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Quantum scalar field on the massless„211…-dimensional black hole background
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The behavior of a quantum scalar field is studied in the metric ground state of the~211!-dimensional black
hole of Bañados, Teitelboim, and Zanelli which contains a naked singularity. The one-loop BTZ partition
function, the associate black hole effective entropy, and the expectation value of the quantum fluctuation, as
well as the renormalized expectation value of the stress tensor are explicitly computed in the framework of the
z-function procedure. This is done for all values of the coupling with the curvature, the mass of the field, and
the temperature of the quantum state. In the massless conformally coupled case, the found stress tensor is used
for determining the quantum back reaction on the metric due to the scalar field in the quantum vacuum state,
by solving the semiclassical Einstein equations. It is finally argued that, within the framework of the 1/N
expansion, the cosmic censorship hypothesis is implemented since the naked singularity of the ground state
metric is shielded by an event horizon created by the back reaction.@S0556-2821~99!01410-1#

PACS number~s!: 04.70.Dy, 04.60.Kz
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I. INTRODUCTION

Recently, the three-dimensional gravity theory has b
studied in detail. Despite the simplicity of the thre
dimensional case~absence of propagating gravitons!, it is a
common belief that it deserves attention as a useful lab
tory in order to understand several fundamental issues a
ciated with black hole entropy, such as its statistical ori
and horizon divergence problems~see, for example,@1–3#!.
In fact, a black hole solution has been found by Ban˜ados,
Teitelboim, and Zanelli@4#, the so-called BTZ black hole; in
particular, the simple geometrical structure of this black h
solution allows exact computations, since its Euclide
counterpart is locally isometric to the constant curvat
three-dimensional hyperbolic spaceH3. Furthermore, inves-
tigations in the three-dimensional case seem to be rele
for several other reasons, among which we would like
recall the conformal-field-theory–anti–de Sitter~CFT!
~AdS! correspondence@5#, and the fact that higher dimen
sional black holes can be related to the BTZ black h
~namely, the near-horizon geometry of these higher dim
sional black holes is essentially the BTZ one!. With regard to
this, the BTZ entropy issue has been recently reviewed in@6#
~where a complete list of references can also be found! and
in @7#; the quantum evolution of the BTZ black hole within
Kaluza-Klein reduction has instead been investigated in@8#.

In this paper we shall discuss the behavior of a quan
scalar field propagating in the gravitational ground state
the BTZ black hole~i.e., the BTZ solution in the limit of a
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vanishing black hole mass!, generalizing to the nonconfor
mally invariant case previous results obtained in@9–14#. We
shall also attempt to explore the possible relevance of
quantum fluctuations with regard to the issue of the cos
censorship hypothesis, since the BTZ ground state solu
shows a naked singularity and, presumably, it might be
final state at the end of the black hole evaporation proces
is worthwhile stressing that the global topology of th
ground state is completely different from the topology of t
BTZ black hole, and thus it could be dangerous, in order
investigate the one-loop effective potential of a quantum s
lar field in this background, considering the results for
massive BTZ black hole and taking the limitM→0 naively;
as a consequence, we shall compute all the quantities
rectly, employing thez-function procedure. This is true als
for the expectation value of the stress tensor, since no g
reasons were found for considering the zero tempera
thermal state as the only physically sensible one.

The content of the paper is organized as follows. In S
II we briefly review the geometry of the Euclidean BT
black hole and its ground state. In Sec. III we present
elementary derivation of the heat kernel and thez function
related to a Laplace-like operator necessary for the com
tation of thez-function regularized functional determinan
In Sec. IV, the one-loop relative partition function associa
with the BTZ background and its ground state is compu
and some comments on the effective black hole entropy
presented. In Sec. V the computation of the quadratic fl
tuations of the scalar field is performed, and the expecta
value of the associated stress tensor is evaluated in
framework of the localz-function approach. In Sec. VI, the
back reaction due to the quantum fluctuations is compu
The paper ends with some concluding remarks in Sec.
©1999 The American Physical Society17-1
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and with an appendix, where some computational technic
ties are presented.

