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Matrix D-brane dynamics, logarithmic operators, and quantization of noncommutative spacetime

Nick E. Mavromatos* and Richard J. Szabo†
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~Received 13 November 1998; published 26 April 1999!

We describe the structure of the moduli space ofs-model couplings for the worldsheet description of a
system ofN D-particles, in the case that the couplings are represented by a pair of logarithmic recoil operators.
We derive expressions for the canonical momenta conjugate to the D-particle couplings and the Zamolod-
chikov metric to the first few orders ins-model perturbation theory. We show, using only very general
properties of the operator product expansion in logarithmic conformal field theories, that the canonical dynam-
ics on moduli space agree with the predictions of the non-Abelian generalization of the Born-Infeld effective
action for D-particles with a symmetrized trace structure. We demonstrate that the Zamolodchikov metric
naturally encodes the short-distance structure of spacetime, and from this we derive uncertainty relations for
the D-particle coordinates directly from the quantum string theory. We show that the moduli space geometry
naturally leads to new forms of spacetime indeterminancies involving only spatial coordinates of target space
and illustrate the manner in which the open string interactions between D-particles lead to a spacetime quan-
tization. We also derive appropriate non-Abelian generalizations of the string-modified Heisenberg uncertainty
relations and the space-time uncertainty principle. The non-Abelian uncertainties exhibit decoherence effects
suggesting the interplay of quantum gravity in multiple D-particle dynamics.@S0556-2821~99!01510-6#

PACS number~s!: 04.60.2m, 11.25.2w
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I. INTRODUCTION

Dirichlet-branes are solitonic backgrounds of superstr
theory whose discovery@1# has drastically changed the un
derstanding of the non-perturbative and target space s
tures of string theory. Their dynamics can be simply d
scribed by open strings whose worldsheets are discs
Dirichlet boundary conditions for the collective coordinat
of the soliton @2#, and they are related to ordinary close
string backgrounds by duality transformations@1#. In this
paper we shall study the dynamics of a many-body system
D-particles.

The effective field theory for a system ofN parallel
D-branes, with infinitesimal separation between them, i
good probe of the short-distance structure of the space
implied by string theory@3#. The main characteristic behin
this property of D-brane dynamics is the observation@4# that
the low energy effective field theory for a system ofN
D-branes is ten-dimensional maximally supersymme
U(N) Yang-Mills theory dimensionally reduced to th
world-volume of the D-branes. For the case of D-partic
the Yang-Mills potential is

VD0@Y#5
T 2

4gs
(

i , j 51

9

tr@Yi ,Yj #2 ~1.1!

whereT51/2pa8 is the elementary string tension, witha8
the string Regge slope whose square root is the intrin
string lengthl s , andgs is the~dimensionless! string coupling
constant. The fieldsYi(t) are N3N Hermitian matrices in
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the adjoint representation and the trace is taken in the fun
mental representation of the gauge groupU(N). In the free
string limit gs→0, the field theory involving the potentia
~1.1! localizes onto those matrix configurations satisfying

@Yi ,Yj #50, i , j 51, . . . ,9 ~1.2!

and so the D-brane coordinate fields can be simultaneo
diagonalized by a gauge transformation. The correspond
eigenvaluesya

i , a51, . . . ,N, of Yi then represent the col
lective transverse coordinates of theN D-branes. In this limit
the parallel D-branes are very far apart from each other
massless vector states emerge only when fundamental st
start and end on the same D-particle~Fig. 1!. The gauge
group is thenU(1)N. Since the energy of a string whic
stretches between two D-branes is

M}T uya2ybu ~1.3!

-

FIG. 1. Emergence of the enhancedU(N) gauge symmetry for
bound states ofN52 parallel D-branes~planes!. An oriented fun-
damental string~wavy lines! can start and end either at the same
different D-brane, giving four massless vector states in the limi
coinciding branes. These states form a representation ofU(2).
©1999 The American Physical Society18-1
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more massless vector states emerge when the brane
practically on top of each other. The collection of all mas
less states corresponding to an elementary string starting
ending on either the same or different D-brane forms aU(N)
multiplet ~Fig. 1!. The off-diagonal components of theYi

and the remnant gauge fields describe the dynamics of
short open strings interacting with the branes through
Dirichlet condition.

Thus when the D-branes are very far apart the class
vacuum solution of the field theory has unbroken supers
metry ~or zero energy! and the spacetime coordinates a
represented by a set ofcommutative Yi . When the branes ar
very close to each other, the full quantumU(N) gauge
theory must be taken into account, whose spectrum con
of D-brane bound states with broken supersymme
(@Yi ,Yj #Þ0 for iÞ j ) and at very short distances the spac
time is described bynoncommutativestructures. The gaug
symmetry is interpreted as a symmetry generalizing the
tistics symmetry for identical particles in quantum mechan
and the D-brane coordinates are viewed as adjoint Hi
fields in this description. D-brane field theory therefore e
plicitly realizes the old ideas of string theory that at ve
short distance scales~smaller than the target space Plan
length or the finite size of the string! the classical concepts o
spacetime geometry break down. The noncommutative st
ture of the spacetime is controlled by the strength of
string interactions among the constituent D-branes. Thi
precisely the structure inherent in the noncommutative
ometry formalisms of stringy spacetimes@5#, in which the
target space geometry is represented by the algebra of
servables~such as a vertex operator algebra! corresponding
to the interacting states of the theory.

The dimensionally reduced Yang-Mills theory is the re
evant field theory for the description of matrix theory@6#,
which hypothesizes that the D-particles of type-IIA sup
string theory are the partons and the supersymmetric ga
theory the exact quantum field theory in the infinite mome
tum frame of 11-dimensional spacetime. However, this is
the case in other regimes, for instance in the weak-coup
limit where the relevant effective action is the disc gener
ing functional. In this paper we shall be interested in t
description ofN D-particle dynamics from an elementa
point of view of the bosonic part of a worldsheets-model
for the string interactions. In this formalism, the D-bra
coordinate fields appear as coupling constants assoc
with boundary deformation vertex operators on the wor
sheet of a frees-model. Already at the tree level in the strin
coupling gs ~the disc diagram! and in flat target space, th
effective action forN D-branes is a highly non-local objec
that is not known in closed form. This complexity is due
the fact that, even at the tree level, correlation functions
the disc receive contributions from the massive string sta
which yield a non-local functional of the massless modes

The low-energy effective field theory for thes-model
couplingsyi(t) in the case of a single D-particle is wel
known to be described by the Born-Infeld action@7#

GBI@y#5
1

gsl s
E dtA12~ ẏi !2 ~1.4!
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which is just the relativistic free particle action for the D
brane. The appropriate generalization of Eq.~1.4! to the case
of non-Abelian~Chan-Paton! s-model couplings appropriate
to the description of multi-D-brane dynamics has been
point of ambiguity in recent literature. Although it is esta
lished that the appropriate global gauge invariant structur
the action is a trace in the fundamental representation
U(N), the ambiguity arises in choosing a particular mat
ordering prescription for the action. The original proposal
@8#, which employs a symmetrized matrix ordering, has be
argued to holdonly when one incorporates worldsheet sup
symmetry @9#, or alternatively when one imposes ce
tain energy-minimizing Bogomol’nyi-Prasad-Sommerfiel
~BPS!-type conditions on the form of the action@10#. The
U(N) Yang-Mills theory should appear as a ‘‘non
relativistic’’ approximation to the non-Abelian Born-Infel
action. An interesting closed-form expression for the sy
metrized action in the caseN52 has been obtained recent
in @11#.

In the following we shall show how an appropriate worl
sheet formalism yields the symmetrized form of the effect
bosonic action functional for multi-D-brane dynamics, wit
out the need of resorting to supersymmetry arguments
crucial feature of the D-brane couplings we shall use is th
not only do they define a~non-marginal! perturbation about a
truly marginal deformation, but the deformed worldshe
field theory has logarithmic scaling violations, coming fro
logarithmic divergences on the worldsheet, and defines n
conventional two-dimensional conformal field theory, b
rather alogarithmicconformal field theory@12#. Logarithmic
conformal field theories lie on the border between conform
field theories and generic two-dimensional renormaliza
field theories, and they correspond to the emergence of
den continuous symmetries@13#. It has been suggested@14#
that the appropriate worldsheet description of the collect
coordinates~zero modes! of a soliton in string theory is
given by logarithmic operators. The normalizable targ
space zero modes for D-branes arise from translations
rotations~in both spacetime and isospin space! of the back-
ground, and there is a family of backgrounds connected
the symmetries which act on the moduli space ofs-model
couplings characterizing the background. These modes
an important ingredient for the proper incorporation of rec
effects during the scattering of closed string states off
D-brane background when the soliton state changes du
the process of scattering@15–19#. These effects are impor
tant aspects of the quantization of the collective coordina
of D-branes.

Logarithmic operators have conformal dimensions wh
are degenerate with those of the usual primary fields, an
a result of this degeneracy one can no longer comple
diagonalize the usual Virasoro operatorL0. Together with
the standard operators they form the basis of a Jordan ce
L0. For a logarithmic pair (C,D) of conformal dimensionD,
the operator product expansion of the worldsheet stre
energy tensorT with these fields is non-trivial and involves
mixing @12#
8-2
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T~z!C~w!;
D

~z2w!2
C~w!1

1

z2w
]C~w!1•••

T~z!D~w!;
D

~z2w!2
D~w!1

1

~z2w!2
C~w!

1
1

z2w
]D~w!1••• ~1.5!

where an appropriate normalization of theD operator has
been chosen. Defining the Virasoro operatorL0 through the
Laurent series expansionT(z)5(nPZLn z2n22, it follows
that the corresponding statesuC&5C(0)u0& and uD&
5D(0)u0& generate a 232 Jordan block forL0,

L0uC&5DuC&, L0uD&5DuD&1uC&. ~1.6!

This mixing is a consequence of the behavior of the con
mal blocks of the underlying worldsheet theory which e
hibit logarithmic scaling violations. It is the characterist
non-trivial property of theories involving logarithmic oper
tors.

In this paper we shall study the disc amplitude in a wor
sheet boundary auxilliary field formalism@20–23# which can
be thought of as an ‘‘Abelianization’’ of theU(N) theory. In
this framework, before the auxilliary fields are integrat
out, the only difference from the Abelian situation is an ex
explicit dependence on the variables parametrizing
boundary of the string worldsheet. This representation of
Wilson loop operator enables one to carry outs-model per-
turbation theory in much the same way as in the Abel
~single D-brane! case. Within this formalism, we will con
struct the moduli space of thes-model couplings which rep
resents the effective spacetime of the D-particles and wh
geometry is determined by the Zamolodchikov metric@24#.
The dynamics on moduli space is determined by
ZamolodchikovC-theorem and a set of conditions which e
sure the possibility of canonical quantization@25#. The cru-
cial observation is that, because of the logarithmic nature
the D-brane couplings, the worldsheet deformations beco
slightly relevant, which in the recoil problem is precisely t
property that leads to a change of state of the 0-brane b
ground. To restore marginality, we dress the worldsh
theory with two-dimensional quantum gravity, i.e. Liouvil
theory @26#. We demonstrate explicitly that the canonic
form of the moduli space dynamics coincides with that of
symmetrized non-Abelian Born-Infeld theory. Physically, t
dynamical theory describes the non-relativistic motion
open strings in the background of a ‘‘fat brane,’’ as d
scribed in@27#. Although in this framework the explicit form
of the D-brane couplings is associated with those relevan
the recoil problem, we shall see that the derivation of o
results are based only on very general properties of the
erator product expansion in generic logarithmic conform
field theories. The derivation of the appropriate non-Abel
Born-Infeld dynamics in the kinematical region of intere
thereby represents a highly non-trivial application of t
theory of logarithmic operators.
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Quantization of the moduli space is then achieved
summing over worldsheet topologies, in the pinched
proximation which gives the dominant terms@14,15,18,25#.
In the case of a single D-particle, it was shown in@28# that,
to leading order in thes-model coupling constant expansio
one recovers the usual canonical quantum phase space
position and momentum having a constant commutator
‘‘Planck constant’’ given in terms of the string couplinggs .
Incorporating stringy effects reproduces the generali
string uncertainty principle@29,30#

Dyi Dpj>
\

2
d j

i
„11O~as8!~Dpi !

21•••… ~1.7!

which corresponds to adding corrections to the Heisenb
commutation relations of the form

@@ ŷi ,p̂ j ##5 i\d i
j
„11O~as8! p̂i

21•••… ~1.8!

whereas85gs
2a8 is the 0-brane scale. The result~1.7! can

also be derived from a Heisenberg microscope approac
the uncertainty principle for D-branes@17#. Minimizing the
modified uncertainty relation~1.7! leads to a minimal mea
surable lengthDyi>O(Aas8). Note that this length scale
vanishes in the weak-coupling regimegs→0, in which case
there is no lower bound on the measurability of distances
the spacetime and free D-particles can probe distan
smaller than the string length.

In the multi-D-particle case we shall find that the fluct
ating worldsheet topologies yield the appropriate no
Abelian generalization of the result~1.7!, and in addition
lead to a proper quantization of the noncommutative spa
time implied by the D-brane field theory. As we will see, th
leads to new forms of uncertainty relations involving on
the coordinates of spacetime, in the spirit of@31,32#, which
are superior to the phase space uncertainty relation~1.7!. The
simplest such relation has the form@33#

Dyi Dt> l s
25a8. ~1.9!

The space-time uncertainty principle~1.9! follows from the
energy-time uncertainty relation of quantum mechanics
plied to strings, and it can be derived from very basic wor
sheet conformal symmetry arguments. The same relation
be derived within the framework of the effective field theo
for D-instantons@34# and it is also naturally encoded in th
effective supersymmetric Yang-Mills theory for D-particle
@35#. It can be shown@35# that, for the nonrelativistic scat
tering of two D-particles of BPS mass 1/Aas8 with impact
parameter of orderDyi , the space-time uncertainty relatio
~1.9! gives the minimal spatial and temporal lengths

Dyi>gs
1/3l s[ l P

~11! , Dt>gs
21/3l s ~1.10!

wherel P
(11) is the 11-dimensional Planck length which is th

characteristic distance scale of M theory@6#. The space-time
uncertainty principle therefore implies that, for each state
a D-particle, no information can be stored below the Plan
distance in the transverse space.
8-3
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The following results represent the first examples of su
relations within the framework of a flat space worldshe
D-brane field theory. In thiss-model formalism we shal
find the appearence of quantum smearing of multi-D-part
coordinates arising from the string interactions between c
stituent branes. The appearence of minimal measur
spacetime lengths in this way is reminescent of the low
bounds which arise from the existence of internal~ultraviolet
regularization! symmetries of the target space@36#. The in-
ternal symmetry group is the enhancedU(N) gauge symme-
try which comes from the string interactions. For each c
stituent D-particle we shall obtain phase space and sp
time uncertainty relations of the form of Eqs.~1.7! and~1.9!
when string interactions are turned on. There is no nonc
mutativity between different directions on a given brane a
one obtains the standard stringy smearings of the coo
nates. However, among the matrix off-diagonal compone
representing the fundamental string degrees of freed
there are uncertainties between different directions of
fundamental string, in addition to the usual smearing, wh
leads to a proper quantum noncommutativity among
D-brane fields. The open string interactions are in this w
responsible for non-trivial quantum mechanical correlatio
between different spatial coordinate directions of t
D-particles. As discussed in@37#, these noncommutative un
certainty relations are determined entirely by the geometr
moduli space. The Zamolodchikov metric on this space
volves the various non-trivial kinematical quantities char
terizing the multi-D-brane dynamics, and it naturally e
codes the small-scale structure of spacetime. T
noncommutative structures of spacetime are determined
the transformations which diagonalize the Zamolodchik
metric. These noncommutative smearings arise from an
pansion of the moduli space around the background of a~Lie
algebraic! commutative spacetime determined as in Eq.~1.2!
which has the effect of encoding the noncommutative str
interactions into a gauge transformation. The gauge field
teractions are then ultimately responsible for the occure
of the quantum noncommutativity. This is reminiscent of t
matrix string framework for nonperturbative string theo
@38,39#, which encodes the geometry of the genus expans
through singular gauge transformations of commutat
spacetime coordinates and naturally yields the character
spatial scale in Eq.~1.10! @39#. The following results there-
fore yield a geometric picture of the string interactio
among D-branes and hence of the short-distance noncom
tativity of spacetime.

The present worldsheet framework thus gives an exp
realization of the spacetime noncommutativity described
@32#, where, based on very general requirements arising f
the Heisenberg uncertainty principle and classical gen
relativity, uncertainty relations among different coordina
directions are postulated in the form

(
i , j

Dyi Dyj> l P
2. ~1.11!

However, there are several crucial differences in the pre
approach. The first one is that all of our uncertainties
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derived from statistical distribution functions that are in
duced from the worldsheet genus expansion, without
need of postulating auxilliary relations. In particular, w
shall find uncertainties of the sort~1.11! as implied by a
stronger smearing of the coordinates involving a statist
connected correlation function of the matrix fields. T
present approach therefore distinguishes the quantum
commutativity of spacetime from the algebraic one, in co
trast to the approaches of@31,32,34# where the two structures
are identified. Secondly, the noncommutative smearings
we find depend on the energy content of the system
suggest the emergence of quantum decoherence in mul
brane dynamics. In particular, we shall derive a triple spa
time uncertainty relation which implies that the scattering
D-particles at high energies can probe very small distan
through their open string interactions. The emergence of
coherence effects is characteristic of certain approache
spacetime quantum gravity, so that the present formula
of matrix D-brane dynamics seems to naturally encode
effects of quantum gravity.

The structure of the remainder of this paper is as follow
In Sec. II we briefly describe the formalism of coupling co
stant quantization in Liouville string theory. In Sec. III w
describe the relevant brane configurations that we s
study, introducing their low-energy effective field theory~the
non-Abelian Born-Infeld action! and the associated logarith
mic recoil operators. In Sec. IV we carry out a detailed p
turbative calculation, up to third order in thes-model cou-
pling constants, of the canonical momentum of the multi-
brane system and show that the result coincides with
predictions of the symmetrized form of the non-Abelia
Born-Infeld action. In Sec. V we show that the resultin
moduli space dynamics takes the canonical form of tha
Liouville string theory. With this correspondence esta
lished, in Sec. VI we carry out the sum over worldshe
topologies in the pinched approximation which leads to
quantization of the D-particle couplings. Then we derive t
spacetime uncertainty relations and discuss their phys
significances. Section VII contains some concluding rema
and possible physical tests of the noncommutativity
spacetime. At the end of the paper there are four append
containing some of the more technical calculations. In A
pendix A we describe the structure of generic correlat
functions of the logarithmic operators, and in Appendix
we describe the technical details of the computation of
canonical momentum of Sec. IV, including a description o
particular renormalization scheme that must be used for
auxilliary field representation of the Wilson loop operato
Appendix C summarizes the complicated boundary integ
tions used in the paper, and finally in Appendix D we sho
how to cancel the leading modular divergences in the ge
expansion of Sec. VI by imposing momentum conservat
in the scattering of string states off the multiple D-bra
background.

II. HELMHOLTZ CONDITIONS AND COUPLING
CONSTANT QUANTIZATION FOR TWO-DIMENSIONAL

s-MODELS

In this section we will briefly review the formalism o
coupling constant quantization for two-dimension
8-4
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s-models. Consider a worldsheets-model that is given by a
deformed conformal field theory on a compact Riemann s
faceS with metric gab . The deformation is described by
set of coupling constantsgi associated with vertex operato
Vi(z,z̄) that have conformal dimensions (D i ,D̄ i) and opera-
tor product expansion coefficientscjk

i . The action is of the
form

Ss@x;g#5S0@x#1E
S
d2zAggi Vi ~2.1!

whereS0@x# is the action of the unperturbed conformal fie
theory and an implicit sum over repeated indices is alw
understood. The vertex operatorsVi are constructed from the
fields of S0@x#. As we will discuss, because of special pro
erties of the Zamolodchikov renormalization group flo
@24#, the summation over worldsheet genera leads to a
nonical quantization of the system of moduli space variab
$gi% in a non-trivial way@18,25#. In this picture the ultravio-
let worldsheet renormalization group scale logL plays the
role of time for the quantum mechanical system of variab
$gi%.1

When the vertex operatorsVi describe a relevant defor
mation ~i.e. D i1D̄ i,2), the running coupling constant
gi(L) acquire non-trivial flow under the renormalizatio
group which is described by the flat worldsheetb-function

b i@g#[
dgi

d logL
5~D i1D̄ i22!gi2pcjk

i gjgk. ~2.2!

