PHYSICAL REVIEW D, VOLUME 59, 104017
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The behavior of a quantum scalar field is studied in the metric ground state (#-tHig-dimensional black
hole of Bamdos, Teitelboim, and Zanelli which contains a naked singularity. The one-loop BTZ partition
function, the associate black hole effective entropy, and the expectation value of the quantum fluctuation, as
well as the renormalized expectation value of the stress tensor are explicitly computed in the framework of the
Z-function procedure. This is done for all values of the coupling with the curvature, the mass of the field, and
the temperature of the quantum state. In the massless conformally coupled case, the found stress tensor is used
for determining the quantum back reaction on the metric due to the scalar field in the quantum vacuum state,
by solving the semiclassical Einstein equations. It is finally argued that, within the framework ofNhe 1/
expansion, the cosmic censorship hypothesis is implemented since the naked singularity of the ground state
metric is shielded by an event horizon created by the back rea¢86856-282(199)01410-1

PACS numbegps): 04.70.Dy, 04.60.Kz

I. INTRODUCTION vanishing black hole magsgeneralizing to the nonconfor-
mally invariant case previous results obtained9r14]. We
Recently, the three-dimensional gravity theory has beeshall also attempt to explore the possible relevance of the
studied in detail. Despite the simplicity of the three- quantum fluctuations with regard to the issue of the cosmic
dimensional caséabsence of propagating gravitoni is a  censorship hypothesis, since the BTZ ground state solution
common belief that it deserves attention as a useful laborashows a naked singularity and, presumably, it might be the
tory in order to understand several fundamental issues assfinal state at the end of the black hole evaporation process. It
ciated with black hole entropy, such as its statistical originis worthwhile stressing that the global topology of this
and horizon divergence problensee, for example,1-3]).  ground state is completely different from the topology of the
In fact, a black hole solution has been found by &ws, BTZ black hole, and thus it could be dangerous, in order to
Teitelboim, and Zanellj4], the so-called BTZ black hole; in jnvestigate the one-loop effective potential of a quantum sca-
particular, the simple geometrical structure of this black holgy, field in this background, considering the results for a
solution alloyvs exact . compu_tations, since its Euclideanyassive BTZ black hole and taking the linkit—0 naively;
counter_part is locally |sometr|c to the constant c_urvatureas a consequence, we shall compute all the quantities di-
three-dimensional hyperbolic spaté. Furthermore, inves- rectly, employing the-function procedure. This is true also

tigations in the three-dimensional case seem to be f.e'e"a%r the expectation value of the stress tensor, since no good
for several other reasons, among which we would like to

recall the conformal-field-theory—anti—de SitteiCET) reasons were found for considering the zero temperature

(AdS) correspondencgs], and the fact that higher dimen- thermal state as the only physwally s_en3|b|e one.
sional black holes can be related to the BTZ black hole The cpntent O_f the paper is organized as follpws. In Sec.
(namely, the near-horizon geometry of these higher dimenl! We briefly review the geometry of the Euclidean BTZ
sional black holes is essentially the BTZ and/ith regard to  Plack hole and its ground state. In Sec. Ill we present an
this, the BTZ entropy issue has been recently reviewd@lin elementary derlvatlon. of the heat kernel and thiinction
(where a complete list of references can also be fpuamdi related to a Laplace-like operator necessary for the compu-
in [7]; the quantum evolution of the BTZ black hole within a tation of the -function regularized functional determinant.
Kaluza-Klein reduction has instead been investigatef8]n  In Sec. IV, the one-loop relative partition function associated
In this paper we shall discuss the behavior of a quantunwith the BTZ background and its ground state is computed
scalar field propagating in the gravitational ground state ofind some comments on the effective black hole entropy are
the BTZ black hole(i.e., the BTZ solution in the limit of a presented. In Sec. V the computation of the quadratic fluc-
tuations of the scalar field is performed, and the expectation
value of the associated stress tensor is evaluated in the

*Email address: moretti@science.unitn.it framework of the locak-function approach. In Sec. VI, the
"Email address: vanzo@science.unitn. it back reaction due to the quantum fluctuations is computed.
*Email address: zerbini@science.unitn.it The paper ends with some concluding remarks in Sec. VI,
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and with an appendix, where some computational technicaliAnyhow, the range of the coordinates is not the maximal one

ties are presented. for H3, sincey is bounded above because of the upper bound
¢<27 and the lower bound>r . Nevertheless, we can

Il. EUCLIDEAN BTZ BLACK HOLE AND ITS maximally extend the range of the new coordinates into
GROUND STATE X1,X,€ R andy e R, , obtaining the whole hyperbolic three-

space. As a consequence, it is now obvious that, barring the
identification 0~2# in ¢, the Euclidean sectiof2.5 de-
scribes a manifold isometric to a submanifold of the hyper-
bolic spacet®. Actually we can say much more employing
the theory of Lie’s groups of isometries.

Recalling that the group of isometries Bf is SL(2(),
2.1) we shall consider a discrete subgroupCPSL(2()

' =SL(2,)/{x1d} (Id is the identity elementwhich acts dis-
ande =0 identified withg =2, the static Lorentzian metric continuously at the point belonging to the extended com-
of the (nonrotating BTZ black hole reads plex planeCU{«~}. We also recall that a transformation
eI, with y#1d and

Here, following[15], we summarize the geometrical as-
pects of the nonrotating BTZ black hdlé] and its gravita-
tional ground state, which are relevant for our discussion.