II. EUCLIDEAN BTZ BLACK HOLE AND ITS
GROUND STATE

Here, following @15#, we summarize the geometrical a
pects of the nonrotating BTZ black hole@4# and its gravita-
tional ground state, which are relevant for our discussion

In local coordinates (t,r ,w), with

r P~A8GMl,1`!, tP~2`,1`!, wP@0,2p!,
~2.1!

andw50 identified withw52p, the static Lorentzian metric
of the ~nonrotating! BTZ black hole reads

dsL
252S r 2

l 2
28GMD dt21S r 2

l 2
28GMD 21

dr21r 2dw2,

~2.2!

where M is the standard Arnowitt-Deser-Misner~ADM !
mass andl is a dimensional constant. Notice the couple
Killing fields ] t and]w which are, respectively, time like an
space like. A direct calculation shows that the metric abo
is a solution of the three-dimensional vacuum Einstei
equations with negative cosmological constant, i.e.,

Rmn52Lgmn , R56L52
6

l 2
. ~2.3!

Thus, the sectional curvaturek is constant and negative
namely,k5L521/l 2. The metric~2.2! has a horizon radius
given by

r 15A8GMl, ~2.4!

and it describes a space-time locally isometric to AdS3.
A Euclidean section related to this choice of coordina

is obtained by the Wick rotationt→ i t (tPR) and reads

ds25S r 2

l 2
2

r 1
2

l 2 D dt21S r 2

l 2
2

r 1
2

l 2 D 21

dr21r 2dw2.

~2.5!

Changing the coordinates (t,r ,w) into the (y,x1 ,x2) ones,
by means of the transformation

y5
r 1

r
e(r 1w)/ l , ~2.6!

x11 ix25
1

r
Ar 22r 1

2 expS i
r 1t

l 2
1

r 1w

l D , ~2.7!

the metric becomes that of the upper-half space represe
tion of H3, i.e.,

ds25
l 2

y2
~dy21dx1

21dx2
2!. ~2.8!
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Anyhow, the range of the coordinates is not the maximal o
for H3, sincey is bounded above because of the upper bou
w,2p and the lower boundr .r 1 . Nevertheless, we can
maximally extend the range of the new coordinates i
x1 ,x2PR andyPR1 , obtaining the whole hyperbolic three
space. As a consequence, it is now obvious that, barring
identification 0;2p in w, the Euclidean section~2.5! de-
scribes a manifold isometric to a submanifold of the hyp
bolic spaceH3. Actually we can say much more employin
the theory of Lie’s groups of isometries.

Recalling that the group of isometries ofH3 is SL(2,C),
we shall consider a discrete subgroupG,PSL(2,C)
[SL(2,C)/$6Id% (Id is the identity element!, which acts dis-
continuously at the pointz belonging to the extended com
plex planeCø$`%. We also recall that a transformationg
PG, with gÞId and

gz5
az1b

cz1d
, ad2bc51, a,b,c,dPC, ~2.9!

is called elliptic if (Trg)25(a1d)2 satisfies 0<(Tr g)2

,4, hyperbolic if (Trg)2.4, parabolic if (Trg)254 and
loxodromic if (Trg)2PC/@0,4#. The elementgPSL(2,C)
acts onx5(y,w)PH3, with w5x11 ix2, by means of the
following linear-fractional transformation:

gx5S y

ucw1du21ucu2y2
,
~aw1b!~ c̄w̄1d̄!1ac̄y2

ucw1du21ucu2y2 D .

~2.10!

