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We describe the structure of the moduli spacesefodel couplings for the worldsheet description of a
system ofN D-particles, in the case that the couplings are represented by a pair of logarithmic recoil operators.
We derive expressions for the canonical momenta conjugate to the D-particle couplings and the Zamolod-
chikov metric to the first few orders in-model perturbation theory. We show, using only very general
properties of the operator product expansion in logarithmic conformal field theories, that the canonical dynam-
ics on moduli space agree with the predictions of the non-Abelian generalization of the Born-Infeld effective
action for D-particles with a symmetrized trace structure. We demonstrate that the Zamolodchikov metric
naturally encodes the short-distance structure of spacetime, and from this we derive uncertainty relations for
the D-particle coordinates directly from the quantum string theory. We show that the moduli space geometry
naturally leads to new forms of spacetime indeterminancies involving only spatial coordinates of target space
and illustrate the manner in which the open string interactions between D-patrticles lead to a spacetime quan-
tization. We also derive appropriate non-Abelian generalizations of the string-modified Heisenberg uncertainty
relations and the space-time uncertainty principle. The non-Abelian uncertainties exhibit decoherence effects
suggesting the interplay of quantum gravity in multiple D-particle dynani®8556-282199)01510-4

PACS numbd(s): 04.60—m, 11.25-w

I. INTRODUCTION the adjoint representation and the trace is taken in the funda-
mental representation of the gauge gradfN). In the free
Dirichlet-branes are solitonic backgrounds of superstringstring limit gs— 0, the field theory involving the potential
theory whose discoverjyl] has drastically changed the un- (1.1) localizes onto those matrix configurations satisfying
derstanding of the non-perturbative and target space struc-
tures of string theor_y. Their dynamics can be sim_ply de_- [Yi,yil=0, ij=1,....9 (1.2
scribed by open strings whose worldsheets are discs with
Dirichlet boundary conditions for the collective coordinates . i )
of the soliton[2], and they are related to ordinary closed a_nd o] t_he D-brane coordinate flelds. can be S|multaneoqsly
string backgrounds by duality transformatiofd. In this ~ diagonalized by a gauge transformation. The corresponding
paper we shall study the dynamics of a many-body system dtigenvalues/;, a=1,... N, of Y' then represent the col-
D-particles. lective transverse coordinates of tNeD-branes. In this limit
The effective field theory for a system dfi parallel the parallel D-branes are very far apart from each other and
D-branes, with infinitesimal separation between them, is dnassless vector states emerge only when fundamental strings
good probe of the short-distance structure of the spacetimgtart and end on the same D-parti¢kig. 1). The gauge
implied by string theonyf3]. The main characteristic behind group is thenU(1)". Since the energy of a string which
this property of D-brane dynamics is the observafiéhthat ~ stretches between two D-branes is
the low energy effective field theory for a system Mf
D-branes is t_en—dimension_al mgximally supersymmetric Mo T |y, — Yyl (1.3
U(N) Yang-Mills theory dimensionally reduced to the
world-volume of the D-branes. For the case of D-particles
the Yang-Mills potential is

7—2 9 Dl D2
Vpo[Y]=— tr[ Y, Y112 1.1
pol Y] 4095521 [ ] (LD YAVIAVANVAN
where7=1/27ra’ is the elementary string tension, with AAA

the string Regge slope whose square root is the intrinsic
string lengthl;, andgs is the(dimensionlessstring coupling
constant. The field¥'(t) are NXN Hermitian matrices in

FIG. 1. Emergence of the enhandddN) gauge symmetry for
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hagen, Blegdamsvej 17, DK-2100 Copenhagem@nmark. Email  different D-brane, giving four massless vector states in the limit of
address: szabo@nbi.dk coinciding branes. These states form a representati®h(2]j.
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more massless vector states emerge when the branes avhich is just the relativistic free particle action for the DO-
practically on top of each other. The collection of all mass-brane. The appropriate generalization of Eig4) to the case
less states corresponding to an elementary string starting ard non-Abelian(Chan-Patopno-model couplings appropriate
ending on either the same or different D-brane form(&)  to the description of multi-D-brane dynamics has been a
multiplet (Fig. 1). The off-diagonal components of tR€  point of ambiguity in recent literature. Although it is estab-
and the remnant gauge fields describe the dynamics of thgshed that the appropriate global gauge invariant structure in
short open strings interacting with the branes through thehe action is a trace in the fundamental representation of
Dirichlet condition. _ U(N), the ambiguity arises in choosing a particular matrix
Thus when the D-branes are very far apart the classicglqering prescription for the action. The original proposal in
vacuum solution of the field theory hag unbroken. SUPErsyMrg) which employs a symmetrized matrix ordering, has been
metry (or zero energy and the_spacetlme coordinates areargued to holdnly when one incorporates worldsheet super-
represented by a set obmmutative Y When the branes are symmetry [9], or alternatively when one imposes cer-

very close to each qther, the full quantu(N) gauge ._tain energy-minimizing Bogomol'nyi-Prasad-Sommerfield-
theory must be taken into account, whose spectrum consis %PS-type conditions on the form of the actiga0]. The

of D-brane bound states with broken supersymmetr ) o
([Y', Y10 fori#j) and at very short distances the space-U(N,) _ Yapg-Mllls theory should appear as a “non-
time is described byloncommutativestructures. The gauge '€lativistic” approximation to the non-Abelian Born-Infeld
symmetry is interpreted as a symmetry generalizing the sta2Ction. An interesting closed-form expression for the sym-
tistics symmetry for identical particles in quantum mechanicgM€trized action in the case=2 has been obtained recently
and the D-brane coordinates are viewed as adjoint Higg¥ [11]-
fields in this description. D-brane field theory therefore ex- In the following we shall show how an appropriate world-
plicitly realizes the old ideas of string theory that at very sheet formalism yields the symmetrized form of the effective
short distance scalegsmaller than the target space Planckbosonic action functional for multi-D-brane dynamics, with-
length or the finite size of the strihthe classical concepts of out the need of resorting to supersymmetry arguments. A
spacetime geometry break down. The noncommutative strucrucial feature of the D-brane couplings we shall use is that,
ture of the spacetime is controlled by the strength of thenot only do they define mon-marginal perturbation about a
string interactions among the constituent D-branes. This isruly marginal deformation, but the deformed worldsheet
precisely the structure inherent in the noncommutative gefield theory has logarithmic scaling violations, coming from
ometry formalisms of stringy spacetimgs], in which the  |ogarithmic divergences on the worldsheet, and defines not a
target space geometry is represented by the algebra of oBpnventional two-dimensional conformal field theory, but
servableg(such as a vertex operator algebcarresponding  rather alogarithmic conformal field theor§12]. Logarithmic
to the interacting states of the theory. _ conformal field theories lie on the border between conformal
The dimensionally reduced Yang-Mills theory is the rel- fig|g theories and generic two-dimensional renormalizable
evant field theo_ry for the descrlptlo_n of matrix thed®],  fiq|q theories, and they correspond to the emergence of hid-
which hypothesizes that the D-particles of type-l1A SUPer-yan continuous symmetrig43]. It has been suggestéti]

string theory are the partons and the supersymmetric YaugEat the appropriate worldsheet description of the collective
theory the exact quantum field theory in the infinite momen-

tum frame of 11-dimensional spacetime. However, this is nogpordlnates(zero modek of a soliton in string theory is

the case in other regimes, for instance in the Weak-couplinglven by Iogar(ljthmlfc o[p))irators. The fnormallzatl)le_ targetd
limit where the relevant effective action is the disc generat- pace zero modes for D-branes arise from translations an

ing functional. In this paper we shall be interested in the'otations(in both spacetime and isospin spaoé the back-
description ofN D-particle dynamics from an elementary 9round, and there is a family of backgrounds connected by
point of view of the bosonic part of a worldsheetmodel ~ the symmetries which act on the moduli spaceosinodel
for the string interactions. In this formalism, the D-branecouplings characterizing the background. These modes are
coordinate fields appear as coupling constants associatéd important ingredient for the proper incorporation of recoil
with boundary deformation vertex operators on the world-effects during the scattering of closed string states off the
sheet of a freer-model. Already at the tree level in the string D-brane background when the soliton state changes during
coupling gs (the disc diagramand in flat target space, the the process of scatterifd5-19. These effects are impor-
effective action forN D-branes is a highly non-local object tant aspects of the quantization of the collective coordinates
that is not known in closed form. This complexity is due to of D-branes.
the fact that, even at the tree level, correlation functions on Logarithmic operators have conformal dimensions which
the disc receive contributions from the massive string statesre degenerate with those of the usual primary fields, and as
which yield a non-local functional of the massless modes. a result of this degeneracy one can no longer completely
The low-energy effective field theory for the-model  diagonalize the usual Virasoro operaios. Together with
couplingsy'(t) in the case of a single D-particle is well- the standard operators they form the basis of a Jordan cell for

known to be described by the Born-Infeld actiof] L. For a logarithmic pairC,D) of conformal dimensiom,
1 the operator product expansion of the worldsheet stress-
Taly]= _J' dtvi— (y)2 (1.4  energy tensoi with these fields is non-trivial and involves a
Osls mixing [12]
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1 Quantization of the moduli space is then achieved by
C(W)+——9C(W)+--- summing over worldsheet topologies, in the pinched ap-
Z-w proximation which gives the dominant terrfis4,15,18,25
In the case of a single D-particle, it was shown 28] that,
to leading order in the--model coupling constant expansion,
5 C(w) one recovers the usual canonical quantum phase space with
position and momentum having a constant commutator and
“Planck constant” given in terms of the string coupliigg .
+ ﬁé’D(WH s (1.5 Incorporating stringy effects reproduces the generalized
string uncertainty principl¢29,3Q

where an appropriate normalization of tBeoperator has %
been chosen. Defining the Virasoro operdtgrthrough the Ay Ap;= =81+ 0(al)(Ap;)2+---) (1.7)
Laurent series expansion(z)=3,.,L,z "2, it follows 2"

that the corresponding stategC)=C(0)|0) and |D
=D(0)|0) gener:fte a ng Jordatncz)lock( fglLo> D) which corresponds to adding corrections to the Heisenberg

commutation relations of the form

T(2)C(w)~

)2

A
T(z)D(w)~ —w)? D(w)+ —w)

Lo|CY=A|C), Lo/D)=A|D)+|C). 1.6 n a . -
CI=AIC) LD =AID)C) 9 [[y'p;]1=iA8l(1+O(ag)pf+- - ) (1.8
This mixing is a consequence of the behavior of the confor- S
mal blocks of the underlying worldsheet theory which ex-Where ag=gsa’ is the O-brane scale. The res(it.7) can
hibit logarithmic scaling violations. It is the characteristic also be derived from a Heisenberg microscope approach to
non-trivial property of theories involving logarithmic opera- the uncertainty principle for D-brang47]. Minimizing the
tors. modified uncertainty relatiol.7) leads to a minimal mea-

In this paper we shall study the disc amplitude in a world-surable lengthAy'=O( \/a_g). Note that this length scale
sheet boundary aukxilliary field formalisf@0—23 which can  vanishes in the weak-coupling regirge— 0, in which case
be thought of as an “Abelianization” of the/(N) theory. In  there is no lower bound on the measurability of distances in
this framework, before the auxilliary fields are integratedthe spacetime and free D-particles can probe distances
out, the only difference from the Abelian situation is an extrasmaller than the string length.
explicit dependence on the variables parametrizing the In the multi-D-particle case we shall find that the fluctu-
boundary of the string worldsheet. This representation of thating worldsheet topologies vyield the appropriate non-
Wilson loop operator enables one to carry eutmodel per-  Abelian generalization of the resull.7), and in addition
turbation theory in much the same way as in the Abelianlead to a proper quantization of the noncommutative space-
(single D-brang case. Within this formalism, we will con- time implied by the D-brane field theory. As we will see, this
struct the moduli space of the-model couplings which rep- leads to new forms of uncertainty relations involving only
resents the effective spacetime of the D-particles and whogée coordinates of spacetime, in the spirit[81,32], which
geometry is determined by the Zamolodchikov mef@d]. are superior to the phase space uncertainty relé&tioh. The
The dynamics on moduli space is determined by thesimplest such relation has the fofr33]
ZamolodchikovC-theorem and a set of conditions which en- )
sure the possibility of canonical quantizatif2s]. The cru- Ay At=12=a’. (1.9
cial observation is that, because of the logarithmic nature of
the D-brane couplings, the worldsheet deformations becom&he space-time uncertainty principl.9) follows from the
slightly relevant, which in the recoil problem is precisely the €nergy-time uncertainty relation of quantum mechanics ap-
property that leads to a change of state of the 0-brane bacllied to strings, and it can be derived from very basic world-
ground. To restore marginality, we dress the worldsheegheet conformal symmetry arguments. The same relation can
theory with two-dimensional quantum gravity, i.e. Liouville be derived within the framework of the effective field theory
theory [26]. We demonstrate explicitly that the canonical for D-instantong34] and it is also naturally encoded in the
form of the moduli space dynamics coincides with that of theeffective supersymmetric Yang-Mills theory for D-particles
symmetrized non-Abelian Born-Infeld theory. Physically, the[35]. It can be showrj35] that, for the nonrelativistic scat-
dynamical theory describes the non-relativistic motion oftering of two D-particles of BPS mass\ﬂ; with impact
open strings in the background of a “fat brane,” as de-parameter of ordeAy', the space-time uncertainty relation
scribed in[27]. Although in this framework the explicit form (1.9) gives the minimal spatial and temporal lengths
of the D-brane couplings is associated with those relevant to A
the recoil problem, we shall see that the derivation of our Ay'=gi =I5, At=g; M (1.10
results are based only on very general properties of the op-
erator product expansion in generic logarithmic conformalvvherel(P“) is the 11-dimensional Planck length which is the
field theories. The derivation of the appropriate non-Abeliancharacteristic distance scale of M the§6}. The space-time
Born-Infeld dynamics in the kinematical region of interestuncertainty principle therefore implies that, for each state of
thereby represents a highly non-trivial application of thea D-particle, no information can be stored below the Planck
theory of logarithmic operators. distance in the transverse space.

104018-3



NICK E. MAVROMATOS AND RICHARD J. SZABO PHYSICAL REVIEW D59 104018

The following results represent the first examples of suchderived from statistical distribution functions that are in-
relations within the framework of a flat space worldsheetduced from the worldsheet genus expansion, without the
D-brane field theory. In thisr-model formalism we shall need of postulating auxilliary relations. In particular, we
find the appearence of quantum smearing of multi-D-particlegshall find uncertainties of the soff.11) as implied by a
coordinates arising from the string interactions between constronger smearing of the coordinates involving a statistical
stituent branes. The appearence of minimal measurabonnected correlation function of the matrix fields. The
spacetime lengths in this way is reminescent of the lowePresent approach therefore distinguishes the quantum non-
bounds which arise from the existence of interfudiraviolet ~COMMutativity of spacetime from the algebraic one, in con-
regularization symmetries of the target spaf6]. The in- trast to the approaches [#1,32,34 where the two structures

ternal symmetry group is the enhandg@N) gauge symme- are identified. Secondly, the noncommutative smearings that

try which comes from the string interactions. For each conV€ find depend on the energy content of the system and

d ; . suggest the emergence of quantum decoherence in multi-D-
stituent D-particle we shall obtain phase space and spacg- : : ; -
time uncertainty relations of the form of Eq4.7) and(1.9 Brane dynamics. In particular, we shall derive a triple space

h ting int i d Th : time uncertainty relation which implies that the scattering of
when string interactions are turned on. There IS N0 NONCOMnyy_ 4 ticles at high energies can probe very small distances
mutativity between different directions on a given brane an hrough their open string interactions. The emergence of de-

one obtains the standard stringy smearings of the coordigherence effects is characteristic of certain approaches to
nates. However, among the matrix off-diagonal componentsspacetime quantum gravity, so that the present formulation
representing the fundamental string degrees of freedonbf matrix D-brane dynamics seems to naturally encode the
there are uncertainties between different directions of theffects of quantum gravity.
fundamental string, in addition to the usual smearing, which The structure of the remainder of this paper is as follows.
leads to a proper quantum noncommutativity among then Sec. Il we briefly describe the formalism of coupling con-
D-brane fields. The open string interactions are in this waystant quantization in Liouville string theory. In Sec. Il we
responsible for non-trivial quantum mechanical correlationslescribe the relevant brane configurations that we shall
between different spatial coordinate directions of thestudy, introducing their low-energy effective field thedtlye
D-particles. As discussed [87], these noncommutative un- non-Abelian Born-Infeld actionand the associated logarith-
certainty relations are determined entirely by the geometry ofnic recoil operators. In Sec. IV we carry out a detailed per-
moduli space. The Zamolodchikov metric on this space inturbative calculation, up to third order in themodel cou-
volves the various non-trivial kinematical quantities charac{ling constants, of the canonical momentum of the multi-D-
terizing the multi-D-brane dynamics, and it naturally en-brane system and show that the result coincides with the
codes the small-scale structure of spacetime. Théredictions of the symmetrized form of the non-Abelian
noncommutative structures of spacetime are determined bgorn-Infeld action. In Sec. V we show that the resulting
the transformations which diagonalize the Zamolodchikovnoduli space dynamics takes the canonical form of that in
metric. These noncommutative smearings arise from an ex-iouville string theory. With this correspondence estab-
pansion of the moduli space around the background(bfea  lished, in Sec. VI we carry out the sum over worldsheet
algebrai¢ commutative spacetime determined as in @cR) topologies in the pinched approximation which leads to a
which has the effect of encoding the noncommutative stringjuantization of the D-particle couplings. Then we derive the
interactions into a gauge transformation. The gauge field inspacetime uncertainty relations and discuss their physical
teractions are then ultimately responsible for the occurenceignificances. Section VII contains some concluding remarks
of the quantum noncommutativity. This is reminiscent of theand possible physical tests of the noncommutativity of
matrix string framework for nonperturbative string theory spacetime. At the end of the paper there are four appendices
[38,39, which encodes the geometry of the genus expansiogontaining some of the more technical calculations. In Ap-
through singular gauge transformations of commutativependix A we describe the structure of generic correlation
spacetime coordinates and naturally yields the characteristitinctions of the logarithmic operators, and in Appendix B
spatial scale in Eq(1.10 [39]. The following results there- we describe the technical details of the computation of the
fore yield a geometric picture of the string interactionscanonical momentum of Sec. IV, including a description of a
among D-branes and hence of the short-distance noncommparticular renormalization scheme that must be used for the
tativity of spacetime. auxilliary field representation of the Wilson loop operator.
The present worldsheet framework thus gives an expliciAppendix C summarizes the complicated boundary integra-
realization of the spacetime noncommutativity described irfions used in the paper, and finally in Appendix D we show
[32], where, based on very general requirements arising frorhow to cancel the leading modular divergences in the genus
the Heisenberg uncertainty principle and classical generaxpansion of Sec. VI by imposing momentum conservation
relativity, uncertainty relations among different coordinatein the scattering of string states off the multiple D-brane

directions are postulated in the form background.
) o Il. HELMHOLTZ CONDITIONS AND COUPLING
Z Ay' Ayl=| P (1.11 CONSTANT QUANTIZATION FOR TWO-DIMENSIONAL
=) o-MODELS