In local coordinatest(r,¢), with

re(y8GMI,+x), te(—ow,+x), ¢e[0,27),

r? r? o
d§:_<_2—8(3|v| dt’+ |—2—8GM dr2+r2dg?, az+b

I =
(2.2) vz cz+d’

ad—bc=1, a,b,c,de(, (2.9

where M is the standard Arnowitt-Deser-MisndADM) s called elliptic if (Try)?=(a+d)? satisfies G<(Tr y)?
mass and is a dimensional constant. Notice the couple of<4, hyperbolic if (Try)?>4, parabolic if (Try)?2=4 and
Killing fields 4, andd,, which are, respectively, time like and loxodromic if (Try)?e C/[0,4]. The elementye SL(2()
space like. A direct calculation shows that the metric aboveacts onx=(y,w) e H3, with w=x;+ix,, by means of the
is a solution of the three-dimensional vacuum Einstein’sfollowing linear-fractional transformation:

equations with negative cosmological constant, i.e.,

6 y (aw+b)(cw+d)+acy?
YX= )

Ru=2A0,,, R=6A=—|—2. (2.3 lcw+d|?+]|c|?y?"  |cw+d|?+]c|?y?

Thus, the sectional curvaturde is constant and negative, (2.10

_ _ 2 . . .
namely,k—A——l/I - The metric(2.2) has a horizon radius The periodicity of the angular coordinate in Eg. (2.6),
given by which corresponds to a one-parameter group of isometries,
— acm allows one to describe the BTZ black hole manif¢ds) as

r+=V8GMI, 24 the quotient{3=H3/T", T’ being a discrete group of isom-

and it describes a space-time locally isometric to AdS etry possessing a primitive elemepf eI’ defined by the

A Euclidean section related to this choice of coordinateddentification

is obtained by the Wick rotatiot—i 7 (7 R) and reads 2t s 2t ]
y(y,w)=(e""+ Ty,e"™ Tw)~(y,w),  (2.1D

r2 r2 r2op2\ 7t
ds’= —2——; dr?+ —2——; dr?+r2de?. induced by 06-27 in Eq. (2.6). According to(2.10), this
= = 1 corresponds to the matrix
(2.9
) ) ) e+ /l 0
Changing the coordinatesf,¢) into the (y,x;,x,) ones, 7h2< /|)= (2.12
by means of the transformation 0 e
LY namely, to a hyperbolic element consisting of a pure dilation.
y=+1¢ ' (2.6 Furthermore, since the Euclidean timbecomes an angular-
type variable with periog, one is led also to the identifica-
1 rer 1 tion
x1+ix2=?\/r2—riexp(il+—2+ *I‘p>, 2.7 i
Yely, W)= (y,€P"+ " w)~(y,w), (2.13
the metric becomes that of the upper-half space representa- . = o )
tion of H3, i.e., which is generated by an elliptic elemepte I", given by
2 —elBri 1 0
dsz=F(dy2+dxi+dx§). (2.9 =, i (2.14
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Anyway, requiring the absence of the conical singularity, webolic elementsy, andvy,,; one should further notice that, in

get the relation the limit M—0, the topology of the solution changes and
thus the ground state case must be considered separately.
Br . —om (2.15 We finally remind that for negative masses, one gets so-
|2 ' ' lutions with a naked conical singularify.8] unless one ar-
rives atM = —1, namely,H3, the Euclidean counterpart of
so thaty,=1d, and the periodB, interpreted now as the AdS?®; this solution is a permissible one, and can be regarded
inverse of the Hawking temperatur&6], is determined to be as a bound statet].

Bu= 27T|2_ (2.16 IIl. EFFECTIVE ACTION FOR A SCALAR FIELD
ri IN THE BTZ GROUND STATE
The tree-level Bekenstein-Hawking entrofy can also be In this section we investigate the spectral properties of a
evaluated, and is given by Laplace-like operator acting on scalar functions on the non-
compact hyperbolic manifold<2, in order to evaluate the
2M 1271, related functional determinant and, so, the effective action.
- EI ~4 G (217 The BTZ massive case has been considergd 819. For

simplicity, from now on, we put=1; thus|k|=11?=1 and
which is the well-known area law for the black hole entropy.all the quantities are dimensionledhe physical dimensions
The space-time we are particularly interested in is thecan be restored by dimensional analysis at the end of the
ground state of the BTZ black hole, namely, the BTZ blackcalculations.
hole in the limit of a vanishing mass; this space-time is thus The heat kernel related to the Laplace-like operasae

described by the line element also the Appendix
r2 2 L=—A-1 (3.1
dsg=—d7r?+ —dr?+r’de?. (2.18
| r is well known, and reads
This ground state corresponds also to the zero-temperature, . 1 o(x,x") a2(x,x")
zero-entropy, and zero-energy state; moreowvet( is a na- KP[ (x,x'|L)= 7 : - r{— 4— ,
ked singularity in its Lorentzian sectig®,17] and corre- (4mt)=< sinho(x,x") t
sponds to a point out of the Euclidean manifoiid geode- 3.9
sical distance from the remaining points is infinite (3.2
By setting where the geodesic distancefrom x’ in H3 is
2 X7 2 "2 2
r v’ T=X1, ¢ K (2.19 o(x.x') =costr| 1+ y—y 1 T 27 X2 ,
2yy
we get again the metric of the upper-half model of the hy- 3.9
erbolic space:
P P and is usually given in terms of the fundamental invariant of
2 any pair of points:
ds§=ﬁ(dyz+dx§+dx§). (2.20

1
u(x,x")= E[cosho(x,x’)—l], u(x,x)=0. (3.4
From Eq.(2.18 and the comment following that equation, it
is clear that the coordinatecan be compactified in a circle gjnce we are interested in scalar fields propagating in the

with any periods>0 (in particular 3==), preserving the  ¢|5ssical BTZ background which are described by the action
smoothness of the manifold; moreover,has the usual 2

period. In this way, the ground state solution corresponds to 1
the identification ILp]=— Ef d*\Q(V Vb + mP P+ ER?),
(Y. W+ B+ 2l )~ (y,w), (2.21) (3.5

which is generated by the two parabolic elements we have to deal with the motion operator