The periodicity of the angular coordinatew in Eq. ~2.6!,
which corresponds to a one-parameter group of isometr
allows one to describe the BTZ black hole manifold~2.5! as
the quotientH 3[H3/G, G being a discrete group of isom
etry possessing a primitive elementghPG defined by the
identification

gh~y,w!5~e2pr 1 / l y,e2pr 1 / lw!;~y,w!, ~2.11!

induced by 0;2p in Eq. ~2.6!. According to ~2.10!, this
corresponds to the matrix

gh5S epr 1 / l 0

0 e2pr 1 / l D , ~2.12!

namely, to a hyperbolic element consisting of a pure dilati
Furthermore, since the Euclidean timet becomes an angular
type variable with periodb, one is led also to the identifica
tion

ge~y,w!5~y,eibr 1 / l 2w!;~y,w!, ~2.13!

which is generated by an elliptic elementgePG, given by

ge5S 2eibr 1 / l 2 0

0 2e2 ibr 1 / l 2D . ~2.14!
7-2
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Anyway, requiring the absence of the conical singularity,
get the relation

br 1

l 2
52p, ~2.15!

so that ge5Id, and the periodb, interpreted now as the
inverse of the Hawking temperature@16#, is determined to be

bH5
2p l 2

r 1
. ~2.16!

The tree-level Bekenstein-Hawking entropySH can also be
evaluated, and is given by

SH5A2M

G
l 5

1

4

2pr 1

G
, ~2.17!

which is the well-known area law for the black hole entrop
The space-time we are particularly interested in is

ground state of the BTZ black hole, namely, the BTZ bla
hole in the limit of a vanishing mass; this space-time is th
described by the line element

ds0
25

r 2

l 2
dt21

l 2

r 2
dr21r 2dw2. ~2.18!

This ground state corresponds also to the zero-tempera
zero-entropy, and zero-energy state; moreover,r 50 is a na-
ked singularity in its Lorentzian section@9,17# and corre-
sponds to a point out of the Euclidean manifold~its geode-
sical distance from the remaining points is infinite!.

By setting

r 5
l 2

y
, t5x1 , w5

x2

l
, ~2.19!

we get again the metric of the upper-half model of the h
perbolic space:

ds0
25

l 2

y2
~dy21dx1

21dx2
2!. ~2.20!

From Eq.~2.18! and the comment following that equation,
is clear that the coordinatet can be compactified in a circl
with any periodb.0 ~in particularb5`), preserving the
smoothness of the manifold; moreover,w has the usual 2p
period. In this way, the ground state solution correspond
the identification

~y,w1b12p i l !;~y,w!, ~2.21!

which is generated by the two parabolic elements

gp1
5S 1 b

0 1D , gp2
5S 1 2p i l

0 1 D . ~2.22!

Thus, our ground state space can be regarded as the qu
H 0

35H3/G0, with G0 generated by the two primitive para
10401
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bolic elementsgp1
andgp2

; one should further notice that, in

the limit M→0, the topology of the solution changes an
thus the ground state case must be considered separate

We finally remind that for negative masses, one gets
lutions with a naked conical singularity@18# unless one ar-
rives atM521, namely,H3, the Euclidean counterpart o
AdS3; this solution is a permissible one, and can be regar
as a bound state@4#.

III. EFFECTIVE ACTION FOR A SCALAR FIELD
IN THE BTZ GROUND STATE

In this section we investigate the spectral properties o
Laplace-like operator acting on scalar functions on the n
compact hyperbolic manifoldH 0

3, in order to evaluate the
related functional determinant and, so, the effective acti
The BTZ massive case has been considered in@13,19#. For
simplicity, from now on, we putl 51; thusuku51/l 251 and
all the quantities are dimensionless~the physical dimensions
can be restored by dimensional analysis at the end of
calculations!.

The heat kernel related to the Laplace-like operator~see
also the Appendix!

L52D21 ~3.1!

is well known, and reads

Kt
H3

~x,x8uL !5
1

~4pt !3/2

s~x,x8!

sinhs~x,x8!
expF2

s2~x,x8!