However, there are several crucial differences in the present In this section we will briefly review the formalism of
approach. The first one is that all of our uncertainties areoupling constant quantization for two-dimensional
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o-models. Consider a worldshe@tmodel that is given by a _ _ —  wlJa"
deformed conformal field theory on a compact Riemann sur- g'(¢)=g' e%i¢/V* + Ta
face2, with metric y,;. The deformation is described by a Q
set of coupling constanty associated with vertex operators
Vi(z,2) that have conformal dimensiona(,A;) and opera- The dressed deformatidrV;], is then truly marginal pro-
tor product expansion coefficients, . The action is of the ~ vided that

form

Cikg'g‘ge ACES
(2.4

1 —
Eai(ai+Q)=Ai+Ai—2. (25)
sixal=S0d+ [ gV @
2 The gravitationally dressed version of E.1) is Sy x]

. .  + S [x;¢], where
whereSy[ x] is the action of the unperturbed conformal field

theory and an implicit sum over repeated indices is always 1 — ~
understood. The vertex operatdfsare constructed fromthe S [X;¢]= —,f dzZ\/;[ Y*P3,0950— QeR?(y)]
fields of Sy[x]. As we will discuss, because of special prop- dma’ /3
erties of the Zamolodchikov renormalization group flow
[24]_, the sum_mat_ion over worldsheet genera leads to_ a ca- fﬁ dS‘PK(VHJ dzz\/—g ()V;
nonical quantization of the system of moduli space variables 477a
{g'} in a non-trivial way[18,25. In this picture the ultravio- (2.6)
let worldsheet renormalization group scale loglays the
role of time for the quantum mechanical system of variablegs the Liouville action coupled to the “matter” part of Eq.
{ght (2.1) [26]. HereR®) is the scalar curvature of the worldsheet
When the vertex operatol$; describe a relevant defor- 3, andK is the extrinsic curvature at the worldsheet boundary
mation (i.e. A;+A;<2), the running coupling constants d=.
g'(A) acquire non-trivial flow under the renormalization ~The most general renormalization group flow for a
group which is described by the flat worldshgefunction ~ o-model couplingy', corresponding to a vertex operatdy,
in Liouville string theory has the form of a friction equation
) dg _ , o of motion[25,41,423
Blgl= =(Ai+4i-2)g' - mcig'g. (2.2

. A 0
| . . | a' g'(¢)+Va' Qd(¢)=-p[g]=G"—Clg;¢]
The flows in the space of running coupling constants inter- ag!
polate between various two-dimensional renormalizable 2.7
guantum field theories. Conformally invariant theories are
infrared or ultraviolet fixed points of these flows. Studylng
the global aspects of this moduli space leads to a geometric
understanding of certain equivalences between various con- — [
formal field theories and their associated target spaces. ¢= \/a_Q log A 28
One can restore conformal invariance at the quantunynq
level by including worldsheet gravitational effects and dress-
ing the action(2.1) by Liouville theory. This amounts to —(ile — ‘SN +15G.. g2 )
dressing the vertex operators in EQ.1) as Vi—[Vi],, Q=(5le, ~Cla:2] £GP 29
where ¢ is the Liouville field which scales the worldsheet js the central charge deficit witty, the central charge at the
metric as critical dimension. The quantitC[g; ¢] is the Zamolod-
chikov C-function [24]. It interpolates in moduli space
yaB:e@’\WQ)‘P}aB (2.3  among two-dimensional field theories @naccording to the
C-theorem, which for flat worldsheets reads

where the dots denote differentiation with respect to the
Ljouville zero mode

with S/aﬁ a fixed fiducial metric on> and Q is a constant

related to the central chargeof the two-dimensional quan- I =-p'G;p (2.10
tum gravity. In the Liouville framework, log is therefore dlogA

identified with the worldsheet zero mode of the Liouville where

field [40]. This dressing can be viewed as a renormalization

of the corresponding coupling constants in E2}1) as G; :A4<Vi(zy?)vj(z,?)>|_ 2.11)

is the Zamolodchikov metric on moduli space. Hérg,
Istrictly speaking,A is the ratio of the infrared to ultraviolet denotes the average in the non-critioamodel(2.1) dressed
scales on the worldsheet. In what follows, however, we shall set thwith the Liouville action(2.6), andG'l denotes the matrix
size of the surfac& to unity. inverse of Eq(2.117).
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In Eq. (2.7) we took into account the gradient flow prop- d aL Il
erty of the 3-functions wij(a'g+Va' Qg+ )= ) -— (218
J9
J .
;CzGijﬂJ (2.12  which obeys the Helmholtz conditiord4]
g
L ii = Wi 2.1
which is an off-shell corollary of the flat worldsheet @i~ @i 219
C-theorem[24]. When theC-function is regarded as an ef-
fective action in moduli space, the corresponding classical ‘9"_’ii: (9“_’ik (2.20
equations of motion therefore coincide with the renormaliza- agk  ag’
tion group equationg'[g]=0. The Zamolodchikov metric
(2.19 can also be used to determine the short distance be- | p ok Pris oK oK
havior of 3-point correlation functions of the-model. For a 5Dl Pk T QKT | T Ok T 0k~
scale-invariant field theory, the short-distance operator prod- ¢ g’ 99 g’ 99
uct expansion is (2.2
k A+A Ak_A +A Ak D 1 &fk ﬁfk
V(Zl,Zl)V (22 22) Cu 12 212 — = —— wiqu_wkf
. - - Do " 24 agl Fag
XVi(z(21+27),5(21+2,)) (2.22
(213 where
for |zy|~|z,|, where
fie [@0g-_g D_a+.ia+f'a
Zj=2-1. (2.14 =—Va' Qg —p'g], Do 90 gagi v
Then the three-point function of the deformation operators (2.23
(Vi(zy Z)V-(Zz Z)Vil(2s ;3)>L If the conditions(2.19—(2.22 are met, then
A+ A = AA+A = A A+ A=A, J2L
=CijkZ1, “z), “z,5 7" a' wj=—— (2.249
A+ A=A A+ A ATA +A -4 99'9g’
><z 2 leé k2 (2.15
and the Lagrangian in Eq2.24) can be determined up to
can be determined as total derivatives according tai4]
Cijkzcgj Gk (2.16

1
SEJ dpL= —f d¢f dxg'E;i( ¢, k9, kg, kQ)
in the limit | z,3 ~|z;5/>>|2;3. The coefficient<;;, are com- 0
pletely symmetric in their indices. From E@.16) it follows o _ S
that the asymptotic behaviors of the first three sets of corre-  Ej(¢,9,9,9)=wjj(a’ '+ \/?Q g+p).

lation functions of the vertex operators can be related as (2.29
ViV~ (VoL~G(ViVi Vi (V). (2.1 In the case of non-critical strings one can idenfidp]
It is well-known that higher-genus effects will quantize 1
the effective coupling constanty(¢) [18,25. For a full wj=——=Gj. (2.26
guantum description, we must ensure that €q7), which is Vo'

characteristic of frictional motion in a potenti@l[g; ¢], is

consistent with the canonical quantization conditions. We\ear a fixed point in moduli space, where the variatioof

therefore need an action formalism for the renormalizatioS Small, the action2.29 then become§18,29

group flow. In general such equations of motion cannot be . L

cast in a Lagrangian form, but in the case of non-critical o_ I I i o

strings this is possible due to the non-trivial met@g . In _J d¢( 2 9 Gilg: 419 \/?C[g,¢>]+

this framework, the Liouville zero mode.8) is identified as (2.27

the physical time coordinatg25,43, observed in standard '

units. where the dots denote terms that can be removed by a change
The conditions for the existence of an underlying La-of renormalization scheme. Within a critical strifmn-shel)

grangianL whose equations of motion are equivaléhtit ~ approach, the actiofR2.25), (2.27 can be considered as an

not necessarily identicato Eq. (2.7) are determined by the effective action generating the string scattering amplitudes.

existence of a non-singular matrix; with Here it should be considered as a target space “off-shell”
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action for non-critical stringf25]. From Eq.(2.27) it follows ~ with a matrix-valued coupling. In a T-duéNeumann bound-
that the canonical momenta conjugate to the couplings ary condition$ framework? the resulting effective theory is
are given by described by ar-model on an “effective” topology of a
o disc, propagating in the background of a non-Abelia{iN)
pi=v\a' G; g (2.28  Chan-Paton gauge field.

) o o Consider theJ (N)-invariant matrixo-model action
Let us briefly sketch the validity of the conditiof®.19—

(2.22 for the choice(2.26. SinceG;; is symmetric, the first

Helmholtz condition2.19 is satisfied. The condition®.20 SNX;A]=
and (2.21) hold automatically because of the gradient flow dma’
property(2.12 of the g-function, and the fact tha®;; and
C[g; ¢] are functions of the coordinateg and not of the

f d?ztr 7,,,0X X"
2{zap}

f# trY;(x°(s))dX(s)
7% {Zap}

conjugate momenta. Finally, the fourth Helmholtz condition 2ma’
(2.22 yields the equation
+ §€ tr A%(x%(s))dX?(s) (3.1
D _ Q d. Zab}
D_¢Gij_\/76ij (2.29

where 7, is a (critical) flat 9+1-dimensional spacetime
which implies an expanding scale factor for the metric inmetric. The worldsheet fields, Y andA areN < N Hermitian
moduli space matrices which transform in the adjoint representation of
U(N).2 The traces in Eq(3.1) are taken in the fundamental
Gij[4:9(d)]= eQ‘/”mAG”[d:;g(qs)] (2.30 representatiofi.The surfaces.{z,,} is a sphere with a set of
marked pointz,,,, 1<a,b<N, on it. For eacha=b it has
where G; is a Liouville renormalization group invariant the topology of a dis&, while for each paim#b it has the
function, i.e. a fixed fiducial metric on moduli space. This istopology of an annulus. The variabée=[0,1] parametrizes
exactly the form of the Zamolodchikov metric for Liouville the circle g%. In [27] it was shown that the actiof8.1)
strings[18,40. Thus there is an underlying Lagrangian dy- describes an assembly bf parallel D-particles with funda-
namics in the non-critical string problem. mental oriented open strings stretching between each pair of
The action(2.27 allows canonical quantization, which as them. The diagonal compone,, of the matrix fieldY
we have mentioned is induced by including higher genugarametrizes the Dirichlet boundary condition on D-particle
effects in the string theor18,25. In the canonical quanti- a, while the off-diagonal componeiv,,= Y}, represents the
zation scheme the couplings and their canonical momenta Dirichlet boundary condition for the fundamental oriented
(2.28 are replaced by quantum mechanical operatorsar- ~ open string whose endpoints attach to D-partidesnd b.

get spaceg’ andp; obeying The matrix fieId_A0 parametrizes the usual Neumann bound-
ary conditions in the temporal direction of the target space.
[[@i,ﬁj]]:iﬁM 5} (2.3) The action(3.1) is written in terms of Neumann boundary

conditions on the configuration fields, which is the correct
where the quantum commutatffr- , - ]] is defined on the description of the dynamics of the D-branes in this way, but
moduli spaceM of deformed conformal field theories of the it is straightforward to apply a functional T-duality transfor-
form (2.1), and# ,, is an appropriate “Planck constant.” We mation on the fields of Eq3.1) to express it in the usual,
can use the Schdinger representation in which the canoni- equivalent Dirichlet parametrizatid27]. The configuration
cal momentum operators obgg5|

A= Y

A0 — (3.2

2ma’

<E’i>L:<_iii> =(Vi)L. (2.32
o9/ |

Thus the canonical commutation relati¢2.31) in general %For subtleties in applying the T-dual picture 8623, In this
yields, on account_ of _Eq(.2.32), a non-tnwal commutator paper, as if27], we assume that the Neumann picture is the fun-
between the couplingg' and the associated vertex operatorsgamental picture to describe the propagation of strings in fat brane

of the (genera resummedr-models. backgrounds. The Dirichlet picture is theterived by applying
T-duality as a canonical functional integral transformation.
lll. MATRIX o-MODELS AND FAT BRANE DYNAMICS 3In this paper we shall consider only the case of oriented open

. . . . strings. For unoriented open strings, the global symmetry group
To describe the moduli space dynamics of a multi-D-y Ny is replaced withO(N) everywhere.

brane system, we shall use the construction describf2i7in  4Repeated upper and lower spacetime indices, which are raised
which for the present purposes lends the best physical integnd lowered with the flat metrig;,,, are always assumed to be
pretation. In this picture, the assembly of D-branes, includingsummed over. We also normalize the generaftsof U(N) as

all elementary string interactions, is regarded as a composit@e T2TP= 52 and hence use the flat metrd@® to raise and lower
“fat brane” which couples to a single fundamental string color indices.
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can be interpreted as a ten-dimensiod&N) isospin gauge
field dimensionally reduced to the worldline of the D-particle
[1,45].

However, the action3.1) on its own does not properly
take into account the interactions between the D-particles
and the fundamental strings. To do so we must transform it
in two ways[27]. First, we must include the sum over all
worldsheet topologies, incorporating the Liouville dressing
discussed in the previous section. Due to the induced quan-
tum fluctuations of the coupling‘z{f‘b, this provides an in-

.

7
finitesimal separation between tieconstituent D-particles
proportional to the string couplings,” and also allows the FIG. 2. Schematic representation of a fat brane. The bold strips
endpoints of the fundamental strings to fluctuate in spacedenote the assembly of parallel D-branes and the thin wavy lines
time. We must then integrate out all the fluctuations amongepresent the fundamental strings which start and end on them. The
the fat brane constituents, i.e. over all of the marked pointshading represents the integration over all of these string interac-
of 3{z,,}. This necessarily makes the action non-local. Bytions, as well as the sum over worldsheet genera. The matrix
U(N)-invariance, the resultingr-model partition function o-model describes the interaction of the fat brane with a single
then becomes the expectation value, in a fisealay fundamental string, represented by the thick wavy line, which starts
o-model, of the path-orderetd(N) Wilson loop operator and ends on the fat brane with a matrix-valued coupling con3tant
W[ 0% ;A] along the boundary of the worldsheet dis¢

N is the non-Abelian Born-Infeld action for the dimensionally-
e reduced gauge field, . Herec, is a numerical constant and
ZN[A]EQEMJ [dX]J; albll d?Zpe™ SWA t=x%s=0) is the worldsheet zero-mode of the temporal
’ embedding fieldly is the NXN identity matrix, Sym de-
notes the symmetrized matrix product

:<W[§2;A]>OE J’ Dxe™ NZSO[X]tr P

1
_ jg . SymMy, ... Mp)=— > MM, (36
><exp<|gS ?EAM(X (s))dx“(s)) (3.3 CmeS,

wheredX is the normalized invariant Haar measure for inte-and Asym is the antisymmetrized matrix product

gration on the Lie algebra dfix N Hermitian matrices and

n

(3.7)

1
1 _ Asym(My, ... My)=— > (sgnmM, M, .
SO[X]:—J dZZ 7]}“,(9XM(9XV (34) s meS,
Ao’ ls

is the freec-model action for the fundamental string. The The symmetric productand similarly for the Asym opera-

path integral measuf@x is normalized so thafl)o=1. The  tion) on functionsf(M,, ..., M,) of n matricesM, is de-
partition function(3.3) describes the dynamics of a fat brane, fined by first formally expandingjas a Taylor series and then
which is depicted in Fig. 2. applying the Sym operation to each monomial,

The low-energy effective action for the D-brane configu-
rations is now obtained by integrating out the fundamental
string configurations in Eq. (3.3). To lowest order in the Symf(M,,...,M,)
gauge-covariant derivative expansion, the resulZjgA]

~e NTnailAl where - > symm* M)
oM.

Co _ (3.9
I'eil[Al= mf dttr(Sym+iZ Asym)(det, ,[ 7,,!In

(3.5 The symmetrizatior_w and antisymm_etr_ization op_e_rgtions have
the effect of removing the ambiguity in the definition of the
spacetime determinant in E¢R3.5 for matrices with non-
commuting entries.