Y Tlo 1) "o 1 2.22 whereb is a constant given in terms of the mass and the
gravitational coupling of the field:
Thus, our ground state space can be regarded as the quotient
H3=H3T,, with T, generated by the two primitive para- b=1+m?+ ¢R. 3.7
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It should be noticed that, in this way, the massless conforHowever, in[9] it has been shown that when the mass of the

mally invariant case corresponds to the chdicel/4. BTZ black hole goes to zero, only Dirichlet boundary con-
Now, the result(3.2) is trivially generalized for such an ditions give a regular and smooth renormalized vacuum ex-
operator, and gives pectation value for a scalar field. We will recover the same

result making use of thé-function regularization.
One can now compute the locélfunction by means of
: the Mellin transform of the heat kern€.12 and then ana-
lytically continue it to the whole complex plane, obtaining

3
Ki (x,x'|Lp) =

1 a(x,x") a?(x,x")
- exp —tbh— ——
(47t)%? sinho(x,x") 4t

(3.9

This Euclidean expression has a Lorentzian counterpart as-
sociated with Dirichlet boundary conditions at spatial infin- g”g(s ylLy) =
ity, which have to be imposed because Ad$not globally JIEb

3
p3/2-s r ( S— 5) p3/4-s/295/2-s

(4m)%2  T(s) +(477)3’2r(s)

hyperbolic. 1
With regard to the heat kernel ot 3, we can apply the S Xn%n (y) K b
method of images; namely, we can write &= sinhop(y) 3iz-sL VDon(Y)].

3 3.1
K000 L) = 2 K (%, 7% L) @14

P The first term in the equation above is the logalunction
for L, acting onl®, which turns out to be coordinate inde-
pendent, as it should sincé® is a symmetric space. For
future reference we also report the logafunction of the
(3.9 BTZ Euclidean sectiof19]:

where the separation between the identity and the nontrivial

3 3
=K{"(x,x'|Lp)+ Em Ki (%, vpX' |L),

7p

topological contribution has been done, and we have defined 3
32-s I'|S— 5 3/4—s/255/2—s
Yo=Yp," ¥ (3.10 7C(s.r|Lp) P 2,2
= . . . s,r =
P TR " am¥? T(8) T (am¥A(s)
Moreover, notice that the isometry group generated/pys s—1/2
Abelian, so that the corresponding transformation law for a XnIn 2 © Kajz- Vooy(r)]
scalar field reads as 7o sinhoy(r) 377 m
$(yX) = x$(x), (3.11 (319

where y is a finite-dimensional unitary representatiéd  where now
characterof I'.

So on the diagonal parxEx'), the heat kernel depends
only ony, and turns out to be on(r)=cosh®

2r?
1+ —-(sink nr )
ry

. (3.19

3 3
Ky 20X Lp) =K{ oy L)
With regard to the computation of the effective action,
e b N 1 Xnon(Y) one needs the analytical continuation of the globdlinc-

32 32 sinho tion, obtained by performing the integration over the funda-
(4t) (4mt)==n=0 nlY) mental domain of the diagonal part of the related local quan-
r{ gﬁ(y)} tity. It is easy to show that the fundamental domainof 3

Xexg —th— ,

It (3.12 s noncompact, and that it is given as follows

with Fo={0sy<w, 0s7<8, 0<¢<2w}. (3.17
B?n2+ 472n2

1+ w (3.13 This means that the volumé(F,) =V, of the fundamental
y

domain is divergent and we must introduce a regularization;
the simplest one consists of limiting the integratioryibe-

It is worth noticing that the Euclidean method selects for thetween 1R,<y<, with R, large enough.

guantization of a scalar field in the BTZ ground state the Thus we have

only boundary conditiorDirichlet) leading to a finite sum

over images. Within the Lorentzian methods, since A#S

not globally hyperbolic, also the Neumann and transparent Vo(Ry) = Jm d_yfzwd¢JﬁdT: 77,8R(2) (3.189
boundary conditions can be usésee, for example[9]). 1Ryy3 Jo 0

o,(y)=cosh?

104017-4



QUANTUM SCALAR FIELD ON THE MASSLESS (2-1)- ... PHYSICAL REVIEW D 59104017

or, in the original coordinates, where H(t) is the Hardy-Ramanujan modular function,
which is given by

B 27 Rg 2
Vo(Rp) = JO deO dgojo rdr=mBR;. (3.19

H(t)=>, In(1—e™M), (3.26)
n=1
In this way, starting from the heat kernel associated with the
Laplace-like operatoL,,, one has and satisfies the functional equation
2 2
—tb —tb T 1 t
K'Hg(t|Lb):VO(RO)e 2mpe H(t):_a—zm _77 +ﬂ+H T (3.27
(4mt)¥2  (4mt)3?
9 Making use of the Epstein functional equation with
xS Jm dy .‘Tn(y) exr{— ‘Tn(y)} =(BI2)% a,==?, one has
7o Jo y37¢ sinhan(y) 4 |