The flows in the space of running coupling constants in
polate between various two-dimensional renormaliza
quantum field theories. Conformally invariant theories a
infrared or ultraviolet fixed points of these flows. Studyin
the global aspects of this moduli space leads to a geomet
understanding of certain equivalences between various
formal field theories and their associated target spaces.

One can restore conformal invariance at the quan
level by including worldsheet gravitational effects and dre
ing the action~2.1! by Liouville theory. This amounts to
dressing the vertex operators in Eq.~2.1! as Vi→@Vi #w ,
wherew is the Liouville field which scales the worldshe
metric as

gab5e~2/Aa8 Q!wĝab ~2.3!

with ĝab a fixed fiducial metric onS and Q is a constant
related to the central chargec of the two-dimensional quan
tum gravity. In the Liouville framework, logL is therefore
identified with the worldsheet zero mode of the Liouvil
field @40#. This dressing can be viewed as a renormalizat
of the corresponding coupling constants in Eq.~2.1! as

1Strictly speaking,L is the ratio of the infrared to ultraviole
scales on the worldsheet. In what follows, however, we shall se
size of the surfaceS to unity.
10401
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gi~w!5gi ea iw/Aa81
p/Aa8

Q12a i
cjk

i gjgkwea iw/Aa81•••.

~2.4!

The dressed deformation@Vi #w is then truly marginal pro-
vided that

1

2
a i~a i1Q!5D i1D̄ i22. ~2.5!

The gravitationally dressed version of Eq.~2.1! is S0@x#
1SL@x;w#, where

SL@x;w#5
1

4pa8
E

S
d2zAĝ@ ĝab]aw]bw2QwR~2!~ ĝ !#

2
Q

4pa8
R

]S
dŝwK~ ĝ !1E

S
d2zAĝgi~w!Vi

~2.6!

is the Liouville action coupled to the ‘‘matter’’ part of Eq
~2.1! @26#. HereR(2) is the scalar curvature of the worldshe
S andK is the extrinsic curvature at the worldsheet bound
]S.

The most general renormalization group flow for
s-model couplinggi , corresponding to a vertex operatorVi ,
in Liouville string theory has the form of a friction equatio
of motion @25,41,42#

a8 g̈i~f!1Aa8 Q ġi~f!52b i@g#5Gi j
]

]gj
C@g;f#

~2.7!

where the dots denote differentiation with respect to
Liouville zero mode

f52Aa8Q logL ~2.8!

and

Q5~ 1
3 uc* 2C@g;f#u1 1

4 b iGi j b
j !1/2 ~2.9!

is the central charge deficit withc* the central charge at th
critical dimension. The quantityC@g;f# is the Zamolod-
chikov C-function @24#. It interpolates in moduli space
among two-dimensional field theories onS according to the
C-theorem, which for flat worldsheets reads

]C

] logL
52b iGi j b

j ~2.10!

where

Gi j 5L4^Vi~z,z̄!Vj~z,z̄!&L ~2.11!

is the Zamolodchikov metric on moduli space. Here^•&L
denotes the average in the non-criticals-model~2.1! dressed
with the Liouville action~2.6!, and Gi j denotes the matrix
inverse of Eq.~2.11!.
e

8-5
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In Eq. ~2.7! we took into account the gradient flow prop
erty of theb-functions

]

]gi
C5Gi j b

j ~2.12!

which is an off-shell corollary of the flat worldshee
C-theorem@24#. When theC-function is regarded as an e
fective action in moduli space, the corresponding class
equations of motion therefore coincide with the renormali
tion group equationsb i@g#50. The Zamolodchikov metric
~2.11! can also be used to determine the short distance
havior of 3-point correlation functions of thes-model. For a
scale-invariant field theory, the short-distance operator pr
uct expansion is

Vi~z1 ,z̄1!Vj~z2 ,z̄2!;ci j
k z12

D i1D j 2Dk z̄12
D̄ i1D̄ j 2D̄k

3Vk„
1
2 ~z11z2!, 1

2 ~ z̄11 z̄2!…

~2.13!

for uz1u;uz2u, where

zi j 5zi2zj . ~2.14!

Then the three-point function of the deformation operato

^Vi~z1 ,z̄1!Vj~z2 ,z̄2!Vk~z3 ,z̄3!&L

5Ci jkz12
D i1D j 2Dk z̄12

D̄ i1D̄ j 2D̄k z23
D j 1Dk2D i

3 z̄23
D̄ j 1D̄k2D̄ iz13

D i1Dk2D j z̄13
D̄ i1D̄k2D̄ j ~2.15!

can be determined as

Ci jk5ci j
l Glk ~2.16!

in the limit uz23u;uz12u@uz13u. The coefficientsCi jk are com-
pletely symmetric in their indices. From Eq.~2.16! it follows
that the asymptotic behaviors of the first three sets of co
lation functions of the vertex operators can be related as

^ViVj&L;ci j
k ^Vk&L;Gkl ^ViVjVk&L ^Vl&L . ~2.17!

It is well-known that higher-genus effects will quantiz
the effective coupling constantsgi(f) @18,25#. For a full
quantum description, we must ensure that Eq.~2.7!, which is
characteristic of frictional motion in a potentialC@g;f#, is
consistent with the canonical quantization conditions. W
therefore need an action formalism for the renormalizat
group flow. In general such equations of motion cannot
cast in a Lagrangian form, but in the case of non-criti
strings this is possible due to the non-trivial metricGi j . In
this framework, the Liouville zero mode~2.8! is identified as
the physical time coordinate@25,43#, observed in standard
units.

The conditions for the existence of an underlying L
grangianL whose equations of motion are equivalent~but
not necessarily identical! to Eq. ~2.7! are determined by the
existence of a non-singular matrixv i j with
10401
al
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v i j ~a8g̈ j1Aa8Qġj1b j !5
d

df S ]L

]ġi D 2
]L

]gi
~2.18!

which obeys the Helmholtz conditions@44#

v i j 5v j i ~2.19!

]v i j

]ġk
5

]v ik

]ġ j
~2.20!

1

2

D

Df S v ik

] f k

]ġ j
2v jk

] f k

]ġi D 5v ik

] f k

]gj
2v jk

] f k

]gi

~2.21!

D

Df
v i j 52

1

2a8
S v ik

] f k

]ġ j
1v jk

] f k

]ġi D
~2.22!

where

f i[2Aa8 Q ġi2b i@g#,
D

Df
[

]

]f
1ġi

]

]gi
1

f i

a8

]

]ġi
.

~2.23!

If the conditions~2.19!–~2.22! are met, then

a8v i j 5
]2L

]ġi]ġ j
~2.24!

and the Lagrangian in Eq.~2.24! can be determined up to
total derivatives according to@44#

S[E dfL52E dfE
0

1

dkgiEi~f,kg,kġ,kg̈!

Ei~f,g,ġ,g̈![v i j ~a8 g̈ j1Aa8 Q ġj1b j !.
~2.25!

In the case of non-critical strings one can identify@25#

v i j 52
1

Aa8
Gi j . ~2.26!

Near a fixed point in moduli space, where the variation ofQ
is small, the action~2.25! then becomes@18,25#

S5E dfS 2
Aa8

2
ġi Gi j @g;f#ġ j2

1

Aa8
C@g;f#1••• D

~2.27!

where the dots denote terms that can be removed by a ch
of renormalization scheme. Within a critical string~on-shell!
approach, the action~2.25!, ~2.27! can be considered as a
effective action generating the string scattering amplitud
Here it should be considered as a target space ‘‘off-she
8-6
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action for non-critical strings@25#. From Eq.~2.27! it follows
that the canonical momentapi conjugate to the couplingsgi

are given by

pi5Aa8 Gi j ġj . ~2.28!

Let us briefly sketch the validity of the conditions~2.19!–
~2.22! for the choice~2.26!. SinceGi j is symmetric, the first
Helmholtz condition~2.19! is satisfied. The conditions~2.20!
and ~2.21! hold automatically because of the gradient flo
property~2.12! of the b-function, and the fact thatGi j and
C@g;f# are functions of the coordinatesgi and not of the
conjugate momenta. Finally, the fourth Helmholtz conditi
~2.22! yields the equation

D

Df
Gi j 5

Q

Aa8
Gi j ~2.29!

which implies an expanding scale factor for the metric
moduli space

Gi j @f;g~f!#5eQf/Aa8 Ĝi j @f;g~f!# ~2.30!

where Ĝi j is a Liouville renormalization group invarian
function, i.e. a fixed fiducial metric on moduli space. This
exactly the form of the Zamolodchikov metric for Liouvill
strings@18,40#. Thus there is an underlying Lagrangian d
namics in the non-critical string problem.

The action~2.27! allows canonical quantization, which a
we have mentioned is induced by including higher gen
effects in the string theory@18,25#. In the canonical quanti-
zation scheme the couplingsgi and their canonical moment
~2.28! are replaced by quantum mechanical operators~in tar-
get space! ĝi and p̂i obeying

@@ ĝi ,p̂ j ##5 i\M d j
i ~2.31!

where the quantum commutator@@• , •## is defined on the
moduli spaceM of deformed conformal field theories of th
form ~2.1!, and\M is an appropriate ‘‘Planck constant.’’ W
can use the Schro¨dinger representation in which the canon
cal momentum operators obey@25#

^ p̂i&L5K 2 i
d

dgi L
L

5^Vi&L . ~2.32!

Thus the canonical commutation relation~2.31! in general
yields, on account of Eq.~2.32!, a non-trivial commutator
between the couplingsgi and the associated vertex operato
of the ~genera resummed! s-models.

III. MATRIX s-MODELS AND FAT BRANE DYNAMICS

To describe the moduli space dynamics of a multi-
brane system, we shall use the construction described in@27#
which for the present purposes lends the best physical in
pretation. In this picture, the assembly of D-branes, includ
all elementary string interactions, is regarded as a compo
‘‘fat brane’’ which couples to a single fundamental strin
10401
s

-

r-
g
ite

with a matrix-valued coupling. In a T-dual~Neumann bound-
ary conditions! framework,2 the resulting effective theory is
described by as-model on an ‘‘effective’’ topology of a
disc, propagating in the background of a non-AbelianU(N)
Chan-Paton gauge field.

Consider theU(N)-invariant matrixs-model action

SN@X;A#5
1

4pa8
E

S$zab%
d2z tr hmn]Xm]̄Xn

2
1

2pa8
R

]S$zab%
tr Yi„x

0~s!…dXi~s!

1 R
]S$zab%

tr A0
„x0~s!…dX0~s! ~3.1!

where hmn is a ~critical! flat 911-dimensional spacetime
metric. The worldsheet fieldsX, Y andA areN3N Hermitian
matrices which transform in the adjoint representation
U(N).3 The traces in Eq.~3.1! are taken in the fundamenta
representation.4 The surfaceS$zab% is a sphere with a set o
marked pointszab , 1<a,b<N, on it. For eacha5b it has
the topology of a discS, while for each pairaÞb it has the
topology of an annulus. The variablesP@0,1# parametrizes
the circle ]S. In @27# it was shown that the action~3.1!
describes an assembly ofN parallel D-particles with funda-
mental oriented open strings stretching between each pa
them. The diagonal componentYaa of the matrix field Y
parametrizes the Dirichlet boundary condition on D-parti
a, while the off-diagonal componentYab5Yba* represents the
Dirichlet boundary condition for the fundamental orient
open string whose endpoints attach to D-particlesa and b.
The matrix fieldA0 parametrizes the usual Neumann boun
ary conditions in the temporal direction of the target spa
The action~3.1! is written in terms of Neumann boundar
conditions on the configuration fields, which is the corre
description of the dynamics of the D-branes in this way, b
it is straightforward to apply a functional T-duality transfo
mation on the fields of Eq.~3.1! to express it in the usual
equivalent Dirichlet parametrization@27#. The configuration

Am5S A0,2
1

2pa8
Yi D ~3.2!

2For subtleties in applying the T-dual picture see@9,23#. In this
paper, as in@27#, we assume that the Neumann picture is the fu
damental picture to describe the propagation of strings in fat br
backgrounds. The Dirichlet picture is thenderived by applying
T-duality as a canonical functional integral transformation.

3In this paper we shall consider only the case of oriented o
strings. For unoriented open strings, the global symmetry gr
U(N) is replaced withO(N) everywhere.

4Repeated upper and lower spacetime indices, which are ra
and lowered with the flat metrichmn , are always assumed to b
summed over. We also normalize the generatorsTa of U(N) as
tr TaTb5dab and hence use the flat metricdab to raise and lower
color indices.
8-7
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NICK E. MAVROMATOS AND RICHARD J. SZABO PHYSICAL REVIEW D59 104018
can be interpreted as a ten-dimensionalU(N) isospin gauge
field dimensionally reduced to the worldline of the D-partic
@1,45#.

However, the action~3.1! on its own does not properly
take into account the interactions between the D-partic
and the fundamental strings. To do so we must transform
in two ways @27#. First, we must include the sum over a
worldsheet topologies, incorporating the Liouville dressi
discussed in the previous section. Due to the induced qu
tum fluctuations of the couplingsYi

ab , this provides an in-
finitesimal separation between theN constituent D-particles
proportional to the string couplinggs,5 and also allows the
endpoints of the fundamental strings to fluctuate in spa
time. We must then integrate out all the fluctuations amo
the fat brane constituents, i.e. over all of the marked po
of S$zab%. This necessarily makes the action non-local.
U(N)-invariance, the resultings-model partition function
then becomes the expectation value, in a free~scalar!
s-model, of the path-orderedU(N) Wilson loop operator
W@]S;A# along the boundary of the worldsheet discS,

ZN@A#[ (
genera

E @dX#E
S

)
a,b51

N

d2zabe
2SN[X;A]

.^W@]S;A#&0[E Dxe2N2S0[x] tr P

3expS igs R
]S

Am„x
0~s!…dxm~s! D ~3.3!

wheredX is the normalized invariant Haar measure for in
gration on the Lie algebra ofN3N Hermitian matrices and

S0@x#5
1

4pa8
E

S
d2z hmn]xm]̄xn ~3.4!

is the frees-model action for the fundamental string. Th
path integral measureDx is normalized so that̂1&051. The
partition function~3.3! describes the dynamics of a fat bran
which is depicted in Fig. 2.

The low-energy effective action for the D-brane config
rations is now obtained by integrating out the fundamen
string configurationsx in Eq. ~3.3!. To lowest order in the
gauge-covariant derivative expansion, the result isZN@A#

.e2N2GNBI[A] , where

GNBI@A#5
c0

A2pa8 gs
E dt tr~Sym1 i z Asym!~detm,n@hmnI N

12pa8gs
2Fmn#!1/2 ~3.5!

5Strictly speaking, it is a renormalized coupling constantgs
ren that

appears—see@27# for details.
10401
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is the non-Abelian Born-Infeld action for the dimensionall
reduced gauge fieldAm . Herec0 is a numerical constant an
t5x0(s50) is the worldsheet zero-mode of the tempo
embedding field.I N is the N3N identity matrix, Sym de-
notes the symmetrized matrix product

Sym~M1 , . . . ,Mn!5
1

n! (
pPSn

Mp1
•••Mpn

~3.6!

and Asym is the antisymmetrized matrix product

Asym~M1 , . . . ,Mn!5
1

n! (
pPSn

~sgnp!Mp1
•••Mpn

.

~3.7!

The symmetric product~and similarly for the Asym opera
tion! on functionsf (M1 , . . . ,Mn) of n matricesMk is de-
fined by first formally expandingf as a Taylor series and the
applying the Sym operation to each monomial,

Symf ~M1 , . . . ,Mn!

5 (
k1 , . . . ,kn>0

f ~k1 , . . . ,kn!~0, . . . ,0!

k1! •••kn!
Sym~M1

k1 , . . . ,Mn
kn!.

~3.8!

The symmetrization and antisymmetrization operations h
the effect of removing the ambiguity in the definition of th
spacetime determinant in Eq.~3.5! for matrices with non-
commuting entries.

The components of the field strength tensor in Eq.~3.5!
are given by

FIG. 2. Schematic representation of a fat brane. The bold st
denote the assembly ofN parallel D-branes and the thin wavy line
represent the fundamental strings which start and end on them.
shading represents the integration over all of these string inte
tions, as well as the sum over worldsheet genera. The ma
s-model describes the interaction of the fat brane with a sin
fundamental string, represented by the thick wavy line, which st
and ends on the fat brane with a matrix-valued coupling constanY.
8-8
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2pa8F0i5
d

dt
Yi2 igs@A0 ,Yi #, ~2pa8!2Fi j 5gs@Yi ,Yj #

~3.9!

and the constantzPR is left arbitrary so that it interpolate
among the proposals for the true trace structure inheren
the non-Abelian generalization of the Born-Infeld actio
The casez50 corresponds to the original proposal in@8#
while the trace structure withz51 was suggested~in a dif-
ferent context! in @46#. In @9# the two-loop worldshee
b-function for the model~3.3! was calculated to be

b i
ab[

]Yi
ab

] logL
52~2pa8gs!

2~DmFm i !
ab

12~2pa8gs!
3~Dm@Fmn ,Fi

n#!ab1O„~a8gs!
4
…

~3.10!

where

D05
d

dt
2 igs@A0 ,•#, Di5

igs

2pa8
@Yi ,• # ~3.11!

are the components of the dimensionally reduced gau
covariant derivative. It is readily seen that Eq.~3.10! coin-
cides with the variation of the action~3.5! with z51 up to
the order indicated in Eq.~3.10!, so that the worldshee
renormalization group equationsb i

ab50 coincide with the
equations of motion of the D-branes. The first term in E
~3.10! yields the~reduced! Yang-Mills equations of motion,
while the second term represents the first order stringy
rection to the Yang-Mills dynamics. We shall return to th
issue in the next section.

In this paper we will study the target space quantum
namics from the worldsheets-model point of view, which
will provide dynamical worldsheet origins for the noncom
mutativity of spacetime and matrix D-brane dynamics
general. We shall study the simplest background o
Galilean-boosted D-brane,

Yi~x0!ab5Yi
ab1Ui

ab x0 ~3.12!

corresponding to the case of non-relativistic hea
D-particles. The velocity matrixUi describes the velocitie
of the constituent D-branes in the fat brane. Alternative
the choice of couplings~3.12! can be thought of as param
etrizing the action of the spacetime Euclidean group on
fat brane. However, this background is trivial from the po
of view of the dynamics of the D-branes. In the Neuma
picture the D-brane configurations are essentially ga
fields, so the only part of Eq.~3.12! which contributes to the
action~3.1! is the velocity operator. But we can also Galile
transform to the rest frame whereUi50. We shall see ex-
plicitly in the next section that the quantum dynamics det
mined by the configuration~3.12! are trivial.

The problem is resolved by considering again the ge
expansion of the matrixs-model ~3.1!. An analysis of the
10401
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annulus amplitude reveals that there are logarithmic div
gences arising from modular parameter integrations of
form *dq/q @14–16#. These divergences can be removed
replacing the velocity operator in Eq.~3.12! by
lime→01Ui

abD(x0;e), where

D~x0;e!5x0 Q~x0;e! ~3.13!

and

Q~s;e!5
1

2p i E2`

` dq

q2 i e
eiqs ~3.14!

is the regulated step function, withQ(s)[ lime→01Q(s;e)
50 for s,0 andQ(s)51 for s.0. The infinitesimal pa-
rametere regulates the ambiguous value ofQ(s) at s50,
and the integral representation~3.14! is used sincex0 will
eventually be a quantum operator. When this velocity term
inserted into the boundary integral of thes-model action, the
e→01 divergences arising from the regulated step funct
can be used to cancel the logarithmic divergences of
annulus amplitudes@14–16#. This relates the target spac
regularization parametere to the worldsheet ultraviolet scal
L by @17#

e22522a8 logL. ~3.15!

We shall describe these cancellations explicitly in Sec. V
This new velocity operator is called the impulse opera

@16# and it has non-zero matrix elements between differ
states of the fat brane. It describes recoil effects from
emission or scattering of closed string states off the fat bra
and in an impulse approximation, it ensures that~classically!
the fat brane starts moving only at timex050. But this is not
all that is required. The operator~3.13! on its own does not
lead to a closed conformal algebra. Computing its opera
product expansion with the stress-energy tensor shows@17#
that it is only thepair of operatorsD(x0;e),C(x0;e), where

C~x0;e!5e Q~x0;e! ~3.16!

that define a closed algebra under the action of the wo
sheet stress-energy tensor. They form a pair of logarith
operators of the conformal field theory@12#. Thus, in order to
maintain conformal invariance of the worldsheet theory, o
cannot just work with the operator~3.13!, because Eq.~3.16!
will be induced by conformal transformations. If we resca
the worldsheet cutoff

L→L85Le2t/Aa8 ~3.17!

by a linear renormalization group scalet, then Eq.~3.15!
induces a transformation

e2→e825
e2

124Aa8e2 t
~3.18!
8-9



o
ll
ve

at

in
he

r-

ce
th

. I
o

s-
d.
re-
is

r-
fat
II.
ari-
es

al
al

the
tex

m-

nta-

q.

ires
ld
n

a
on

NICK E. MAVROMATOS AND RICHARD J. SZABO PHYSICAL REVIEW D59 104018
and we find

D~x0;e8!5D~x0;e!1t Aa8 C~x0;e!,

C~x0;e8!5C~x0;e!. ~3.19!