4t G ,
~3.2!

where the geodesic distance ofx from x8 in H3 is

s~x,x8!5cosh21F11
~y2y8!21~x12x18!21~x22x28!2

2yy8
G ,

~3.3!

and is usually given in terms of the fundamental invariant
any pair of points:

u~x,x8!5
1

2
@coshs~x,x8!21#, u~x,x!50. ~3.4!

Since we are interested in scalar fields propagating in
classical BTZ background which are described by the ac

I @f#52
1

2E d3xAg~¹af¹af1m2f21jRf2!,

~3.5!

we have to deal with the motion operator

Lb5L1b, ~3.6!

where b is a constant given in terms of the mass and
gravitational coupling of the field:

b511m21jR. ~3.7!
7-3



fo

a
n-

ivi
n

r

s

th
th

e

the
n-
ex-
me

-
r

n,

a-
an-

on;

BINOSI, MORETTI, VANZO, AND ZERBINI PHYSICAL REVIEW D59 104017
It should be noticed that, in this way, the massless con
mally invariant case corresponds to the choiceb51/4.

Now, the result~3.2! is trivially generalized for such an
operator, and gives

Kt
H3

~x,x8uLb!5
1

~4pt !3/2

s~x,x8!

sinhs~x,x8!
expF2tb2

s2~x,x8!

4t G .
~3.8!

This Euclidean expression has a Lorentzian counterpart
sociated with Dirichlet boundary conditions at spatial infi
ity, which have to be imposed because AdS3 is not globally
hyperbolic.

With regard to the heat kernel onH 0
3, we can apply the

method of images; namely, we can write

K
t

H 0
3

~x,x8uLb!5(
gp

Kt
H3

~x,gpx8uLb!

5Kt
H3

~x,x8uLb!1 (
gpÞId

Kt
H3

~x,gpx8uLb!,

~3.9!

where the separation between the identity and the nontr
topological contribution has been done, and we have defi

gp5gp1
•gp2

. ~3.10!

Moreover, notice that the isometry group generated bygp is
Abelian, so that the corresponding transformation law fo
scalar field reads as

f~gx!5xf~x!, ~3.11!

where x is a finite-dimensional unitary representation~a
character! of G.

So on the diagonal part (x5x8), the heat kernel depend
only on y, and turns out to be

K
t

H 0
3

~x,xuLb!5K
t

H 0
3

~yuLb!

5
e2tb

~4pt !3/2
1

1

~4pt !3/2 (
nÞ0

xnsn~y!

sinhsn~y!

3expF2tb2
sn

2~y!

4t G , ~3.12!

with

sn~y!5cosh21F11
b2n1

214p2n2
2

2y2 G . ~3.13!

It is worth noticing that the Euclidean method selects for
quantization of a scalar field in the BTZ ground state
only boundary condition~Dirichlet! leading to a finite sum
over images. Within the Lorentzian methods, since AdS3 is
not globally hyperbolic, also the Neumann and transpar
boundary conditions can be used~see, for example,@9#!.
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However, in@9# it has been shown that when the mass of
BTZ black hole goes to zero, only Dirichlet boundary co
ditions give a regular and smooth renormalized vacuum
pectation value for a scalar field. We will recover the sa
result making use of thez-function regularization.

One can now compute the localz function by means of
the Mellin transform of the heat kernel~3.12! and then ana-
lytically continue it to the whole complex plane, obtaining

zH 0
3
~s,yuLb!5

b3/22s

~4p!3/2

GS s2
3

2D
G~s!

1
b3/42s/225/22s

~4p!3/2G~s!

3(
nÞ0

xnsn
s21/2~y!

sinhsn~y!
K3/22s@Absn~y!#.

~3.14!

The first term in the equation above is the localz function
for Lb acting onH3, which turns out to be coordinate inde
pendent, as it should sinceH3 is a symmetric space. Fo
future reference we also report the localz function of the
BTZ Euclidean section@19#:

zH
3
~s,r uLb!5

b3/22s

~4p!3/2

GS s2
3

2D
G~s!