€
(320 (1 B 2) 2 2r(2)
where, as previously remarked,is the cutoff of the identity 2 2|47 Bt rl1 €
volume element, and is the parabolic regularization param- 2
eter, necessary to regularize the divergence associated with
the cusp(and which goes to zero at the end of the calcula- € 1
tion). It should be noticed that in E¢3.20 (and from now XE; 2 2'; +0(e),
on), it is assumed that our scalar field obeys Bose-Einstein
statistics(i.e., xp=1 Vn). (3.28
Making the ch f variabl
aking the change of variable so that, after a first order expansion,
2n2+ 472n3 _
u=cosh ! 1+B1—22 : (3.2) KHg(t“_ )=Vo(Ro)e tb_4_77| )
y b (4’7Tt)3/2 & t.b
one has —4m{1{(0)+1;p(0)G(B)]+O(z),
3 VO(RO)eftb (329)
K™o(t|Lp) = ——————+ 2?7 BE
(tlLs) (47t)%? PE: where
€ BZ -t ©
X|1-3 _*”2)|t,b(8)' (3.22 1{(0)=— © f duue Y In(coshu—1
2| 4 1(0) 167mtlo ( )
where (3.30
. and, finally,
|t,b(s)=—3/2f duue " (coshu—1) "2 3 A2 A
2(4mt)>*Jo G(B)=—In2+|nw—C+—§(—1)+2H(—)
(3.23 2 B
(3.3)

and
(C is the Euler-Mascheroni constant

So, besides the divergence of the volufm®ncompact

Ea(sla;,ap) =2, (a;n+a,n3) s, (3.24  manifold) controlled byR, one has another divergence due to
n=o the continuum spectrum associated with the cusp, namely,
the pole at =0. It turns out that this singularity appears also
in the spectral representation of the heat-kernel trace and it
may be removed by means of suitable definition of the trace,
as in the case of noncompact hyperbolic manifolds with a
finite volume (see, for exampl¢21] and references quoted

is the Epsteir function, which is defined for R&>1 and
can be analytically continued into the whole complex plane
its meromorphic continuation having a simple polesatl
and being regular a&=0. In particular, one hal20]

E,(Ola;,a,)=—1 therein. Thus, one has
—tb
L2 &1 3 BEILY = R 4110+ 1 (O)G(B)]
Ej(Olay,@y) = 5In— —2m\[ ~{(~1)—2H| 27\ |, (4mt)%2 , :
4 a2 a2
(3.25 +0(e). (3.32
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As a consequence of the results obtained, one can nowherely, is the classical action related to the massive BTZ
compute the globaf function associated with our operator solution(see, for exampldg,19]). It reads
Ly, finding
Im=IgTztBg1z, 4.2

Vo(Rg)b32S F(S_ 5) G(B)bY2s F(S— E) in which Ig15 is the Hilbert-Einstein action, whil8g+7 is

L(s|Lp) = the usual boundary term which depends on the extrinsic cur-
(4m)32 I'(s) vam I'(s) vature at a large spatial distance. We recall that the total
1 1 classical action is divergent; the geometry is noncompact and
pliz-s r( s— E) 1 | s— 5) -C one has to introduce the reference backgrotii at least at
T — Zlogb+ the tree leve[24], and the related volume cutofandR,,.
Var  T(s) 2 2 Thus, one may also consider the related ground state parti-
tion function
2—sb3/4—s o o
+ \/Z_T(s)fo dz7 Koo \/BZ) ZBTZO:eilo(detLb)allz, (4.3
z wherel is the classical action related to the massless BTZ
X|log(coshz—1)—2 Iogi , (333 solution, given by
where the last integral is convergent. lo=Ilg7z,* BeTz, (4.9

It should be noticed that, due to the presence of parabolic
elements, the meromorphic structure of thifunction con- A simple but crucial observation is that, in order to recover
tains double poles as=1/2—k, k=0,1,2...; moreover, the tree-level Bekenstein-Hawking entropy, one may intro-
this ¢ function is analytic ins=0, and its derivative reads ~ duce the “relative” partition function

1/2

V(R b3/2
o(Ro) e (m—lo) (4.5

In(detLy)=—¢'(0|Ly) = = —5 ———G(B)Vb—Fs,
(3.39

whereF, is a constan{independent fronB8) given by

(detl_b)o
(detLy)m

Zg1z

r_ZBTZO

With this proposal, the two boundary terms of the classical
contribution cancel for large and the difference of the on-
shell Euclidean classical actions leadq 19]

Fo=1b

+

b3/4 o
—1/21¢ 3
—Zﬂfo dzz KZ(\/EZ) 2
IM_IOZIBTZ_IBTZOI_;[V(R)_VO(RO)]_’_ZWr+-

1
Elog b+C+log2-1

X . (3.39 (4.6

Restoring the correct physical dimension, it is easy to show
that the on-shell tree-level partition functidi® becomes

z
log(coshz—1)—2 Iogz

IV. FIRST QUANTUM CORRECTION TO THE ENTROPY
OF THE BTZ BLACK HOLE

wr
: . . InZ®=——~ 4.7
The first on-shell quantum correction to the Bekenstein- A7G’

Hawking entropy may be computed within the Euclidean
semiclassical approximatiofil6] and we shall follow this and this leads to the semiclassical Bekenstein-Hawking en-
approach in this section. A pure gravitational quantum coriropy
rection to the BTZ entropy has been presentefllBj, mak-
ing use of Chern-Simons representation of three-dimensional
gravity [22]. Very recently in[23] the first quantum correc-
tion to the entropy and the back reaction of the BTZ black
hole also have been studied. Here, for the sake of simplicityf-urthermore, concerning the regularization of the ratio of the
we assume that the quantum degrees of freedom of the matvo functional determinant&epresenting the quantum cor-
sive black hole are represented by the quantum scalar fielekctions, our proposal implements the correct mathematical
[described as usual by the actié®5)] propagating outside procedure that is necessary when one is dealing with func-
the black hol€g[3], and we shall make use of the results oftional determinants of elliptic operators on noncompact
[19] as well as the ones obtained in Sec. lll. manifolds (see[25]). In fact, in our case the manifolds are
Recall that within the Euclidean approach, the one-loopmoncompact and a volume regularizatiGGuch as the one
approximation gives, for the partition function in the BTZ previously introducedmust be used. Thus, we have
background,

e

12
In z<°)=Z —. (48

J
O—g |, 2
So=s, (r+ar++1

1 1
ZBTZ: e_IM(detLb),\_Al/Z, (41) In Zr:2’7Tr++§ In(detl_b)o_ Eln(detLb)M . (49)
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In the case of scalar fields, one can compute the func- R,=r, +coGr_, 4.1
tional determinants in the BTZ background. Using the
Z-function regularization and the volume cutofsandR,,  wherecoGr . are quantum corrections, which may be small
as well as Eq(3.34 with 8= B, one gets since G is the inverse of the Planck length. On the other
hand, for smalr . one has
ary  b¥V(R)