If we now modify the initial position of the fat brane t
lime→01Aa8 Yi

abC(x0;e), then this scale transformation wi
induce, by conformal invariance, a transformation of the
locities and positions as

Ui→Ui , Yi→Yi1Ui t ~3.20!

i.e. a Galilean evolution of the fat brane in target space.
To properly incorporate non-trivial dynamics of the f

brane, one must therefore consider instead of Eq.~3.12! the
recoil operator

Yi~x0!ab5 lim
e→01

„Aa8 Yi
abC~x0;e!1Ui

abD~x0;e!….

~3.21!

The conformal algebra reveals that the operators~3.13! and
~3.16! have the same conformal dimension@17#

De52a8ueu2/2 ~3.22!

which vanishes ase→01. For finite e the operator~3.21!,
when inserted into the action~3.1!, yields a deformation op-
erator of conformal dimension 12a8ueu2/2 which therefore
describes a relevant deformation of thes-model and the re-
sulting string theory is non-critical. From Eq.~3.20! it fol-
lows that the corresponding matrix-valuedb-functions are

bYi
5DeYi1Aa8Ui , bUi

5DeUi . ~3.23!

As the ‘‘dressing’’ by the operatorsC and D is determined
entirely by the temporal coordinatex0, we identify this field
as the Liouville fieldw. Marginality of the deformation is
then restored by taking the limite→01. In this sense, the
gravitational dressing is provided by the temporal embedd
fields of the string, giving a natural interpretation to t
Liouville zero mode as the time coordinatet5x0(s50) that
appears in Eq.~3.5!. The relation with the worldsheet reno
malization scale is then set by Eq.~3.15!. Thus, if we con-
sider the initial velocity matrixUi of the fat brane as an
unrenormalized coupling, then Eq.~3.21! is interpreted as the
Liouville-dressed renormalized coupling constants~2.4! of
the matrix s-model. We shall make this corresponden
somewhat more precise in Sec. VI. Some properties of
correlators of the logarithmic pairC,D, which will be re-
quired in the following, are described in Appendix A.

IV. CANONICAL MOMENTUM OF COLLECTIVE D-
BRANE CONFIGURATIONS

In this section we shall compute, as prescribed in Sec
the canonical momenta conjugate to the matrix-valued c
10401
-

g

e

I,
u-

plingsYi in thes-model of the previous section. The nece
sity to carry out this complicated calculation is many-fol
For instance, we shall see that the perturbative theory
quires a renormalization of the D-brane couplings, which
unambiguously fixed by the momentum. This will be impo
tant in the following sections where we shall map the
brane problem onto the Liouville string problem of Sec.
Furthermore, this quantity enables the most direct comp
son with the non-Abelian Born-Infeld theory and illustrat
the usage of the generic features of logarithmic conform
field theory in the calculation of matrix D-brane dynamic
quantities.

A. Perturbation expansion

We shall need a proper path integral representation of
U(N) Wilson loop operator, representing the pertinent ver
operator for the description of a system ofN D-branes in the
s-model framework. We introduce one-dimensional co
plex auxilliary fieldsj̄a(s),ja(s) on the boundary]S of the
worldsheet. They transform in the fundamental represe
tion of theU(N) gauge group, and their propagator is

^^j̄a~s1!jb~s2!&&[ lim
e→01

E D j̄Djj̄a~s1!jb~s2!

3expS 2 (
c51

N E
0

1

ds j̄c~s2e!
d

ds
jc~s!D

5dabQ~s22s1! ~4.1!

where againe regulates the ambiguous value ofQ(s) at s
50.

Using the propagator~4.1! and Wick’s theorem we can
undo the path ordering in the Wilson loop operator in E
~3.3! by writing it as @20–23#

W@]S;A#5
1

NWU~1!@]S;A#
lim

e→01

3K K (
c51

N

j̄c~0!expS igs (
a,b51

N E
0

1

ds j̄a

3~s2e!Am
ab
„x0~s!…jb~s!

d

ds
xm~s!D jc~1!L L .

~4.2!

This representation of the Wilson loop operator also requ
a renormalization scheme for the auxilliary quantum fie
theory which we describe in Appendix B. It puts the partitio
function ~3.3! into the form of a functional integral over
local action. Note that it corresponds to the partition functi
for the boundary fieldsj̄,j minimally coupled to the gauge
field Am . The additional factor
8-10
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WU~1!@]S;A#5 lim
e→01

K K expS igs (
a,b51

N E
0

1

ds j̄a

3~s2e!Am
ab
„x0~s!…jb~s!

d

ds
xm~s!D L L

~4.3!

is induced by the vacuum graphs of the auxilliary quant
field theory. With a periodic definition of the step functio
Q(s) on the circle]S @for instance with a discretized ver
sion of Eq.~3.14!#, the auxilliary fields induce loop contrac
tions of the color indices of the gauge fieldAm leading to the
U(1) subgroup projection~4.3! of the Wilson loop operator

This formalism gives a one-parameter family of Dirichl
boundary conditions for the fundamental string fields,
belled by sP@0,1#, in the corresponding T-dual formalism
@21,22#, i.e. the dual configuration fields are

Ỹi~x0;s!5 lim
e→01

(
a,b51

N

j̄a~s2e!Yi
ab
„x0~s!…jb~s!. ~4.4!

Now, instead of being forced to sit on a unique hypersurf
as in the Abelian D-brane case, there is an infinite se
hypersurfaces on which the string endpoints are situated.
ternatively, we obtain a one-parameter family of bare mat
valued vertex operators

Vab
i ~x;s!5

igs

2pa8

d

ds
xi~s! lim

e→01

j̄a~s2e!jb~s! ~4.5!

and renormalized matrix couplings~3.21!. Thus the trade-off
for removing the non-locality of the effective theory~3.3! is
the extra explicit boundary dependence of operators
volved.

We will use the representation~4.2! to compute the clas
sical canonical momentumPab

j (s) in the moduli space of the
collective D-brane configurationsYj

ab(s). According to Eq.
~2.32!, the momentum can be computed as the one-p
function of the deformation vertex operators~4.5! in the sta-
tistical ensemble~3.3!,

Pab
j ~s![NWU~1!@]S;A#S 2

d

dYj
ab
„x0~s!…

ZN@A# D
5P̃ab

j ~s!2NK W@]S;A#

3S 2
d

dYj
ab
„x0~s!…

WU~1!@]S;A# D L
0

~4.6!

where
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P̃ab
j ~s!5 lim

e→01
(
c51

N K K K j̄c~0!Vab
j ~x;s!

3expS igs (
d,e51

N E
0

1

ds8 j̄d~s82e!

3Am
de
„x0~s8!…je~s8!

d

ds8
xm~s8!D jc~1!L L L

0

~4.7!

is the contribution from theSU(N) part of the gauge group
The second term in Eq.~4.6! involves traces of the gaug
field Am which we identify as the center of mass coordina
of the fat brane, i.e.Yj

cm[(1/N)tr Yj . The expression~4.6!
thus shows that the momenta of the collective center of m
motion of the fat brane and of the constituent D-branes co
prising the fat brane completely decouple. In this paper
shall be interested in only the former contribution, since
latter one essentially represents the dynamics of a sin
D-brane@i.e. gauge groupU(1)] andhere we are intereste
in the non-Abelian modification determined by the consti
ent D-particles. In effect we restrict attention to unimodu
Wilson loops@i.e. gauge groupSU(N)]. For these terms the
statistics of the auxilliary boundary fieldsj̄,j are irrelevant.

From now on we shall work in the static gaugeA050 for
the dimensionally reduced gauge field. Then the canon
momentum~4.7! can be expanded as the power series

P̃ab
j ~s!52 (

n51

`
~2 i !n11

n! S gs

2pa8
D n11

P ab
~n! j@Y;s#

~4.8!

where theO„Y(x0)n
… contribution is

P ab
~n! j@Y;s#5 lim

e→01
(
c51

N

(
a1 , . . . ,an
b1 , . . . ,bn

E
0

1

)
k51

n

dsk

3K K j̄c~0!j̄a~s2e!jb~s!S )
k51

n

j̄ak
~sk2e!

3jbk
~sk!D jc~1!L L

3K d

ds
xj~s!)

k51

n

Yi k

akbk
„x0~sk!…

d

dsk
xi k~sk!L

0

.

~4.9!

The correlation functions appearing in Eq.~4.9! can be
evaluated using Wick’s theorem and the propagator~4.1! to
write the auxilliary field averages as a sum over permu
tions,
8-11
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K K )
k51

m

j̄ak
~sk!jbk

~sk8!L L 5 (
PPSm

)
k51

m

dak ,bP~k!
Q~sP~k!8 2sk!.

~4.10!

The evaluation of the momentum contribution~4.9! is
rather technically involved and is presented in Appendix
It is also shown there that one must further specify a ren
malization of the auxilliary quantum field theory in order
remove step function ambiguities which come from the c
relation functions~4.10!. The resulting renormalized expre
sion is finite ats50. This point defines the~renormalized!
target space coordinatesP̃ab

j [P̃ab
j (s50)ren as the zero

modes of the worldsheet fields. As shown in Appendix B,
ordern contribution is given by

P ab
~n! j@Y;0# ren5E

0

1

)
k51

n

dskK dxj~s!

ds U
s50

3SymF )
k51

n

Yi k
„x0~sk!…

d

dsk
xi k~sk!G

ba
L

0

.

~4.11!

This is to be compared with the corresponding expressio
the Abelian case~corresponding to a single D-particle,N
51) for which there is no matrix-ordering problem and t
expansion of the Abelian Wilson loop operator proceeds
rectly without the need of an auxilliary field representatio
We see that the properly renormalized momentum~4.11! is a
natural non-Abelian generalization of the correspond
single D-particle quantity, to which it reduces in the lim
N51. Physically, the symmetrization of the amplitude o
curs because the correlators involve bosonic fields.

In the following we will, for simplicity, normalizeh00

51 and assume that the target space temporal and sp
embedding fields are uncorrelated, i.e.h0i5h i050. The re-
sulting time-space factorization of correlators implies th
Eq. ~4.11! is non-vanishing only whenn is odd. Note that for
the configurations~3.12! we haveP̃ i[0, since all the peri-
odic boundary integrations in Eq.~4.11! then vanish. When
the fat brane configuration is given by the non-trivial rec
operator~3.21!, the correlation functions of the logarithmi
operatorsC andD can be evaluated using the results of A
pendix A. In particular, the correlation functions involvin
only C(x0;e) operators vanish ase→01. This means that
the canonical momentum vanishes at zero velocities, as
pected from physical considerations. It is a nontrivial fun
tion which mixes the velocities and positions of the fat bra
This explicit vanishing of the correlators of theC operator is
required to consistently yield the correct Abelian limit
which the momentum depends only on the velocity.

B. Velocity renormalization

In this subsection we will consider the lowest non-triv
contribution~4.11!, which using Eqs.~A17! and~A4! can be
written as
10401
.
r-

-

e
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P ab
~1! j~Y,U;0!ren5 lim

e→01

@Ui #baE
0

1

ds8^D~s8;e!&0

3K d

ds
xj~s!U

s50

d

ds8
xi~s8!L

0

5 lim
e→01

4p2aa8

e
Uba

j 1

p tanpsL

~4.12!

wherea is an arbitrary constant andsL is the short-distance
cutoff ~A16! on ]S. The divergent term asL→0 is the
boundary version of the bulk logarithmic divergence logL.
Naively, the boundary integral in Eq.~4.12! vanishes since
its integrand is a total derivative. However, the one-po
function of the logarithmicD operator is divergent ase
→01 and one must therefore carefully regularize the bou
ary integration. The boundary regulatorsL is also correlated
with the target space regularization parametere as in the
bulk equation~3.15!. AlthoughsL is given explicitly by Eq.
~A16!, we shall assume that the bulk and boundary cuto
are independent and take tanpsL;e2. This usage of the
logarithmic correlation functions will be the key feature
the determination of the matrix D-brane dynamics.

The resulting expression~4.12! diverges ase→01. Part
of this divergence can be removed by renormalizing the
locity matrix of the D-branes as

Ui5Aa8eŪ i . ~4.13!

From Eqs.~3.15! and ~3.23! we see that this renormalize
coupling constant is truly marginal,

dŪi

dt
50 ~4.14!

where t52Aa8logL, and it therefore plays the role of
uniform velocity for the fat brane dynamics. From Eq.~4.8!
we see that the remaininge22 divergence can be absorbe
into a renormalization of the string coupling constant as

gs5Aa8 e ḡs . ~4.15!

As we will see in Sec. VI,ḡs is also a truly marginal cou-
pling. Thus we see that, after a suitable renormalization
the logarithmic deformation, the leading order contributi
to the canonical momentum~4.8! is just the constant velocity
of the Galilean boosted fat brane, which coincides with
corresponding result for a single non-relativistic hea
D-particle @28#.

C. Logarithmic algebra

We now examine the leading order corrections to the
locity of the fat brane, which are given by
8-12
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P ab
~3! j~Y,U;0!ren5 lim

e→01

E
0

1

ds1 ds2 ds3K d

ds
xj~s!U

s50

d

ds1
xi 1~s1!

d

ds2
xi 2~s2!

d

ds3
xi 3~s3!L

0

3Sym@a8^C~s1 ;e!C~s2 ;e!D~s3 ;e!&0~Yi 1
Yi 2

Ui 3
1Yi 1

Ui 3
Yi 2

1Ui 3
Yi 2

Yi 1
!

1Aa8^C~s1 ;e!D~s2 ;e!D~s3 ;e!&0~Yi 1
Ui 2

Ui 3
1Ui 2

Yi 1
Ui 3

1Ui 3
Ui 2

Yi 1
!

1^D~s1 ;e!D~s2 ;e!D~s3 ;e!&0Ui 1
Ui 2

Ui 3
#ba . ~4.16!

Using Wick’s theorem, the propagator~A17! and the three-point functions~A12!–~A14! of the logarithmic operators, afte
some lengthy tedious algebra we can write Eq.~4.16! as

P ab
~3! j~Y,U;0!ren5 lim

e→01

~4p2a8!2Fa8~de1ce3a8logL!I 0~6 YjYiU
i13 YiY

iU j13Yj@Ui ,Yi #1Yi@U j ,Yi #1@YiU
i ,Yj #

1@U j ,YiY
i #1@Ui ,Yj #Yi1@UiY

i ,Yj #1@Yi ,Yj #Ui !1
c

2
e3a82I u

~1!~3 YiY
iU j26 YjYiU

i2@Yi ,Yj #Ui

1Yi@U j ,Yi #2@YiU
i ,Yj #1@U j ,YiY

i #2@Ui ,Yj #Yi2@UiY
i ,Yj #23Yj@Ui ,Yi # !2ce3a82I c

~1!~3 YiY
iU j

1Yi@U j ,Yi #1@U j ,YiY
i # !1Aa8S e

e
12dea8logL1ce3a82~ logL!2D I 0~6 YiU

iU j13 YjUiU
i1Yi@U j ,Ui #

1@U j ,YiU
i #1Ui@U j ,Yi #13@Ui ,Yi #U j1@U j ,UiY

i #1@UiU
i ,Yj #1@Ui ,Yj #Ui !1Aa8S ce3a82I q

~1!2~dea8

1ce3a82logL!I u
~1!1

c

4
e3a82I u

~2!D ~3 YjUiU
i1@Ui ,Yj #Ui1@UiU

i ,Yj # !1Aa8S c

2
e3a82~ I q

~2!1I q
~3!!

2~dea81ce3a82logL!I c
~1!1

c

4
e3a82I c

~2!D ~6YiU
iU j1Yi@U j ,Ui #1@U j ,YiU

i #1Ui@U j ,Yi #13@Ui ,Yi #U j

1@U j ,UiY
i # !2~UiU

iU j1UiU
jUi1U jUiU

i !H I 0S f

e3
1

3e

e
a8logL13dea82~ logL!21ce3a83~ logL!3D

2~ I u
~1!12I c

~1!!S e

2e
1dea82logL1

c

2
e3a83~ logL!3D1

3

4
~2I u

~2!1I c
~2!!~dea822ce3a83logL!

1ce3a83S S I m
~1!1

1

2
I m

~2!D logL2
1

2
I t

~1!2
3

4
~ I t

~2!1I t
~3!1I t

~4!!1
1

8
~2I t

~5!1I t
~6!! D J G

ba

. ~4.17!

The quantities denoted byI in Eq. ~4.17! are the various boundary integrals that arise and are summarized in Appendix C
constantsc,d, . . . come from the correlation functions of the logarithmic operators. These constants are for the mo
arbitrary integration constants, the remaining ones being fixed by the leading logarithmic terms in the conformal bloc
shall eliminate the arbitrary ones by demanding that, in the limitN51, Eq.~4.17! reproduce the appropriate result anticipat
from Abelian Born-Infeld theory, i.e. that only theU jU2 term in Eq.~4.17! survives in the Abelian reduction. In doing so, w
assume a more general logarithmic deformation structure than that given by the recoil operators of the previous sectio
qualitative~and most quantitative! features remain the same.

Let us start with the first set ofY2U type terms. From the discussion of the previous subsection and Eq.~3.15! it follows
that the bulk and boundary ultraviolet cutoff scales are related as

4m logL5
1

tanpsL
~4.18!

wherem is a real-valued constant to be determined. Using Eqs.~C4!–~C6!, it then follows that theY2U part of Eq.~4.17!
reduces to
104018-13
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lim
e→01

4a8

p3
~4p2a8!2

logL

tanpsL
†~de1ce3a8logL!~6 YjYiU

i13 YiY
iU j13Yj@Ui ,Yi #1Yi@U j ,Yi #1@YiU

i ,Yj #1@U j ,YiY
i #

1@Ui ,Yj #Yi1@UiY
i ,Yj #1@Yi ,Yj #Ui !2ce3a8logL„~326m!YiY

iU j26 YjYiU
i2@Yi ,Yj #Ui1~122m!Yi@U j ,Yi #

2@YiU
i ,Yj #1~122m!@U j ,YiY

i #2@Ui ,Yj #Yi2@UiY
i ,Yj #23 Yj@Ui ,Yi #…‡ba . ~4.19!
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In the Abelian limit N51, all commutators in Eq.~4.19!
vanish. Requiring that the coefficients of theYjYiU

i and
YiY

iU j terms vanish leads, respectively, to the equations

6de112ce3a8logL50, 3de16mce3a8 logL50

~4.20!

which for finite e have unique solution

m51, d522ce2a8 logL. ~4.21!

Here we have used the fact that the constantc is determined
by the leading logarithmic terms in the conformal blocks
the logarithmic conformal algebra generated by theC andD
operators, and hence thatcÞ0. We see that the arbitrarines
of certain integration constants which appear from the lo
rithmic conformal algebra can be fixed by the appropri
Abelian reduction requirement. Substituting Eq.~4.21! into
Eq. ~4.19! we see that the set ofY2U type terms in fact
vanishes identically.

Next we examine the second set ofYU2 type terms in Eq.
~4.17!. Using Eqs.~4.18!, ~4.21!, the integrals~C1!–~C11!
and dropping those terms which vanish ase→01 relative to
the rest, we arrive after some algebra at the expression

lim
e→01

4Aa8

p3
~4p2a8!2

logL

tanpsL
F S e

e
2

5

3
ce3a82~ logL!2D

3~6 YiU
iU j13 YjUiU

i1 Yi@U j ,Ui #1@U j ,YiU
i #

1Ui@U j ,Yi #13@Ui ,Yi #U j1@U j ,UiY
i #1@UiU

i ,Yj #

1@Ui ,Yj #Ui !G
ba

. ~4.22!

The reproduction of the correct Abelian limit requires t
equality

e5 5
3 ce4a82~ logL!2 ~4.23!

of the parameters of the logarithmic conformal algebra. As
Eq. ~4.19!, this restriction forces the entire contributio
~4.22! to vanish identically for allN.