1
b3/42s/225/22s

~4p!3/2G~s!

3 (
nÞ0

xnsn
s21/2~r !

sinhsn~r !
K3/22s@Absn~r !#,

~3.15!

where now

sn~r !5cosh21F11
2r 2

r 1
2 ~sinh2 pnr1!G . ~3.16!

With regard to the computation of the effective actio
one needs the analytical continuation of the globalz func-
tion, obtained by performing the integration over the fund
mental domain of the diagonal part of the related local qu
tity. It is easy to show that the fundamental domainF0 ofH 0

3

is noncompact, and that it is given as follows

F05$0<y,`, 0<t,b, 0,w,2p%. ~3.17!

This means that the volumeV(F0)5V0 of the fundamental
domain is divergent and we must introduce a regularizati
the simplest one consists of limiting the integration iny be-
tween 1/R0,y,`, with R0 large enough.

Thus we have

V0~R0!5E
1/R0

` dy

y3E0

2p

dwE
0

b

dt5pbR0
2 ~3.18!
7-4
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or, in the original coordinates,

V0~R0!5E
0

b

dtE
0

2p

dwE
0

R0
rdr 5pbR0

2 . ~3.19!

In this way, starting from the heat kernel associated with
Laplace-like operatorLb , one has

KH 0
3
~ tuLb!5

V0~R0!e2tb

~4pt !3/2
1

2pbe2tb

~4pt !3/2

3(
nÞ0

E
0

` dy

y32«

sn~y!

sinhsn~y!
expF2

sn
2~y!

4t G ,
~3.20!

where, as previously remarked,R is the cutoff of the identity
volume element, and« is the parabolic regularization param
eter, necessary to regularize the divergence associated
the cusp~and which goes to zero at the end of the calcu
tion!. It should be noticed that in Eq.~3.20! ~and from now
on!, it is assumed that our scalar field obeys Bose-Eins
statistics~i.e., xn51 ;n).

Making the change of variable

u5cosh21F11
b2n1

214p2n2
2

y2 G , ~3.21!

one has

KH 0
3
~ tuLb!5

V0~R0!e2tb

~4pt !3/2
12«/2pbE2

3S 12
«

2 U b2

4
,p2D I t,b~«!, ~3.22!

where

I t,b~«!5
e2tb

2~4pt !3/2E0

`

duue2u2/4t~coshu21!2«/2

~3.23!

and

E2~sua1 ,a2!5(
nÞ0

~a1n1
21a2n2

2!2s, ~3.24!

is the Epsteinz function, which is defined for Res.1 and
can be analytically continued into the whole complex pla
its meromorphic continuation having a simple pole ats51
and being regular ats50. In particular, one has@20#

E2~0ua1 ,a2!521,

E28~0ua1 ,a2!5
1

2
ln

a2

4p2
22pAa1

a2
z~21!22HS 2pAa1

a2
D ,

~3.25!
10401
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where H(t) is the Hardy-Ramanujan modular functio
which is given by

H~ t !5 (
n51

`

ln~12e2tn!, ~3.26!

and satisfies the functional equation

H~ t !52
p2

6t
2

1

2
lnS t

2p D1
t

24
1HS 4p2

t D . ~3.27!

Making use of the Epstein functional equation witha1
5(b/2)2, a25p2, one has

E2S 12
«

2 U b2

4
,p2D5

2

bp«

2GS «

2D
GS 12

«

2D
3E2S «

2U 4

b2
,

1

p2D 1O~«!,

~3.28!

so that, after a first order expansion,

KH 0
3
~ tuLb!5

V0~R0!e2tb

~4pt !3/2
2

4p

«
I t,b~0!

24p@ I t,b8 ~0!1I t,b~0!G~b!#1O~«!,

~3.29!

where

I t8~0!52
e2t

16Apt
E

0

`

duue2u2/4t ln~coshu21!

~3.30!

and, finally,

G~b!5
3

2
ln 21 ln p2C1

4p2

b
z~21!12HS 4p2

b D
~3.31!