4G T 1zn
b¥A4(Ry)  Fp VOG(ry)
2 H

InZ,(R)= —;InZO(Z) )

[oa (og ry
—2+c1—+0(ln(—))
16r r, o

+

R+:r++7 y (418

—_—— (4.10
wherec, is another numerical factor.
One can see that far, sufficiently small the effective
radius becomes larger and positive. This meansRhatas a
®q function ofr ) reaches a minimum for a suitable . This
InZ5(2)= >, —(e™nr (Vb+1)/2—e™nr,(yb—1)/2)"2.  resultis in qualitative agreement with a very recent compu-
n=1n tation of the off-shell quantum correction to the entropy due
(41D {0 a scalar field in the BTZ backgroun#i3] and for the pure
Now we can remove the volume cutoff, taking the lirfit gravitatio_nal_ cas€l9]. In particular, it appears that the quan-
—o0, |n this way the horizon divergences cancel out and thé[um gravitational corrections could.become more a_nd more
finite result can be written as important as soon as the evaporation process continues and
thus they cannot be neglected. This qualitative picture does
not take into account the back reaction. In order to do this,
+h(r,), (4.12 one must compute the vacuum expectation value of the stress
tensor.

where we have introduced the function

r
In Zr:4_G+

where
V. VACUUM EXPECTATION VALUE

A 1I o b¥mr, Fp bG(r,) OF THE STRESS TENSOR

ry)=—=In -_——

(rs) 2 of2) 12 2 2 In this section, we shall compute the expectation value of
(413 the square of a quantum scalar field and its associated stress

tensor expectation value on the black hole background. The

latter will be used in the computation of the back reaction by

solving the semiclassical Einstein equations

Here G can be identified with an effective Newton constant,
and we stress that within this approach the horizon diver
gences have been dealt with without an ultraviolet renormal
ization of it. This finite relative one-loop effective action
may be thought to describe an effective classical geometry R
belonging to the same class of the nonrotating BTZ black

hole solutions. This stems from the results contained 1),
where it has been shown that the constraints for pure gravit
have a unique solution. As a consequence, one may intr
duce a new effective radius by means of

w59 R+ AG,,=87G(T,,). (5.1)

With regard to this issue, it is worthwhile noticing that cus-
omarily used methods based on the correct behavior of the
Green function to pick out a particular temperature for the
thermal state are useless in the present contest. Indeed, such

7R, methods consider the behavior of the Green function when
In Zr:Ea (4.14 an argument belongs to some particular relevant point of the
manifold, in particular points of the event horizdiZ6], and
where require a correct scaling limit for short distances as well as

Hadamard’'s behavior. In the present case, no horizon ap-
G pears and the singular pointsrat O are not in the manifold
Ri=ry+—n(r.), (419  as far as the Euclidean section of it is concerned. This is
because any geodesic falling into these points spends an in-
mimicking in this way the back reaction of the quantum finite amount of affine parameter. In the Lorentzian section,
gravitational fluctuations. As a consequence, the new entrop§ome points at=0, which are singulaf9,17], belong to the
is given by an effective Bekenstein-Hawking term, namely, manifold because, for instance, some timelike geodesics can
reach such points in a finite period of proper time. Anyhow,
S(l)_l 27R, 4.16 in this case, the set of points at=0 represents a naked
- ' ' singularity and the use of the principles above for arguments
of the Green functions fixed at=0 seems to be very prob-
One can evaluate the asymptotic behavior of the quantityematic. On the other hand, in the Euclidean section, the
h(r,) for r,—o andr,—0, and then obtain the effective request of the absence of the conical singularities does not
radius. Notice thatH(r ;) and InZ,(2) are exponentially select any temperature. For these reasons we shall deal with
small for larger .. . Thus,c being a numerical factor, we find all possible values of the inverse temperatgre 0, so that

104017-7



BINOSI, MORETTI, VANZO, AND ZERBINI PHYSICAL REVIEW D59 104017

one has to consider the fulbarabolig isometry group of the The second term can be referred to as the “topological
ground statgwhereas, in the case of the zero-temperaturderm” and may be rewritten noticing that
state, one should deal only with the elemep, of Eq.
(2.22]. aa(y)=In(1+Cy+ VCT+2C,), (5.5
Let us now consider a nonminimally coupled scalar field ) i
&, described by the actiof8.5). We recall that within the Where we have introduced the function

{-function regularization, one hd27,28 , , ,
_ (y_y )2+(X1_X1_Bn1)2+(X2_X2_27Tn2)2