Thus, with the parameters of the logarithmic deformatio
fixed according to Eqs.~4.21! and ~4.23!, the only contribu-
tion to then53 canonical momentum is from the cubic v
locity terms in Eq. ~4.17!, which we evaluate using Eq
~4.18! and the boundary integrals~C1!–~C19!. Using Eq.
~3.15! and absorbing the remaininge27 divergence in the
total momentum~4.8! using the renormalizations~4.13! and
~4.15!, we arrive finally at
10401
f

-
e

n

s

P ab
~3! j~Y,U;0!ren52128pa83/2S f 1

139

8
cD @Ū i Ū

i Ū j

1Ū i Ū
j Ū i1Ū j Ū i Ū

i #ba . ~4.24!

The sum of Eqs.~4.12! and ~4.24! now involve three con-
stantsa, c and f determined from the logarithmic conforma
algebra. We can fix another one of them by requiring th
again in the Abelian limit, one recovers the well-known r
sult predicted from Abelian Born-Infeld theory. One find
~see the next subsection! that the relative coefficient betwee

the Ū j andŪ j Ū i Ū
i terms in the Abelian theory should be1

2 ,
which imposes the additional constraint

8 f 1139c564p2a. ~4.25!

The results above now yield the total canonical mom
tum ~4.8! up to order 3 as

P̃ab
j ~Ȳ,Ū !5

4aḡs
2

pAa8
F Ū j1

ḡs
2

6
~3Ū i Ū

i Ū j1†Ū i ,@Ū j ,Ū i #‡!G
ba

1O~ ḡs
6!. ~4.26!

The expression~4.26! involves one parametera determined
by the one-point function of the logarithmicD operator. The
remaining parameters of the logarithmic conformal alge
that enter into the three-point functions~A11!–~A14! are de-
termined by Eqs.~4.21!, ~4.23! and ~4.25!. In this way the
matrix D-brane dynamics fixes most of the algebraic inf
mation about the logarithmic deformation and localizes
problem to a small region of moduli space. The fact th
these parameters are scale-dependent is a general featu
logarithmic conformal field theories@47#. Note that they be-
come scale-independent though with the correlation~3.15!.

D. Canonical momentum in non-Abelian Born-Infeld theory

Let us now compare the perturbative result~4.26! to that
which comes from the non-Abelian Born-Infeld action~3.5!.
For this, we expand the spacetime determinant in Eq.~3.5! as
a series in powers ofFmn to get
8-14
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1

A2pa8 gs

~detm,n@hmnI N12pa8gs
2Fmn#!1/2

5~A2pa8 gs!
3F ~2pa8gs

2!22I N1
1

4
FmnFmn

1
1

12
~2pa8gs

2!@Fmn ,Fnl#Fl
m

1
1

32
~2pa8gs

2!2
„~FmnFmn!224FmnFnlFlrFrm

…

1O„~2pa8gs
2!3

…G . ~4.27!

SinceFmn52Fnm , the symmetrization operation picks o
the even powers of the field strength while the antisymm
trized product picks out the odd ones. Using Eq.~3.9! in the
gaugeA050, after some algebra we find that the expans
of the action~3.5! to leading orders in the string couplin
constant is

GNBI@Y#5c0~A2pa8 gs!
3E dtS N~2pa8gs

2!22

1
1

2 S gs

2pa8
D 2

tr Ẏi Ẏ
i

1
1

16S gs
2

2pa8
D 2H tr~2 Ẏi Ẏ

i Ẏj Ẏ
j1Ẏi Ẏj Ẏ

i Ẏj !

1
i z

3

1

2pa8
tr@Yi ,Yj #@Ẏi ,Ẏj #J 1O~gs

6!D
~4.28!

whereẎi[(d/dt)Yi . The perturbative expansion of the c
nonical momentum in non-Abelian Born-Infeld theory c
now be calculated from Eq.~4.28! and after some algebra w
find

Pab
j ~ t ![

dS 1

gs
3
GNBI@Y# D

dẎj
ab~ t !

5
c0 gs

2

A2pa8
H Ẏba

j 1
gs

2

6 S @Ẏi Ẏ
i Ẏj1Ẏi Ẏ

j Ẏi1Ẏj Ẏi Ẏ
j #ba

1
i z

2pa8
†Ẏi ,@Yj ,Yi #‡baD J 1O~gs

6!. ~4.29!

In particular, for the case of the D-particle configuratio
~3.12! corresponding to a Galilean-boosted fat brane,
have
10401
-

n

e

Pab
j ~ t !5

c0 gs
2

A2pa8 S Uba
j 1

gs
2

6 FUiU
iU j1UiU

jUi1U jUiU
i

1
i z

2pa8
$†Ui ,@Yj ,Yi #‡1~†Ui ,@U j ,Yi #‡

1†Ui ,@Yj ,Ui #‡!t1†Ui ,@U j ,Ui #‡t2%G
ba
D 1O~gs

6!.

~4.30!

We see that the canonical momenta~4.26! and ~4.30! agree,
up to an overall normalization, when

z50 ~4.31!

which corresponds to taking only the symmetrized trace
Eq. ~3.5!. The possible occurrence of the extra antisymm
trized trace structure in Eq.~3.5! was pointed out in@9#
where the worldsheetb-functions~3.10! were computed. As
noted there, however, when one properly takes into acco
the worldsheet fermionic fields for the full superstrin
theory, it is only the symmetrized trace structure that s
vives. This feature was elucidated on in@10# where it was
shown that the symmetrized action is the only potential g
eralization for which BPS configurations linearize the no
Abelian Born-Infeld action and minimize its energy. Here w
have shown that, within the auxilliary field formalism for th
worldsheet matrixs-model, there exists a particular regula
ization of the auxilliary quantum field theory which agre
with the results predicted by the symmetrized action, with
the need of introducing worldsheet supersymmetry.

There may of course be other regularizations of the a
illiary quantum field theory which reproduce the antisymm
trized trace structure in Eq.~3.5!, but we have not been abl
to find any such one. The renormalization described in A
pendix B is the most natural scheme that one can impose
the symmetrized matrix products which occur are natu
from the perspective of representing bosonic string am
tudes. It is also that which naturally leads to the correct A
lian reduction of the theory. The full, unrenormalized expre
sion for the canonical momentum in the matrixs-model is
given in Appendix B. To further check the validity of th
non-Abelian Born-Infeld action, one would need to exte
the calculation ofP ab

(n) j (Y,U;0)ren up to n55. This in turn
would require explicit knowledge of the five-point correl
tion functions of the logarithmic operators, which are e
tremely complicated~see Appendix A!, and the calculations
at higher orders of perturbation theory become overwhe
ingly tedious and difficult to manage.

In any case, the results of this section illustrate a n
trivial application of logarithmic conformal field theory t
the study of solitonic states in string theory. We note that
results derived in this section are invariant underT-duality
transformations of the string theory. In@23# it was pointed
out that an alternative functional integral representation
the quantum D-particle dynamics is given by as-model ac-
tion defined with a non-Abelian Wilson loop operator th
8-15
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has normal boundary derivatives]'xi for the relevant defor-
mation vertex operators. This model corresponds to the
position of dynamical Dirichlet boundary conditions, rath
than dynamical Neumann ones as in Eq.~3.3! which are
equivalent~by T-duality! to the imposition of external Di-
richlet boundary conditions. In contrast to the Abelian ca
these two models are inequivalent beyond the tree level
cause of anomalous Jacobian factors in the path inte
measure which arise in the non-Abelian case. By careful
vestigation of the worldsheetb-functions it has been argue
in @23# ~see also@9#! that the model with dynamical Dirichle
boundary conditions constitutes the appropriateT-dual de-
scription of the quantum D-brane dynamics represented
the open string model with free~Neumann! boundary condi-
tions. It is straightforward to see that the perturbative exp
sion of the canonical momentum in the theory with bound
normal derivatives is equivalent to the one employed in t
section, since the boundary correlation functions involv
are the same. The results described in this section are th
fore independent of which picture one chooses to work i

V. DYNAMICS ON MODULI SPACE

We can learn more about the fat brane dynamics by stu
ing the structure of the moduli spaceM determined by the
~dressed! matrix D-brane configurations. Assuming the g
neric D-brane couplings to admit decompositions~3.21! into
pairs of logarithmic operators, this space is the direct su

M5MC%MD ~5.1!

of two subspaces which each have classical dimension 9N2.
According to the results of the previous section, to low
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order in the string couplinggs the decomposition~5.1! can
be interpreted as the splitting of the fat-brane collective
ordinates into phase space degrees of freedom. However
will not be true at higher-orders and in general Eq.~5.1!
represents a non-trivial mixing between configuration sp
and phase space variables. As discussed in@14#, the logarith-
mic nature of the deformation makes the geometry on
space~5.1! well-defined.

The Zamolodchikov metric onM is given by the two-
point function of the deformation vertex operators~4.5!,

Gab;cd
i j ~s,s8!52NL2e2Qf/Aa8^Vab

i ~x;s!,Vcd
j ~x;s8!&L

L[22NL2WU~1!@]S;A#
d

dYi
ab
„x0~s!…

WU~1!

3@]S;A#
d

dYj
cd
„x0~s8!…

ZN@A# ~5.2!

where we have taken into account the extrinsic curvat
term in the Liouville dressing~2.6! which in the case of the
disc hasK52. With this definition, Eq.~5.2! determines a
fiducial metric on moduli space. TheSU(N) part of Eq.~5.2!
relevant for the constituent D-brane dynamics is given by
perturbative expansion

G̃ab;cd
i j ~s,s8!52L2(

n50

`
~2 i !n

n! S gs

2pa8
D n12

G ab;cd
~n!i j @Y;s,s8#

~5.3!

where theO„Y(x0)n
… contribution is
hat Eq.
Gab;cd
~n!i j @Y;s,s8#5 lim

e→01
(
c51

N

(
a1 , . . . ,an
b1 , . . . ,bn

E
0

1

)
k51

n

dskK K j̄c~0!j̄a~s2e!jb~s!j̄c~s82e!jd~s8!S )
k51

n

j̄ak
~sk2e!jbk

~sk!D jc~1!L L
3K dxi~s!

ds

dxj~s8!

ds8
)
k51

n

Yi k

akbk
„x0~sk!…

d

dsk
xi k~sk!L

0

. ~5.4!

The expression~5.4! can be evaluated as described in Appendix B by writing it as a sum over permutationsPPSn13.
However, it is much simpler to note that Eq.~5.3! can be obtained from the canonical momentum~4.7! by functional
differentiation,

G̃ab;cd
i j ~s,s8!52L2S 2 i

d

dYi
ab
„x0~s!…

P̃cd
j ~s8!D . ~5.5!

This differentiation preserves the renormalization of the auxilliary quantum field theory described in Appendix B, so t
~5.5! also holds for the corresponding renormalized quantities. Equating coefficients of theO„Y(x0)n

… terms in the renormal-
izations of the perturbative expansions~4.8! and ~5.3! thus gives for the relevant zero mode contributions
8-16
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G ab;cd
~n!i j @Y;0,0# ren5

1

n11 (
l 51

n11 E
0

1

)
k51
kÞ l

n11

dskK dxi~s!

ds U
s50

dxj~s8!

ds8
U

s850

3SymF )
k51

l 21

Yi k
„x0~sk!…

d

dsk
xi k~sk! ^ )

m5 l 11

n11

Yi m
„x0~sm!…

d

dsm
xi m~sm!G

db;ca
L

0

. ~5.6!

Let us now compute Eq.~5.6! when the D-brane configuration fields are given by logarithmic deformation operators.
the expression~5.6! is non-vanishing only whenn is even. The leadingn50 contribution is the identity operator onM,

G ab;cd
~0!i j ~Y,U;0,0!ren5

8p2a8

L2
h i j ddadbc ~5.7!

while the next contribution is atn52 which gives

G ab;cd
~2!i j ~Y,U;0,0!ren5

1

3
lim

e→01

E
0

1

ds1 ds2K d

ds
xi~s!U

s50

d

ds8
xj~s8!U

s850

d

ds1
xi 1~s1!

d

ds2
xi 2~s2!L

0

3Sym@Aa8^C~s1 ;e!D~s2 ;e!&0$I N^ ~Yi 1
Ui 2

1Ui 2
Yi 1

!1Yi 1
^ Ui 2

1Ui 2
^ Yi 1

1~Yi 1
Ui 2

1Ui 2
Yi 1

! ^ I N%1^D~s1 ;e!D~s2 ;e!&0$I N^ Ui 1
Ui 2

1Ui 1
^ Ui 2

1Ui 1
Ui 2

^ I N%#db;ca .

~5.8!

Using Wick’s theorem, and substituting the boundary string propagators~A17! and the two-point correlation function
~A7!,~A8! of the logarithmic operators into Eq.~5.8! yields

G ab;cd
~2!i j ~Y,U;0,0!ren5 lim

e→01

~4p2a8!2b

3 F2Aa8

L2
I g

~1!h i j $I N^ ~YkU
k1UkYk!1Yk^ Uk1Uk

^ Yk1~YkU
k1UkYk! ^ I N%

1Aa8 I g
~2!$I N^ ~YiU j1YjUi1U jYi1UiYj !1Yi

^ U j1Yj
^ Ui1U j

^ Yi1Ui
^ Yj1~YiU j1YjUi

1U jYi1UiYj ! ^ I N%2
2a8

L2
I g

~3!h i j $I N^ UkU
k1Uk^ Uk1UkU

k
^ I N%2a8I g

~4!$I N^ ~UiU j1U jUi !1Ui

^ U j1U j
^ Ui1~UiU j1U jUi ! ^ I N%G

db;ca

~5.9!
s

-

a-
-
c-
where we have used Eq.~3.15! and the boundary integral
I g

( l ) are given in Eqs.~C20!–~C23!.
We see that in the limite→01 the most dominant contri

bution to Eq.~5.9! comes from the integralI g
(4) which yields
10401
the only non-vanishing contributions with the renormaliz
tions ~4.13! and ~4.15!, and the bulk-boundary scaling rela
tion ~4.18!. Then the total Zamolodchikov metric up to se
ond order in the perturbative expansion is
8-17
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G̃ab;cd
i j ~Ȳ,Ū !5

4ḡs
2

a8
Fh i j I N^ I N2

ḡs
2b

9p2

3 $I N^ ~Ū i Ū j1Ū j Ū i !1Ū i
^ Ū j1Ū j

^ Ū i

1~Ū i Ū j1Ū j Ū i ! ^ I N%G
db;ca

1O~ ḡs
6!.

~5.10!

Now the logarithmic conformal algebra comes into pl
again and implies an important property. If we renormal
the position of the fat brane as

Yi5Aa8 e Ȳi ~5.11!

then theb-function equations~3.23! imply that

dȲi

dt
5Ū i . ~5.12!

The pair of renormalization group equations~4.14! and
~5.12! are just the Galilean evolution equations for~renor-
malized! velocities. If we now further adjust the paramete
of the logarithmic conformal algebra as

a5p, b52
p2

4
~5.13!

then the canonical momentum~4.26! can be written as

P̃ab
j ~Ȳ,Ū !5Aa8 (

c,d51

N

G̃ab;cd
j i ~Ȳ,Ū !YG i

cd ~5.14!

and so we recover the canonical moduli space dynamics@see
Eq. ~2.28!#. Note that the fixing of the coefficients~5.13!
does not completely determine all parameters of the loga
mic operator correlators, as there is still some freedom c
ing from the relation~4.25!.

The corresponding Liouville problem satisfies the Hel
holtz conditions of Sec. II and the associated action~2.27! in
the limit e→01 coincides at leading orders with the~sym-
metrized! non-Abelian Born-Infeld action described in Se
IV D. The Zamolodchikov C-function is given by the
C-theorem~2.10! which in the present case can be expres
as

lim
t→`

]C~Ȳ,Ū;t !

]t
5Aa8e2Q2t/Aa8 (

a,b,c,d
Ū i

ab G̃ab;cd
i j ~Ȳ,Ū !Ū j

cd

5
4ḡs

2

Aa8
F~Ū !e2Q2t/Aa81O~ ḡs

6!

~5.15!

where we have introduced the velocity dependent invar
function
10401
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F~Ū ![tr Ū i Ū
i1

ḡs
2

36
tr~2 Ū i Ū

i Ū j Ū
j1Ū i Ū j Ū

i Ū j !.

~5.16!

Note that the expression~5.10! for the Zamolodchikov met-
ric is explicitly time independent and, strictly speaking, on
valid for t→` because of the scaling property~3.15!. Notice
also that in Eq.~5.15! we have reintroduced the appropria
scaling factors required for the monotonic decreasing pr
erty of theC-function and also the expansion property~2.30!
which is crucial to the validity of the Helmholtz conditions

The above results show that the geometry of the mod
space, determined by the Zamolodchikov metric~5.10!, is a
complicated function of the fat brane dynamical paramete
which will be the key to its use in examining the sho
distance spacetime structures probed by D-particles. In
next section we shall examine the genus expansion of
matrix s-model which will lead to a canonical quantizatio
of the moduli space dynamics described above. In particu
the velocity matrixŪ i will become a quantum operator. Th
same is true of the central charge deficitQ which, neglecting
irrelevant terms that can be removed by a change of re
malization scheme, is given by

Q~Ȳ,Ū;t ![AC~Ȳ,Ū;t !. ~5.17!

The quantity~5.17! defines the ‘‘physical’’ target space tim
in the Liouville framework via@25,43#

T~Ȳ,Ū;t ![f5Q~Ȳ,Ū;t !t ~5.18!

wheret52Aa8logL is the rescaling~flat worldsheet! time
variable andf is the zero mode of the Liouville field. The
the time evolution of the Liouville dressed couplings wi
respect to the target space time variable are governed
conventional worldsheetb-functions upon replacing bar
coupling constants with dressed ones. The definition~5.18!
comes from the normalization of the Liouville field kinet
term ]w]̄w appropriate to the Robertson-Walker metric
spacetime@43,48#. The physical time~5.18! becomes a quan
tum operator upon summing over worldsheet genera@49#. In
general, the expression~5.15! which determines it as a func
tion of t is a complicated highly non-linear first order diffe
ential equation. If we assume, however, thatC varies slowly
with time, then Eq.~5.15! can be solved at linear order in th
string tension by quadratures to give

T~Ȳ,Ū;t !.
2ḡst

a81/4
AF~Ū !S E

0

t

dt e2~t22t2!ḡs
2F~Ū !/a8D 1/2

.

~5.19!

The limit of slowly varyingC-function holds near any fixed
point in moduli space. This assumption is consistent with
assumptions of smalls-model and string couplings and als
of a slowly-moving~non-relativistic! fat-brane which is the
kinematical region of interest here. We note that, in contr
to the Abelian case, the time variable~5.19! is a complicated
8-18
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function of the various fat-brane velocities because of
trace structure of the invariant function~5.16!.

VI. QUANTIZATION AND SPACETIME UNCERTAINTY
RELATIONS

In this section we will apply the formalism of@25# to sum
over worldsheet genera of the partition function~3.3!. The
pertinent deformation couplings represented by the logar
mic operators have vanishing conformal dimension in
limit e→01 @see Eq.~3.22!#, and as a result extra logarith
mic divergences appear in pinched annulus diagrams.
will amount to a quantization of the couplingsYi(x

0)ab from
which we will be able to derive a set of stringy uncertain
relations.

A. Resummation of the genus expansion

We consider the partition function~3.3! defined on a ge-
nush surfaceSh . This surface hash ‘‘holes’’ in it and for all
h its boundary has the topology of a circle, so that, in
notation above,S0[S. The genus expansion is

(
h50

`

ZN
h @A#5 (

h50

`

^W@]Sh ;A#&0
h ~6.1!

where the average is taken in the frees-model~3.4! defined
on Sh . Since we assume that]Sh has the topology of a
disjoint union of h11 circles, the sum over genera com
mutes with the representation~4.2! of the Wilson loop op-
erator in terms of auxilliary fields and we can write

(
h50

`

ZN
h @A#5K K (

c51

N

j̄c~0! (
h50

` K expS (
a,b51

N

(
k50

h

3E
0

1

dsk Yi
ab
„x0~sk!…Vab

i ~x;sk!D L
0

h

jc~1!L L
~6.2!

where for simplicity we have setNWU(1)@]Sh ;A#51 and
we work in the temporal gaugeA050 as usual. The double
brackets in Eq.~6.2! denote, as before, the average over
auxilliary fields as in Eq.~4.1! and the boundary vertex op
eratorsVab

i are defined in Eq.~4.5!.
For the recoil operators~3.21! we can insert a tempora

delta-function 15*0
`dt d„t2x0(s)… into Eq. ~6.2! to get

(
h50

`

ZN
h @A#5 lim

e→01
K K (

c51

N

j̄c~0! (
h50

` K expS (
a,b51

N E
2`

`

dv

3E
0

`

dt Yi
ab~ t;e!eivt (

k50

h E
0

1

dsk e2 ivx0~sk!