>Strictly speaking, it is a renormalized coupling constglfit that The components of the field strength tensor in B35
appears—sef27] for details. are given by

+27Ta'g§FM,,])1/2
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d annulus amplitude reveals that there are logarithmic diver-
2ma’Foi= 1 Yi—igd Ao, Yil, (2ma’)?Fij=gd Y;,Y|] gences arising from modular parameter integrations of the
(3.9 form fdg/q [14-16. These divergences can be removed by
replacing the velocity operator in EqQ.3.12 by
and the constang e R is left arbitrary so that it interpolates lim_o+U2°D(x%¢), where
among the proposals for the true trace structure inherent in
the non-Abelian generalization of th_e_ Born-Infeld action. D(x% €)=x° O (x°;¢) (3.13
The case/=0 corresponds to the original proposal [i8]
while the trace structure with=1 was suggestetdn a dif- and
ferent context in [46]. In [9] the two-loop worldsheet
B-function for the model3.3) was calculated to be

1 (- dq .
@(S; 6): 2—7” q_iééqs (314)
Bab= (?Ylab :_(Zﬂ_a/ )Z(D'MF _)ab h
' glogA 9s # is the regulated step function, witB(s)=Ilim__,+0O(s;€)

N3 A »1\ab )4 =0 for s<0 and®(s)=1 for s>0. The infinitesimal pa-
+2(2ma’gy)*(DHF . FIDT+O((a'gy)") rametere regulates the ambiguous value ©f(s) at s=0,
(3.10 and the integral representati®.14) is used since® will
eventually be a quantum operator. When this velocity term is
where inserted into the boundary integral of thbemodel action, the
e—0" divergences arising from the regulated step function
ig can be used to cancel the logarithmic divergences of the
s [Yi,-1 (3.1) annulus amplitude$14—164. This relates the target space
ma' regularization parameterto the worldsheet ultraviolet scale

. . A by [17]
are the components of the dimensionally reduced gauge-

covariant derivative. It is readily seen that E§.10 coin-
cides with the variation of the actiof8.5 with /=1 up to
the order indicated in Eq(3.10, so that the worldsheet
renormalization group equatiorﬁiabzo coincide with the
equations of motion of the D-branes. The first term in Eq
(3.10 yields the(reduced Yang-Mills equations of motion,
while the second term represents the first order stringy co

rection to the Yang-Mills dynamics. We shall return to this and in an impulse approximation, it ensures tféssically

|ss:1ne tmsthngsz(f/vsees&;lcl)gtu dy the target space quantum dy_the fat brane starts moving only at tirrB=0. But this is not
namics from the worldsheet-model point of view, which all that is required. The operat68.13 on its own does not

i . . . I | nformal algebra. mputing i rator
will provide dynamical worldsheet origins for the noncom- ead to a closed conformal algebra. Computing its operato

. ! : o pr xpansion with th ress-ener nsor K
mutativity of spacetime and matrix D-brane dynamics mp oduct expansio th the stress-energy tensor sHaws

S H 0. 0.
general. We shall study the simplest background of éhat itis only thepair of operatorsD (x7; €),C(x";€), where

Galilean-boosted D-brane,

d |
Do:a—lgs[Ao-'], Di:2

€ ?=—2a'logA. (3.19

We shall describe these cancellations explicitly in Sec. VI.
This new velocity operator is called the impulse operator
116] and it has non-zero matrix elements between different
rg,tates of the fat brane. It describes recoil effects from the
emission or scattering of closed string states off the fat brane,

C(x%e)=e0O(x%e¢) (3.1
Yi(x0)3P=yaP4 y2bxO (3.12 i i
i i i : that define a closed algebra under the action of the world-

di h ¢ lativistic  h sheet stress-energy tensor. They form a pair of logarithmic
corresponding o t € case ol non-re ativistic . .eavyoperators of the conformal field thedrd2]. Thus, in order to
D-particles. The velocity matrixJ; describes the velocities

. X : maintain conformal invariance of the worldsheet theory, one
of the constituent D-branes in the fat brane. Alternatively,

cannot just work with the operat¢8.13), because E(3.1
the choice of coupling$3.12 can be thought of as param- J perat¢g. 13 d3.16

- . . ; will be induced by conformal transformations. If we rescale
etrizing the action of the spacetime Euclidean group on the,. \vorldsheet cutoff

fat brane. However, this background is trivial from the point

of view of the dynamics of the D-branes. In the Neumann

picture the D-brane configurations are essentially gauge A—A’ :Ae‘”‘/y (3.17
fields, so the only part of Ed3.12 which contributes to the

action(3.1) is the velocity operator. But we can also Galileanby a linear renormalization group scalethen Eq.(3.15
transform to the rest frame whet# =0. We shall see ex- induces a transformation

plicitly in the next section that the quantum dynamics deter-

mined by the configuratiof3.12) are trivial. 2
The problem is resolved by considering again the genus 62—>e’2:E— (3.19
expansion of the matrix--model (3.1). An analysis of the 1—4\a' €t
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and we find plingsY; in the o-model of the previous section. The neces-
sity to carry out this complicated calculation is many-fold.

D(x% €' )=D(x%¢) +t \/?C(xo;e), Fo_r instance, we _she_lll see that the perturbaf[ive theo_ry re-

quires a renormalization of the D-brane couplings, which is
C(x% e )=C(x%e). (3.19  unambiguously fixed by the momentum. This will be impor-

tant in the following sections where we shall map the fat
If we now modify the initial position of the fat brane to brane problem onto the Liouville string problem of Sec. II.
Iimﬁoﬂ/?YiabC(xo;e), then this scale transformation will Furthermore, this quantity enables the most direct compari-
induce, by conformal invariance, a transformation of the ve-son with the non-Abelian Born-Infeld theory and illustrates

locities and positions as the usage of the generic features of logarithmic conformal
field theory in the calculation of matrix D-brane dynamical
Ui—U;, Yi—=Y;+Ut (3.20  quantities.

i.e. a Galilean evolution of the fat brane in target space.

To properly incorporate non-trivial dynamics of the fat A. Perturbation expansion

brane, one must therefore consider instead of(Bd.2) the We shall need a proper path integral representation of the
recoil operator U(N) Wilson loop operator, representing the pertinent vertex
operator for the description of a systemMvD-branes in the
Yi(x9)2= lim (Va’ Y2°C(x%€)+U2D(x%¢)). o-model framework. We introduce one-dimensional com-
e—0" plex auxilliary fields£,(s),£,(s) on the boundarys, of the

(3.2)  worldsheet. They transform in the fundamental representa-

The conformal algebra reveals that the operaf8r&3 and tion of the U(N) gauge group, and their propagator is

(3.16 have the same conformal dimensidiv]

((€a(s1)Ep(S)))= lim f DED£€,(S1) En(S2)

A.=—a'|€?2 (3.22 0t
which vanishes ag—0". For finite e the operator(3.22), ><exp( -2 dec(S 6) $6c(9)
when inserted into the actiai.1), yields a deformation op- c=1

erator of conformal dimension-1a’|€|%/2 which therefore

describes a relevant deformation of #tvanodel and the re-

sulting string theory is non-critical. From E¢3.20) it fol- = ap® (527 81)
lows that the corresponding matrix-valugdfunctions are

4.9

where againe regulates the ambiguous value ©fs) at s
Bv=ANi+Va'Ui, Bu=Ali. (323 =0
Using the propagatof4.1l) and Wick's theorem we can
As the “dressing” by the operator€ andD is determined undo the path ordering in the Wilson loop operator in Eq.
entirely by the temporal coordinas€, we identify this field (3.3 by writing it as[20—23
as the Liouville fielde. Marginality of the deformation is
then restored by taking the limé—0*. In this sense, the
gravitational dressing is provided by the temporal embeddlngW[ I3 A=

fields of the string, giving a natural interpretation to the NWywldZ;A] " s

Liouville zero mode as the time coordinate x°(s=0) that N N

appears in Eq3.5). The relation with the worldsheet renor- — . 1 —
malization scale is then set by E@®.15. Thus, if we con- X 21 &e(0)ex 'gsabzzl dséa

sider the initial velocity matrixU; of the fat brane as an

unrenormalized coupling, then E@®.21) is interpreted as the b d

Liouville-dressed renormalized coupling constat®s4) of X(s—e)A} (XO(S))§b(S)d—SX“(S) &(1)) ).
the matrix o-model. We shall make this correspondence

somewhat more precise in Sec. VI. Some properties of the 4.2

correlators of the logarithmic pai€,D, which will be re-

quired in the following, are described in Appendix A. This representation of the Wilson loop operator also requires

a renormalization scheme for the auxilliary quantum field
theory which we describe in Appendix B. It puts the partition
function (3.3) into the form of a functional integral over a

local action. Note that it corresponds to the partition function

In this section we shall compute, as prescribed in Sec. Ilfor the boundary fields, & minimally coupled to the gauge
the canonical momenta conjugate to the matrix-valued coufield A, . The additional factor

IV. CANONICAL MOMENTUM OF COLLECTIVE D-
BRANE CONFIGURATIONS
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N N
Wy [d5:A]= lim <<e><p(igs S foldsga fil (s)= lim 3 < <<Ec(0)vgb(x;s)

e—0" e~>0+c=l

d N 1
X (s— e)AZb(XO(s))§b(S)EX“(S)) > > X exp( igsdeE:l fo ds’ &y(s'—e€)

4.3 d
XAie(x"(s'))gasw—,xﬂ(s')) §C(1)> > >

is induced by the vacuum graphs of the auxilliary quantum ds 0
field theory. With a periodic definition of the step function (4.7)
0O(s) on the circled, [for instance with a discretized ver-
sion of Eq.(3.14)], the auxilliary fields induce loop contrac- o
tions of the color indices of the gauge fiedq, leading to the IS the contribution from th&U(N) part of the gauge group.
U(1) subgroup projectiot4.3) of the Wilson loop operator. The second term in EG4.6) involves traces of the gauge

This formalism gives a one-parameter family of Dirichlet field A, which we identify as the center of mass coordinates
boundary conditions for the fundamental string fields, la-Of the fat brane, i.eY{™=(1/N)trY;. The expressiori4.6)
belled byse[0,1], in the corresponding T-dual formalism thus shows that the momenta of the collective center of mass
[21,22, i.e. the dual configuration fields are motion of the fat brane and of the constituent D-branes com-
prising the fat brane completely decouple. In this paper we
shall be interested in only the former contribution, since the
latter one essentially represents the dynamics of a single
D-brane[i.e. gauge groupJ(1)] andhere we are interested
in the non-Abelian modification determined by the constitu-
_ . _ _ ent D-particles. In effect we restrict attention to unimodular
Now, instead of being forced to sit on a unique hypersurfacgyilson loops[i.e. gauge grouU(N)]. For these terms the
as in the Abelian D-brane case, there is an infinite set o tatistics of the auxilliary boundary fieldsé¢ are irrelevant.

hypersurfaces on which the string endpoints are situated. Al- From now on we shall work in the static gaudg="0 for

ternatively, we obtain a one-parameter family of bare matniXipne dimensionally reduced gauge field. Then the canonical
valued vertex operators

momentum(4.7) can be expanded as the power series

N
Yi(x%s)= lim bElas—e)Y?b(xO(s))fb(s). (4.9

a,pb=
e—07"

Vi s=—9= Lsis) im &, 4 (- g, |
W0 o g O M EORS 49 g5 COT ) iy
€~0 n=1 n! 2ma’
(4.8
and renormalized matrix coupling3.21). Thus the trade-off
for removing th_e_non-locality of the effective theo(3.3) is _ where theO(Y(x°)") contribution is
the extra explicit boundary dependence of operators in-
volved.
We will use the representatidd.2) to compute the clas- , N 1"
sical canonical momentuiiil,(s) in the moduli space of the ~ Pan’[Y;s]= lim 21 > k[[l dsg
collective D-brane configuration‘é?b(s). According to Eq. 07" Zi ::::ﬁ: ok
(2.32, the momentum can be computed as the one-point \
function of the deformation vertex operatdss5) in the sta- - = —
tistical ensemblg3.3), X < < &c(0)€als— E)gb(s)(knl gak(sk_ €)
R )
Hjab(S)=NWU(1)[O7E,A] _WZN[A]) gbk( k) gc( )

><<disxi<s>kf_[1 Yf‘kkbk(x%sk))%xik(sk) > -

=11, (s)— N< W[ ;A]
(4.9

Wyl d2; Al

> 4.6 The correlation functions appearing in E@@.9 can be

0 evaluated using Wick's theorem and the propagéal) to
write the auxilliary field averages as a sum over permuta-

where tions,

YE(X(s))
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m m 1
3 ! ! (D)j . — |i X ’ ’.

<<k]'[l §ak(sk)§bk(sk)> > :PESm kl'[l By opge @ (Shiig ™~ SK)- PLI(Y,U;0)e"= ||m+[U|]baJ0 ds'(D(s’;€))o

= [ = e—0

(4.10
. d .
The evaluation of the momentum contributi¢d.9) is ><<d—SX'(S) —,X'(S')>

rather technically involved and is presented in Appendix B. s=0ds 0

It is also shown there that one must further specify a renor-
malization of the auxilliary quantum field theory in order to

2 ’
remove step function ambiguities which come from the cor- = lim Amaa Ul -
relation functiong4.10. The resulting renormalized expres- ot € milanmws,
sion is finite ats=0. This point defines thé&enormalized (4.12

target space coordinateH., =11!,(s=0)*" as the zero _ , _ _
modes of the worldsheet fields. As shown in Appendix B, theWherea is an arbitrary constant argj, is the short-distance
ordern contribution is given by cutoff (A16) on 4. The divergent term a®\—0 is the

boundary version of the bulk logarithmic divergence g
Naively, the boundary integral in E¢4.12 vanishes since

n .
ng,—[Y;o]rean'ln ds, dx!(s) its in.tegrand is a totgl dgrivative. Hovv.ever, the one-point
0 k=1 ds <o function of the logarithmicD operator is divergent ag
— 07" and one must therefore carefully regularize the bound-
n d . ary integration. The boundary regulay is also correlated
X Sy kl:[l Yik(XO(Sk))EX'k(Sk) : with the target space regularization parameteas in the
- ba/ o bulk equation(3.15. Althoughs, is given explicitly by Eq.

(4.11) (A16), we shall assume that the bulk and boundary cutoffs
are independent and take tam,~ €. This usage of the

This is to be compared with the corresponding expression itogarithmic correlation functions will be the key feature in
the Abelian casdcorresponding to a single D-particl&l the determination of the matrix D-brane dynamics.
=1) for which there is no matrix-ordering problem and the The resulting expressiot#.12 diverges ass—0". Part
expansion of the Abelian Wilson loop operator proceeds diof this divergence can be removed by renormalizing the ve-
rectly without the need of an auxilliary field representation.locity matrix of the D-branes as
We see that the properly renormalized momentdrit]) is a
natural non-Abelian generalization of the corresponding U= \/?fﬁi ) (4.13
single D-particle quantity, to which it reduces in the limit

N=1. Physically, the symmetrization of the amplitude oc-From Egs.(3.15 and (3.23 we see that this renormalized

curs because the correlators involve bosonic fields. coupling constant is truly marginal,
In the following we will, for simplicity, normalizes®
=1 and assume that the target space temporal and spatial du.
embedding fields are uncorrelated, i@ = %'°=0. The re- —=0 (4.14

sulting time-space factorization of correlators implies that
Eq. (4.1)) is non-vanishing only when is odd. Note that for

the configurationg3.12 we havell' =0, since all the peri-
odic boundary integrations in E¢4.11) then vanish. When
the fat brane configuration is given by the non-trivial recoil
operator(3.21), the correlation functions of the logarithmic
operatorsC andD can be evaluated using the results of Ap- —Ja eq.
pendix A. In particular, the correlation functions involving 9s= Ve €Qs.
only C(x% €) operators vanish as—0". This means that _

the canonical momentum vanishes at zero velocities, as eAs we Wwill see in Sec. Vig; is also a truly marginal cou-
pected from physical considerations. It is a nontrivial func-Pling. Thus we see that, after a suitable renormalization of
tion which mixes the velocities and positions of the fat branethe logarithmic deformation, the leading order contribution
This explicit vanishing of the correlators of tioperator is  to the canonical momentufd.8) is just the constant velocity
required to consistently yield the correct Abelian limit in of the Galilean boosted fat brane, which coincides with the

which the momentum depends only on the velocity. corresponding result for a single non-relativistic heavy
D-particle[28].

wheret=—/a'log A, and it therefore plays the role of a
uniform velocity for the fat brane dynamics. From E4.8)
we see that the remaining 2 divergence can be absorbed
into a renormalization of the string coupling constant as

(4.195

B. Velocity renormalization

In this subsection we will consider the lowest non-trivial C. Logarithmic algebra

contribution(4.11), which using Eqs(A17) and(A4) can be We now examine the leading order corrections to the ve-
written as locity of the fat brane, which are given by
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‘ 1 d .
PII(Y,U;0)®"= lim f d51d82d83<d—5><’(8)
0

e—07

d iy d i d iy
Od_Slx (Sl)EX (Sz)ﬁx (s3)

S= 0

X Synla’(C(s1;€)C(sz;€)D(s35€))o(Yi, Yi, Ui +Yi, Ui Y, +Ui YY)
+a’(C(s1;€)D(s2:€)D(S3:€))ol i, Ui, Ui, + Uy, Yi, Ui + Ui U Y )

+<D(51;6)D(52;€)D(53;6)>0Uiluizui3]ba. (416)

Using Wick’s theorem, the propagatohl7) and the three-point function@®12)—(A14) of the logarithmic operators, after
some lengthy tedious algebra we can write Eg16 as

PRI(Y,U;0)®"= lim (472a’)?

e—0"

a'(det+ceda’logA)lo(6 YIV,U'+3Y,YUI+3YI[U;, Y]+ Y,[U,YT+[Y,U", Y]]

+[ULY Y T+[U; YIIY' +[U Y Y+ Y, ,YI]U')+§e3a’2lf})(3 Y,Y'UI-6YlY,U'-[Y;,Y U
+Yi[ULY =Y, UL YIT+[UL Y Y= [U;  YITY —[U, YL YIT=3YI[U; Y ) —cela’ 21D (3 Y, YU

+HY{[ULY'TH[ULY Y ) + Vo'

e S . ) S
;+2dea’logA+Ce3a’2(logA)2)Io(6 Y,U'U'+3YlU;u'+Y,[U,U"]
+[UL YU+ U,[UL, Y]+ 3[U;, Y JUI + U, U, Y+ U UL YT+ U, YUY + J?(céa’%g“—(dea’

C
’ 2 3
S€a’ (1P +157)

Cc ) ' L S
+cela’2log A)I [V + 2 E%ﬂl<u2>)(3\ﬂuiu'+[ui YIUHU UL YD + Ve

—(dea’+ca3a’zlogA)I(Cl)+ze3a’zl(cz))(6YiU'UJ+Yi[UJ,U']+[U‘,YiU']+Ui[U‘,Y']+3[Ui,Y']UJ

) ) . o . : f 3e
+[U‘,UiY'])—(UiU'UJ+UiUJU'+UJUiU')[ lo| 5+ ?a’logA+3dea’2(logA)2+CG3a’3(IogA)3)
€

e

c 3
—(I(u”+2I<C”)( 5 +dea’llogA+ 5 ea’¥(logA)? |+ 7 (217 +17)(dea’?~ce’a’log A)

1
+c.s3a’3((|§§)+§|<r§)

1 3 1
IogA—Elgl)—Z(I§2)+I§3)+I§4))+§(2I§5)+I§6)))]] : (4.17
ba

The quantities denoted hyin Eq. (4.17) are the various boundary integrals that arise and are summarized in Appendix C. The
constantsc,d, . .. come from the correlation functions of the logarithmic operators. These constants are for the most part
arbitrary integration constants, the remaining ones being fixed by the leading logarithmic terms in the conformal blocks. We
shall eliminate the arbitrary ones by demanding that, in the IlNwitl, Eq.(4.17) reproduce the appropriate result anticipated
from Abelian Born-Infeld theory, i.e. that only thé/U? term in Eq.(4.17) survives in the Abelian reduction. In doing so, we
assume a more general logarithmic deformation structure than that given by the recoil operators of the previous section, but the
gualitative (and most quantitatiyefeatures remain the same.

Let us start with the first set of?U type terms. From the discussion of the previous subsection anBHg) it follows
that the bulk and boundary ultraviolet cutoff scales are related as

dulogA= (4.18

tanms,

where u is a real-valued constant to be determined. Using E94)—(C6), it then follows that they?U part of Eq.(4.17)
reduces to
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! logA . . o ) . o o ) .
lim —-(47%a’)? J [(det+ceda’logA) (6 YIY,U'+3Y, YU +3YI[U,,Y']+Y,[UL,YT+[Y,U, Y ]+[U,Y,Y"]
ot T tanmws,
+[U;, YIIY UYL YIT+LY L YIUDY —cea’log A((B—6,) Y, YU =6 YIV,U' =Y, Y U+ (1—2x) Y;[U],Y']
=[YUL YT+ (1= 2)[UL Y YT = [U;, YIY = [U YL Y =3 YU Y D s (4.19

In the Abelian limit N=1, all commutators in Eq(4.19 ) -
vanish. Requiring that the coefficients of theY;U' and Pap'(Y,U;0)"=—128mra’
Y;Y'U! terms vanish leads, respectively, to the equations

139 |\ —
f+ ?C [U;U'U!