($2(x)) = IM[£(s+1X|Lp)+8L’ (s+1x|Ly)IN u?]. Ca(x:X") 2yy :
s—0
(5.2 (5.6
The substantial equivalence between the formula above anghich on the diagonal reads
the result of a point splitting procedure has been analyzed in ) 5 2
[28]. In D=3, the local function is regular as=1 and the C.(y)= 2by bzzlg M 22 5.7
dependence on the scale parametérdrops out; thus one n y? ' "4 2 '
has
A direct computation of the field fluctuation as a function of
()= Vb (_})Jr b/42%2 C, leads to
(477.)3/2 2 (477_)3/2 \/B
N (62(1)=— g5+ 2 HC(Y)), (58
XgomKui\/BUn(y)] .
with
—+b 1 e o)
=4—\/—+4— m (5.3 2b-3[ 1 1
™ 4w i sinhoa(y H(Cy= | (Tt 2"
- 3 . . 7 \JCp VCpt2
Notice that thell® case corresponds to the first term in the (5.9
above equation and it turns out that the contribution is nega-
tive; namely, one has The series which appears on the right hand side of(E8)
is convergent as soon &s>0.
(% )>H3:_ ﬁ (5.4) A similar computation in the BTZ case, hameM,>0,
y A7’ ' yields the same result, but with
|
(Nn/2 _N—n/2 /)2+(Nn/2x _N—n/2xf)2+(Nn/2X _N—nIZX/)Z
Colxx) =Y S 2 2 (5.10
2yy
|
in place ofC,,, where InN=2#1, , and on the diagonal As far as the expectation value of the stress tensor related
to the field ¢ is concerned, irD=3 we have29,3(
re (Tun(X))= (XL, (5.13
Cy(r)= —sini? 2znr., . (5.12) # .
rs where the right hand side of the equation above is defiimed
the sense of the analytical continuatias
In particular, in the massless conformally invariant case, one ~
has L SXLo) =2 \o T Bh ), (514
1 1 o 1 1 with ¢, representing the eigenfunctions of the Laplace-like
(P2(r))BT2=— — 4 2 - , operatorL, andT,, (¢} ,¢,) being the classical stress ten-
8w 2\2mi-1\{C, VC,+ 2( 2 sor evaluated on the modes. The latter is defined as
5.1
2 ol[¢*,¢]
. _ Tl $* )= = ———, (5.19
in agreement with the result reported[®. Jg o9
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wherel[ ¢*,¢] 4+ —, is the associated classical action.
Furthermore, it is possible to show tH&9,30

1
é,,uv(sax| Lb) = L,qu(S,X| Lb) - Eg;uzg(s_ 1!X| Lb)

(5.19

+¢,(s.X|Lp),

where

1
LMVzgR;LV+ &— Z) g/.LVA_gv,U,VV (517)

and, again in the sense of the analytical continuation,
Y 1 -s * *
Lun($XLo) =5 20 Mo (b dubnt 0,57 0,uh0)-

(5.18

As a result, inD=3, sinceZ(0x|L,) =0, one has

(T (X)) =lM[L,,L(8,X|Lp)+ (s, X|Lp)]. (5.19

s—1

Now, recalling that we are dealing with quotient manifolds

PHYSICAL REVIEW D 59104017

with the related trace

9T 00) = = m¥( p?(y)) " (5.25
in agreement with the general formb@27]
v B ,, £ ¢ép )
g <T/.LV(X)>_§(01X A)_ m +4§D_1A <¢ (X)>
(5.26

In particular, in the massless conformally coupled case one
has(TW(x))H3=0, in agreement with the fact that® is a
homogeneous symmetric space and that the conformal
anomaly vanishes in odd dimensions.

For the topological nontrivial pal(t‘l'w(x)>r, it is conve-
nient to proceed as follows.

Making use of the of the eigenvalues equation for the
scalar eigenfunctions,

Lo®n=Anén, (5.27

and the background metric form, a standard calculation for
the stress tensor evaluated on the mo@es5 leads to

H3/T', the image sum method can be applied. In general, ou2T ,.( &y , ) (X)

¢ functions are thus the sum of two contributions, namely,

£(5,%,%' |Lp) =™ (,,X'|Lp) + " (5,%,X|Ly).
(5.20

Thus, in our case, the expectation value of the stress tensor

splits into the sum of the related contributions:
3
(T ) =(TL0) (T 00" (5.2D

Let us compute the first contribution. No@\ﬂs(s,x|Lb) is
independent fronx, and thus

. s &b s
lim L., ¢ (s X|Lo) =~ 268 (1XLy) g}l = S50},
s—1 ™

(5.22

=(1-28)(V, V.t &7V, Y, 0)
2

1 2 * m 2
+ 2§_§ g,uv[(V|¢n|) +¢’nA¢n]_?g,uV|¢n|
1 * *
+ §g;w¢nA¢n_ nVMVV¢n

Ao
by By 8 o

| #nl®. (5.28

Then, we can make use of E¢.13), noticing that the last
term in the equation above cannot product a contribution to
the final stress tensor because it should be proportional to

9,,[£(0X|Lp) — £ (0x|Lp)]=0, (5.29

u3 . . .
g,., being thell® metric. Furthermore, making use of the \yhich vanishes sinc® =3 is odd so that botlf functions
eigenfunctions reported in the Appendix, one easily finds th\pgve vanish fos=0 (remember that there is no conformal

following analytical continuation:
3 3
—I3 _ 3/2-s
JPRTARI  YE Y
LS XL 1272I'(s)| |2 2

5 5
- _ ~|Rnb/2-s
Z)F(S Z)b

In this way we obtain the result

e

3 m? 3 R
(T 0! =a-l 3 T2€)9u= ?<¢2(Y)>H 9w
(5.249

+T

(5.23

Hs3
9uv-

anomaly in odd-dimensional space timedoreover, follow-

ing the analysis contained [80], it is possible to prove that
the functiongiv(l,x|Lb) of the topological nontrivial part of

the stress tensor can be computed as the coincidence limit of
the corresponding off-diagondl function. This is because
the corresponding series does not contain the identity ele-
ment which gives rise to divergences. In general, the equiva-
lence drops out for this element just because of the existence
of a singularity at the coincidence limit. In practice, concern-

1The coefficient 1/2p which appears in Eq13) of [27] is mis-
printed, and has to be corrected to 14(4-1).