3Q„x0~sk!;e…Vab
i ~x;sk!D L

0

h

jc~1!L L ~6.3!
10401
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whereYi
ab(t;e)5Aa8 Yi

abe1Ui
abt. If we introduce the Fou-

rier transform

Y̆i
ab~v!5 lim

e→01

E
0

`

dt eivt Yi
ab~ t;e! ~6.4!

and the new boundary vertex operators

R
]Sh

Vab
i ~x;v![ lim

e→01

igs

2pa8

3 (
k50

h E
0

1

dske
2 ivx0~sk! Q„x0~sk!;e…

3 j̄a~sk2e!jb~sk!
d

dsk
xi~sk! ~6.5!

then the sum over genera in Eq.~6.3! takes the usual form o
a set ofs-model couplingsY̆i

ab(v) associated with the de
formation vertex operators~6.5!,

(
h50

`

ZN
h @A#5K K (

c51

N

j̄c~0!

3 (
h50

` K expS (
a,b51

N E
2`

`

dv Y̆i
ab~v!

3 R
]Sh

Vab
i ~x;v!D L

0

h

jc~1!L L . ~6.6!

The representation~6.6!, along with Eq.~3.14!, justifies the
identification of the Liouville fieldw with the fundamental
temporal embedding fieldx0, in the limit e→01. The latter
field appears in the tachyon operator part of Eq.~6.5!,
thereby dressing the boundary theory analogously to tha
two-dimensional quantum gravity. Some further aspects
this correspondence, such as the properties of the indu
target space geometry, are discussed in@19#.

We now focus on the properties of the~Abelianized! av-
erage over fundamental string fields in Eq.~6.6!. As we will
show, the resummation of Eq.~6.6! over pinched genera
yield the dominant worldsheet divergences, thereby spoi
the conformal symmetry. Conformal invariance requires
sorbing such singularities into renormalized quantities
lower genera, leading to a generalized version of
Fischler-Susskind mechanism@50#. Such degenerate Rie
mann surfaces involve a string propagator over thin lo
worldsheet strips of thicknessd→0 that are attached to
disc. These strips can be thought of as two-dimensio
quantum gravity wormholes. Consider first the resummat
of one-loop worldsheets, i.e. those with an annular topolo
in the pinched approximation~Fig. 3!. String propagation on
8-19
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such a worldsheet can be described formally by adding b
cal worldsheet operatorsB @51# which in the present case ar
defined by

B~v,v8!5 (
a,b,c,d

R
]S

R
]S8

Vab
i ~x;v!

3
Gi j

ab;cd~v,v8!

L021
Vcd

j ~x;v8! ~6.7!

where the Zamolodchikov metric in Eq.~6.7! is the two-
point correlation function of the vertex operators defined
Eq. ~6.5! and L0 denotes the usual Virasoro generator. T
operator insertion (L021)21 in Eq. ~6.7! represents the
string propagatorns on the thin strip of the pinched annulu

Inserting a complete set of intermediate string statesEI ,
we can rewrite Eq.~6.7! as an integral over the variableq
[e2p i t, wheret is the complex modular parameter chara
terizing the worldsheet strip. The string propagator over
strip then reads

ns~z,z8!5(
I
E dq qD I21 $EI~z! ^ ~ghosts! ^EI~z8!%S#S8

~6.8!

whereD I are the conformal dimensions of the statesEI . The
sum in Eq.~6.8! is over all states which propagate along t
long thin strip connecting the discsS andS8 ~in the degen-
erating annulus handle case of interest here,S85S). As
indicated in Eq.~6.8!, the sum over states must includ
ghosts, whose central charge cancels that of the worlds
matter fields in any critical string model.

In Eq. ~6.8! we have assumed that the Virasoro opera
L0 can be diagonalized in the basis of string states with
genvalues their conformal dimensionsD I , i.e.

L0uEI&5D I uEI&, qL021uEI&5qD I21uEI&. ~6.9!

However, this simple diagonalization fails in the presence
the logarithmic pair of operators@14#, due to the non-trivial

FIG. 3. ~a! World-sheet annulus diagram for the leading qua
tum correction to the propagation of a string stateV in a D-brane
background, and~b! the pinched annulus configuration which is th
dominant divergent contribution to the quantum recoil.
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mixing betweenC andD in the Jordan cell ofL0. Generally,
states withD I50 may lead to extra logarithmic divergence
in Eq. ~6.8!, because such states make contributions to
integral of the form*dq/q; logd, in the limit q;d→0 rep-
resenting a long thin strip of thicknessd. We assume tha
such states are discrete in the space of all string states
that they are separated from other states by a gap. In
case, there are factorizable logarithmic divergences in
~6.8! which depend on the background surfacesS and S8.
These are precisely the states corresponding to the loga
mic recoil operators~3.13! and ~3.16!, with vanishing con-
formal dimension~3.22! ase→01.

In the case of mixed logarithmic states, the pinched
pologies are characterized by divergences of a double lo
rithmic type which arise from the form of the string prop
gator in Eq. ~6.7! in the presence of generic logarithm
operatorsC andD,

E dq qDe21 ^C,DuS 1 logq

0 1 D uC,D&. ~6.10!

As shown in@14#, the mixing betweenC andD states along
degenerate handles leads formally to divergent string pro
gators in physical amplitudes, whose integrations have le
ing divergences of the form

E dq

q
logqE d2z D~z;e!E d2z8C~z8;e!

.~ logd!2E d2z D~z;e!E d2z8 C~z8;e!. ~6.11!

These (logd)2 divergences can be cancelled by imposi
momentum conservation in the scattering process of the l
string states off the D-brane background@28#. This cancella-
tion of leading divergences of the genus expansion in
non-Abelian case is demonstrated explicitly in Appendix
It is shown there that this renormalization requires that
change in~renormalized! velocity of the fat brane due to th
recoil from the scattering of string states be

Ū i
ab52

1

Ms
~k11k2! i dab5

dȲi
ab

dt
~6.12!

wherek1,2 are the initial and final momenta in the scatteri
process andMs51/Aa8 ḡs is the BPS mass of the strin
soliton@1#.6 This means that, to leading order, the constitu
D-branes move parallel to one another with a common
locity and there are no interactions among them. Thus
leading recoil effects imply a commutative structure and
fat brane behaves as a single D-particle. Note that the r
tion ~6.12! also shows directly thatdḡs /dt50.

6Note that this differs from the mass normalization of the deriv
canonical momentum~4.26!. In Eq. ~6.12!, thek1,2 are true physical
momenta so thatMs represents the actual BPS mass of t
D-particles.

-

8-20
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In addition to this divergence, there are sub-leading lod
singularities, corresponding to the diagonal ter
*d2z D(z;e)*d2z8 D(z8;e) and*d2z C(z;e)*d2z8 C(z8;e).
With our choice of basis~5.1! on the moduli space o
D-brane configurations, these latter terms are the ones
should concentrate upon for the purposes of deriving
quantum fluctuations of the collective D-particle coordinat
As we will see, it is these sub-leading divergences in
genus expansion which lead to interactions between the
stituent D-branes and provide the appropriate noncomm
tive quantum extension of the leading dynamics~6.12!.

In the weak-coupling case, we can truncate the genus
pansion~6.6! to a sum over pinched annuli~Fig. 4!. This
truncation corresponds to a semi-classical approximatio
the full quantum string theory in which we treat th
D-particles as heavy non-relativistic objects in target spa
Then the dominant contributions to the sum are given by
logd modular divergences described above, and the eff
of the dilute gas of wormholes on the disc are to expone
ate the bilocal operator~6.7!. In the pinched approximation
the genus expansion thus leads to an effective change in
matrix s-model action in Eq.~6.6! by

DS.
gs

2

2
logd (

a,b,c,d
E

2`

`

dv dv8

3 R
]S

R
]S8

Vab
i ~x;v!Gi j

ab;cd~v,v8!Vcd
j ~x;v8!.

~6.13!

The bilocal action~6.13! can be cast into the form of a loca
worldsheet effective action by using standard tricks
wormhole calculus@52# and rewriting it as a functiona
Gaussian integral

eDS5E @dr̆ #expF2
1

2 (
a,b,c,d

E
2`

`

dv dv8 r̆ i
ab~v!

3 R
]S

R
]S8

Gab;cd
i j ~v,v8!r̆ j

cd~v8!

1gsAlogd (
a,b51

N E
2`

`

dv r̆ i
ab~v! R

]S
Vab

i ~x;v!G
~6.14!

wherer̆ i
ab(v) are quantum coupling constants of the wor

sheet matrixs-model. Thus the effect of the resummatio

FIG. 4. Resummation of the genus expansion in the pinc
approximation. The solid circles are the worldsheet discs and
thin lines are strips attached to them with infinitesimal pinching s
d. Each strip corresponds to an insertion of a bilocal operator~6.7!
on the worldsheet.
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over pinched genera is to induce quantum fluctuations of
collective D-brane background, leading to a set of effect
quantum coordinates

Y̆i
ab~v!→Ŷi

ab~v!5Y̆i
ab~v!1gs Alogdr̆ i

ab~v!
~6.15!

viewed as position operators in a co-moving target sp
frame.

Transforming the quantum couplings to the temporal fi
representation using the inverse transformations which le
Eq. ~6.6!, we find that the genus expansion~6.1! in the
pinched approximation is

(
h~p!

ZN
h~p!

@A#.K E
M

@dr#`@r#WF ]S;A2
1

2pa8
rG L

0
~6.16!

where the sum is over all pinched genera of infinitesim
pinching size, and

`@r#5expF2
1

2G2 (
a,b,c,d

E
0

1

ds ds8 r i
ab
„x0~s!…

3Gab;cd
i j ~s,s8!r j

cd
„x0~s8!…G ~6.17!

is a functional Gaussian distribution on moduli space
width

G5gs Alogd. ~6.18!

In Eq. ~6.16! we have normalized the functional Haar int
gration measure@dr# appropriately. We see therefore th
the diagonal sub-leading logarithmic divergences in
modular cutoff scaled, associated with degenerate strips
the genus expansion of the matrixs-model, can be treated b
absorbing these scaling violations into the widthG of the
probablity distribution characterizing the quantum fluctu
tions of the~classical! D-brane configurationsYi

ab
„x0(s)…. In

this way the interpolation among families of D-brane fie
theories corresponds to a quantization of the worldsh
renormalization group flows. Note that the worldsheet wor
hole parameters, being functions on the moduli space~5.1!,
can be decomposed as

r i
ab
„x0~s!…5 lim

e→01

„@rC# i
abC~x0;e!1@rD# i

abD~x0;e!….

~6.19!

The fieldsrC,D are then renormalized in the same way as
D-brane couplings, so that the corresponding renormali
wormhole parameters generate the same type of~Galilean!
b-function equations~3.23! @28#. This will be implicitly as-
sumed in the following.

According to the standard Fischler-Susskind mechan
for cancelling string loop divergences@50#, modular infini-
ties should be identified with worldsheet divergences
lower genera. Thus the strip divergence logd should be as-

d
e

e
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sociated with a worldsheet ultraviolet cutoff scale which
turn is identified with the Liouville field as described earlie
We may in effect taked independent fromL, in which case
we can first lete→01 in the above and then take the lim
d→0. Interpreting logd in this way as a renormalizatio
group time parameter~interpolating among D-brane fiel
theories!, the time dependence of the renormalized wid
~6.18! expresses the usual properties of the distribution fu
tion describing the time evolution of a wavepacket in mod
space@42#. The inducing of a statistical Gaussian spread
the D-brane couplings is the essence of the quantization
cedure.

B. String interactions and diagonalization of moduli space

The Gaussian distribution functional~6.17! can be used to
determine the quantum fluctuationsDȲi

ab in the initial
D-brane positions to leading order in the string coupling c
stant expansion. For this, we first need to diagonalize
Zamolodchikov metric~5.10!. As we will see, the parameter
of the diagonalization of the geometry of moduli space
pose the precise nature of the string interactions inheren
the multi D-brane system. This eigenvalue problem is som
what intractable in general, but in the limitgs!1 of weakly
coupled strings it can be carried through with some work

In the free string limit, the interactions between the co
stituent D-branes are negligible to lowest order and their
sition matrices commute. In the temporal gauge that we
working in, the configuration fields can then be simul
neously diagonalized by a time independent gauge trans
mation

Ȳi5V diag~y1
i , . . . ,yN

i !V21, VPU~N!. ~6.20!

The eigenvaluesya
i PR represent the positions of the co

stituent D-branes themselves which move at velocitiesua
i

5dya
i /dt. The noncommutativity of spacetime is encod

through the unitary matrixV which represents the strin
interactions between the D-particles. In this way we w
study the coordinate fluctuations both as a quantum mech
cal effect and geometrically as the perturbations around c
sical ~commutative! spacetime represented by the diago
matrix configurations in Eq.~6.20!. This limit corresponds to
a configuration of well-separated branes and it represen
Born-Oppenheimer approximation to the D-particle inter
tions, which is valid for small velocities@35#, whereby the
diagonal D-particle coordinates are separated from the
diagonal parts of the adjoint Higgs fields representing
short open string excitations connecting them.

Using Eq.~6.20! the Zamolodchikov metric~5.10! can be
written as
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G̃i j ~Ȳ,Ū !5
4ḡs

2

a8
~V ^ V!S h i j I N^ I N1

ḡs
2

36
U i j 1O~ ḡs

4! D
3~V ^ V!21 ~6.21!

whereUab;cd
i j 5U ab

i j daddbc is the u(N) ^ u(N) diagonal ma-
trix with entries

U ab
i j 52ua

i ua
j 12ub

i ub
j 1ua

i ub
j 1ua

j ub
i . ~6.22!

We now need to diagonalize the symmetric matrix~6.22!
with respect to the 939 spacetime indicesi , j . For this, we
assume thath i j 5d i j and consider separately the two cas
a5b andaÞb.

Consider first the casea5b. Upon examination of the
characteristic equation for the matrixU aa

i j 56ua
i ua

j one easily
sees that there are two eigenvaluesl56iuai2 and l50,
where iuai5A( iua

i ua
i is the Euclidean norm of the vecto

uaPR9. The dimension of the kernel ofU aa
i j is 8 because

there are precisely eight linearly independent vectors inR9

which are orthogonal toua
i . Thus the eigenvalues are

laa
1 56iuai2, laa

2 5•••5laa
9 50. ~6.23!

The normalized eigenvector corresponding tolaa
1 is just

ua /iuai and the remaining ones span the eight-dimensio
space transverse to this line, which we refer to as the ‘‘str
frame’’ because it represents the coordinate system rela
to the fundamental open string excitations which start a
end on the same D-particlea. Upon rotation to the one-
dimensional string frame, the 939 orthogonal matrixJaa
which diagonalizes Eq.~6.22! for a5b is just the identity
matrix,

Jaa5I 9 . ~6.24!

The situation foraÞb is similar but a bit more technically
involved. We assume that the velocity vectorsua andub are
linearly independent. There are then seven linearly indep
dent vectors which are orthogonal to bothua and ub , and
therefore there is a zero eigenvalue of mulitplicity 7. T
remaining two eigenvectors are linear combinations of
velocity vectors,

cab
~1,2!i5ua

i 1B~1,2! ub
i ~6.25!

up to an overall normalization. Solving the eigenvalue eq
tions for the eigenvectors~6.25! gives after some tediou
algebra the two non-zero eigenvalues,
lab
1,2[l65iuai21iubi21ua•ub6H ~ iuai21iubi21ua•ub!21

@~ua•ub!21iuai2iubi212ua•ub~ iuai21iubi2!#2

iuai2iubi22~ua•ub!2 J 1/2

lab
3 5•••5lab

9 50 ~6.26!
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and the coefficients

B~1,2!5
~ua•ub!21iuai2iubi212ua•ub~ iuai21iubi2!2lab

1,2ua•ub

2iuai2ua•ub12~ua•ub!212iuai42lab
1,2iuai2

~6.27!

where the dot between vectors denotes the usual Euclidean inner product onR9. The remaining seven orthonormal eigenve
tors are those which span the space transverse to the plane inR9 generated by the vectors~6.25!, which defines the two-
dimensional string frame representing the fundamental open string which starts on D-branea and ends on D-braneb. Note that
for aÞb the dimension of this coordinate system increases by one because of the increase in degrees of freedom of
which now stretches between two different branes. Once again the orthogonal diagonalization transformation matriJab is
particularly simple in the string frame. We parametrize the plane spanned byua andub via ua

i 5iuai d i ,1 and the angleuab

between the two vectors. Then upon rotation to the two-dimensional string frame we have

Jab5S N~ iuai1B~1! iubicosuab! 2NB~1! iubisinuab 0 . . . 0

NB~1! iubisinuab N~ iuai1B~1! iubicosuab! 0 . . . 0

0 0 1 . . . 0

A A A � A

0 0 0 . . . 1

D ~6.28!
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where we have orthogonalized the 232 block matrix corre-
sponding to the string frame and

N5iua1B~1! ubi21 ~6.29!

is the appropriate normalization constant.
With the above constructions, the Zamolodchikov met

can now be written as a unitary transformation of a diago
metric onM,

G̃ab;cd
i j ~Ȳ,Ū !5

4ḡs
2

a8
hkl (

e, f 51

N

Va f~Ȳ!

3Vbe~Ȳ!Je f
ik ~u!J f e

j l ~u!Vce* ~Ȳ!Vd f* ~Ȳ!

3S 11
ḡs

2

36
le f

k ~u!1O~ ḡs
4! D . ~6.30!

We see therefore that the diagonalization of the Zamol
chikov metric on moduli spaceM naturally encodes within
it the geometry of the string interactions among t
D-branes. In particular, we see the enormous complexity
volved in going from the dynamics for a single D-partic
(a5b) to the interactions between constituent D-branesa
Þb). These properties will have important ramifications f
the physical consequences of the stringy spacetime un
tainty relations which we now proceed to derive.

C. Quantum fluctuations of collective D-brane configurations

Given the diagonalization~6.30! of the bilinear form of
the Gaussian distribution functional~6.17!, we can now write
down the quantum fluctuations of the D-brane coordina
Substituting Eq.~6.30! into Eq. ~6.17! and redefining the
matrix-valued wormhole parametersr i

ab leads to a complex
10401
c
l

-

-

r
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s.

bilinear form in a new set of complex-valued wormhole p
rameters. Since the metric of the bilinear form is diagon
one can associate a width to each directioni 51, . . . ,9 and
D-brane configurationa,b51, . . . ,N. The coordinate trans
formation

Ỹab
i 5Jab

ji @V* 21ȲjV#ba[Jab
ji Xj

ab~Ȳ! ~6.31!

is precisely the one which achieves the desired diagona
tion and leads to the statistical variances

~DỸab
i !~DỸab

i !†5
a8G2

2ḡs
2 S 12

ḡs
2

36
lab

i ~u!1O~ ḡs
4! D .

~6.32!

Note that, as a result of Eq.~3.15!, the renormalized string
coupling ḡs is imaginary, i.e. ḡs

2,0, owing to the
Minkowskian signature of the spacetime.

The time dependence in the width~6.18! can be absorbed
into the usual renormalization of the string coupling const
by taking the correlation

logd52uḡsux e22 ~6.33!

between the modular worldsheet and target space scale
rameters. The exponentx>0 is left arbitrary for the mo-
ment. Later on we shall fix it by demanding consistency
certain results with conventional D-particle mechanics. T
variances~6.32! are therefore time-independent and rep
sent not the spread in time of a wavepacket onM, but rather
the true quantum fluctuations of the D-brane configuratio
The collective D-particle coordinatesXi(Ȳ) naturally encode
the effects of the open string excitations. Their uncertain
may be computed using the formula
8-23
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~DỸab
i !~DỸab

i !†[„~Ỹab
i u@Ỹab

i #†!…2u„~Ỹab
i !…u2

5Jab
ji Jab

ki
„~Xj

abu@Xk
ab#†!…conn ~6.34!

where the brackets denote statistical averages with respe
the wormhole probability distribution~6.17! and the average
of the X fields in Eq.~6.34! is a connected correlation func
tion. In this subsection we shall always work in string coo
dinates, but, by covariance, the qualitative features are
same in any reference frame.