U.UlU! TURTL
6de+12ce3a’logA=0, 3de+6uceda’ logA=0 UV UL U a. (4.24
(4.20
which for finite e have unique solution The sum of Egs(4.12 and (4.24 now involve three con-
) stantsa, ¢ andf determined from the logarithmic conformal
u=1, d=-2ce°a’logA. (4.21)  algebra. We can fix another one of them by requiring that,

again in the Abelian limit, one recovers the well-known re-

X o X sult predicted from Abelian Born-Infeld theory. One finds
by the leading logarithmic terms in the conformal blocks of . .
A (see the next subsectiptihat the relative coefficient between

the logarithmic conformal algebra generated by €hand D _ v ) i
operators, and hence tha0. We see that the arbitrariness the U’ andU’U;U' terms in the Abelian theory should Be
of certain integration constants which appear from the logaWhich imposes the additional constraint
rithmic conformal algebra can be fixed by the appropriate
Abelian reduction requirement. Substituting E4.21) into
Eq. (4.19 we see that the set of?U type terms in fact 8f+13%=64na. (4.29
vanishes identically.

Next we examine the second setYof)? type terms in Eq.
(4.17. Using Egs.(4.18), (4.2)), the integrals(C1)—(C11) The results above now yield the total canonical momen-
and dropping those terms which vanisheas0™" relative to  tum (4.8) up to order 3 as
the rest, we arrive after some algebra at the expression

Here we have used the fact that the constaistdetermined

4\a' logA |(e 5 4302 )
lim ——(472%a’)? (———C¢s3a’2(logA)2 =i v 229 Tl Y g GO (01 U
0t 773 tanWSA e 3 Hab(YvU) 77\/? ul+ 6 (3U|U U +[U| ![U vU ]]) o
Uiyl iy.yi TuUi Ui IRYATL
X(6Y,UUI+3YIU,U'+ Y,[Ul,U']+[U],Y;U'] +O(g)). .28

+U;[U)Y']+3[U;, YU +[UL U Y ]+ [U,U', Y]

(4.2 The expressiorn4.26) involves one parametex determined
ba by the one-point function of the logarithmi operator. The
remaining parameters of the logarithmic conformal algebra
The r_eproduction of the correct Abelian limit requires thethat enter into the three-point functiofs11)—(A14) are de-
equality termined by Eqs(4.21), (4.23 and (4.29. In this way the
5. 4 42 2 matrix D-brane dynamics fixes most of the algebraic infor-
e=3ce’a’(logA) (423 mation about the logarithmic deformation and localizes the
of the parameters of the logarithmic conformal algebra. As ifProPlem to a small region of moduli space. The fact that
Eq. (4.19, this restriction forces the entire contribution (€S parameters are scale-dependent is a general feature of
(4.22) to vanish identically for alN. logarithmic c_onformal field theone[gl?]. Note that they be-
Thus, with the parameters of the logarithmic deformation<cOMe scale-independent though with the correlat@as.
fixed according to Eq94.21) and(4.23, the only contribu-
tion to then=3 canonical momentum is from the cubic ve-
locity terms in Eq.(4.17), which we evaluate using Eq.
(4.18 and the boundary integral&C1)—(C19. Using Eq. Let us now compare the perturbative resdl26) to that
(3.15 and absorbing the remaining ’ divergence in the which comes from the non-Abelian Born-Infeld acti5).
total momentum(4.8) using the renormalizationg.13 and  For this, we expand the spacetime determinant in(E&) as
(4.15, we arrive finally at a series in powers df ,, to get

+[U;, YUY

D. Canonical momentum in non-Abelian Born-Infeld theory
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! (det, [ 7,,0n+27a' g2F )2 I (1) 00 Ul 9 U,UiUI + U, UiU + UiU, U
———(det, ,[ 7., a’ ) =— +—=| U, + U, +Uly;
Wgs ';4 NuvIN ma gsk, an( \/m ba™ g i i i

1 .

— (] ’ 3 I 2\ —2 - v | L S

_( 2ma gS) |:(27Ta gS) IN+4F.U-VF# +Fi,{[uir[YJ!YI]]+([Ui![UIIYI]]

+i(27ra’gz)[F FA R

12 N ! +[U; [YLUTDE+ U [ULUTTER | | +O(g)).
1 1 2\ 2 v\ 2 [N ba
+ 35(2ma’ G)(F ., FH")? = 4F , FF) F7¥) (4.30

We see that the canonical momea26 and(4.30 agree,

+0((2ma'g3)%)|. (4.29  up to an overall normalization, when

{=0 (4.30)

+i§
3 2ma’

I (t)=

2 2
Co gs gs

_ Vi s
\/27Ta’| ba’ 6

ic .
+2—[Yi1[YJrYI]]ba

Ta’

SinceF,,=—F,,, the symmetrization operation picks out
th_e even powers of the field strength while the aptisymmewhich corresponds to taking only the symmetrized trace in
trized pro_duct picks out the odd ones. Using 819 in the . _Eq. (3.5. The possible occurrence of the extra antisymme-
gaugeA,=0, after some algebra we _f|nd that Fhe eXpansIonizaq trace structure in Eq3.5 was pointed out in9]
of the ac.tlon(3.5) to leading orders in the string coupling where the worldsheg®-functions(3.10 were computed. As
constant is noted there, however, when one properly takes into account
the worldsheet fermionic fields for the full superstring
theory, it is only the symmetrized trace structure that sur-
Fnei[Y]=cCo(v2ma’ gs)sj dt( N(2ma'gs) vivesYThis featﬁre Wag elucidated on[it0] where it was
shown that the symmetrized action is the only potential gen-
1( g 2 eralization for which BPS configurations linearize the non-
+ > - tr Y;Y! Abelian Born-Infeld action and minimize its energy. Here we
2T« have shown that, within the auxilliary field formalism for the
2 \2 worldsheet matrixo-model, there exists a particular regular-
+ i 9s tr(2 Y, YV Y4V Y YV ization of the auxilliary quantum field theory which agrees
16\ 2770’ v t with the results predicted by the symmetrized action, without
the need of introducing worldsheet supersymmetry.
i 6 There may of course be other regularizations of the aux-
ulYi, ViYL Y]+ O(gs) illiary quantum field theory which reproduce the antisymme-
trized trace structure in E¢3.5), but we have not been able
(4.28  to find any such one. The renormalization described in Ap-
pendix B is the most natural scheme that one can impose and
whereY;=(d/dt)Y,. The perturbative expansion of the ca- the symmetrized matrix products which occur are natural
nonical momentum in non-Abelian Born-Infeld theory canfrom the perspective of representing bosonic string ampli-
now be calculated from E(q428) and after some a|gebra we tudes. It is also that which natura.”y leads to the correct Abe-
find lian reduction of the theory. The full, unrenormalized expres-
sion for the canonical momentum in the mattixmodel is
1 given in Appendix B. To further check the validity of the
5(—FNB|[Y] non-Abelian Born-Infeld action, one would need to extend
3 the calculation ofP{}!(Y,U;0)"™®" up ton=5. This in turn
Tb(t) would require explicit knowledge of the five-point correla-
! tion functions of the logarithmic operators, which are ex-
tremely complicatedsee Appendix A and the calculations
e at higher orders of perturbation theory become overwhelm-
[YiY'Y Y YY'HYYiY ha  ingly tedious and difficult to manage.
In any case, the results of this section illustrate a non-
trivial application of logarithmic conformal field theory to
+0(gd). (4.29  the study of solitonic states in string theory. We note that the
results derived in this section are invariant undeduality
transformations of the string theory. [23] it was pointed
In particular, for the case of the D-particle configurationsout that an alternative functional integral representation of
(3.12 corresponding to a Galilean-boosted fat brane, wehe quantum D-particle dynamics is given byremodel ac-
have tion defined with a non-Abelian Wilson loop operator that
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has normal boundary derivativésgx' for the relevant defor- order in the string couplings the decompositiorf5.1) can
mation vertex operators. This model corresponds to the imbe interpreted as the splitting of the fat-brane collective co-
position of dynamical Dirichlet boundary conditions, rather ordinates into phase space degrees of freedom. However, this
than dynamical Neumann ones as in E8.3 which are will not be true at higher-orders and in general E§.1)
equivalent(by T-duality) to the imposition of external Di- represents a non-trivial mixing between configuration space
richlet boundary conditions. In contrast to the Abelian caseand phase space variables. As discuss¢d4f the logarith-
these two models are inequivalent beyond the tree level bemic nature of the deformation makes the geometry on the
cause of anomalous Jacobian factors in the path integrapace(5.1) well-defined.

measure which arise in the non-Abelian case. By careful in- The Zamolodchikov metric ooV is given by the two-
vestigation of the worldshegd-functions it has been argued point function of the deformation vertex operatd4s5),

in [23] (see alsd9]) that the model with dynamical Dirichlet
boundary conditions constitutes the appropridtdual de-
scription of the quantum D-brane dynamics represented b
the open string model with fre@Neumann boundary condi-

’ — /? i . j !
Qab cd(5,8")=2NAZe NV, (x;5),Vi4(x:S")),

tions. It is straightforward to see that the perturbative expan- __ 2 . S

sion of the canonical momentum in the theory with boundary L==2NAT Wy [9%;A] 5y;’ib(xo(s))wu(l>
normal derivatives is equivalent to the one employed in this

section, since the boundary correlation functions involved

are the same. The results described in this section are there- X[92;A] Z\[A] (5.2

“svedr 00 oy
fore independent of which picture one chooses to work in. OYJ (x(s")
where we have taken into account the extrinsic curvature
V. DYNAMICS ON MODULI SPACE term in the Liouville dressing2.6) which in the case of the
_ disc hask=2. With this definition, Eq.(5.2) determines a
~ We can learn more about the fat brane dynamics by studyfiducial metric on moduli space. TI®&U(N) part of Eq.(5.2
ing the structure of the moduli spage! determined by the relevant for the constituent D-brane dynamics is given by the
(dressedl matrix D-brane configurations. Assuming the ge-perturbative expansion
neric D-brane couplings to admit decompositig821) into
pairs of logarithmic operators, this space is the direct sum (=i ( g )n+2
S

IY;s,s']

(5.3

M=Mcd M, 5.1  Camed(ss)= 2‘\22 T

27«

of two subspaces which each have classical dimensiéh 9
According to the results of the previous section, to lowestwhere the®(Y(x%)") contribution is

1 n o o o n
f;:}'éd[Yss]— lim E 2 Ok[[ldsk<<§c<0>fa<s—e>§b<s>§c<s'—e>§d<s'>(H &a, (S e)fbk<sk>>§c<1>>>

<dx (s) dxi(s")
X

a5 qg H Yakbk(x (sk))—X'k(sk)> (5.4

0

The expression(5.4) can be evaluated as described in Appendix B by writing it as a sum over permutiofBs, 5.
However, it is much simpler to note that E(.3) can be obtained from the canonical moment(#i7) by functional
differentiation,

Glpcd(s,8')=2A2| — fiLys") |. (5.5

! SY22(xX°(s))

This differentiation preserves the renormalization of the auxilliary quantum field theory described in Appendix B, so that Eq.
(5.5) also holds for the corresponding renormalized quantities. Equating coefficients ©f¥{&®)") terms in the renormal-
izations of the perturbative expansiof#8) and (5.3 thus gives for the relevant zero mode contributions
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Gaped Y:0.01*"=——

El 1“*1 <dx‘(s) dxi(s’)

n+1 & ds |, ds

k;ﬁl s'=0

1-1 n+1
XSyn{H Ylk(x(’(sk))—x'k(sk L v <x°<sm>>—xm<sm>

> e
db;ca 0

Let us now compute Eq5.6) when the D-brane configuration fields are given by logarithmic deformation operators. Then
the expressior5.6) is non-vanishing only when is even. The leading=0 contribution is the identity operator oM,

2 1
(a(i):x)léd(Y U 0 O)ren_

77” Odadbe (5.7
while the next contribution is at=2 which gives

d
_XJ(S )

@i (v U-0.0= i J’ld ds Ly
Gapea(Y,U;0,0) _§ELT+ ,dsids 3x(® s

d d 2
dS —x (51) X'2(sy) .
S/

XSyn‘[ \/?(C(Sl;E)D(SZ;E)>O{I N®(Yi1Ui2+ UizYi1)+Yil®Ui2+ Ui2®Yi1
F(Y, Ui, +ULY ) @Iy} +(D(s1;€)D(sz;€))o{In®U; Ui +U; @U; +U; Up ®In}Habca-

(5.9

Using Wick’'s theorem, and substituting the boundary string propaga®i3) and the two-point correlation functions
(A7),(A8) of the logarithmic operators into E¢5.9) yields

4720’ )| 2\a’ -
G ita(Y,U;0,0"= i m 3 ) 2 15Y 71H{In® (Y UK+ URY ) + Y@ UK+ Uk Y+ (Y UK+ URY ) @ 1y}

e—>0+

+Va 12{@ (YU +YIU+UIY +UY) + Yo U+ Yig U+ Ul Y + U@ Yi+ (YU + YIU!

o o 2a’ (3) _ii ‘ ‘ ‘ @ . o )
+U’Y'+U'Y’)®IN}~—F|g 7H{IN@U U+ U@ U+ U Uk =o' 1§P{1 @ (UTUT+ UTUY) + U

eUl+UleU'+U'UI+UIUY @I} (5.9
db;ca

where we have used E3.15 and the boundary integrals the only non-vanishing contributions with the renormaliza-
1) are given in Eqs(C20—(C23. tions (4.13 and (4.15), and the bulk-boundary scaling rela-

We see that in the limie—0* the most dominant contri- tion (4.18. Then the total Zamolodchikov metric up to sec-
bution to Eq.(5.9) comes from the integraf® which yields ~ ond order in the perturbative expansion is
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2 ) )
~ij N 4gS ij ng T\ __i gS __i__] __—I_]
Gaped Y, U)=—| 7' In®Iy—— FU)=tru;u +%tr(2 iU'u;ul+UU;u0'0)).
o 97
e (5.1
x{lyeU'U+UlU)+U'gUl+UIoU!
Note that the expressiofs.10 for the Zamolodchikov met-
e oo - ric is explicitly time independent and, strictly speaking, only
+(U'U+UIU) @1} +0(9s). valid for t— o because of the scaling prope(8:.15. Notice
db;ca also that in Eq(5.15 we have reintroduced the appropriate

(5.10 scaling factors required for the monotonic decreasing prop-
erty of theC-function and also the expansion prope&2y30
Now the logarithmic conformal algebra comes into playwhich is crucial to the validity of the Helmholtz conditions.
again and implies an important property. If we renormalize The above results show that the geometry of the moduli

the position of the fat brane as space, determined by the Zamolodchikov met&cl0), is a
complicated function of the fat brane dynamical parameters,
Yi=Va €Y, (5.1  which will be the key to its use in examining the short-
distance spacetime structures probed by D-particles. In the
then theB-function equations3.23 imply that next section we shall examine the genus expansion of the

matrix o-model which will lead to a canonical quantization
d of the moduli space dynamics described above. In particular,

d—tI =U;. (5.12  the velocity matrixU; will become a quantum operator. The
same is true of the central charge def@itvhich, neglecting
irrelevant terms that can be removed by a change of renor-
malization scheme, is given by

The pair of renormalization group equatiori4.14 and
(5.12 are just the Galilean evolution equations foenor-
malized velocities. If we now further adjust the parameters

of the logarithmic conformal algebra as Q(Y,U;)=VC(Y,Ust). (5.17
2 The quantity(5.17) defines the “physical” target space time
a=m, b=--- (5.13  in the Liouville framework vig25,43
then the canonical momentuf.26) can be written as T(Y,U;t)=¢=Q(Y,U;nt (5.1

- —— N i o ced wheret=—/a’'log A is the rescalindflat worldsheet time
M(Y,U)=va’ X Gl (Y, U)Y? (5.14  variable andg is the zero mode of the Liouville field. Then
c,d=1 . . . . . .
the time evolution of the Liouville dressed couplings with
. . . respect to the target space time variable are governed by
and so we recover the canonical moduli space dynajss : : .
conventional worldsheep-functions upon replacing bare

Eqg. (2.28]. Note that the fixing of the coefficient$b.13 : . o
does not completely determine all parameters of the Iogarith(-:Oupllng constants Wlth_dre_ssed ones._The_ def_'”'@?‘& .
comes from the normalization of the Liouville field kinetic

mic operator correlators, as there is still some freedom com- — ) .
ing from the relation(4.25. term dede appropriate to the Robertson-Walker metric on

The corresponding Liouville problem satisfies the Helm-SPacetimg43,48. The physical time5.18 becomes a quan-
holtz conditions of Sec. Il and the associated act®@? in ~ tUm operator upon summing over worldsheet gefiégd. In
the limit e—~0" coincides at leading orders with tifgym- ~ 9eneral, the expressidb.19 which determines it as a func-
metrized non-Abelian Born-Infeld action described in Sec. tion of tis a complicated highly non-linear first order differ-
IVD. The Zamolodchikov C-function is given by the er_1t|al_equat|on. If we assume, however, t;iatanes sloyvly
C-theorem(2.10 which in the present case can be expresseél"'th time, then Eq(5.15 can be solved at linear order in the

as string tension by quadratures to give

) z?C(V,U;t) o T i - > 29t — t (222 U)la’ 12

lim ————=a'e ¥ X UPG,e4(Y.U)US T(Y,Ust)=—— VFU) 0dre2 s

t—o0 a,b,c,d ’ o

(5.19
—
_ 495 f(U)e_QZt/VT+ O(ae) The limit of slowly varyingC-function holds near any fixed
Ja' s point in moduli space. This assumption is consistent with the

(5.195 assumptions of smati-model and string couplings and also
of a slowly-moving(non-relativistig fat-brane which is the
where we have introduced the velocity dependent invariankinematical region of interest here. We note that, in contrast
function to the Abelian case, the time varial{2 19 is a complicated
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function of the various fat-brane velocities because of thavhereY2(t; €)= a’ Y#e+U2™. If we introduce the Fou-
trace structure of the invariant functigb.16. rier transform

VI. QUANTIZATION AND SPACETIME UNCERTAINTY
RELATIONS Y2 (w)= lim f dte“tyab(t; ¢) (6.4

e—0"

In this section we will apply the formalism ¢25] to sum
over worldsheet genera of the partition functih3). The
pertinent deformation couplings represented by the logarithand the new boundary vertex operators
mic operators have vanishing conformal dimension in the
limit e—0" [see Eq.(3.22], and as a result extra logarith-
mic divergences appear in pinched annulus diagrams. This 35
will amount to a quantization of the coupliniys(x®)° from s
which we will be able to derive a set of stringy uncertainty
relations.