104017-9



BINOSI, MORETTI, VANZO, AND ZERBINI PHYSICAL REVIEW D59 104017

ing the nontrivial topological part of the stress tensor, from In the zero-temperature case one has the same result, but

Egs.(5.28 and(5.13, one finds that it reduces to replacingb? with 72n3, dropping the term proportional 18
1 in B,,,,, and considering only the sum ove.
<TMV(X)>F:(1_2§)AMV+ ( 26— E)QMA With regard to the stress tensor trace one finally has
v r 1 2.1
1 m o 9""(T () =4| é= 5| A-m*"(1x[Ly), (5.3
+§g,uVB_B,uV_ ?gp,vg (1,X|Lb),
(5.30 so that the total contribution reads
. 1
where we have defined g“V(TM,,(x)>=<T>=4( £— g)A—m2<¢2(x)>

H 1 ! !
A,LLV:XI’sz[(V,uVV‘FV,uVy) :[2<§_ %)A_m2}<¢2(x)>’ (53&

IR vai T ’
(VY #VLV)IE (AXXLp), (53D again in agreement with Eq5.26 and[27].2 Thus, for a
with A=g#’A,, and massless and conformally coupled scalar field, one also has a
my vanishing contribution.

1
B, = lim S[(V,V,+V, V)] (1xX|Lp), (532 VI. BACK REACTION ON THE METRIC
X' —x
with B=g**B,,, . Moreover, since In this section, we shall discuss the back reaction on the
BTZ ground state due to the quantum fluctuations. Since any
r . ) temperature is admissible, we chog8e=«, which corre-
£ (Ixx |Lb)=[§0 H(Cr(x,x")), (533 sponds to fixing the temperature of the ground state at the
lowest possible valug=0.
a direct calculation in the coordinate systeynx; ,x,) leads To begin with, we rewrite the semiclassic Einstein equa-
to tions in the form A=—1)
- 8bﬁH" 2b§H/ zbﬁr’_{/ o R,LLV:_ZglLLV+87TG(<T/.LV>_g/.LV<T>)
AMV: go 5 + T4 | %u0%%0 2 pv| _ ~
y y y 2 29,,+87G(T,,), (6.2)
5.
( where we have used the result
Aq 2441
Az 8bnzf N 8bn2H | (5.35 R=—6-16mG(T). 6.2
oLy y Now, we have found the general expressions of the expecta-
i A gon? tion values(T,,,). As a consequence, the semiclassic metric
B = (_”5 08,0+ 2 1s 16,1 shows a nonconstant scalar curvature as well as a noncon-
roazo ||y 4 yr stant Ricci tensor. Furthermore, these nonconstant quantities
- 5 are singL_JIar in_the Iimi1r—>0._ In Fhe conformally coupled
+ Am ”25 PR g“3+ Z_bn K 2 case(T) is vanishing, bL_JRW |s_st|II not constant and even-
v u2%v2 pY g2 SRy ' tually one has to deal with a “distorted” black hole solution,
whose nature comes from solving the semiclassical back re-
4b*  4p2 2 action equations at first order in the Planck len@thTo this
= ( Dy N4 | 34 21 H’], aim, it is an usual approach starting from the general static
nzo | | y* y? y radial symmetric solution in the coordinategr(¢), the

(5.36 ones of our background, namely, the ground state of the BTZ
solution. Now a subtle point arises: in this background the
one-loop approximation may break dowfluctuations in
{T,,) would be of the same order ¢T,,)). In order to cure
Yhis flaw, a possible trick consists in consideriNgndepen-

dent scalar fields instead of one, withvery large such that
account of Eq.(5.4), and the latter is given in Eq5.30 ylarg

taking account of Eqs(5.9), (5.33 and the expressions for NG=G is small and fixed31,32,9. This has two effects:

A AB. B written above. Moreover. notice that the de- fom one side the ratio of the fluctuations(f®,,) becomes
wrAB Ly, . )

pendence og andm? arises only fron?{ and its derivatives,

and is given by Eq(5.9); the 8 dependence is instead due to

b, and’H and is given by Eqs(5.7) and(5.9). 2See previous footnote.

where the prime means derivatives with respedCio
Summarizing, we have found that the complete renormal

ized stress tensor is that written on the right hand side of E

(5.21) where the former term is given in E¢5.24) taking
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negligible in proximity of the horizon; on the other side, the 1> 2n2r2) 32
one-loop approximation may become almost exact, because P(r)y=— a 2 1+— ,
higher loop terms are of the ordé(1/N). Within this new n=1 |
scheme of approximation, a quite natural ansatz which is (6.13
consistent with the gauge of the backgroundl3s,11] where
dsz=—e26‘/’(”[r2+ Ge(r)]dt2+ A;dranrzd(pz. B(r)= 1 % i[w2n2r2(1+w2n2r2)*3’2
r?+Ge(r) 272 &1 2
(6.3
+2(1+ 7?n?%r?) "1, (6.14
Denoting ) )
Notice that the two serieg(r) and®(r) converge as long
—Tr24C -1 — a2Gy(r) p—1 asr>0.
AN=[r"+Ge(n] ™=, B(r)=e AT, 6.4) As anticipated, a curvature singularity is present a0,
' but this singularity may be hidden by the quantum correc-
a standard calculation leads to tions as slgon as there exist positive real solutions to the
equationg-=0, i.e,
Ro_ BI/ N B/ AI N B/ B/ 6 ég (3)
=" 2aB " aaB|A " B) 2aBr &9 GD(r)=——r2. (6.15
r
Rl— _ B” n B’ (A_, 5_/)4_ A’ Let us consider this equation foe>0.
1 2AB 4AB\A B 2rA2’ ®(r) is a smooth, monotonically nonincreasing, and
(6.6) strictly positive function of with a unique flex at =r; near
r=0; moreover, it takes the limifg(2)/7? for r—0" and
, 1 (A B vanishes for — +. On the other hand, the function which
R=5Al A B (6.7  appears on the right hand side of H§.15 is smooth and

monotonically nonincreasing too; furthermore, it is positive

The Einstein equation associated with the mixed (0,0) comfor r*<G{gr(3)/7°, divergent in the limit —0™, and shows
ponents gives a unique flex i 3= G¢g(3)/m> where the function takes the
only zero in the considered domain.