Let us first consider the relation~6.32! in the casea5b,
which corresponds to a single D-particle. Using Eqs.~6.23!
and ~6.24! it is straightforward to see that the varianc
~6.32! and ~6.34! lead to the position uncertainties

uDXi
aau5uḡsux/2Aa8S 11

uḡsu2

12
iuai2 d i ,11O~ uḡsu4! D

>uḡsux/2Aa8 ~6.35!

for the individual D-particle coordinates. Forx50 the mini-
mal length in Eq.~6.35! coincides with the standard smea
ing @29# due to the finite size of the string, while forx5 2

3 it
matches the 11-dimensional Planck lengthl P

(11) which arises
from the kinematical properties of D-particles@35#. A choice
of xÞ0 is more natural since the modular strip divergen
should be small for weakly interacting strings. Note that
uncertainty~6.35! is always larger in the string frame, repr
senting the additional energetic smearing that arises from
open string excitations on the D-particles. Outside of t
frame we obtain exactly the standard stringy smearings
rectly from the worldsheet formalism, without the need
postulating an auxilliary uncertainty relation as is done
@29,35#. With the present normalization of the mass of t
D-particles @see Eq. ~4.26!#, we see that the velocity
dependent shift in Eq.~6.35! is just the kinetic energy o
D-particlea.

The coordinate uncertainties foraÞb are responsible for
the emergence of a true noncommutative quantum space
10401
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and represent the genuine non-Abelian characteristics of
D-particle dynamics. From Eqs.~6.26! and ~6.28! it follows
that, outside the string frame, the uncertaintiesuDXi

abu, i
.2, are given by the same minimal length~6.35! as for the
individual D-particles. In string coordinates, we may assum
by symmetry, thatuDX1

abu;uDX2
abu. Then Eqs.~6.32! and

~6.34! lead to a system of two linear equations in two u
knowns,

uḡsuxa8S 11
uḡsu2

36
l6~u! D

5uDX1
abu264N 2B~1!iubisinuab

3~ iuai1B~1!iubicosuab! Re„~X1
abu@X2

ab#†!…conn

~6.36!

which hold up toO(uḡsu2). Adding the two equations~6.36!
gives the smearings

uDX1
abu5uḡsux/2Aa8F11

uḡsu2

144
~3sab1tab!1O~ uḡsu4!G

~6.37!

where we have introduced the kinematical invariantssab
5iua1ubi2 and tab5iua2ubi2 representing, respectively
the center of mass kinetic energy and momentum transfe
the scattering of D-particlesa andb. The uncertainty in mea-
surement of an open string coordinate thus depends on
the center of mass and relative energies of the t
D-particles to which it is attached. Its minimum coincid
with that of Eq.~6.35!. Note that when D-particlesa andb
move orthogonally to one another, i.e. their scattering an
is uab5p/2, the uncertainty~6.37! depends only on the tota
kinetic energy of the two particles. This is the case tha
discussed in@37#.

Subtracting the two equations~6.36! gives the connected
correlation function
Re„~X1
abu@X2

ab#†!…conn5
uḡsu21xa8iua1B~1!ubi2Xab~u!

144B~1!iubisinuab~ iuai1B~1!iubicosuab!
, aÞb ~6.38!

to O(uḡsu2), with

B~1!5
iuai2iubi21ua•ub@ iuai21iubi22Xab~u!#

2~ua•ub!21iuai2@ua•ub1iuai22iubi22Xab~u!#

Xab~u!5
1

4
A~3sab1tab!

21
16iuai2iubi2

sin2uab
F11cos2uab1S iuai

iubi 1
iubi
iuai D cosuabG2

.

~6.39!
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The result~6.38! shows that for the scattering of D-particle
the position operators of the open strings which mediate
interactions are not independent random variables and ha
non-trivial quantum mechanical correlation. This is a n
form of quantum spacetime uncertainty relations betw
different spatial directions of target space. Whenx5 2

3 the
right-hand side of Eq.~6.38! can be written in terms o
( l P

(11))2 and an additional complicated function of th
D-particle kinetic energies. For the transverse scattering
two D-particles of equal speed, this function is just the to
kinetic energy of the D-particles@37#. In general though, the
right-hand side of Eq.~6.38! is a horrendously complicate
function of the scattering parameters. It demonstrates
complexity of the open string interactions between D-bran
in that the smearing of the string coordinates is a hig
non-trivial function of the kinematical invariants of th
D-particles to which they are attached.

The energy dependence of Eqs.~6.35!, ~6.37! and ~6.38!
is a quantum decoherence effect which can be unders
from a generalization of the Heisenberg microscope wher
we scatter a low-energy probe, represented by a closed s
state with definite energy and momentum, off the D-parti
configuration. As the closed string state hits a D-particle
splits into two open string states, represented by the reco
the particle upon impact with the detector, which absorb
ergy from the scattering. Formally, such a splitting is d
scribed by means of the conformal field theory formalis
developed in@53#. When a closed string state, represented
a bulk deformation by a closed string matter excitationO on
S of scaling dimensionDO , approaches the boundary]S,
then one can infer the operator product expansion@53,54#

O~z,z̄;s!;(
I

~2s!D I2DOCO,E I

A EI~s! ~6.40!

provided that the set of boundary conditionsA does not
break the conformal symmetry. The splitting amplitud
CO,E I

A can be expressed@53# in terms of bulk operator prod

uct expansion coefficientsci j
k . In the context of recoiling

D-particles, the splitting coefficients for a closed string st
to split into a pair of open string excitations, with their en
attached to the D-particles, have been shown@19# to be non-
zero by expressing them in terms of the bulk amplitudecO,O

D

for an ‘‘in’’ closed string state to scatter off the D-brane in
an ‘‘out’’ string state, including the recoil operatorD, the
latter being represented as a worldsheet bulk oper
@15,16#,

~CO,D
A !2.

1

AlogL
cO,O

D . ~6.41!

In Eq. ~6.41! we have concentrated for simplicity on th
leading divergent contributions ase→01 which are associ-
ated with theD operator. This allows for closed-to-ope
string state transitions within the present framework.

For an isolated D-particle, these open string excitatio
have their ends attached to the same point. For
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D-particles the ends of the open string can attach to differ
points. Since the recoil of the constituent D-particles cau
the fat brane as a whole to recoil as well, the interactio
mediated by the open strings cause a non-trivial correla
between different coordinate degrees of freedom stretc
between the two particles. Only when there is no recoil (ua
5ub50) can one measure independently the positions of
two D-particles. In this way the uncertainties in length me
surements and the position correlations between
D-branes depend on the energy content of the scattering
cess and grow with increasing recoil energies.

Notice that the correlation~6.38! we have derived is no
simply a product of uncertaintiesDX1DX2, as is the usual
case in axiomatic approaches to spacetime quantiza
based on noncommutative geometry@32# or as one would
have naively expected from the Lie algebraic noncommu
tivity of the multiple D-brane matrix coordinatesXi

ab . The
Schwarz inequality

u„~X1
abuX2

ab!…connu<DX1
abDX2

ab ~6.42!

leads to a spacetime uncertainty relation in the spirit of@32#.
However, the quantum mechanical correlation~6.38! is much
stronger than this uncertainty relation, because two rand
variables can be independent yet have non-vanishing v
ances, and as such it probes much deeper into the short
tance structure of spacetime. The present worldsheet
proach associates the Lie algebraic noncommutativity t
spacetime noncommutativity only rather subtly through
relation~6.38!. This differs from the approach of@34# which
identifies the two types of noncommutative algebras us
the Schild formalism of string theory, in which case the u
certainties in the D-particle positions are given by

~Dyi
a!2[@~Yi2Yi

aa!2#aa5 (
bÞa

uYi
abu2. ~6.43!

In contrast to our uncertainties, the smearing~6.43! is a di-
rect result of the open string interactions between particla
and all of the other D-branes. The inequalities~6.38!,~6.42!
essentially summarize the implications of the noncommu
tive nature of spacetime on the measurability of lengt
Their energy dependence distinguishes them from the u
inequalities which arise in axiomatic noncommutative fie
theories~which involve only the spacetime Planck length!,
and moreover the present uncertainties are derived from
grangian dynamics for the system of D-particles.

D. Quantum phase space

The quantum phase space of the multi-D-brane system
determined by the canonical momentum~4.26! which, ac-
cording to Eq.~2.31!, upon quantization becomes an opera
P̂ab

j obeying the Heisenberg commutation relations

@@Ŷi
ab ,P̂cd

j ##5 i\Md i
jdc

add
b ~6.44!
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onM. The relation~6.44! leads to the moduli space Heise
berg uncertainty principle

DȲi
abDP̃cd

j > 1
2 \Md i

jdc
add

b . ~6.45!

The Planck constant\M can be determined by noting that,
the present context, the partition function~6.16! is identified
with the wave function of the multi-D-brane system. T
lower bound in Eq.~6.45! is then saturated if one interpre
Eq. ~6.16! as a minimum uncertainty wavepacket on mod
space. In the single D-particle case, such an assumptio
consistent with the solution of a generalized Schro¨dinger
equation@19#, stemming from an application of a worldshe
Wilsonian renormalization group equation, under the ide
fication of the Liouville field with target time.

Since we have effectively been representing the canon
momentumP̃ab

j as an operator in coupling constant spa
@see Eq.~2.32!#, the effects of the summation over world
sheet topologies on it are implicitly already taken into a
count. This means that the variance (DP̃ab

j )2 can be com-
puted in the worldsheets-model on a tree-level disc
topology. In this way, using the two-point and one-po
functions~5.10! and ~4.26! we find

~DP̃ab
j !25G̃ab;ab

j j ~Ȳ,Ū !2„P̃ab
j ~Ȳ,Ū !…2

5
4ḡs

2

a8
dab1

2ḡs
4

9a8
„2dab@~Ū j !2#ba

2287~Ūba
j !2

…1O~ ḡs
6! ~6.46!

to lowest orders inḡs . \M can then be found by performin
a Galilean boost to a co-moving target space frame in wh
the recoil velocities vanish. For example, settinga5b5c
5d in Eq. ~6.45! with the inequality saturated and substitu

ing in Eqs.~6.35! and~6.46! for Ū50, we can solve for the
moduli space Planck constant to get

\M54uḡsu11x/2 ~6.47!

which we note is time independent. Thus the basic cons
\M of the resulting quantum phase space is proportiona

the string couplinguḡsu, which owes to the fact that in th
present case quantum mechanics is induced by string in
actions.

The velocity-dependent terms in Eq.~6.46! correspond to
stringy corrections. As mentioned at the beginning of Sec
to lowest order in the string coupling constant expansion,
moduli space coincides with the phase space of
D-particle system. This means that, with the appropri
mass normalization, we can identify the canonical mom

tum with the velocityŪ, so that to lowest orders the positio
and velocity operators have a canonical quantum comm
tor of the form~6.44!. We can therefore compute the com

mutator@@Ŷi
ab ,p̂cd

j ## iteratively, using Eq.~4.26!, by assum-
ing a position-velocity commutator of the form~6.44! and
identifying the velocity-squared terms which arise from t
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commutators involving theŪ3 terms in Eq. ~4.26! with

squares of the momentum operatorp̂. After some algebra,
this leads to the string-modified Heisenberg commutation
lations

@@Ŷi
ab ,p̂cd

j ##5 i\M„d i
jdc

add
b1 1

96 uḡsu2ās8†d i
j~dc

a@ p̂kp̂
k#d

b

1dd
b@ p̂kp̂

k#c
a1@ p̂k#c

a@ p̂k#d
b!1dc

a$ p̂i ,p̂ j%d
b

1dd
b$ p̂i ,p̂ j%c

a1@ p̂i #d
b@ p̂ j #c

a1@ p̂i #c
a@ p̂ j #d

b
‡

1•••… ~6.48!

to leading orders, whereās85a8/uḡsu4 is the ~time indepen-
dent! 0-brane scale with the present mass normalization.

The commutation relation~6.48! represents the appropr
ate generalization of the string-modified phase space r
tions ~1.7!,~1.8! to the multi-D-particle case. Fora5b5c
5d and i 5 j it reproduces the standard string-modifie
phase space uncertainty principle@29# for a single recoiling
D-particle@17,28#. However, it also takes into account of th
various string interactions among D-particles@the off-
diagonal parts of Eq.~6.48!#. Minimizing the off-diagonal
components~in both Lorentz and color indices! of the uncer-
tainty relations corresponding to Eq.~6.48! leads to non-
trivial kinetic energy dependent uncertainties among
various open string excitations, and also along different s
tial directions. The relation~6.48! represents the phase spa
version of the noncommutative quantum uncertainties t
were derived in the previous subsection. We note that, e

for a single D-particle, at higher orders inḡs the phase space
uncertainty relations here are different from the ones deri
in @29# in that the modifications depend on the recoil velo
ties and not only on the uncertainties in the momenta. In f
the present approach gives a formal prescription for eval
ing the higher-order stringy corrections to the Heisenb
uncertainty relations in string perturbation theory, in pri
ciple to arbitrary order in the~weak! string coupling con-
stant.

E. Space-time uncertainty principles

Upon summation over worldsheet genera the physical
get space time coordinate~5.19! becomes a quantum opera

tor T̂ @49#, unlike the situation in conventional quantum m
chanics. Within the present Born-Oppenheim
approximation, we can expand the function~5.16! as a power

series iniŪabi /iuci!1, aÞb, using the identity

tr Ū i Ū
i5

Etot

uḡsu2
S 11uḡsu2(

aÞb

Ū i
abŪba

i

Etot
D ~6.49!

whereEtot5uḡsu2(a51
N iŪaai2 is the total kinetic energy~per

unit string length! of the individual D-particles. We substi
tute Eq. ~6.49! into Eq. ~5.19!, expand the square root t
lowest order in the off-diagonal velocities, and average o
8-26
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the worldsheet renormalization group time parameter logL.

Identifying the velocity operators withP̂ab
j as described in

the previous subsection and using the Heisenberg comm
tion relations~6.44! we arrive at the space-time quantu
commutation relations

@@Ŷi
ab ,T̂##.

ia8\M

2uḡsu
S dab1~12dab!

Aa8

4uḡsu

P̂ i
ab

AEtot
D
~6.50!

to leading order inḡs ~or equivalently in the off-diagona
velocity expansion!.

From Eqs.~6.47! and ~6.50! we infer the space-time un
certainty relation

DȲi
aaDT>uḡsux/2a8 ~6.51!

for the individual D-particle coordinates. Forx50, Eq.
~6.51! yields the standard lower bound~1.9! which is inde-
pendent of the string coupling, as argued in@33–35# from
basic string ideas. But then the minimal distance~6.35! does
not probe scales down to the 11-dimensional Planck len
This fact can be understood by noting that the physical ta
space~Liouville! time coordinateT is not the same as th
longitudinal worldline coordinate of a D-particle, as is a
sumed in the arguments leading to the hypothesis~1.9!, but
is rather a collective time coordinate of the D-particle syst
which is induced by all of the string interactions among t
particles. However, we can adjust the uncertainty relation
match the dynamical properties of 11-dimensional sup
gravity by multiplying the definition~5.19! by an overall
factor of uḡsu2x/2. This redefinition will be assumed below
and it implies that with weak string interactions the targ
space propagation time for the D-particles is very long.

To see the effects of the string interactions betwe
D-particles in this space-time framework, we again use
canonical~minimal! smearing Eq.~6.45! betweenŶi

ab and

P̂ab
i for aÞb in Eq. ~6.50! to arrive at a triple uncertainty

relation

~DȲi
ab!2DT>

uḡsux/2a83/2

2AEtot

, aÞb. ~6.52!

The uncertainty principle~6.52! depends on the total kineti
energy of the constituent D-branes. It implies that the sys
of D-particles, through their open string interactions, c
probe distances much smaller than the characteristic dist
scale in Eq.~6.52!, which for x5 2

3 is l P
(11)l s

2 , provided that
their kinetic energies are large enough. In the fully relativ
tic case the existence of a limiting speediuai,1 implies a
lower bound on Eq.~6.52!. With the minimum spatial exten
sions obtained in Sec. VI C, this bound yields, forx5 2

3 , the
characteristic temporal length

DT>uḡsu21/3Aa8 ~6.53!
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for D-particles@35# @see Eq.~1.10!#. Triple uncertainty rela-
tions involving only the 11-dimensional Planck length ha
been suggested in@35# based on the holographic principle o
M theory.

Again the present approach formally gives a prescript
for evaluating higher-order contributions to the space-ti
quantum commutator~6.50! in the string couplingḡs ~or in
the velocity expansion!. A characteristic feature of the unce
tainty relations we have derived in this section, which dist
guishes D-particle dynamics from ordinary quantum m
chanics, is their dependences on the recoil momenta.
dependence of quantum uncertainties in the measureme
certain quantities on the magnitude of the quantities the
selves~here the kinetic energies of the D-branes! is charac-
teristic of decoherence effects which are induced by quan
gravity @55#. It was argued in@19# that the quantum recoi
degrees of freedom are responsible for inducing decohere
in low-energy systems. In the case of a single D-particle,
analysis of@56# demonstrates explicitly the induced decohe
ence by exhibiting particle creation in the direction of t
recoiling velocities for the scattering of a spectator lig
mode in the presence of a D-particle due to the scatterin
another closed string state off the defect. The analysis of
section thus shows that multiple D-particle field theory in fl
target spaces naturally incorporates quantum gravity eff
into the sub-Planckian spacetime structure. It therefore i
minates the manner in which D-particle interactions pro
very short distances where the effects of quantum gravity
significant.

VII. CONCLUSIONS

In this paper we have employed a worldsheet approac
the study of the collective dynamics ofN parallel D-branes,
interacting through the exchange of open~or closed! strings,
which are scattered off them. This is the simplest mode
multi-brane dynamics, where the branes do not inters
Working with Neumann boundary conditions, in which th
coupling constants of the pertinents-model areU(N) gauge
potentials, we have developed a formalism for describ
recoil of the multi-brane system after scattering with lo
energy string states. This formalism utilizes generic prop
ties of logarithmic conformal field theories on the worl
sheet. In this way we have shown that the rec
deformations define a system of collective coordinates
momenta which are consistent with the corresponding o
derived from a~symmetrized! non-Abelian Born-Infeld ef-
fective action. We have argued that worldsheet genus exp
sion produces quantum fluctuations~in target space! of these
s-model couplings. For a specific choice of consistent ga
field backgrounds, therefore, a quantum phase space ar
which however involves noncommutativity among all coo
dinate directions as a result of the interactions of the bran
We also derived new coordinate uncertainty relations, am
different components of the coordinate matrices of the in
acting D-branes, consistent with generic expectations fr
noncommutative geometry analyses. These relations jus
properly the association of Lie algebraic noncommutativ
with quantum mechanical noncommutativity, and as we h
8-27
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discussed this is a non-trivial fact. We have also discus
the definition of target time in the context of the Liouvil
approach, and shown that it becomes an operator in this
malism, which exhibits unconventional uncertainty relatio
with the collective coordinates.

There are many aspects of the approach of this paper
still require examination. The most glaring one is the ar
trariness of the exponentx in Eq. ~6.33!. In the present ap-
proach, which considers only string interactions, we have
found any way to fix its value, but it may be fixed upo
considering brane exchanges between the system
D-branes. Another aspect that needs to be worked out is
explicit calculation of the perturbation expansion to so
higher-orders which will begin to involve not just the veloc
ties of the D-particles, but also their collective coordinat
The resulting moduli space geometry, which as we h
shown naturally describes the structure of spacetime at
Planckian scales, will then contain information not on
about the kinematics of the D-particles, but also of their d
namics which are governed by terms such as the Yang-M
potential~1.1!. This would then lead to spacetime noncom
mutativity from the quantum phase space structure itself,
presumably new forms of spacetime uncertainty relations
course, the present results only strictly apply to the simp
physical system whose motion is governed by fat brane
namics. It would be interesting to consider more complica
matrix D-brane couplings involving, for example, highe
rank Jordan blocks in the spectrum of the underlying lo
rithmic conformal field theory. Such generalizations m
probe deeper into the nature of the string interactions am
the branes, and hence into the small-scale structure of sp
time. Another generalization involves the incorporation
intersecting D-branes in this formalism. It would be intere
ing to see whether there exists an appropriate generaliza
of logarithmic operators that describes quantum fluctuati
of such systems. Such constructions are crucial to the un
standing of the stringy quantum spacetime at sub-Planc
scales. They may also shed further light on the short-dista
structure, fundamental degrees of freedom and dynamic
M theory within the geometrical framework of moduli spa
dynamics.