igs

2ma’

V(X @)= lim

e—07"

1 i 0
X2 f dse X O (x(sy): €)
k=0 Jo
A. Resummation of the genus expansion

. " . , — d .
We consider the partition functiof8.3) defined on a ge- X Ea(sk—€) Ep(Si)7—X'(SK) (6.5
nush surfaces,,. This surface hak “holes” in it and for all dsy
h its boundary has the topology of a circle, so that, in the

notation aboveX,=%. The genus expansion is then the sum over genera in H.3) takes the usual form of

o i a set ofe-model couplings\??b(w) associated with the de-
hZO ZR[A]=h§O (W3 ;AT (6.1)  formation vertex operatoré.5),
where the average is taken in the fi@amodel(3.4) defined - — N
on ;. Since we assume thaf, has the topology of a 2 NLAT= Czl £:(0)
disjoint union ofh+1 circles, the sum over genera com-
mutes with the representatigd.2) of the Wilson loop op- > o 5
erator in terms of auxilliary fields and we can write E < ;{ E do Yiab(w)
h=0 a,b=1 J -

© N © N h h
2 ZR[A]=<<E 0>E< p<a,b21 2 X ﬁzhvgb<x:w>)>0§c<1)>>. (6.6

h
! ab i .
X fo dscYi (XO(Sk))Vab(X’Sk)>> 50(1)>> The representatio(6.6), along with Eq.(3.14), justifies the
0 identification of the Liouville fielde with the fundamental
(6.2  temporal embedding fiel#’, in the limit e—~0". The latter
field appears in the tachyon operator part of E.5),
where for simplicity we have seéX)V1[d2,;A]=1 and thereby dressing the boundary theory analogously to that by
we work in the temporal gaugk,=0 as usual. The double two-dimensional quantum gravity. Some further aspects of
brackets in Eq(6.2) denote, as before, the average over thethis correspondence, such as the properties of the induced
auxilliary fields as in Eq(4.1) and the boundary vertex op- target space geometry, are discussefiLBj.

eratorsV,, are defined in Eq(4.5). We now focus on the properties of tii@belianized av-
For the recoil operator3.21) we can insert a temporal erage over fundamental string fields in £6.6). As we will
delta-function % [5dt 8(t—x°(s)) into Eq. (6.2 to get show, the resummation of Ed6.6) over pinched genera
yield the dominant worldsheet divergences, thereby spoiling
o N o the conformal symmetry. Conformal invariance requires ab-
2 ZR[A]: lim 2 gc(o E < p( 2 sorbing such smgulgntles into renormallzed quantities at
h=0 e = b=1 lower genera, leading to a generalized version of the

Fischler-Susskind mechanisfis0]. Such degenerate Rie-
° abre. ot 1 iox®s) mann surfaces involve a string propagator over thin long
X fo dt Yi(t;e)€ go fo dsce K worldsheet strips of thickness—0 that are attached to a
disc. These strips can be thought of as two-dimensional
_ h quantum gravity wormholes. Consider first the resummation
X0 (x°(sy); 6)V'ab(X;Sk)) > §c(1)> > (6.3 of one-loop worldsheets, i.e. those with an annular topology,
0 in the pinched approximatiotFig. 3). String propagation on
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D mixing betweenC andD in the Jordan cell ok ,. Generally,
states withA,=0 may lead to extra logarithmic divergences
@ in Eq. (6.8, because such states make contributions to the
integral of the formfdg/q~log &, in the limitg~ 6—0 rep-
resenting a long thin strip of thickness We assume that
@ such states are discrete in the space of all string states, i.e.
D that they are separated from other states by a gap. In that
case, there are factorizable logarithmic divergences in Eg.
(6.8) which depend on the background surfadesand’.
@ These are precisely the states corresponding to the logarith-
- mic recoil operatorg3.13 and (3.16), with vanishing con-
formal dimension3.22 ase—0".
D D In the case of mixed logarithmic states, the pinched to-
pologies are characterized by divergences of a double loga-
rithmic type which arise from the form of the string propa-
FIG. 3. (a) World-sheet annulus diagram for the leading quan-gator in Eq.(6.7) in the presence of generic logarithmic
tum correction to the propagation of a string stetén a D-brane  operatorsC andD,
background, andb) the pinched annulus configuration which is the
dominant divergent contribution to the quantum recoil.

(b)

1 logq
ququ1<C,D|(0 1)|C,D>. (6.10

such a worldsheet can be described formally by adding bilo-
cal worldsheet operato$[51] which in the present case are pg shown in[14], the mixing betweerC andD states along

defined by degenerate handles leads formally to divergent string propa-
gators in physical amplitudes, whose integrations have lead-
Blw,w)= 2, § 35 VEy(X; @) ing divergences of the form
a,b,c,d os Jasr 2
G w,0") f %Iogqfdzz D(Z'e)fdzz’C(Z"e)
X”I_?Véd(x;w’) (67) q ' '
where the Zamolodchikov metric in E@6.7) is the two- =(log 6)2f d’z D(z;e)f d?z' C(z';€). (6.1))

point correlation function of the vertex operators defined in

Eq. (6.5 a}nd Lo- denotes thle gsual Virasoro generator. Thethage (log)? divergences can be cancelled by imposing
operator insertion lo—1)"" in Eq. (6.7) represents the yomentum conservation in the scattering process of the light
string propagator: s on the thin strip of the pinched annulus. sting states off the D-brane backgroui®]. This cancella-

Inserting a complete set of intermediate string stélgs  tion of leading divergences of the genus expansion in the
we can rewrite Eq(6.7) as an integral over the variabte  non-Abelian case is demonstrated explicitly in Appendix D.
=& 7", wherer is the complex modular parameter charac-|t js shown there that this renormalization requires that the
terjzing the worldsheet strip. The string propagator over thgnange inrenormalized velocity of the fat brane due to the
strip then reads recoil from the scattering of string states be

vab
i

As(z,Z’)=E| qu 1 HE(2) B (ghost® &(Z') } s s
dt

(6.9

U.ab=—i(k +ky); 6%°= (6.12
i Ms 1 2Ji .

whereA, are the conformal dimensions of the stafesThe  wherek; , are the initial and final momenta in the scattering

sum in Eq.(6.8) is over all states which propagate along theprocess andM =1/\/a' g5 is the BPS mass of the string

long thin strip connecting the dis& and3.’ (in the degen-  soliton[1].° This means that, to leading order, the constituent

erating annulus handle case of interest hé&é=2). As  D-branes move parallel to one another with a common ve-

indicated in Eq.(6.8), the sum over states must include locity and there are no interactions among them. Thus the

ghosts, whose central charge cancels that of the worldshekiading recoil effects imply a commutative structure and the

matter fields in any critical string model. fat brane behaves as a single D-particle. Note that the rela-
In Eq. (6.8 we have assumed that the Virasoro operatokjon (6,12 also shows directly thadg./dt=0.

L, can be diagonalized in the basis of string states with ei-

genvalues their conformal dimensioAs, i.e.

Lol&)=A1&), g Y&)y=qg*2&). (6.9 ®Note that this differs from the mass normalization of the derived
canonical momenturt4.26. In Eq.(6.12), thek, , are true physical
However, this simple diagonalization fails in the presence otnomenta so thatMg represents the actual BPS mass of the
the logarithmic pair of operatofd 4], due to the non-trivial D-particles.
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over pinched genera is to induce quantum fluctuations of the
.) + 8) + C&) —|— . collective D-brane background, leading to a set of effective
quantum coordinates
FIG. 4. Resummation of the genus expansion in the pinched

approximation. The solid circles are the worldsheet discs and the Y2(0)— 32 0)=Y3(w) + g5 VIog 5p2°(w)

thin lines are strips attached to them with infinitesimal pinching size (6.15

8. Each strip corresponds to an insertion of a bilocal oper@ady

on the worldsheet. viewed as position operators in a co-moving target space
frame.

p

!/

1
9% ;A—
2

ma

RWhere the sum is over all pinched genera of infinitesimal
)Pinching size, and

-2 3 [asas tudisn
0

2T'2 abe.d

[d?z D(z;€)[d?z' D(z';€) andfd?z C(z;€) [d?Z’ C(z';e).  EQq. (6.6), we find that the genus expansidf.l) in the
2 h(P) .
guantum fluctuations of the collective D-particle coordinates. ) Zy [A]l= M[dP]W[P]W
tive quantum extension of the leading dynam(6sl?.
the full quantum string theory in which we treat the
><ng;cd(s,s’)pfd(xo(s’))l (6.17)
of the dilute gas of wormholes on the disc are to exponenti-

In addition to this divergence, there are sub-leadingdog  Transforming the quantum couplings to the temporal field
singularities, corresponding to the diagonal termsrepresentation using the inverse transformations which led to
With our choice of basig5.1) on the moduli space of pinched approximation is
D-brane configurations, these latter terms are the ones we
should concentrate upon for the purposes of deriving the >
As we will see, it is these sub-leading divergences in the é)l
genus expansion which lead to interactions between the con- (6.16
stituent D-branes and provide the appropriate noncommut

In the weak-coupling case, we can truncate the genus e
pansion(6.6) to a sum over pinched annulFig. 4). This
truncation corresponds to a semi-classical approximation to mp]zex;{
D-particles as heavy non-relativistic objects in target space.
Then the dominant contributions to the sum are given by the
log § modular divergences described above, and the effects
ate the bilocal operatd6.7). In the pinched approximation, is a functional Gaussian distribution on moduli space of
the genus expansion thus leads to an effective change in tlvedth
matrix o-model action in Eq(6.6) by

I'=gs ylog 4. (6.18
2 o]
AS~ %Iog 5, f dodo’ In Eq. (6.16 we have normalized the functional Haar inte-
2 abcd J-w gration measurg¢dp] appropriately. We see therefore that

the diagonal sub-leading logarithmic divergences in the
X jg 3€ Viab(X;w)Gf’}b;Cd(w,w’)Vjcd(x;w’). modular cutoff scales, associated with degenerate strips in
gz Jas’ the genus expansion of the matixmodel, can be treated by
6.13 absorbing these scaling violations into the widthof the
probablity distribution characterizing the quantum fluctua-
tions of the(classical D-brane ConfigurationS’?b(xO(s)). In
this way the interpolation among families of D-brane field
theories corresponds to a quantization of the worldsheet
renormalization group flows. Note that the worldsheet worm-
hole parameters, being functions on the moduli spgacs,
can be decomposed as

The bilocal action6.13 can be cast into the form of a local
worldsheet effective action by using standard tricks of
wormhole calculus[52] and rewriting it as a functional
Gaussian integral

o 1 e .
eAS:f [dp]ex‘{_ia,bzc,d _ dodo’ pf%w) ()= M ([pcl?C(x%€) +[ppI2D(x% €).
e—0"
(6.19

The fieldspc p are then renormalized in the same way as the
D-brane couplings, so that the corresponding renormalized

N
+gs\/m 2 fw dw;??b(w) jg ng(xiw)} wormhole parameters generate the same typéGalilear)
a,b=1 J-=x [

X Gl (w0 )pYw
\(ﬁﬁz ﬁz’ ab’Cd( )pJ (@)

B-function equation3.23 [28]. This will be implicitly as-
sumed in the following.
(6.1 According to the standard Fischler-Susskind mechanism
. for cancelling string loop divergencé§0], modular infini-
Wherepiab(w) are quantum coupling constants of the world-ties should be identified with worldsheet divergences at
sheet matrixo-model. Thus the effect of the resummation lower genera. Thus the strip divergence &ghould be as-
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sociated with a worldsheet ultraviolet cutoff scale which in __ 4g? P2 o
turn is identified with the Liouville field as described earlier. Gli(Y,U)= —(Qe Q)| 7 I\ @I+ U1 +O(g%)
We may in effect takeS independent from\, in which case a' 36

we can first lete—0" in the above and then take the limit X (Q0) ! (6.21)

6—0. Interpreting log in this way as a renormalization
group time parametefinterpolating among D-brane field TR . .

theorieg, the time dependence of the renormalized width}("’.her?gab?cg._uab Saddhc Is the u(N)@u(N) diagonal ma-
(6.18 expresses the usual properties of the distribution funct X With entrnies
tion describing the time evolution of a wavepacket in moduli
space[42]. The inducing of a statistical Gaussian spread of

the D-brane couplings is the essence of the quantization pro- . i )
cedure. We now need to diagonalize the symmetric matitx22

with respect to the 89 spacetime indices j. For this, we
assume thaty; = 6;; and consider separately the two cases
a=b anda#b.

The Gaussian distribution functiond.17) can be usedto  Consider first the casa=b. Upon examination of the
determine the quantum fluctuationsY2" in the initial  characteristic equation for the matti¥),=6ulul one easily
D-brane positions to leading order in the string coupling consees that there are two eigenvalues 6/|u,/|? and A=0,
stant expansion. For this, we first need to diagonalize th@vhere||ua||=~/2iugu; is the Euclidean norm of the vector
Zamolodchikov metri¢5.10. As we will see, the parameters ;_c R®. The dimension of the kernel @il is 8 because
of the diagonalization of the geometry of moduli space €x+here are precisely eight linearly independent vector&n

pose the precise nature of the string interactions inherent iy hich are orthogonal tal,. Thus the eigenvalues are
the multi D-brane system. This eigenvalue problem is some- a

what intractable in general, but in the lingt<1 of weakly
coupled strings it can be carried through with some work.

In the free string limit, the interactions between the con-
stituent D-branes are negligible to lowest order and their po
sition matrices commute. In the temporal gauge that we ar
working in, the configuration fields can then be simulta-
neously diagonalized by a time independent gauge transfo
mation

Uuly=2ubul +2upul +ubul + uluy . (6.22

B. String interactions and diagonalization of moduli space

A=6|ul?, AZ=---=A).=0. (6.23

The normalized eigenvector corresponding Mba is just
Ha/||Ua|| and the remaining ones span the eight-dimensional
space transverse to this line, which we refer to as the “string
F[ame” because it represents the coordinate system relative
to the fundamental open string excitations which start and
end on the same D-particla. Upon rotation to the one-
Yi=0 diag(yil, _ ,yiN)Q—l’ QecU(N). (6.20 dimensional string frame, the>39 orthogonal matrix= ,,
which diagonalizes Eq6.22 for a=b is just the identity
The eigenvaluey, R represent the positions of the con- matrix,
stituent D-branes themselves which move at velocitigs
=dy,/dt. The noncommutativity of spacetime is encoded
through the unitary matriX) which represents the string o o ) )
interactions between the D-particles. In this way we will The situation foa# b is similar but_a bit more technically
study the coordinate fluctuations both as a quantum mecharjvolved. We assume that the velocity vectagsanduy, are
cal effect and geometrically as the perturbations around cladinearly independent. There are then seven linearly indepen-
sical (commutative spacetime represented by the diagonaldent vectors which are orthogonal to bath and uy,, and
matrix configurations in Eq6.20. This limit corresponds to therefo_re there IS a zero EIgenvaIue of mu||f[pl|c_|ty 7. The
a configuration of well-separated branes and it represents '§Maining two eigenvectors are linear combinations of the
Born-Oppenheimer approximation to the D-particle interac-velocity vectors,
tions, which is valid for small velocitieg35], whereby the

Eaazlg. (624)

diagonal D-particle coordinates are separated from the off- Y2 =u,+ B2 uy (6.29
diagonal parts of the adjoint Higgs fields representing the
short open string excitations connecting them. up to an overall normalization. Solving the eigenvalue equa-
Using Eq.(6.20 the Zamolodchikov metri¢5.10 can be tions for the eigenvector§6.25 gives after some tedious
written as algebra the two non-zero eigenvalues,
2) 12

[(ua- up)?+ uglllup]®+ 2ug- up([lua]+ ugll®)]

lual®llup]?— (ua-up)?

Nab=N s =[lugll®+ upl?+ ua- up = § (ual®+upl?+ua- up)®+

Nob=" " =Agp=0 (6.26)
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and the coefficients

(Ua~ Up)?+ [[uall?|upl*+ 2ug- up([Jugll*+ ugll®) = N g ua- up

2Hua”2ua' le+ 2(Ua' ub)2+ 2||ua||4_ )\;’bZ”uaHZ

B(12 =

(6.27

where the dot between vectors denotes the usual Euclidean inner prodiit Bie remaining seven orthonormal eigenvec-

tors are those which span the space transverse to the pldi® generated by the vector§.25, which defines the two-
dimensional string frame representing the fundamental open string which starts on Crlarashends on D-brane Note that

for a#b the dimension of this coordinate system increases by one because of the increase in degrees of freedom of the string
which now stretches between two different branes. Once again the orthogonal diagonalization transformatiof gpagrix
particularly simple in the string frame. We parametrize the plane spanneg agduy, via u,=|u,| 8'* and the angled,;,

between the two vectors. Then upon rotation to the two-dimensional string frame we have

Mllugll+B™ up|cosfay)  —NB |up|singay O 0
NBW [uplsintay,  Mluall+B™ [luyfcosbyy) 0 0

Eab: 0 O 1 e 0 (628)
0 0 0 1

where we have orthogonalized thex2 block matrix corre-  bilinear form in a new set of complex-valued wormhole pa-

sponding to the string frame and rameters. Since the metric of the bilinear form is diagonal,
one can associate a width to each directien,...,9 and
N=|ug+B®Pu, |t (6.29  D-brane configuratiora,b=1,... N. The coordinate trans-
formation
is the appropriate hormalization constant. o o
With the above constructions, the Zamolodchikov metric Yip=ELLQ* Y, Q1p,=EN X2(Y) (63D
can now be written as a unitary transformation of a diagonal
metric on M, is precisely the one which achieves the desired diagonaliza-
tion and leads to the statistical variances
. —— 4 X _
Gy Y U)=—2ma 2 Qar(Y) Y - B
@« e <AY;b><AY;b>*=§ 1- 2ghan(W+O(g3) |
X Qe V) Egi(U) (W Q&) QE(Y) : 6.32
« 1+g_i}‘<kef(”)+0(§g) _ (6.30 Note that,_as a result of E@3.15), the renormalized string

coupling g is imaginary, i.e. g<0, owing to the
) o Minkowskian signature of the spacetime.
We see therefore that the diagonalization of the Zamolod- The time dependence in the wid®.18 can be absorbed

chikov metric on moduli spacé1 naturally encodes within - jntq the usual renormalization of the string coupling constant
it the geometry of the string interactions among theby taking the correlation

D-branes. In particular, we see the enormous complexity in-
volved in going from the dynamics for a single D-particle
(a=b) to the interactions between constituent D-brares (

#b). Thgse properties will have |mpor_tant ram|f|c§1t|ons forbetween the modular worldsheet and target space scale pa-
the physical consequences of the stringy spacetime uncer-

tainty relations which we now proceed to derive. rameters. The exponent=0 is left arbltrf_;lry for the mo-
ment. Later on we shall fix it by demanding consistency of

certain results with conventional D-particle mechanics. The
C. Quantum fluctuations of collective D-brane configurations variances(6.32 are therefore time-independent and repre-
Given the diagonalizatioi6.30 of the bilinear form of ~ sent not the spread in time of a wavepacket\dn but rather
the Gaussian distribution function@.17), we can now write  the true quantum fluctuations of the D-brane configurations.
down the quantum fluctuations of the D-brane coordinatesThe collective D-particle coordinaté§(Y) naturally encode
Substituting Eq.(6.30 into Eq. (6.17) and redefining the the effects of the open string excitations. Their uncertainties
matrix-valued wormhole paramete;néb leads to a complex may be computed using the formula

log = 2|gg|X e 2 (6.33
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AYE VAT V= (Y ATYE N = (Y012 and represent the genuine non-Abelian characteristics of the
(AYap)(AYzp) ((“ab|[. anl =1 (Yaw)] D-particle dynamics. From Eq$6.26 and (6.29 it follows
= B B IXE") ) )oonn (6.34  that, outside the string frame, the uncertaintids<;?, i
o ) >2, are given by the same minimal lengt35 as for the
where the brackets denote statistical averages with respect §gdividual D-particles. In string coordinates, we may assume,
the wormhole probability distributiof6.17) and the average py symmetry, thaf AX2% ~|AX2%. Then Egs.(6.32 and

of the X fields in Eq.(6.34) is a connected correlation func- (6.34 lead to a system of two linear equations in two un-
tion. In this subsection we shall always work in string coor-ynowns

dinates, but, by covariance, the qualitative features are the
same in any reference frame.

