8A2
Thus, in presence of the curved background, we get (m) 272 16 o2 rg 16 : 3m
(65
E(m)— — = Z f dpp?(\Vp2+c? + \p?+c?), At this point we can compute the total energy, namely, the
2m classical contribution plus the quantum correction up to sec-
60 ond order. Recalling the definition of asymptotic energy for
h an asymptotically flat background, such as the Schwarzs-
where child, one gets
C2— |(|+1) 3m M_L 3_m 2i|n rgAZ
) o ro 272\ r3) 167 3m
while when we refer to the flat space, in the spirit of the vV (3MG\? rgA2
subtraction procedure, we have=0 andc?=I(1+1)/r3. :M_2_772 (3 1_6|” 3MG /" (66)
Then 0
. One can observe that
vV 1 o
E(0)= 522 Z Jo dpp?(2Vp*+c?). (61) AE(m)—o when m—0, for r,=2m=2GM (67)
. . . and
Now, we are in position to compute the difference between
Egs.(60) and(61). Since we are interested in th&v limit, AE(m)—0 when m—0, for ro#2m=2GM. (68
we have
We would like to explain the reasons that support the
AE(m)=E(m)—E(0) results of formula65). In that formula we introduced a par-
ticular value of the radius, which behaves as a regulator with
__ = [02+c2 respect to the horizon approach of the potential. The mean-
272 2] 2 ppz[ ing of this particular value is related to the necessity of ex-
plaining the dynamical origin of black hole entropy by the
+ \/p2+ 03_2\/p2+ c?] entanglement entropy mechanism and by the so-called
“ brick wall mode? [12,13. Indeed, the same mechanism is
c_\? present when one has to regularize entropy by imposing a

V 1725 (=
=——Zfodpp3

25 kind of cutoff, which in coordinate space means>2m. In

2m" £ 1=0 fact, r, can be seen asn®+h, whereh assumes the same
5 5 meaning of Ref[12]. However, to explicitly relate this quan-

T A /1+ C_+ _ 1 (62) tity we have to compare the Bekenstein-Hawking entropy

p with the result deriving from the evaluation of the free en-

ergy for gravitons, in this case. The only difference from the

and, forp2>(;2I ,c2, we obtain original calculation is the spin contribution not present for

scalar fields.

11t is known that at one-loop level gravity is renormalizable only
in flat space. In a dimensional regularization scheme its contribution
to the action is, on shell, proportional to the Euler character of the
manifold that is nonzero for the Schwarzschild instanton. Although
in our approach we are working with sections of the original mani-

V ¢t
= — c @ (63) fold to deal with these divergences, one must introduce a regulator
272 8Jo P that indeed appears in the contribution of energy density.
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V. SUMMARY AND CONCLUSIONS APPENDIX B: THE KINETIC TERM

We started from the problem of defining quantum correc- The Schradlinger picture representation of the kinetic term
tions (semiclassicalto a gravitational energy. By means of a is
variational approach with Gaussian wave functionals an at-
tempt to calculate such a correction was made. Despite the ke~

; ; ; P : GleIW m Gljk|

constraint equations, this calculation is based on an extension
of the subtraction procedure involving volume terms in the
semiclassical regime. Excitations coming from boundary’Ve have to apply this quantity to the Gaussian wave func-
terms have been neglected to avoid the unphysical situatiofona! ['¥). This means that
of having contributions deriving from infinity. In this context B 52W[h]
the extended subtraction procedure corresponds to the differ-z') (x) 7*!(x)|[ W)= - ———————
ence between zero-point energies calculated in an asymptoti- Shij (x) Sha(X)
cally flat curved background referring to a flat background. 1 B
This procedure eliminates the UV divergence of the free =EK’“"')('”(X,X)[\/g(x)]z‘P[h]
gravitons, leaving the contribution of the curved background

52

- ohij(x) shy(x) ) B1)

related to arimposed by handJV cutoff. A strong analogy 1

with the Casimir vacuum energy calculation is revealed, —Zf dy'd®y"[Va(x)1*Va(y')
opening the possibility of understanding several configura-

tions and their relationship with the vacuum stability. Indeed, X A\g(y" YK~ HEDE ) (5 vy (y7)
this apparatus can be applied also to the Schwarzschild—de

Sitter background which asymptotically approaches the de X K ~LHDET) (x y"Yhn(y") W[ ]

Sitter space and so on. Although this evaluation has to be

completed with a careful study of the spin-2 operator, we can

conclude that the variational approach for the computation oBy functional integrating,
guantum correctiongsemiclassicalto a classical energy can

be thought of as a tool for testing zero-point energy ¥ |hi 1 (Y")hinn(Y")¥)=Krinywnm(y’ Y")<‘P|‘I’>
(Casimir-like energyin a complicated theory such as Ein- (B3)
stein gravity. Thus

(B2)
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APPENDIX A: CONVENTIONS

1
_ 3y A3\ 2 ’ ”
Riemann tensor, Ricci tensor, and the scalar curvature in 4f dy'd®y"TVgO0 V(Y ) Ve (y")
3D:

s K~ LK) (¢ yr)K - LK) (¢ )
XK erimywenm(yy" ()

Riim=Tmi;~Tjimt Tl i~ a5 Riemann tensor.

Because of the vanishing of the Weyl tensor in 3D, that is, 1
Cijm=0 s the Rl.emann tensor is completely determined by  _ _Kfl(kl)(lj)(xlx)[M]2<\P|\P>_ (B4)
the Ricci tensor: 4
Riim=0iRm—0imRi: — i Rim+ GimRyj » Then the expectation value of the kinetic term, with the
Hme S oS . Planck length reinserted, is
Rm=R), Riccitensor,

<T):$J A3V Gjj K 1M (x,x)]. (B
p

R=g''R; scalar curvature.
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