It would be interesting to see if the present worldsh
approach, which exhibits unconventional properties of str
spacetimes, is amenable in some way to experimental ve
cation. The presence of multi-D-brane domain wall stru
tures, like the ones considered in this paper, may act as t
of low-energy string states, thereby resulting in a decohe
medium nature of quantum gravity spacetime foam. In
present case the quantum coordinate fluctuations, due to
open string excitations between the D-particles, can lea
quantum decoherence for a low-energy observer who ca
detect such recoil fluctuations in the sub-Planckian space
structure. These foamy properties of the noncommuta
structure of the D-particle spacetime might require a ref
mulation of the phenomenological analyses of length m
surements as probes of quantum gravity. If one accepts
genericl P maximal suppression effects by the gravitation
~Planck! mass scales, then, as described in some recen
erature, there may be sensitive probes such as neutral
10401
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sytems@57# or cosmological gamma-ray burst spectrosco
@58#. However, such approaches do not incorporate len
measurements in the transverse directions to the probe
that it is unclear how to incorporate noncommutative unc
tainty relations such as Eq.~6.38! into these analyses.
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APPENDIX A: CORRELATION FUNCTIONS
OF LOGARITHMIC OPERATORS

In this appendix we will describe some properties a
compute the first few correlation functions of theC and D
logarithmic operators that were introduced in Sec. III. Th
are calculated using fundamental string averages which
evaluated with the propagator

^xm~z1 ,z̄1!xn~z2 ,z̄2!&052a8hmn loguz12z2u ~A1!

associated with the action~3.4!. The coincidence limit of the
two-point function~A1! is defined using the short-distanc
cutoff L as

^xm~z,z̄!xn~z,z̄!&052a8hmnlogL. ~A2!

The correlators of the logarithmic operators~3.13! and~3.16!
can now be evaluated using the regulated step func
~3.14!. Note that upon integrating by parts theD operator can
be written as

D~x0;e!52
1

2pE2`

` dq

~q2 i e!2
eiqx0

52
1

e

]

]e
C~x0;e!.

~A3!

The second equality in Eq.~A3! also follows from the gen-
eral propertyD5a8]C/]De of logarithmic conformal field
theories@59#. This property enables one to deduce expr
sions for many of the correlators once the expectation va
of the C operator are known@60#. Using these identities one
can compute explicitly the one-point correlation functions
the correlated limite→01 with the relation~3.15! to get@17#

^C~x0;e!&05O~e!, ^D~x0;e!&05a/e ~A4!

where here and in the followinga,b, . . . denote~in principle
arbitrary! dimensionless constants.

The higher-point correlators can be computed using
Koba-Nielsen formula

K )
i 51

n

eiqix
0~zi ,z̄i !L

0

5)
i , j

e2qiqj ^x
0~zi ,z̄i !x

0~zj ,z̄j !&0/2.

~A5!
8-28
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For the two-point functions one finds, always in the cor
lated limit e→01, the expressions@17#

^C~z,z̄;e!C~w,w̄;e!&05O~e2! ~A6!

^C~z,z̄;e!D~w,w̄;e!&05
b

uz2wu2De
~A7!

^D~z,z̄;e!D~w,w̄;e!&05
1

e2
^C~z,z̄;e!D~w,w̄;e!&0

52
ba8

uz2wu2De
S 1

2De
1 logUz2w

L U2D .

~A8!

From Eq. ~3.15! it follows that Eqs.~A6!–~A8! have the
canonical form of the two-point correlation functions of
generic logarithmic conformal field theory. The constant
Eq. ~A8! which depends on the anomalous dimensionDe can
be made arbitrary by shifting theD operator according to Eq
~3.19! ~i.e. by a worldsheet scale transformation!, whereas
the coefficientb is fixed by the leading logarithmic terms i
the conformal blocks. Note that the correlators in Eqs.~A4!
and ~A6!–~A8! involving solely theC field vanish while
those involving only theD field diverge ase→01.

The three-point functions of the logarithmic pair can
calculated using the canonical forms derived for gene
logarithmic conformal field theories in@60#. As in Eqs.
~A6!–~A8!, these correlators involve some arbitrary~integra-
tion! constants, while the coefficients of the logarithmica
divergent terms are fixed by the leading logarithmic beh
iors of the conformal blocks. We can therefore apply t
results of @60# to the present case@using the behaviors o
Eqs.~A6!–~A8!# provided we know the leading behaviors
the three-point functions ase→01. For example, conside
the three-point function of theC fields, which using Eqs
~A5!, ~A1! and ~A2! is given by

^C~z1 ,z̄1 ;e!C~z2 ,z̄2 ;e!C~z3 ,z̄3 ;e!&0

5
e3

~2p i !3E2`

`

)
k51

3
dqk

qk2 i e
e2a8qk

2 log L

3)
k, j

e22a8qkqj loguzk ju. ~A9!

Using Eq. ~3.15! and rescaling the integration variables
Eq. ~A9! asqk5eq̃k , we have

^C~z1 ,z̄1 ;e!C~z2 ,z̄2 ;e!C~z3 ,z̄3 ;e!&0

5
e3

~2p i !3E2`

`

)
k51

3
dq̃k

q̃k2 i
e2q̃k

2/2)
k, j

e22a8e2q̃kq̃j loguzk ju.

~A10!

The last product in Eq. ~A10! has the form
)k, je

22a8e2q̃kq̃j loguzkju;11O(e2), so that the three-poin
10401
-

l

-
e

function has leading constant term which vanishes ase3,
while the remainingz-dependent terms coming from the fin
product in Eq.~A10! are sub-leading ine. Thus ^CCC&0
;e3. Using exactly the same method one shows t
^CCD&0;e, ^CDD&0;1/e and ^DDD&0;1/e3.

From these leading behaviors ine we can now read off
from @60# the three-point correlation functions,7

^C~z1 ,z̄1 ;e!C~z2 ,z̄2 ;e!C~z3 ,z̄3 ;e!&0

5
ce3

uz12z23z31u2De
~A11!

^D~z1 ,z̄1 ;e!C~z2 ,z̄2 ;e!C~z3 ,z̄3 ;e!&0

5
1

uz12z23z31u2De
S de1

c

2
e3a8 logU z23L

z12z31
U2D ~A12!

^D~z1 ,z̄1 ;e!D~z2 ,z̄2 ;e!C~z3 ,z̄3 ;e!&0

5
1

uz12z23z31u2De S e

e
2dea8 logUz12

L U2

1ce3a82F S logUz23

L U2

logUz31

L U2D 2

1
1

4 S logUz12

L U2D 2G D
~A13!

^D~z1 ,z̄1 ;e!D~z2 ,z̄2 ;e!D~z3 ,z̄3 ;e!&0

5
1

uz12z23z31u2De
H f

e3
2

e

2e
a8 logUz12z23z31

L3 U2

1dea82F logUz12

L U2

logUz23

L U2

1 logUz12

L U2

logUz31

L U2

1 logUz23

L U2

logUz31

L U2G2
de

4
a82S logUz12z23z31

L3 U2D 2

1ce3a83 logUz12

L U2

logUz23

L U2

logUz31

L U2

2
c

2
e3a83 logUz12z23z31

L3 U2F logUz12

L U2

logUz23

L U2

1 logUz12

L U2

logUz31

L U2

1 logUz23

L U2

logUz31

L U2G
7In the perturbative calculations of Secs. IV and V we neglec

throughout the parts of the correlators which involve exponents
the scaling dimensionDe , as these terms do not contribute to th
leading divergences ase→01.
8-29
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1
c

8
e3a83S logUz12z23z31

L3 U2D 3J . ~A14!

Note that on the boundary of the worldsheetS where zi
5e2p isi, siP@0,1#, the propagator~A1! becomes

^xm~s1!xn~s2!&05a8hmn log@222 cos 2p~s12s2!#.
~A15!

This can be used to express all correlators above in term
the boundary variables. Comparing Eqs.~A15! with ~A2! we
see that the short-distance cutoff on the boundary variable

sL5
1

2p
arccosS 12

L2

2 D5
L2

2p
1

L4

48p
1O~L6!.

~A16!

Furthermore, differentiating Eq.~A15! we arrive at the cor-
relator

K d

ds1
xi~s1!

d

ds2
xj~s2!L

0

5
4p2a8h i j

12cos 2p~s12s2!
.

~A17!

The calculation ofn-point functions withn>4 is quite
cumbersome. As described in@60#, they can be evaluated i
principle by noting that theC operators are primary field
and hence have standard conformal field theoretical corr
tion functions, from which all other correlators of the log
rithmic pair may be found via differentiation using the ide
tity ~A3!. Their behaviors ase→01 can be deduced rathe
directly using relations analogous to Eq.~2.16! between the
three-point functions and the operator product expansion
efficients, which remain valid in the presence of logarithm
deformations@47#. The logarithmic pairC,D form a com-
plete set of states in the 232 Jordan cell of the Virasoro
generatorL0. From Eqs. ~A6!–~A8! it follows that the
Zamolodchikov metric in theC,D basis behaves as@28,47#

GCC;e2, GDD;e22, GCD5GDC;const.
~A18!

Then Eq.~2.17! yields, for example, the scaling behavior

^CC&0;GCC^CCC&0^C&01GDD^CCD&0^D&0

1GCD~^CCC&0^D&01^CCD&0^C&0!.

~A19!

From Eq.~A6! we see that the left-hand side of Eq.~A19! is
O(e2). Then using Eqs.~A4! and~A18! we can immediately
deduce the anticipated smalle behaviors of^CCC&0 and
^CCD&0. The general result is

K )
i 51

n

C~zi ,z̄i ;e!)
j 51

m

D~wj ,w̄j ;e!L
0

;O~en2m!.

~A20!
10401
of
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This relation does not, however, yield any information abo
the logarithmic scaling violations present in the correlati
functions, i.e. their dependences on the worldsheet renorm
ization group scale logL.

APPENDIX B: RENORMALIZATION OF THE
CANONICAL MOMENTUM

In this appendix we shall derive the expression~4.11! for
the renormalized canonical momentum. From Eq.~4.10! it
follows that the momentum contribution~4.9! can be written
as a sum over permutationsPPSn12. This sum can be de
composed into a sum over permutationsPPSn3S2 which
permute only contractions among the)k51

n j̄ak
(sk

2e)jbk
(sk) part of the auxilliary field expectation value i

Eq. ~4.9! among themselves, and the remaining (abc) part of
this correlator among themselves, plus a sum over the
maining onesPPSn122(Sn3S2). Let us first introduce
some short-hand notation. For each positive integerm we
define anm-dimensional integration measuredmm on @0,1#m

by

E
[0,1]m

dmm~s1 , . . . ,sm!

[E
0

1

)
k51

m

dskS )
l 51

m21

Q~sl 112sl !DQ~s12sm!

5E
0

1

dsmE
0

1

)
k52

2[m/2]22

dskE
a~m!

sm
dsm21

3S )
k52[m/2]23

2 E
sk

sk12
dsk11D E

sm

s2
ds1 ~B1!

where@m/2# is the integer part ofm/2, anda(m)5sm22 for
m even anda(m)50 for m odd. We define the initial value
*dmm50[1. We also define anN3N Hermitian matrixTm
by

Tm@Y,x;s1 , . . . ,sm#ab[F )
k51

m

Yj k
„x0~sk!…

d

dsk
xj k~sk!G

ab

~B2!

with the initial value@Tm50#ab[dab .
We begin by evaluating the contribution to Eq.~4.9! from

PPSn3S2, which give

P ab
~n! j@Y;s#uSn3S2

5 lim
e→01

(
c51

N

(
b1 , . . . ,bn

(
PPSn

E
0

1

)
k51

n

dskQ~sP~k!2sk!

3„Q~e!dabdcc1dacdcb…

3K d

ds
xj~s!)

k51

n

Yi k

bP~k! ,bk
„x0~sk!…

d

dsk
xi k~sk!L

0

~B3!
8-30
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where we have explicitly summed over theS2 part. To ex-
press Eq.~B3! in a more succinct form, we decompose ea
permutationPPSn into a product of disjoint cyclesCi(P),

P5)
i 51

n

Ci~P! ~B4!

and letLi(P)>0 denote the length of the cycleCi(P), so
that the set of integers$Li(P)% form a partition ofn,

(
i 51

n

Li~P!5n. ~B5!
10401
h
It is then possible to express the boundary measure
Y-matrix products in Eq.~B3! in a more explicit form by
writing products)k51

n in terms of this cyclic decomposition
as ) i 51

n )m51
Li (P) for eachPPSn . We can explicitly combine

the products in the correlation functions in Eq.~B3! into
matrix products, using the cyclicity of eachCi(P) and sum-
ming over thebi ’s. We can also label the boundary integr
tionssk[sCi (P)(k)

in terms of the components of the cycles

Eq. ~B4!, giving the integration measure~B1! for each i
51, . . . ,n. In this way the sum over permutations in Eq.~B3!
can be written as a sum over partitions~B5!, and the result
after some algebra is
his

a-

o

er

is
P ab
~n! j@Y;s#uSn3S2

5 lim
e→01

„NQ~e!11…dab (
0<L1 , . . . ,Ln<n

(
i

Li5n

Q~e!(
i

dLi ,1)
i 51

n E
[0,1]Li

dmLi
~s1

~ i ! , . . . ,sLi

~ i !!

3K d

ds
xj~s!)

i 51

n

tr~TLi
@Y,x;s1

~ i ! , . . . ,sLi

~ i !# !L
0

. ~B6!

The contributions from the remaining permutationsPPSn122(Sn3S2) are somewhat more involved. We decompose t
sum into three disjoint sums of permutations. In the first class, whose contributions we denote byP ab

(n) j@Y;s# [1] , for eachP
there is a unique integerk0P$1, . . . ,n% for which P(k0)¹$1, . . . ,n% with P(k0)5n11, while the second class of permut
tions, whose contributions we denote byP ab

(n) j@Y;s# [2] , are those for which there is a unique integerk0P$1, . . . ,n% with
P(k0)¹$1, . . . ,n% and P(k0)5n12. The final contributionsP ab

(n) j@Y;s# [3] come from permutations for which there are tw
integersk1 ,k2P$1, . . . ,n% with P(k1),P(k2)¹$1, . . . ,n% andP(k1)5n11,P(k2)5n12.

We have

P ab
~n! j@Y;s# [1]5 (

c51

N

(
b1 , . . . ,bn

(
k051

n

(
PPSn122~Sn3S2!

P~k0!5n11

E
0

1

)
k51
kÞk0

n

dskQ~sP~k!2sk!E
0

1

dsk0
Q~s2sk0

!

3„dc,bP~n12!
dac1Q~sP~n11!2s!dccda,bP~n11!

…

3K d

ds
xj~s! )

k51
kÞk0

n

Yi k

bP~k! ,bk
„x0~sk!…

d

dsk
xi k~sk!Yi k0

b,bk0
„x0~sk0

!…
d

dsk0

xi k0~sk0
!L

0

. ~B7!

In Eq. ~B7! the terms withdc,bP(n12)
correspond to permutations withP(n11)5n12, P(n12)P$1, . . . ,n%, while thedcc

terms come from those withP(n12)5n12, P(n11)P$1, . . . ,n%. In the former terms, we consider the orbit of the integ
n12 under a given permutationP, and let l (P)12>3 be the order of the orbit ofk0 under P, i.e. Pl (P)(n12)
5Pl (P)12(k0)5k0. The sum overbk0

,bP(k0) , . . . ,bPl (P)12(k0)5Pl (P)21(n12) then yieldsTl (P)@Y,x;s1 , . . . ,sl (P)#ba for the cor-

respondingY-matrix products in Eq.~B7!. The corresponding boundary integration measure isdm l (P)(s1 , . . . ,sl (P)), as before
~after appropriate relabellings of thes-indices!, with additional step function restrictions as given in Eq.~B7! which must be
carefully incorporated into the integration measure~B1!. The remaining part ofP that does not act on this particular orbit
an element ofSn2 l (P) , so that the remaining sums and products can be decomposed into cycles exactly as in Eq.~B6!. For
eachl>1 there are (n21)!/(n2 l )! permutationsP under whichk0 has an orbit of orderl.

For the latterdcc terms in Eq.~B7!, the integerl (P)11>2 is the order of the orbit ofk0 under P, i.e. Pl (P)(n11)
5Pl (P)11(k0)5k0. The sums overbi ’s and all products in Eq.~B7! give the same contribution as for the formerc-dependent
terms. It follows that the sum over permutations in Eq.~B7! can be written as a sum over the orbit integersl (P) and, for each
such integer, a sum over partitions ofn2 l (P). After some algebra the result is finally
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P ab
~n! j@Y;s# [1]5 lim

e→01
(
l 51

n
n!

~n2 l !! (
0<L1 , . . . ,Ln2 l<n2 l

(
i

Li5n2 l

Q~e!(
i

dLi ,1)
i 51

n2 l E
[0,1]Li

dmLi
~s1

~ i ! , . . . ,sLi

~ i !!E
[0,1]l

dm l~r 1 , . . . ,r l !

3Q~s2r 1!„11NQ~r l2s!…K d

ds
xj~s!)

i 51

n2 l

tr~TLi
@Y,x;s1

~ i ! , . . . ,sLi

~ i !# !Tl@Y,x;r 1 , . . . ,r l #baL
0

. ~B8!

The resummation ofP ab
(n) j@Y;s# [2] carries through in an identical fashion, with the roles of the integersn11 andn12

interchanged. The result is identical to Eq.~B8!, except for some changes in the combinatorics of the indices. We find

P ab
~n! j@Y;s# [2]5 lim

e→01
(
c51

N

(
b1 , . . . ,bn

(
k051

n

(
PPSn122~Sn3S2!

P~k0!5n12

E
0

1

)
k51
kÞk0

n

dskQ~sP~k!2sk!E
0

1

dsk0
„Q~sP~n11!2s!dcbda,bP~n11!

1Q~e!dc,bP~n12!
dab…K d

ds
xj~s! )

k51
kÞk0

n

Yi k

bP~k! ,bk
„x0~sk!…

d

dsk
xi k~sk!Yi k0

c,bk0
„x0~sk0

!…
d

dsk0

xi k0~sk0
!L

0

5 lim
e→01

(
l 51

n
n!

~n2 l !! (
0<L1 , . . . ,Ln2 l<n2 l

(
i

Li5n2 l

Q~e!(
i

dLi ,1)
i 51

n2 l E
[0,1]Li

dmLi
~s1

~ i ! , . . . ,sLi

~ i !!E
[0,1]l

dm l~r 1 , . . . ,r l !

3Q~s2r 1!K d

ds
xj~s!)

i 51

n2 l

tr~TLi
@Y,x;s1

~ i ! , . . . ,sLi

~ i !# !$Q~r l2s!Tl@Y,x;r 1 , . . . ,r l #ba

1Q~e!tr~Tl@Y,x;r 1 , . . . ,r l # !dab%L
0

. ~B9!

Finally, the combinatorics of the resummation ofP ab
(n) j@Y;s# [3] now involve tracing the orbits of bothP(n11),P(n12)

P$1, . . . ,n%, i.e. we introduce two integersl 1(P) and l 2(P) representing the orders of the orbits ofk1 andk2, respectively,
under a given permutationP. The evaluation is then identical to that above with these two orbits taken into account, a
find

P ab
~n! j@Y;s# [3]5 (

c51

N

(
b1 , . . . ,bn

(
1<k1Þk2<n

(
PPSn122~Sn3S2!

P~k1!5n11,P~k2!5n12

E
0

1

)
k51

kÞk1 ,k2

n

dsk Q~sP~k!2sk!E
0

1

dsk1
Q~s2sk1

!

3E
0

1

dsk2
Q~sP~n11!2s!dc,bP~n12!

da,bP~n11!

3K d

ds
xj~s! )

k51
kÞk1 ,k2

n

Yi k

bP~k! ,bk
„x0~sk!…

d

dsk
xi k~sk!Yi k1

b,bk1
„x0~sk1

!…
d

dsk1

xi k1~sk1
!Y

i k2

c,bk2
„x0~sk2

!…
d

dsk2

xi k2~sk2
!L

0

5 lim
e→01

(
l 151

n21

(
l 251

n2 l 1 n!

~n2 l 1!~n2 l 12 l 2!! (
0<L1 , . . . ,Ln2 l 12 l 2

<n2 l 12 l 2

(
i

Li5n2 l 12 l 2

Q~e!(
i

dLi ,1 )
i 51

n2 l 12 l 2

3E
[0,1]Li

dmLi
~s1

~ i ! , . . . ,sLi

~ i !!E
[0,1]l 2

dm l 2
~ t1 , . . . ,t l 2

!E
[0,1]l 1

dm l 1
~r 1 , . . . ,r l 1

!Q~r l 1
2s!Q~s2r 1!

3 K d

ds
xj~s! )

i 51

n2 l 12 l 2

tr~TLi
@Y,x;s1

~ i ! , . . . ,sLi

~ i !# !~Tl 1
@Y,x;r 1 , . . . ,r l 1

#•Tl 2
@Y,x;t1 , . . . ,t l 2

# !baL
0

. ~B10!
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The total ordern contribution Eq.~4.9! is now the sum of Eqs.~B6! and~B8!–~B10!, and after some algebra we arrive
the final expression for the terms in the momentum expansion~4.8!,

P ab
~n! j@Y;s#5 lim

e→01
(

l 150

n21

(
l 5 l 1112d l 1,0

n
n!