12
Let us first consider the relatiof.32 in the casea=b, |g |¥Xa’| 1+ 94 M(u))
which corresponds to a single D-particle. Using E@s23 36
and (6.29 it is straightforward to see that the variances :|Axib|2i4NzB(l)||ub||sinHab

(6.32 and(6.34) lead to the position uncertainties

S -
|AXE =[gy¥*Va'| 1+ = llual® & 1+ O(lgdl*)

X ([[ual+B™ | upllcosap) RE(XEIIX3"T)) conn
(6.36

= (g ¥2\a’ (6.3 which hold up to_(9(|55|2). Adding the two equationés.36)
gives the smearings

for the individual D-particle coordinates. Fgr=0 the mini- o 942 o
mal length in Eq.(6..3.3 co-lnC|des with .the sta_ndard szm_ear- |Axib|:|gs|x/2\/z 1+ ﬁ(33ab+tab)+o(|gs|4)
ing [29] due to the finite size of the string, while fer= % it
matches the 11-dimensional Planck lentffY which arises (6.37
from the kinematical properties of D-particlg35]. A choice
of x#0 is more natural since the modular strip divergencesvhere we have introduced the kinematical invariasig
should be small for weakly interacting strings. Note that the=||u,+ up||? and t,,=|u,— uy||? representing, respectively,
uncertainty(6.35) is always larger in the string frame, repre- the center of mass kinetic energy and momentum transfer of
senting the additional energetic smearing that arises from théhe scattering of D-particlesandb. The uncertainty in mea-
open string excitations on the D-particles. Outside of thissurement of an open string coordinate thus depends on both
frame we obtain exactly the standard stringy smearings dithe center of mass and relative energies of the two
rectly from the worldsheet formalism, without the need of D-particles to which it is attached. Its minimum coincides
postulating an auxilliary uncertainty relation as is done inwith that of Eq.(6.35. Note that when D-particlea andb
[29,35. With the present normalization of the mass of themove orthogonally to one another, i.e. their scattering angle
D-particles [see Eq.(4.26], we see that the velocity- is 8,,= 7/2, the uncertainty6.37) depends only on the total
dependent shift in Eq(6.35 is just the kinetic energy of kinetic energy of the two particles. This is the case that is
D-particlea. discussed in37].

The coordinate uncertainties far=b are responsible for Subtracting the two equatior{6.36) gives the connected
the emergence of a true noncommutative quantum spacetino@rrelation function

962X ua+ BDup| 2 X,p(u)

Rd(xab [Xab]T)) — s (638)
FIXET e 148D uysin (| ua + BVl upl|coS )
to O(|gq/?), with
B [uall?lupll?+ug- upl gl + [[upl|? = Xap(u)]
Z(Ua'ub)2+||ua||2[ua'ub+||uaH2_HubHZ_Xab(U)]
1 16|u.| 3 u|? u u 2
Xab(u)z—\/(3sab+tab)2+ —6” _a” luo] {1+co§0ab+(” a”+” b)coseab} :
4 sinfo,, [upl ~ [Jugll
(6.39
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The result(6.38 shows that for the scattering of D-patrticles, D-particles the ends of the open string can attach to different
the position operators of the open strings which mediate theoints. Since the recoil of the constituent D-particles causes
interactions are not independent random variables and havetlae fat brane as a whole to recoil as well, the interactions
non-trivial quantum mechanical correlation. This is a newmediated by the open strings cause a non-trivial correlation
form of quantum spacetime uncertainty relations betweemetween different coordinate degrees of freedom stretched
different spatial directions of target space. Wher=3 the  between the two particles. Only when there is no recojl (
right-hand side of Eq(6.38 can be written in terms of =u,=0) can one measure independently the positions of the
(Iﬁ,ll))2 and an additional complicated function of the two D-particles. In this way the uncertainties in length mea-
D-particle kinetic energies. For the transverse scattering ofurements and the position correlations between two
two D-particles of equal speed, this function is just the totalD-branes depend on the energy content of the scattering pro-
kinetic energy of the D-particld87]. In general though, the cess and grow with increasing recoil energies.
right-hand side of Eq(6.38 is a horrendously complicated ~ Notice that the correlatiot6.38 we have derived is not
function of the scattering parameters. It demonstrates theimply a product of uncertaintieAX;AX,, as is the usual
complexity of the open string interactions between D-branesgase in axiomatic approaches to spacetime quantization
in that the smearing of the string coordinates is a highlybased on noncommutative geomel82] or as one would
non-trivial function of the kinematical invariants of the have naively expected from the Lie algebraic noncommuta-
D-particles to which they are attached. tivity of the multiple D-brane matrix coordinaté§®®. The

The energy dependence of E@6.39, (6.37) and (6.38 Schwarz inequality
is a quantum decoherence effect which can be understood
from a generalization of the Heisenberg microscope whereby | (X3P X3°))cond < AXZPAXEP (6.42
we scatter a low-energy probe, represented by a closed string

state with definite energy and momentum, off the D'partideleads to a spacetime uncertainty relation in the spirft3a@i.

configuration. As the closed string state hits a D-particle, itHowever the quantum mechanical correlatiérgg is much
splits into two open string states, represented by the recoil 0gtronger ,than this uncertainty relation, because two random

the particle upon Impact with the detector, Wh'ch gbsqrb SNVariables can be independent yet have non-vanishing vari-
ergy from the scattering. Formally, such a splitting is de-

scribed by means of the conformal field theory formalismances’ and as such it probes much deeper into the short dis-

: X tance structure of spacetime. The present worldsheet ap-
developed ir{53]. When a closed string state, represented as ) ; : o
a bulk Eeforrr[nat]ion by a closed string?‘natter exc?ital@mn proach associates the Lie algebraic noncommutativity to a

S of scaling dimension g, approaches the boundasy, spacetime noncommutativity only rather subtly through the

X relation(6.38). This differs from the approach $84] which
then one can infer the operator product expangi#54 identifies the two types of noncommutative algebras using

_ the Schild formalism of string theory, in which case the un-
O(z,z;s)~2 (ZS)AI‘AOCQSIE,(S) (6.40 certainties in the D-particle positions are given by

provided that the set of boundary conditioAsdoes not a\2_r (v, _ yaay21aa_ abj2
break the conformal symmetry. The splitting amplitudes Ay =[(Yi=Yi)7] b;a [Y?le. (643
Cé"gl can be expressd®3] in terms of bulk operator prod-

uct expansion coefficient(sikj . In the context of recoiling In contrast to our uncertainties, the smeari6g}3 is a di-
D-particles, the splitting coefficients for a closed string staterect result of the open string interactions between partcle
to split into a pair of open string excitations, with their endsand all of the other D-branes. The inequaliti€s38),(6.42
attached to the D-particles, have been sh¢%8] to be non-  essentially summarize the implications of the noncommuta-
zero by expressing them in terms of the bulk amplitu@gb tive nature of spacetime on the measurability of lengths.
for an “in” closed string state to scatter off the D-brane into Their energy dependence distinguishes them from the usual
an “out” string state, including the recoil operat@, the inequalities which arise in axiomatic noncommutative field
latter being represented as a worldsheet bulk operatdheories(which involve only the spacetime Planck length
[15,16, and moreover the present uncertainties are derived from La-
grangian dynamics for the system of D-particles.

1
Chp)°=——=c3,. 6.4
( O’D) Vvlog A 0.0 (64D D. Quantum phase space
L The quantum phase space of the multi-D-brane system is
In Eqg. (6.4 h trated f licit th : ; :
n Eq. (6.41 we have concentrated for simplicity on the determined by the canonical momentu#kh26 which, ac-

leading divergent contributions as—0" which are associ- . L
ated with theD operator. This allows for closed-to-open (io_rdlng to Eq(2.31), upon quantization becomes an operator

string state transitions within the present framework. IT};, obeying the Heisenberg commutation relations
For an isolated D-particle, these open string excitations Sab | ) | ash
have their ends attached to the same point. For two (LY T g]]=i% 6 6264 (6.44
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on M. The relation(6.44) leads to the moduli space Heisen-

. T commutators involving theL_J3 terms in Eq.(4.26 with
berg uncertainty principle

squares of the momentum operaﬁnrAfter some algebra,

AYZATTL =11 ,,816350. (6.45 this leads to the string-modified Heisenberg commutation re-
lations
The Planck constarit . can be determined by noting that, in
the present context, the partition functi@16) is identified V2P B T1=i4 (S 628+ L 1a.l2a T8 ( ST pupk1P
with the wave function of the multi-D-brane system. The [0YE Peall =700 0204+ 5] 05l s ol (2l PrP
lower bound in Eq(6.49 is then saturated if one interprets + T D DX IB+ [0, 13 DX1R) + 83 p:  pilP
Eq. (6.16 as a minimum uncertainty wavepacket on moduli APt LPel P+ octpr Pl
space. In the single D-particle case, such an assumption is +53{F3i ,E)j}§+[5i]3[5j]§+[ﬁi]?[6j]g]
consistent with the solution of a generalized Sclmger
equation19], stemming from an application of a worldsheet +-) (6.48

Wilsonian renormalization group equation, under the identi-
fication of the Liouville field with target time.

Si h Hoctively b o th _ %j) leading orders, where.=a'/|g4|* is the (time indepen-
Ince we have effectively been representing the canonic end O-brane scale with the present mass normalization.

momentumll}, as an operator in coupling constant space The commutation relatiof6.49 represents the appropri-
[see Eq.(2.32], the effects of the summation over world- ate generalization of the string-modified phase space rela-
sheet topologies on it are implicitly already taken into ac-tions (1.7),(1.8) to the multi-D-particle case. Fa=b=c
count. This means that the varianczﬁzf(’ab)2 can be com- =d andi=j it reproduces the standard string-modified
puted in the worldsheetr-model on a tree-level disc phase space uncertainty princip9] for a single recoiling
topology. In this way, using the two-point and one-point D-particle[17,28. However, it also takes into account of the

functions(5.10 and(4.26) we find various string interactions among D-particl¢the off-
N o diagonal parts of Eq(6.48]. Minimizing the off-diagonal
(ATLL ) 2= Gl an(Y,U) = (1LY, U))? componentsin both Lorentz and color indicgsf the uncer-
tainty relations corresponding to E¢6.48 leads to non-
4§§ 25‘51 _ trivial kinetic energy dependent uncertainties among the
= —,6ab+ —,(2 Sanl (U)?]pa various open string excitations, and also along different spa-
a Sa tial directions. The relatio6.48 represents the phase space

version of the noncommutative quantum uncertainties that
were derived in the previous subsection. We note that, even

to lowest orders . 7 ,, can then be found by performing for a single D-particle, at higher ordersdg the phase space

a Galilean boost to a co-moving target space frame in whicfincertainty relations here are different from the ones derived

the recoil velocities vanish. For example, settagb=c N [29]in that the modifications depend on the recoil veloci-

—d in Eq. (6.45 with the inequality saturated and substitut- {iS and not only on the uncertainties in the momenta. In fact,
— the present approach gives a formal prescription for evaluat-

ing the higher-order stringy corrections to the Heisenberg

uncertainty relations in string perturbation theory, in prin-

— ciple to arbitrary order in théweak string coupling con-
fip=41ge M2 (6.47  stant.

which we note is time independent. Thus the basic constant ) _ o
% v, of the resulting quantum phase space is proportional to E. Space-time uncertainty principles

the string couplinggy|, which owes to the fact that in the Upon summation over worldsheet genera the physical tar-
present case quantum mechanics is induced by string inte@®t Space time coordinaté.19 becomes a quantum opera-

actions. _ _ tor T [49], unlike the situation in conventional quantum me-
The velocity-dependent terms in E@.46) correspond to  chanics. ~ Within  the  present  Born-Oppenheimer
stringy corrections. As mentioned at the beginning of Sec. Vapproximation, we can expand the functi@l6 as a power

to lowest order in the string coupling constant expansion, the . . . . .
; . ) <
moduli space coincides with the phase space of thgé,enes infUapl/lucl <1, a#b, using the identity

D-particle system. This means that, with the appropriate E
mass normalization, we can identify the canonical momen- trJG: tot
- 1

—287U},)2)+0(g®) (6.46

ing in Egs.(6.39 and(6.46 for U=0, we can solve for the
moduli space Planck constant to get

— < UL
1+]g? > —=—
tot

(6.49
tum with the velocityU, so that to lowest orders the position 9s
and velocity operators have a canonical quantum commuta-

tor of the form(6.44). We can therefore compute the com- whereE = |as|222:1‘|aaa”2 is the total kinetic energyper

mutator[[ Y2, pl,]] iteratively, using Eq(4.26, by assum- unit string length of the individual D-particles. We substi-
ing a position-velocity commutator of the for(6.44 and tute Eq.(6.49 into Eg. (5.19, expand the square root to
identifying the velocity-squared terms which arise from thelowest order in the off-diagonal velocities, and average over
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the worldsheet renormalization group time parameterAlog for D-particles[35] [see Eq(1.10]. Triple uncertainty rela-
~ tions involving only the 11-dimensional Planck length have
been suggested {185] based on the holographic principle of
i theory.
Again the present approach formally gives a prescription
for evaluating higher-order contributions to the space-time

guantum commutato(6.50 in the string couplingﬁS (orin

Identifying the velocity operators withl, as described in
the previous subsection and using the Heisenberg commut
tion relations(6.44 we arrive at the space-time quantum
commutation relations

H ! ! - b . . . .
[[Q_ab -‘l-]]: fa'h 594 (1— &%) Va! 117 the velocity expansiognA characteristic feature of the uncer-
b 2|g| 4|5| ,/Etot tainty relations we have derived in this section, which distin-
S S

(6.50 guishes D-particle dynamics from ordinary quantum me-
chanics, is their dependences on the recoil momenta. The
dependence of quantum uncertainties in the measurement of
certain quantities on the magnitude of the quantities them-
selves(here the kinetic energies of the D-brapescharac-
teristic of decoherence effects which are induced by quantum
gravity [55]. It was argued if19] that the quantum recoil
o o degrees of freedom are responsible for inducing decoherence
AY2RAT=| gy 2a’ (6.5) in low-energy systems. In the case of a single D-particle, the
analysis of56] demonstrates explicitly the induced decoher-
for the individual D-particle coordinates. Foy=0, Eq. ence by exhibiting particle creation in the direction of the
(6.51) yields the standard lower bour{d.9) which is inde- recoiling velocities for the scattering of a spectator light
pendent of the string coupling, as argued[88-39 from  mode in the presence of a D-particle due to the scattering of
basic string ideas. But then the minimal dista685 does another closed string state off the defect. The analysis of this
not probe scales down to the 11-dimensional Planck lengtisection thus shows that multiple D-particle field theory in flat
This fact can be understood by noting that the physical targgarget spaces naturally incorporates quantum gravity effects
space(Liouville) time coordinateT is not the same as the into the sub-Planckian spacetime structure. It therefore illu-
longitudinal worldline coordinate of a D-particle, as is as-minates the manner in which D-particle interactions probe
sumed in the arguments leading to the hypothéki®), but  very short distances where the effects of quantum gravity are
is rather a collective time coordinate of the D-particle systensignificant.
which is induced by all of the string interactions among the
particles. However, we can adjust the uncertainty relations to
match the dynamical properties of 11-dimensional super-
gravity by multiplying the definition(5.19 by an overall In this paper we have employed a worldsheet approach to
factor of g ~¥'2. This redefinition will be assumed below, the study of the collective dynamics bf parallel D-branes,
and it implies that with weak string interactions the targetinteracting through the exchange of ogen closed strings,
space propagation time for the D-partic|es is very |Ong_ which are scattered off them. This is the Simplest model of
To see the effects of the string interactions betweernulti-brane dynamics, where the branes do not intersect.
D-particles in this space-time framework, we again use th&Vorking with Neumann boundary conditions, in which the

canonical(minimal) smearing Eq(6.45 between\??b and coupling constants of the pertinemimodel grdJ(N) gauge
potentials, we have developed a formalism for describing

IT;;, for a#b in Eq. (6.50 to arrive at a triple uncertainty recoil of the multi-brane system after scattering with low-

to leading order ings (or equivalently in the off-diagonal
velocity expansion

From Eqgs.(6.47 and (6.50 we infer the space-time un-
certainty relation

VII. CONCLUSIONS

relation energy string states. This formalism utilizes generic proper-
o ties of logarithmic conformal field theories on the world-
a2 |ge| X232 sheet. In this way we have shown that the recoil
(AY7D) ATZ—\/E—: a#bh. (6.52  deformations define a system of collective coordinates and
tot

momenta which are consistent with the corresponding ones
. . ... derived from a(symmetrizedl non-Abelian Born-Infeld ef-
The uncertainty principlé6.52 depends on the total Kinetic o qjve action. We have argued that worldsheet genus expan-
energy of.the constituent D-.branes. It |r_npl|gs that the Systengjo, produces quantum fluctuatiofiis target spaceof these

of D-pqrtlcles, through their open string lntera(_:thns,. €an;_model couplings. For a specific choice of consistent gauge
probe distances much smaller than the characteristic dlstan(ﬁ%ld backgrounds, therefore, a quantum phase space arises
scale in Eq.(6.52, which for y=3 is Ipl5, provided that \ypich however involves noncommutativity among all coor-
their kinetic energies are large enough. In the fully relativis-ginate directions as a result of the interactions of the branes.
tic case the existence of a limiting spefl||<1 implies a e also derived new coordinate uncertainty relations, among
lower bound on Eq(6.52. With the minimum spatial exten-  gjtferent components of the coordinate matrices of the inter-

sions obtained in Sec. VIC, this bound yields, for 5, the  acting D-branes, consistent with generic expectations from

characteristic temporal length noncommutative geometry analyses. These relations justify
. properly the association of Lie algebraic honcommutativity
AT=|gy  Ya' (6.539  with quantum mechanical noncommutativity, and as we have
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discussed this is a non-trivial fact. We have also discussedytems[57] or cosmological gamma-ray burst spectroscopy
the definition of target time in the context of the Liouville [58]. However, such approaches do not incorporate length
approach, and shown that it becomes an operator in this formeasurements in the transverse directions to the probe, so
malism, which exhibits unconventional uncertainty relationsthat it is unclear how to incorporate noncommutative uncer-

with the collective coordinates. tainty relations such as E¢6.38 into these analyses.
There are many aspects of the approach of this paper that
still require examination. The most glaring one is the arbi- ACKNOWLEDGMENTS

trariness of the exponent in Eq. (6.33. In the present ap- ) o

proach, which considers only string interactions, we have not We are grateful to J. Ellis, A. Kempf, F. Lizzi, J. Wheater,
found any way to fix its value, but it may be fixed upon and E. Winstanley for helpful dlscussmns. The work of
considering brane exchanges between the system O&f-E-M.and R.J.S. was supported in part by PPARKK.).
D-branes. Another aspect that needs to be worked out is the

explicit calculation of the perturbation expansion to some APPENDIX A: CORRELATION EUNCTIONS
higher-orders which will begin to involve not just the veloci- OF LOGARITHMIC OPERATORS

ties of the D-particles, but also their collective coordinates. ] ) ] . .