In this way, it remains proved that, for each valuesﬁof

) o there exists at least one and at most three positive and real
and a suitable combination of these components leads also {Q|tions to the Eq(6.15, so that the singularity =0 is

~ always shielded by an event horizon, the radius of which
—ry/ (r)=8a[(TY(r))—(Tir))]+0O(G), (6.9  coincides with the rightmost zero wheg! changes sign
(such a zero always exigtaotice that, after that zerg*!
where, in the second equation, we have retained only the.g. |n any cases, wherG is small sufficiently [G
leading term inG. As solutions of the two differential equa- <w3r?/§R(3)], only one zero arises whegg! changes sign.

' (r)=16ar(T5(r)), (6.9

tions above, we may take Restoring the correct physical dimensions, the event horizon
satisfies
s(r):1677J drr(T3(r)), (6.10 Gi2¢(3)] ™
o<r,< 3 , (6.16
aa
dr_ 0
z/;(r)=8wf — KTi(r) =(To(r)], which, anyhow, cannot be arbitrarily large. Qualitatively, we

(6.11 expect the nonconformally coupled case to be similar to the
one discussed here. Furthermore, the singularity dressing
the constants of integration chosen in order to have th@henomenon illustrated here for the massless BTZ black hole
ground state M =0) solution when the back reaction is has a four-dimensional analog[@#4] associated with the re-
switched off. In the conformally coupled case, the computacent discovery of a class of four-dimensional AdS topologi-
tion is easier and, within our choice of the integration con-cal black hole§35-37.
stants, one has
VII. CONCLUDING REMARKS

e(r)=— £r(3) +®(r), (6.12 In this paper, one-loop quantum proper.ties of the_ grounq
r state of the BTZ black hole have been discussed in detail,
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considering a scalar quantum field propagating in the classi- y2¢"—yd' +(N2+1—k?y?) $p=0, (AB)

cal background of the massless BTZ black hole. No restric-

tion to the gravitational coupling and the mass of the scalafyhose solutions are MacDonald’s functions

field has been assumed, and the one-loop effective action and

the expectation value for the energy-momentum stress tensor

have been computed. As applications of these results, the d(y)=yKi,(Ky), (A7)
leading order quantum correction to the BTZ black hole en-

tropy and the back reaction to the classical metric due to th@jith A non-negative. As a result, the spectrum is continuous
quantum fluctuations have been presented. With regard to thend the generalized eigenfunctions are

latter, we have confirmed that, in the presencéafonfor-

mally coupled scalar fields and in the lafydimit, the quan-

tum fluctuations tend to dress the original naked singularity, I k() =yKin (Ky) i (w). (A8)
similarly to the effect found in the four-dimensional case

[35]. This may be interpreted as a quantum implementatiorrhe nontrivial spectral measure, which plays an important
of the cosmic censorship hypothesis. role, is given by
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APPENDIX The spectral theorem yields

In this appendix, we shall briefly outline the computation

of the heat-kernel trace for the scalar Laplace operator on the - , [ d%k
noncompact hyberbolic spad#, starting from the spectral (xle‘tL|x’)=f d\x w(N)e ™ J 2—e""“yy’
theorem. Although the final result is well knowsee, for 0 &
example,[38,39), we think that it is useful to present here X Kiy (ky)Kin (Ky"), (A10)

an elementary derivation.

To begin with, let us introduce the operato= —A—1,  \yhereu=w—w’. The integration ovek can be performed,
A being the Laplace operator di?. Thus making use of polar coordinates in the plane, and gives

KIP(x,x'|A) = (x|e|x" Y =e Yx|e tx'),  (Al) w 27

‘ [ ai Tanere ety i, ey
where x=(y,w) e H®. Our aim is so to compute the heat 0 0
kernel(x/e"""|x’). The eigenvalues equation faris A2 P2, (cosho(x,x'))

" u(n) V27 sinha(x,x")

(A11)

Ly=[-y* Ao+ dp+ya,—11y=N2y,  (A2)
Since
whereA, is the Laplace operator di? (the transverse mani-
fold), which satisfies the eigenvalues equation

—1/2 , 2 Sin)\O'(X,X,)
P21 cosha(x,x")]= ;m, (A12)

— Ao (w) =K?fi (W), (A3)
where an elementary integration ovargives
elk-w e 1 a(x,x") a?(x,x")
fw) =7 K=kk (Ad) Ko |I_):(477t)3’2 sinho(x,x") exp{— At )
(A13)
With the ansatz
from which Eq.(3.8) easily follows.
Along the same lines, we determine the generalized
W= d(y) f(w), (A5)  eigenfunctions of the Laplace operator on the ground state
solutionHS. It is convenient again to deal with the operator
one gets the equation L. One has a continuous and discrete spectrum, because now
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the transverse manifold is a compact two-dimensional torugor F(L), whereF(-) is a smooth function, reads
One has

<X|F(L)|X’>: J\Owd)\F()\)yflfi}\y]A,i)\

iw-n
X) = l+i)\, X)=VK:.(n ,
l//}\,O( ) y (//)\,k( ) y |)\( y)m +2 yy, J,Ood)\ ()\)F()\)
(A14) &o2mBlo N
wherex=(2mn4/8,n,). As a result, the kernel of the opera- X e UK, (ny)K;,(ny"). (A15)
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