~n2 l !! (
0<L1 , . . . ,Ln2 l<n2 l

(
i

Li5n2 l

Q~e!(
i

dLi ,1)
i 51

n2 l E
[0,1]Li

dmLi
~s1

~ i ! , . . . ,sLi

~ i !!

3E
[0,1]l 2 l 1

dm l 2 l 1
~r 1 , . . . ,r l 2 l 1

!E
[0,1]l 1

dm l 1
~ t1 , . . . ,t l 1

!Q~ t l 1
2s!Q~s2t1!

3K d

ds
xj~s!)

i 51

n2 l

tr~TLi
@Y,x;s1

~ i ! , . . . ,sLi

~ i !# !H S 1

n2 l 1
1d l 1,0FQ~s2r 1!„11~N11!Q~r l2s!…2

1

nG D
3~Tl 1

@Y,x;t1 , . . . ,t l 1
#•Tl 2 l 1

@Y,x;r 1 , . . . ,r l 2 l 1
# !ba1d l 1,0Q~e!tr~Tl@Y,x;r 1 , . . . ,r l # !dabJ L

0

. ~B11!

This expression contains ambiguous factors ofQ(e),e→01 and products such asQ(s)Q(2s) which depend on the particula
choice of regularization of the step function. The auxilliary quantum field theory contains most of the information ab
non-Abelian dynamics, and, to obtain an expression which is explicitly independent of such regularizations, we need t
an appropriate renormalization scheme for it.8 The removal of these ambiguous factors is also required in order that Eq.~4.2!
be a proper representation of the Wilson loop operator. This renormalization has been discussed in@22#. In terms of the
Feynman diagram representation of thej̄j field averages in Eq.~4.9!, we keep only those graphs corresponding to W
contractions in which there is a single continuous line connecting the~same! boundary pointss50 ands51, i.e. we restrict
to connected Feynman graphs. This will also ensure that the final result is independent of thes-dependence of the auxilliary
field representation, as it should be. From Eq.~4.10! this means that we restrict the sum over permutationsPPSn12 to those
whose cyclic decomposition contains only a single cycleCn12(P) of lengthLn12(P)5n12. This is achieved essentially b
normalizing the functional integration measureD j̄ Dj in Eq. ~4.1! so that^^1&&51.

The renormalized canonical momentum is thus calculated by restricting to cyclic permutations of lengthn12. By defini-
tion, this immediately eliminates the contributionsP ab

(n) j@Y;s#uSn3S2
andP ab

(n) j@Y;s# [3] above. This scheme removes thedcc

terms in Eq.~B7! and thedc,bP(n12)
terms in the first equality in Eq.~B9!. Then, we keep only the orbits of lengthl 5n in Eq.

~B8! and in the second equality of Eq.~B9!. The sumP ab
(n) j@Y;s# ren of these two terms contains no ambiguities from the s

functions involved. Furthermore, after some careful algebra one can rewrite the resulting integration measure from thi
*0

1)k51
n dsk , and the corresponding integrand with the appropriate relabelling of indices is readily seen to form a symm

matrix product. The result is finally

P ab
~n! j@Y;s# ren5E

0

1

)
k51

n

dskK dxj~s!

ds
Sym Tn@Y,x;s1 , . . . ,sn#baL

0

~B12!

which yields the expression~4.11!.

APPENDIX C: BOUNDARY CORRELATION FUNCTIONS

In this appendix we will present the results of the boundary integrations which are used in the perturbative calcula
Secs. IV and V. In general, the integrals are divergent, and difficult to do analytically. However, we need only determi
most divergent parts asL→0, dropping sub-divergent pieces which vanish upon taking the limite→01 with the correlation
~3.15!. To see how these calculations proceed, let us consider as an example the boundary integral

I c
~1![E

0

1

ds1ds2ds3

log@222 cos 2p~s12s2!#

@12cos 2ps1#@12cos 2p~s22s3!#
~C1!

which arises in the evaluation of theY2U contributions to the canonical momentum of Sec. IV C. The integral overs3 can be
done as in Eq.~4.12! to give

8Note that with the regularization~3.14! we haveQ(s)Q(2s)52Q(e)22Q(e), so that such a renormalization scheme can be unders
as removing all powers of the ambiguous termQ(e).
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I c
~1!5

1

pE0

1

ds1 ds2

1

tanps2

log~2usinps1 cosps22sinps2 cosps1u!

sin2 ps1

. ~C2!

The divergent contributions to the integral overs1 come from the short distance boundary behaviors12s2;sL , i.e. sinps1
;sinps2. Expanding the integrand of Eq.~C2! about this point gives the most divergent contribution leading to

I c
~1!.

1

p2
log~2 sinpsL!E

0

1

ds2

cosps2

sin3 ps2

~C3!

where here and in the following. denotes the most divergent contribution asL→0. Using the boundary cutoff~A16! and
evaluating the final integration overs2 using this cutoff we arrive finally at

I c
~1!.2

2

p3

logL

tan2 psL

. ~C4!

All other boundary integrations are evaluated using similar sorts of asymptotic approximation techniques. Below
their leading divergent behaviors asL→0. For theY2U terms of the canonical momentum calculation of Sec. IV C, wh
come from the correlation function~A12!, in addition to Eqs.~C1!, ~C4! we used the integrals

I 0[E
0

1

ds1 ds2 ds3

1

@12cos 2ps1#@12cos 2p~s22s3!#

.
4

p3

logL

tanpsL
~C5!

I u
~1![E

0

1

ds1ds2ds3

log@222 cos 2p~s22s3!#

@12cos 2ps1#@12cos 2p~s22s3!#

.2
8

p3

~ logL!2

tanpsL
. ~C6!

The additional integrals involved in the calculation of theYU2 part in Sec. IV C, which come from the correlators~A13!,
are

I u
~2![E

0

1

ds1 ds2 ds3

„log@222 cos 2p~s22s3!#…2

@12cos 2ps1#@12cos 2p~s22s3!#

.2
16

3p3

~ logL!3

tanpsL
~C7!

I c
~2![E

0

1

ds1 ds2 ds3

„log@222 cos 2p~s12s3!#)2

@12cos 2ps1#@12cos 2p~s22s3…#

.2
4

3p3

~ logL!2

tan2 psL

~C8!

I q
~1![E

0

1

ds1 ds2 ds3

1

@12cos 2ps1#@12cos 2p~s22s3!# S log
1

L2
@222 cos 2p~s12s3!#

log
1

L2
@222 cos 2p~s12s2!#

D 2

.2
2

p3

~ logL!2

tanpsL
log logL ~C9!
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I q
~2![E

0

1

ds1 ds2 ds3

1

@12cos 2ps1#@12cos 2p~s22s3!# S log
1

L2
@222 cos 2p~s22s3!#

log
1

L2
@222 cos 2p~s12s2!#

D 2

.
1

8p3

1

tan2 psL

~C10!

I q
~3![E

0

1

ds1 ds2 ds3

1

@12cos 2ps1#@12cos 2p~s22s3!# S log
1

L2
@222 cos 2p~s12s3!#

log
1

L2
@222 cos 2p~s22s3!#

D 2

.2
2

p3

~ logL!2

tanpsL
log logL. ~C11!

For theU3 terms of Sec. IV C, which come from the correlation function~A14!, we use the integrals

I m
~1![E

0

1

ds1 ds2 ds3

log@222 cos 2p~s12s2!# log@222 cos 2p~s22s3!#

@12cos 2ps1#@12cos 2p~s22s3!#

.
8

p3

~ logL!2

tan2 psL

~C12!

I m
~2![E

0

1

ds1 ds2 ds3

log@222 cos 2p~s12s2!# log@222 cos 2p~s12s3!#

@12cos 2ps1#@12cos 2p~s22s3!#

.
16

p3

~ logL!2

tan2 psL

~C13!

I t
~1![E

0

1

ds1 ds2 ds3

log@222 cos 2p~s12s2!# log@222 cos 2p~s22s3!#

@12cos 2ps1#@12cos 2p~s22s3!#
log@222 cos 2p~s12s3!#

.
64

p3

~ logL!3

tan2 psL

~C14!

I t
~2![E

0

1

ds1 ds2 ds3

„log@222 cos 2p~s12s2!#…2 log@222 cos 2p~s22s3!#

@12cos 2ps1#@12cos 2p~s22s3!#

.
32

p3

~ logL!3

tan2 psL

~C15!

I t
~3![E

0

1

ds1 ds2 ds3

„log@222 cos 2p~s12s2!#…2log@222 cos 2p~s12s3!#

@12cos 2ps1#@12cos 2p~s22s3!#

.
24

p3

~ logL!3

tan2 psL

~C16!
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I t
~4![E

0

1

ds1 ds2 ds3

log@222 cos 2p~s12s2!#„log@222 cos 2p~s22s3!#…2

@12cos 2ps1#@12cos 2p~s22s3!#

.
16

p3

~ logL!3

tan2psL

~C17!

I t
~5![E

0

1

ds1 ds2 ds3

„log@222 cos 2p~s12s2!#…3

@12cos 2ps1#@12cos 2p~s22s3!#

.2
16

p3

~ logL!3

tan2 psL

~C18!

I t
~6![E

0

1

ds1 ds2 ds3

„log@222 cos 2p~s22s3!#…3

@12cos 2ps1#@12cos 2p~s22s3!#

.2
32

p3

~ logL!4

tanpsL
. ~C19!

Finally, the boundary integrals arising in the evaluation of the Zamolodchikov metric of Sec. V, which come fro
two-point correlation functions~A7! and ~A8! of the logarithmic operators, are

I g
~1![E

0

1

ds1 ds2

1

12cos 2p~s12s2!

.
4

p2
logL ~C20!

I g
~2![E

0

1

ds1 ds2

1

~12cos 2ps1!~12cos 2ps2!

.
2

p2L2

1

tanpsL
~C21!

I g
~3![E

0

1

ds1 ds2

log@222 cos 2p~s12s2!#

12cos 2p~s12s2!

.2
8

p2
~ logL!2 ~C22!

I g
~4![E

0

1

ds1 ds2

log@222 cos 2p~s12s2!#

~12cos 2ps1!~12cos 2ps2!

.2
2

3p2L2

logL

tan2 psL

. ~C23!

APPENDIX D: WARD IDENTITIES AND LEADING DIVERGENCES IN THE GENUS EXPANSION

In this appendix we shall show how the leading (logd)2 modular divergences which appear in Eq.~6.11! can be removed
by invoking an appropriate Ward identity for the fundamental string fields of the matrixs-model. As we shall show, this is
equivalent to imposing momentum conservation for scattering processes in the matrix D-brane background. This h
demonstrated explicitly for the single D-particle case in@28#. Within the framework of the auxilliary field representation of th
Wilson loop operator, the effective Abelianization of the matrixs-model leads to a relatively straightforward generalization
this proof, as we now demonstrate.
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The pertinent bilocal term induced by Eq.~6.11!, which exponentiates upon summing over pinched topologies, ca
written as a local worldsheet effective action using the wormhole parameters@rC,D# i

ab to give

eDSCD
5 lim

e→01

E drC drD expF (
a,b51

N S 2
1

2gs
2~ logd!2

GLM (
c,d51

N

Gab;cd
i j @rL# i

ab@rM# j
cd1

igs@rC# i
ab

2pa8

3E
0

1

ds C„x0~s!;e…j̄a~s2e!jb~s!
d

ds
xi~s!1

igs@rD# i
ab

2pa8
E

0

1

ds D„x0~s!;e…j̄a~s2e!jb~s!
d

ds
xi~s!D G . ~D1!

Here we have for simplicity considered only the zero frequency modes of the fields involved with respect to the
transformations defined at the beginning of Sec. VI A. They will be sufficient to describe the relevant cancellations.
~D1! the ~dimensionless! moduli space metricGLM ~where L,M5C,D) is an appropriate off-diagonal 232 matrix with
respect to the decomposition~5.1! @see Eq.~A18!# which is required to reproduce the initial bilocal operator with t
CD-mixing of the logarithmic operators. This off-diagonal metric includes all the appropriate normalization factorsNL for the
zero mode states. These factors are essentially the inverse of theCD two-point function~A7! which is finite.

We consider the propagation of two~closed string! matter tachyon statesT1,25ei (k1,2) i x
i
in the background of Eq.~D1! at the

tree level. In what follows the effects of theC operator are sub-leading and can be ignored. Then, we are interested
amplitude

ACD[K K K (
c851

N

j̄c8~0!T1T2eDSCD
jc8~1!L L L

0

5 lim
e→01

(
c851

N E drC drDE Dx Dj̄ Dj j̄c8~0!expS 2N2S0@x#2 (
c51

N E
0

1

ds j̄c~s2e!
d

ds
jc~s!D T1@x# T2@x#

3expF (
a,b51

N S 2
1

2gs
2~ logd!2

GLM (
c,d51

N

Gab;cd
i j @rL# i

ab@rM# j
cd1

igs@rD# i
ab

2pa8
E

0

1

ds D„x0~s!;e…j̄a~s2e!

3jb~s!
d

ds
xi~s!D Gjc8~1!1••• ~D2!

where••• represent sub-leading terms. The scaling property~3.19! of the logarithmic operators must be taken into accou
Under a scale transformation~3.17! on the worldsheet theC operator emerges fromD due to mixing with a scale-depende
coefficientAa8 t. This will contribute to the scaling infinities we are considering here.

The compositeD operator insertion in Eq.~D2! needs to be normal-ordered on the disc. Normal ordering in the presen
amounts to subtracting scaling infinities originating from divergent contributions ofD„x0(s);e… ase→01. To determine these
infinities, we first note that the one-point function of the compositeD operators, computed with respect to the frees-model
and auxilliary field actions, can be written as

K K K (
c851

N

j̄c8~0!expS (
a,b51

N igs@rD# i
ab

2pa8
E

0

1

ds D„x0~s!;e…j̄a~s2e!jb~s!
d

ds
xi~s!D jc8~1!L L L

0

5K K (
c851

N

j̄c8~0!expS 2 (
a,b,c,d

gs
2@rD# i

ab@rD# j
cd

2~2pa8!2 E
0

1

ds ds8^D„x0~s!;e…D„x0~s8!;e…&0j̄a~s2e!jb~s!j̄c~s82e!jd~s8!

3K d

ds
xi~s!

d

ds8
xj~s8!L

0
D jc8~1!L L

5expS 2 (
a,b51

N gs
2@rD# i

ab@rD# j
ba

2~2pa8!2 E
0

1

ds ds8^D„x0~s!;e…D„x0~s8!;e…&0K d

ds
xi~s!

d

ds8
xj~s8!L

0
D ~D3!
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where we have used Wick’s theorem. The second equality in Eq.~D3! follows after removing ambiguousQ(e) type terms
from the Wick expansion in the auxilliary fields using the renormalization scheme described in Appendix B. One finds t
procedure has the overall effect of replacing the product of auxilliary fields in the first equality in Eq.~D3! by the delta-
functionsdaddbc .

In what follows we shall ignore, for simplicity, the basic divergences that come from the fundamental string propag
Eq. ~D3!. Such divergences will appear globally in all correlators below and will not affect the final result. As a conseq
of the logarithmic algebra~A7! and the scale transformation~3.17!,~3.19!, there are leading~scaling! divergences in Eq.~D3!
for e→01 which behave as

gs
2ba821/2t tr@rD# i@rD# i . ~D4!

Thus, normal ordering of theD operator amounts to adding a term of opposite sign to Eq.~D4! into the argument of the
exponential in Eq.~D2! in order to cancel such divergences.

Let us now introduce a complete set of statesuEI& into the two-point function of string matter fields on the disc,

^T1T2&05(
I

uN I u2 ^T1uEI&0 ^EI uT2&0 ~D5!

whereNI is a normalization factor for the fundamental string states~determined by the Zamolodchikov metric!. Taking into
account the effects of theC operator included inD under the scaling~3.17!, we see that the leading divergent contributions
Eq. ~D5! are of the form

^T1T2&0.2Aa8 t ^T1uC&0 ^CuT2&01••• ~D6!

where we have used Eqs.~A18! and ~3.15!. We now notice that theC deformation vertex operator plays the role of t
Goldstone mode for the translation symmetry of the fundamental string coordinatesxi , and as such we can apply th
corresponding Ward identity in the matrixs-model path integral to represent the action of theC deformation on physical state
by 2 id/dxi @14,15#. The leading contribution to Eq.~D5! can thus be exponentiated to yield

^T1T2&0. lim
e→01

(
c851

N E Dx Dj̄ Dj j̄c8~0!expS 2N2S0@x#2 (
c51

N E
0

1

ds j̄c~s2e!
d

ds
jc~s!D T1@x#

3expS 2
gs

2Aa8 t

2 (
a,b51

N E
0

1

ds ds8 j̄a~s2e!jb~s!j̄b~s82e!ja~s8!
dQ

dxi~s!

dW

dxi~s8!
D T2@x#jc8~1! ~D7!

where we have used the on-shell conditionTj@(d/dxi)(d/dxi)#Tk50 for the tachyon fields. Equation~D7! expresses the
non-Abelian version of the Ward identity in the presence of logarithmic deformations.

Using Eqs.~D4!, ~D7! and normalizing the parameters of the logarithmic conformal algebra appropriately, it follows
Eq. ~D2! can be written as

ACD. lim
e→01

(
c851

N E drC drDE Dx Dj̄Dj j̄c8~0!expS 2N2S0@x#2 (
c51

N E
0

1

ds j̄c~s2e!
d

ds
jc~s!D T1@x#

3expF (
a,b51

N S 2
1

2gs
2~ logd!2

GLM (
c,d51

N

Gab;cd
i j @rL# i

ab@rM# j
cd2

gs
2a821/2t

2
h i j @rD# i

ab@rD# j
ba1 igst @rD# i

ab

3E
0

1

ds j̄a~s2e!jb~s!
dQ

dxi~s!
2

gs
2Aa8 t

2 E
0

1

ds ds8 j̄a~s2e!jb~s!j̄b~s82e!ja~s8!
dQ

dxi~s!

dW

dxi~s8!
D GT2@x#jc8~1!

1 •••
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5 lim
e→01

(
c851

N E drC drDE Dx Dj̄Dj j̄c8~0!expS 2N2S0@x#2 (
c51

N E
0

1

ds j̄c~s2e!
d

ds
jc~s!D

3T1@x#expF (
a,b51

N H 2
1

2gs
2~ logd!2

GLM (
c,d51

N

Gab;cd
i j @rL# i

ab@rM# j
cd2

gs
2a821/2t

2
h i j S @rD# i

ab2
iAa8

gs

3E
0

1

ds j̄a~s2e!jb~s!
dQ

dxi~s!D S @rD# j
ba2

iAa8

gs
E

0

1

ds j̄b~s2e!ja~s!
dJ

dxj~s!
D J GT2@x#jc8~1!1•••. ~D8!

From Eq.~D8! it follows that the limit t→` localizes the worldsheet wormhole parameter integrations with delta-func
support

)
a,b51

N

)
i 51

9

dS @rD# i
ab2

Aa8

gs
~k11k2! iE

0

1

ds j̄a~s2e!jb~s! D ~D9!

where (k1,2) i are the momenta of the closed string matter states. This result shows that the leading modular divergenc
genus expansion are cancelled by the scattering of~closed! string states off the matrix D-brane background. Upon rescalingrD

by gs
2 , averaging over the auxilliary boundary fields, and incorporating Eq.~D9! as an effective shift in the velocity reco

operator@see Eq.~6.15!#, we can identify this renormalization as fixing the velocity matrix

Ui
ab52Aa8 gs ~k11k2! i dab ~D10!

of the fat brane background. Thus momentum conservation for the D-brane dynamics guarantees conformal invarian
matrix s-model as far as leading divergences are concerned.
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@5# J. Fröhlich and K. Gawe¸dzki, CRM Proc. Lecture Notes7, 57

~1994!; A.H. Chamseddine and J. Fro¨hlich, in Yang
Festschrift, edited by C.S. Liu and S.-F. Yau~International
Press, Boston, 1995!, p. 10; P.-M. Ho and Y.-S. Wu, Phys
Lett. B 398, 52 ~1997!; F. Lizzi and R.J. Szabo, Phys. Re
Lett. 79, 3581~1997!; Commun. Math. Phys.197, 667~1998!;
Chaos Solitons Fractals10, 445~1999!; J. Fröhlich, O. Grand-
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