The resulting moduli space geometry, which as we have In this appendix we will describe some properties and
shown naturally describes the structure of spacetime at su§ompute the first few correlation functions of theand D
Planckian scales, will then contain information not only logarithmic operators that were introduced in Sec. Ill. They
about the kinematics of the D-particles, but also of their dy-are calculated using fundamental string averages which are
namics which are governed by terms such as the Yang-Mill§valuated with the propagator

potential (1.1). This would then lead to spacetime noncom-

mutativity from the quantum phase space structure itself, and (X*(21,21)X"(22,25))o=2a' 7*"log|z,—2,| (A1)
presumably new forms of spacetime uncertainty relations. Of

course, the present results only strictly apply to the simpleshssociated with the actici8.4). The coincidence limit of the
physical system whose motion is governed by fat brane dypyo-point function(Al) is defined using the short-distance
namics. It would be interesting to consider more complicateqioff A as

matrix D-brane couplings involving, for example, higher-
rank Jordan blocks in the spectrum of the underlying loga-
rithmic conformal field theory. Such generalizations may
probe deeper into the nature of the string interactions amon
the branes, and hence into the small-scale structure of spackbe correlators of the logarithmic operat¢8s13 and(3.16)
time. Another generalization involves the incorporation of¢an now be evaluated using the regulated step function
intersecting D-branes in this formalism. It would be interest-(3.14. Note that upon integrating by parts tbeoperator can

ing to see whether there exists an appropriate generalizatid¥ Written as

of logarithmic operators that describes quantum fluctuations

(x"(2,2)X"(2,2))o=22' 5*"log A. (A2)

of such systems. Such constructions are crucial to the under- 0 1 (> dg 19 0
standing of the stringy quantum spacetime at sub-Planckian D(X";€)=— > ﬁe'qx === ac(x J€).
scales. They may also shed further light on the short-distance —=(q-ie) A3)

structure, fundamental degrees of freedom and dynamics of

M theory within the geometrical framework of moduli space o
dynamics. The second equality in E4A3) also follows from the gen-

It would be interesting to see if the present worldsheef@ PropertyD=a’dC/dA, of logarithmic conformal field
approach, which exhibits unconventional properties of stringh€0ries[59]. This property enables one to deduce expres-
spacetimes, is amenable in some way to experimental verifSions for many of the correlators once the expecta'\tllon values
cation. The presence of multi-D-brane domain wall struc-°f the C operator are knowf60]. Using these identities one
tures, like the ones considered in this paper, may act as traS&" compute explicitly Ehe one-point correlation functions in
of low-energy string states, thereby resulting in a decohererff'® correlated limie— 0™ with the relation(3.15 to get[17]
medium nature of quantum gravity spacetime foam. In the
present case the quantum coordinate fluctuations, due to the (C(x%€))o=0(e), (D(x%e€))o=ale (A4)
open string excitations between the D-particles, can lead to
quantum decoherence for a low-energy observer who canneihere here and in the following,b, . . . denote(in principle
detect such recoil fluctuations in the sub-Planckian spacetimgrbitrary) dimensionless constants.
structure. These foamy properties of the noncommutative The higher-point correlators can be computed using the
structure of the D-particle spacetime might require a reforkoba-Nielsen formula
mulation of the phenomenological analyses of length mea-

surements as probes of quantum gravity. If one accepts the n B B B
genericl, maximal suppression effects by the gravitational <H daix’(z ,zi>> =[] e wait°@ .2z )02,
(Planck mass scales, then, as described in some recent lit- =1 o

erature, there may be sensitive probes such as neutral kaon (Ab)
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For the two-point functions one finds, always in the corre-

lated limit e— 07", the expressiongl7]

(C(2,2;€)C(W,W; €))o=O(€?) (A6)

(C(z,,€)D(W,W; €))o= (A7)

|z—w|?Ae

— — 1 — _

(D(z,z;€)D(W,W; €))o= —(C(z,Z;€)D(W,W; €))o
€

ba’

|z—w|?2e

z—w|?

1 |-
(A8)

From Eq.(3.19 it follows that Egs.(A6)—(A8) have the

! I
ZTAE‘F 0og

canonical form of the two-point correlation functions of a
generic logarithmic conformal field theory. The constant in

Eq. (A8) which depends on the anomalous dimengigrcan
be made arbitrary by shifting tHe operator according to Eq.
(3.19 (i.e. by a worldsheet scale transformaliowhereas
the coefficientb is fixed by the leading logarithmic terms in
the conformal blocks. Note that the correlators in Edsl)
and (A6)—(A8) involving solely theC field vanish while
those involving only theD field diverge ass—0".

The three-point functions of the logarithmic pair can be
calculated using the canonical forms derived for general

logarithmic conformal field theories ifi60]. As in Egs.
(AB)—(A8), these correlators involve some arbitréintegra-

tion) constants, while the coefficients of the logarithmically
divergent terms are fixed by the leading logarithmic behav-

PHYSICAL REVIEW D 59104018

function has leading constant term which vanishese3s
while the remaining-dependent terms coming from the final
product in Eq.(A10) are sub-leading ire. Thus{(CCC),
~€%. Using exactly the same method one shows that
(CCD)g~¢€, (CDD)y~1/e and(DDD)q~ 1/€°.

From these leading behaviors inwe can now read off
from [60] the three-point correlation functioris,

(C(21,21;€)C(22,25;€)C(25,23: €))g
ced

S S — (A11)
| 215223731 e

(D(21,21;€)C(22,2,:€)C(23,23:€) o

2
ZysA

Zy7Z31]

C
de+ =

> e a’ log

) (A12)

21229751 24

(D(21,21;€)D(23,25;€)C(23,23; €))o

1

| 21229751 e

z
—dea’ log Xlz

+ceda’?

N

(A13)

iors of the conformal blocks. We can therefore apply the

results of[60] to the present casgising the behaviors of

Eqgs.(A6)—(A8)] provided we know the leading behaviors of
the three-point functions as— 0. For example, consider

the three-point function of th€ fields, which using Egs.

(A5), (A1) and(A2) is given by

(C(21,21;€)C(22,25;€)C(23,23:€))o

63

:(271-i)3

3
2
—a'q log A

* da
—e
f—oo kljl Qx—1le

x ] e 2« aajloglzl
k<j

(A9)

Using Eq.(3.195 and rescaling the integration variables in
Eq. (A9) asqy= eqy, we have

(C(21,21;€)C(22,25;€)C(23,23; €))o

63

T (2mi)?

3 ~
® day
I
—o k= 1qk_|

— X qk/ZH e—2a € qkqJ Iog\zk]|

k<j
(A10)
The last product in Eqg. (A10) has the form
M. je 2% “adj g4 ~1+ O(€?), so that the three-point

(D(21,21;€)D(23,22;€)D(25,23; €))o

2
21723731
A3

1

{ f e
|210255231| %< | €

2€

a' log

2

12
log

A

2
Z33 Z3g]
+dea’?| log—=| log —
A
2) 2

z
+|ng12

a'2<|og

231

217253731
A3

2
Z33 231
*logxn) log 1

log A

A
d
T2

Zy 2 223

+Ce3a’3log lo 09—+

2
97

2
+|ng_23
A

Iog

2
219253731

A3

C
3 13
——-€’a’’lo
2 g

2| Z33
0og X

2
Z31
ol

"In the perturbative calculations of Secs. IV and V we neglected
throughout the parts of the correlators which involve exponents of
the scaling dimension\ ., as these terms do not contribute to the
leading divergences as—0".

2
Z3g

2,?
+log A log N log
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2
21723731

log IE

C
3 13
+ -€a
8

3
] . (Al14)

Note that on the boundary of the worldsheetwhere z
=i s,e[0,1], the propagatotAl) becomes

(X*(5)X"(8,))o=a’ 7" log[ 2— 2 ¢OS 2m($;—S,) .
(A15)

PHYSICAL REVIEW D59 104018

This relation does not, however, yield any information about
the logarithmic scaling violations present in the correlation
functions, i.e. their dependences on the worldsheet renormal-
ization group scale log.

APPENDIX B: RENORMALIZATION OF THE
CANONICAL MOMENTUM

In this appendix we shall derive the expressidril) for
the renormalized canonical momentum. From E{10 it

This can be used to express all correlators above in terms @|lows that the momentum contributiq#.9) can be written

the boundary variables. Comparing E¢&15) with (A2) we

as a sum over permutatiose S, ,. This sum can be de-

see that the short-distance cutoff on the boundary variables gmposed into a sum over permutatid®s S,x S, which

1 A2\ A% A4

SpA= 2—arcco% 1- 7) =

(A16)

Furthermore, differentiating EqA15) we arrive at the cor-
relator

477'2a’ 7]Ij
1—cos 2 (s —

d
<dS (Sl)dSZX(52)> =

0 S2)

(A17)

The calculation ofn-point functions withn=4 is quite

cumbersome. As described [i60], they can be evaluated in
principle by noting that theC operators are primary fields
and hence have standard conformal field theoretical correla-
tion functions, from which all other correlators of the loga-
rithmic pair may be found via differentiation using the iden-
tity (A3). Their behaviors ag—0* can be deduced rather

directly using relations analogous to HG.16) between the

three-point functions and the operator product expansion co-
efficients, which remain valid in the presence of logarithmic

deformations[47]. The logarithmic pairC,D form a com-

permute only contractions among thel'[k=1§ak(sk
—€) §bk(sk) part of the auxilliary field expectation value in

Eq. (4.9 among themselves, and the remainiadp¢) part of

this correlator among themselves, plus a sum over the re-
maining onesPe S, ,—(S,XS,). Let us first introduce
some short-hand notation. For each positive intagewe
define am€mm-dimensional integration measute:,, on[0,1]™

by

J Jin(s, . sn)
[0,1]

m m-—1
H dsK(H O(s141— s|))®(sl Sm)

0 k=1

2[m/2]-2
d%fl

el L es

2
Sk+2 S2
><( I1 f dsk+1)j ds;
k=2[m/2]-3 J sy Sm

where[ m/2] is the integer part ofm/2, anda(m)=s,,_, for

(B1)

plete set of states in theX22 Jordan cell of the Virasoro m even andx(m)=0 for m odd. We define the initial value

generatorL,. From Egs. (A6)—(A8) it follows that the
Zamolodchikov metric in th&,D basis behaves 488,47

GCD: GDCN const.
(A18)

2 -2
Gcc"‘f , GDD""f y

Then Eq.(2.17) yields, for example, the scaling behavior

(CC)o~G HCCC)(C)o+ G (CCD)(D)o
+GCP((CCC)o(D)o+(CCD)o(C)o)-
(A19)
From Eq.(A6) we see that the left-hand side of E&19) is
O(€?). Then using Eqs(A4) and(A18) we can immediately

deduce the anticipated smadl behaviors of(CCC), and
(CCD),. The general result is

~O(e"™™).

II c(z.,z;e)11 D(w; ,Wj;e>>
i=1 ji=1 0
(A20)

Jdum—o=1. We also define al X N Hermitian matrix7y,
by

Tm[Y,X;Sl, ce asm]abE

" d
kll Yik(XO(Sk))Ek x! k(Sk)} N
(B2)

with the initial value[ 7y,=o]ap= dap -
We begin by evaluating the contribution to Eg.9) from
P e S,XS,, which give

PaLY;s]ls XS,
1 n
Y S S [ "I ds@(sei-s0
ot C=1b1 T, by PeS, J0 k=1
X (O(€) Sapdect Sacden)

« < dis XJ(S)kl:[l Yibkmk) ’bk(XO(Sk))%KXik(Sk)> (B3)

0
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where we have explicitly summed over tBg part. To ex- It is then possible to express the boundary measure and
press Eq(B3) in a more succinct form, we decompose eachY-matrix products in Eq(B3) in a more explicit form by

permutationP e S, into a product of disjoint cycle€;(P), writing productslly_, in terms of this cyclic decomposition
N asll. 1Hr"n‘ipl) for eachPe S,. We can explicitly combine
H C/(P) (B4) the products in the correlation functions in E@®3) into

matrix products, using the cyclicity of ea€)(P) and sum-
ming over theb;’s. We can also label the boundary integra-
and letL;(P)=0 denote the length of the cyclg(P), so tionssy=sc,(p),,, in terms of the components of the cycles in
that the set of integerd_;(P)} form a partition ofn, Eq. (B4), giving the integration measurél) for eachi
n =1,...n. In this way the sum over permutations in EB3)
E L.(P)=n. (B5) can be written as a sum over partitiof5), and the result
i after some algebra is

PaLY;s]ls, xs,= lim (N@(e)+l)5ab > @(6)2 3, 1]1 J L du (s, s

e0t TR, n=n

dixi(s)]_[ (7. [Y, ;s\, ... ,s(Li_)])> . (B6)
S i=1 ! i

0

The contributions from the remaining permutatidhse S, ,— (S,X S,) are somewhat more involved. We decompose this
sum into three disjoint sums of permutations. In the first class, whose contributions we deﬂbi@jby;s][”, for eachP
there is a unique integd e {1, ... n} for which P(kq) ¢{1,... n} with P(ky)=n+1, while the second class of permuta-
tions, whose contributions we denote BP'[Y;s]?!, are those for which there is a unique intedigie {1,...n} with
P(ko) ¢{1,... n} andP(ko)=n+2. The final contributions® (D[ Y;s]®! come from permutations for which there are two
integersky ko, e{1,...n} with P(k;),P(k,) ¢{1,...n} andP(k;)=n+1,P(k;)=n+2.

We have

n

N
. 1
PRIvs-Y S s 3 [ T ds0(sm—s0 [Fas, 0055,
c=1by,...| bn Ko=1 PeS, 12— (S55xS,) JO k=1 0
P(kg)=n+1 k#ko

)

X( C.0p(n+ 2)5ac+®(sP(n+1 S)5cc a,bp 41y

d k d d
X g0 L1 i 050y sy o0s Das, o5 ) - (B7)

k#kg

In Eq. (B7) the terms With5c,bp(n+2) correspond to permutations witA(n+1)=n+2, P(n+2)e{1,... n}, while the 5

terms come from those witR(n+2)=n+2, P(n+1)e{1,... n}. In the former terms, we consider the orbit of the integer
n+2 under a given permutatio®, and let|(P)+2=3 be the order of the orbit ok, under P, i.e. P'(®(n+2)
=P!(P*2(kg) =ko. The sum oveb ,bp). - - - PpiP)+24)=pIP)-1(n+ 2) then yieldsTip)[Y,X;Sy, . . . Sipylba fOr the cor-
respondingy-matrix products in Eq(B7). The corresponding boundary integration measutiuigp)(Sy, - - - ;Si(p)), as before
(after appropriate relabellings of tleandices, with additional step function restrictions as given in Eg7) which must be
carefully incorporated into the integration meas(B&). The remaining part oP that does not act on this particular orbit is
an element of5, _;(py, so that the remaining sums and products can be decomposed into cycles exactly aBi@) Bepr
eachl=1 there areff—1)!/(n—1)! permutationsP under whichk, has an orbit of ordet.

For the latterd,, terms in Eq.(B7), the integerl(P)+1=2 is the order of the orbit ok, underP, i.e. P'®(n+1)
=P'®*1(k,)=k,. The sums oveb;’s and all products in Eq(B7) give the same contribution as for the formedependent
terms. It follows that the sum over permutations in E8j7) can be written as a sum over the orbit intedéf) and, for each
such integer, a sum over partitionsof- | (P). After some algebra the result is finally
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n

POIY;s]M = lim > ——
[Y:s] ot |21 (n—=N'osr,,. . L, _=n-

2 Li=n—I

n—I
O(e)2 Ml'[f dML_(s“),...,s(L‘_))f du(ry,....0)
[ : i=1 Jo,bi : "o

d n—I|
XO(s—r;)(1+ N@(r|—s))<d—sx"(s)l_[1 tr(TLi[Y,x;s“), . ,s(Lii)])TT[Y,x;rl, . ,r|]ba> . (B8)
= 0

The resummation oP (D[ Y;s]?! carries through in an identical fashion, with the roles of the integerd andn+2
interchanged. The result is identical to EB8), except for some changes in the combinatorics of the indices. We find

N n
. 1
SIVECENTED D D D T H 450 (5o =50 || 45O (5ot 9w,
e o+ C=Lb T, bn Ko=1 PeSnsa—(SyXSy) 0 (n+1)
P(kg)=n+2 k ko

d ! d cb d
+0(€) e, ab)< xi(s) k1;[k ‘O bk(xo(sk))—st'k(sk)Y ko(xo(sko))qox o(sko)>
0 0

n

= lim z n_' z (6)2 t%,{ij[lf

ot Fr(=Dlo<i, 7T, <n-i [0,1]"

2 Li=n—I

dmi(s(”,...,sﬂ))f du(ry,...n)
o

n—I

d . . )
><(i)(s—r1)<d—sxl(s)H1 tr(TLi[Y,x;s('), . ,s(L'i)]){®(r|—s)T,[Y,x;rl, o Nba

+O(etr(ZY,X;rq, ... ,r,])b‘ab}> . (B9)
0

Finally, the combinatorics of the resummationf})’[ Y;s]®! now involve tracing the orbits of botR(n+1),P(n+2)
e{1,...n}, i.e. we introduce two integels(P) andl,(P) representing the orders of the orbitslgf andk,, respectively,
under a given permutatio. The evaluation is then identical to that above with these two orbits taken into account, and we
find

n
1 1
f 11 dsK®<sp(k>—sk>f dsi, O(s—sy,)
..... by 1ski#ko<n PeS,;5—(SXSy) 0 k=1 0
P(ky)=n+1P(ky)=n+2 k#ky.kp

1
X fo ds,0(Sp(n+1)=5) Oc,bpy, 5 Sabpnas)

2

><<dgx1(5) H YiP bk(xo(sk))—X'k(sk)Y l(XO(Sk ))ixkl(skl)Y Z(XO(SKZ))iSkX 2(5k2)>
0

Kk
n—-1 n—ly n—l;—I,
n!
—im 3 S O () o 1l
ot ot (n=l)n=ly=1) o<ty o, 50 <n-15-1,

E_Li—n—|1—|2
xf du (st ...,sﬂ))f d,u|2(t1,...,t|2)f duy (ry, ... 5 )O(r =)0 (s—ry)
[0,1]" " Joar (01"
n—l,-1,
X <—xj(s) IT ez y.xst, . o sODT Y, 1T Y Xt ot Dba) - (B10)
ds =1 i i 1 1 2 2 o
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The total ordem contribution Eq.(4.9) is now the sum of EqgB6) and(B8)—(B10), and after some algebra we arrive at
the final expression for the terms in the momentum expangid),

n—-1 n n—I
n!
PRILY; s]= fim > — > ()2 ] f dpy (st st)
Lot 112011715 o (N=DY o<ty T, =0 =1 Jp

X f[o,l]'—Hd'ulll(rl' cofeny) f[o,l]'ld’u'l(tl' b )0, —5)O(s—ty)

(L+5| o O(s— rl)(1+(N+1)(r,—s))—%D

n—I
><<dixj(s)l_[ tr(7 [V, x;s\, . . s<'>])
S i=1 ! [

XOOLY Xty Do Y Xirg, ooy Doat 61 0@ (OU(ZLY Xy, .. vrl])5ab}> . (B1Y
0

This expression contains ambiguous factor®¢t),e— 0" and products such #(s)® (—s) which depend on the particular
choice of regularization of the step function. The auxilliary quantum field theory contains most of the information about the
non-Abelian dynamics, and, to obtain an expression which is explicitly independent of such regularizations, we need to choose
an appropriate renormalization scheme fét The removal of these ambiguous factors is also required in order that By.
be a proper representation of the Wilson loop operator. This renormalization has been discy@®dlinterms of the
Feynman diagram representation of #é field averages in Eq4.9), we keep only those graphs corresponding to Wick
contractions in which there is a single continuous line connectingséwme boundary points=0 ands=1, i.e. we restrict
to connected Feynman graphs. This will also ensure that the final result is independens-defiendence of the auxilliary
field representation, as it should be. From 410 this means that we restrict the sum over permutat®asS, , , to those
whose cyclic decomposition contains only a single cyele ,(P) of lengthL,, ,(P)=n+2. This is achieved essentially by
normalizing the functional integration measud& D¢ in Eq. (4.1) so that{{(1))=1.

The renormalized canonical momentum is thus calculated by restricting to cyclic permutations ofriertiBy defini-
tion, this immediately eliminates the contributioﬁé@’[Y'sﬂs xS, and P(“)J[Y'S][31 above. This scheme removes thg

terms in Eq(B7) and the&clbp( terms in the first equality in EqB9). Then, we keep only the orbits of lendthk n in Eq.

(B8) and in the second equallty of E(B9). The sumP {))[Y;s]™" of these two terms contains no ambiguities from the step
functions involved. Furthermore, after some careful algebra one can rewrite the resulting integration measure from this sum as
féﬂﬂzldsk, and the corresponding integrand with the appropriate relabelling of indices is readily seen to form a symmetrized
matrix product. The result is finally

J
PUIY;s]en= H d <—()SymT[Yx sl,...,sn]ba> (B12)

0

which yields the expressio@.11).

APPENDIX C: BOUNDARY CORRELATION FUNCTIONS

In this appendix we will present the results of the boundary integrations which are used in the perturbative calculations of
Secs. IV and V. In general, the integrals are divergent, and difficult to do analytically. However, we need only determine their
most divergent parts a&— 0, dropping sub-divergent pieces which vanish upon taking the kmiD™ with the correlation
(3.15. To see how these calculations proceed, let us consider as an example the boundary integral

log[2—2 cos 2m(S1—S,) |
[1—cos2rs;][1—cos 2m(S,—S3) ]

1
I(CDEJOdsldszdsg (Cy

which arises in the evaluation of th¢U contributions to the canonical momentum of Sec. IV C. The integral syean be
done as in Eq(4.12 to give

8Note that with the regularizatiof.14 we have® (s)@(—s)=— 0 (e)?>— O (e), so that such a renormalization scheme can be understood
as removing all powers of the ambiguous te@nfe).
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L 1 log(2|sinmrs, cosms,—sinms, c037rsl|)

IV==1 ds;ds,

mJo tanws, Sir? mS

The divergent contributions to the integral owgrcome from the short distance boundary behasior s,~s, , i.e. sinws;
~sins,. Expanding the integrand of E¢C2) about this point gives the most divergent contribution leading to

(C2

COSTS,
(C3)

1 1
ItH=—Jlog(2 sinwsA)f ds,—
T o “siMws,

where here and in the following: denotes the most divergent contribution/as-0. Using the boundary cutoffA16) and
evaluating the final integration ovep using this cutoff we arrive finally at

(C4

All other boundary integrations are evaluated using similar sorts of asymptotic approximation techniques. Below we list
their leading divergent behaviors as—0. For theY?U terms of the canonical momentum calculation of Sec. IV C, which
come from the correlation functiof®12), in addition to Eqs(C1), (C4) we used the integrals

1 1
o= fo Ay A% A8 7 s 2,11 1= c0s (S, — 53)]

4 logA C5
~ 2 tanws, o
log[2— 2 cos 2m(s,—S3) ]
(L
I f OlsldSzdss[l €0s 21rS; ][ 1—cos 2m(S,—S3) ]
8 (logA)? c6
T g tanms, o

The additional integrals involved in the calculation of &2 part in Sec. IV C, which come from the correlatdrsl3),
are

(log[2— 2 cos 27(s,—s3)])?
[1—cos 2mrs;][1—cos 2m(S,—S3) ]

1
Iff)zf ds, ds, dsy
0

16 (logA)3
-~ = (€7
3T tan’iTSA
1 (log[2—2 cos 2r(s;—S3)])?
(2=
le Jodsld52dss[l—cos27731][1—005277(52—53)]
__ 4 (logA)® (C8)
377 tar? s,
1 2
N . 1 Iogp[z—z COS 27(S1—S3) |
lq Efodsldszdss[l—cos27751][1—005277(52—53)] 1
Iogp[z—z Cc0os 27(S1—Sy) ]
2 (logA)?
T 8 tanmws, loglogA (C9
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2

1
log —[2—2 cos 27(s,— S
1 QAZ[ (52— 5s3)]

1
(2) =
Iq fo ds, ds, OIS3[1—cos 21 ][1—cos 2m(S,—S3) ]

1
log P[Z_ 2 cos 2r(s;—Sy)]

1 1
- (C10
873 tarf 7s,
1 2
N . 1 log P[Z_Z COS 27(S1—S3) |
lq =fodsldszdsg[l_cos27751][1_005277(52_33)] 1
log —[2—2 cos 27(s,—S3) ]
A2
2 (logA)?
=~ S anws, loglogA. (C1y
For theU? terms of Sec. IV C, which come from the correlation functi@i4), we use the integrals
1 log[2—2 cos 27(s1—S,) ]log[2—2 c0S 2m(S,—S3) |
I‘l)zf ds, ds, ds;
m 0 [1—cos 2rs;][1—cos 2m(S,—S3) ]
8 (logA)?
- _ Ci12
3 tarf TSH (€12
1 log[2—2 cos 2m(S;—S,) ]log[ 2—2 cos 2mr(S;—S3) ]
I(Z)Ef ds; ds,ds;
m 0 [1—cos 2ms,][1—cos 27 (S,—S3)]
16 (logA)?
-~ C13
 tar? TS\ ( ¢
1 log[2—2 cos 2r(s;—S,)]l0g[2—2 cos 2m(S,—S3) |
(1) — — _
g fo ds, ds; dss [1—cos 27rs;][1— c0s 27 (S,—S3) ] log[2 =2 cos 27($, = S)]
64 (logA)3
~_ C1
3 tarf TS\ (14
1 (log[2—2 cos 27(s;—S,)])? log[2— 2 cos 2m(s,—S3) ]
I(Z)Ef ds,; ds,ds;
t 0 [1—cos 2rs,][1—cos 2m(s,—S3)]
32 (logA)3®
~>Z _ C1
3 tarf TSH (€19
1 (log[2—2 cos 27(s;—S,)])?log[ 2— 2 cos 2m(s; — S3) ]
|(3)Ef ds; ds,ds;
t o I [1—cos 27rs,][1—cos 2m(S,—S3) ]
24 (logA)3
== C16
> tarf TSp (16
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log[2— 2 cos 2m(s;—S,)](log[2— 2 cos 2m(S,—S3)])?
[1—cos2mrs;][1—cos 2m(S,—S3) ]

1
I{“)EJ ds; ds,ds;
0

=
= onan ane (O SR e

- g % (C18
R

Finally, the boundary integrals arising in the evaluation of the Zamolodchikov metric of Sec. V, which come from the
two-point correlation functiongA7) and (A8) of the logarithmic operators, are

I(l)zfldsl ds, -
g 0 1—-cos2m(s;—Sy)
4
~— logA (C20
a

1 1
(2) =
's Jo dsldsz(l—cos 27s;)(1—cos 21rs,)

2 1
=3 (C2)
w2 A2 tanms,
13— fldsidszlog[Z—Z COS 27(S1—Sp) |
9 0 1-c0s2m(s;—Sy)
8
=——(logA)? (C22
aa
1 log[2—2 cos 2m(s;—S;)]
(49—
's fodsldsZ(l—cosZa-rsﬂ(l—cosZwsz)
_ 2 log A 23

- 3m?A? tarf 7S, .

APPENDIX D: WARD IDENTITIES AND LEADING DIVERGENCES IN THE GENUS EXPANSION

In this appendix we shall show how the leading (®§modular divergences which appear in E6.11) can be removed
by invoking an appropriate Ward identity for the fundamental string fields of the matmodel. As we shall show, this is
equivalent to imposing momentum conservation for scattering processes in the matrix D-brane background. This has been
demonstrated explicitly for the single D-particle cas¢28]. Within the framework of the auxilliary field representation of the
Wilson loop operator, the effective Abelianization of the matrixnodel leads to a relatively straightforward generalization of
this proof, as we now demonstrate.
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The pertinent bilocal term induced by E(.11), which exponentiates upon summing over pinched topologies, can be
written as a local worldsheet effective action using the wormhole paran[ei@,ts]?b to give

CcD . 1 igd pcl®
S = |im J dpcdpp ex GtM G abr, qodyp T2
m | decdpo a,b2:1 29%(10g 5)2 dZ Socal PR ToM ] oo

gs[pD]|

1 _ d .
x f s CX(3): (5 ) u(S)goX (9)+ 2 (D1)

f ds DOC(S); (S~ €)£(S) gz x(s))

Here we have for simplicity considered only the zero frequency modes of the fields involved with respect to the Fourier
transformations defined at the beginning of Sec. VIA. They will be sufficient to describe the relevant cancellations. In Eq.
(D1) the (dimensionlessmoduli space metricG-M (whereL,M=C,D) is an appropriate off-diagonal>22 matrix with
respect to the decompositiafs.1) [see Eq.(A18)] which is required to reproduce the initial bilocal operator with the
CD-mixing of the logarithmic operators. This off-diagonal metric includes all the appropriate normalization fagtfosthe
zero mode states. These factors are essentially the inverse Giihtevo-point function(A7) which is finite.

We consider the propagation of twclosed stringmatter tachyon statég, ,= €12 in the background of EqD1) at the
tree level. In what follows the effects of th@ operator are sub-leading and can be ignored. Then, we are interested in the
amplitude

N
ACDE< << )y a/<0>T1T2eASC°§cf<1>>> >
c¢'=1 0

N

_ N d
im 3 [ dpcdpo [ Dx Dfoscf<0>exp(—sto[x]—§1 [lastis-agea

e—0t ¢'=1

Ta[x] To[x]

X ex % SR E Gl [pL]ab[pM]°d+Mf ds D(x%(s); €)£a(s— €)
ab21 | 2¢2logs)2  oF1 e 27’ 2

d
x fb(s>d—sx'(s>) 1§cr<1>+ 3 (D2)

where- - - represent sub-leading terms. The scaling prop&ty9 of the logarithmic operators must be taken into account.
Under a scale transformatid.17) on the worldsheet th€ operator emerges frof due to mixing with a scale-dependent
coefficient\/a’ t. This will contribute to the scaling infinities we are considering here.

The composit® operator insertion in ED2) needs to be normal-ordered on the disc. Normal ordering in the present case
amounts to subtracting scaling infinities originating from divergent contributioms(ef(s); €) ase—0". To determine these
infinities, we first note that the one-point function of the compoBiteperators, computed with respect to the feeenodel
and auxilliary field actions, can be written as

N N
< << > _c'(O)exp< > '9dpoli” J ds D(x%(s); €)€a(s— e>§b<s>—x<s>)fc<1>>> >
¢'=1 ab=1 2ma’

0

N ab
S g -3 M ! 0( ) 0(s");€))oéalS— - ,
<cr_l§c,(0)exp{ abed  2(2ma’)? ﬁ,dsd§<D(x (8);€)D(X(S"); €))oa(S— €) €n(8) €c(S' — €) €q(S')
d . i
v dSX(S)_d -x/(s') i §er(1)
N 9% polpnl? ;
p‘ > MJ ds ds(D(x%(s);e)D(x’(s"); E)>O< S) XJ(S)> ) >
ab=1 2(2770' " o
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where we have used Wick’s theorem. The second equality in[E8). follows after removing ambiguou® (€) type terms

from the Wick expansion in the auxilliary fields using the renormalization scheme described in Appendix B. One finds that this
procedure has the overall effect of replacing the product of auxilliary fields in the first equality i(DBpby the delta-
functions 5,40y -

In what follows we shall ignore, for simplicity, the basic divergences that come from the fundamental string propagator in
Eq. (D3). Such divergences will appear globally in all correlators below and will not affect the final result. As a consequence
of the logarithmic algebrgA7) and the scale transformatid®.17),(3.19, there are leadin¢scaling divergences in Eq.D3)
for e—~0" which behave as

g2ba’ Y2t pplilpol'. (D4)

Thus, normal ordering of th® operator amounts to adding a term of opposite sign to(Bg) into the argument of the
exponential in Eq(D2) in order to cancel such divergences.
Let us now introduce a complete set of stat§$ into the two-point function of string matter fields on the disc,

<T1T2>OZZI INIZ(TalE )0 (E1T2)0 (D5)

whereV, is a normalization factor for the fundamental string stdtietermined by the Zamolodchikov metridaking into
account the effects of th€ operator included i under the scaling3.17), we see that the leading divergent contributions to
Eq. (D5) are of the form

(T1To)o=—Va' t(T4|C)o(C|Too+ " - (D6)

where we have used EqA18) and (3.15. We now notice that th&€ deformation vertex operator plays the role of the
Goldstone mode for the translation symmetry of the fundamental string coordikatesd as such we can apply the
corresponding Ward identity in the matiaxmodel path integral to represent the action of@ha@eformation on physical states
by —i &/ 6x' [14,15. The leading contribution to E4D5) can thus be exponentiated to yield

N

_ N d
(TiTa)o= lim > DfoDgscwmexp(—sto[x]—;l fods§c<s—e>d—séc<s>)T1[x]

e—0t ¢'=1

\/_t L _ 53
xexp( ab21 ds dS E,(s— )n(S) ('~ e>§a<s>5x(s) oy e )

where we have used the on-shell conditﬂim(5/5xi)(5/5xi)]Tk=0 for the tachyon fields. EquatiofD7) expresses the
non-Abelian version of the Ward identity in the presence of logarithmic deformations.

Using Eqgs.(D4), (D7) and normalizing the parameters of the logarithmic conformal algebra appropriately, it follows that
Eqg. (D2) can be written as

N
Acp= lim X | dpcdpp f Dx DED¢ &./(0) exp( N2Sy[x]— E f dséu(s—e) 5 5<s>)Tl[x]

e—-0t ¢'=1

2/1/
gsa

N
1 .
X - GWM G cd_Z5° i aby baiiqg.t ab
ex‘]L,bzl( 2 loa 5° ; dncal LI Lom§ = =5 7Lpo ) Lpo]}*+igst [po]

F 5 s
jdsds Ea(S— €)Eu(9)Ep(S' — e>§a<s>5x(s)5x( 5

TZ[X]gc’(l)

[ttt
X . Sfa(S—E)fb(S)m
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N

. Norr d
=lim % | dpcdpp f DfoDfscmmexp(—sto[x]—ch fodsgc(s—ad—sfc(s)

e—0" c'=1

o 1 o @e (g
XTl[X]eXF{ abEzl [ - WGLMM:I GabcalpLi b[PM]jd_ 2 77”<[PD]i - N
1 5 b Va1 — 5
Xfodsfa(S—E)fb(S)m>([PD],- —Tfodsgb(S—G)fa(S)m)’ To[xJ&er (L) + - - . (D8)

From Eq.(D8) it follows that the limitt—c localizes the worldsheet wormhole parameter integrations with delta-function
support

N

9
IL, I1 oo™

a,b=11

Ja'

Os

1
(kg t kZ)ifodS§a(S_ 5)§b(s)) (D9)

where ; 5); are the momenta of the closed string matter states. This result shows that the leading modular divergences in the
genus expansion are cancelled by the scatteririglo$ed string states off the matrix D-brane background. Upon rescaling

by gi, averaging over the auxilliary boundary fields, and incorporating(B§) as an effective shift in the velocity recoil
operator{see Eq.(6.15], we can identify this renormalization as fixing the velocity matrix

U= — Ja' gq(ky +ky); 62° (D10)

of the fat brane background. Thus momentum conservation for the D-brane dynamics guarantees conformal invariance of the
matrix o-model as far as leading divergences are concerned.
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