(C is the Euler-Mascheroni constant!.
So, besides the divergence of the volume~noncompact

manifold! controlled byR, one has another divergence due
the continuum spectrum associated with the cusp, nam
the pole at«50. It turns out that this singularity appears al
in the spectral representation of the heat-kernel trace an
may be removed by means of suitable definition of the tra
as in the case of noncompact hyperbolic manifolds with
finite volume ~see, for example@21# and references quote
therein!. Thus, one has

KH 0
3
~ tuLb!5

V0~R0!e2tb

~4pt !3/2
24p@ I t,b8 ~0!1I t,b~0!G~b!#

1O~«!. ~3.32!
7-5
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As a consequence of the results obtained, one can
compute the globalz function associated with our operato
Lb , finding

z~suLb!5
V0~R0!b3/22s

~4p!3/2

GS s2
3

2D
G~s!

2
G~b!b1/22s

A4p

GS s2
1

2D
G~s!

1
b1/22s

A4p

GS s2
1

2D
G~s!

F2
1

2
logb1

CS s2
1

2D2C

2
G

1
22sb3/42s

A2pG~s!
E

0

`

dzzs21/2K3/22s~Abz!

3F log~coshz21!22 log
z

2G , ~3.33!

where the last integral is convergent.
It should be noticed that, due to the presence of parab

elements, the meromorphic structure of thisz function con-
tains double poles ats51/22k, k50,1,2, . . . ; moreover,
this z function is analytic ins50, and its derivative reads

ln~detLb!52z8~0uLb!52
V0~R0!b3/2

6p
2G~b!Ab2Fb ,

~3.34!

whereFb is a constant~independent fromb) given by

Fb5AbF1

2
logb1C1 log 221G1

b3/4

A2p
E

0

`

dz z21/2K3
2
~Abz!

3F log~coshz21!22 log
z

2G . ~3.35!

IV. FIRST QUANTUM CORRECTION TO THE ENTROPY
OF THE BTZ BLACK HOLE

The first on-shell quantum correction to the Bekenste
Hawking entropy may be computed within the Euclide
semiclassical approximation@16# and we shall follow this
approach in this section. A pure gravitational quantum c
rection to the BTZ entropy has been presented in@19#, mak-
ing use of Chern-Simons representation of three-dimensi
gravity @22#. Very recently in@23# the first quantum correc
tion to the entropy and the back reaction of the BTZ bla
hole also have been studied. Here, for the sake of simplic
we assume that the quantum degrees of freedom of the
sive black hole are represented by the quantum scalar
@described as usual by the action~3.5!# propagating outside
the black hole@3#, and we shall make use of the results
@19# as well as the ones obtained in Sec. III.

Recall that within the Euclidean approach, the one-lo
approximation gives, for the partition function in the BT
background,

ZBTZ5e2I M~detLb!M
21/2, ~4.1!
10401
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whereI M is the classical action related to the massive B
solution ~see, for example,@19#!. It reads

I M5I BTZ1BBTZ , ~4.2!

in which I BTZ is the Hilbert-Einstein action, whileBBTZ is
the usual boundary term which depends on the extrinsic
vature at a large spatial distance. We recall that the t
classical action is divergent; the geometry is noncompact
one has to introduce the reference backgroundH 0

3, at least at
the tree level@24#, and the related volume cutoffsR andR0.
Thus, one may also consider the related ground state p
tion function

ZBTZ0
5e2I 0~detLb!0

21/2, ~4.3!

whereI 0 is the classical action related to the massless B
solution, given by

I 05I BTZ0
1BBTZ0

. ~4.4!

A simple but crucial observation is that, in order to recov
the tree-level Bekenstein-Hawking entropy, one may int
duce the ‘‘relative’’ partition function

Zr5
ZBTZ

ZBTZ0

5F ~detLb!0

~detLb!M
G1/2

e2(I M2I 0). ~4.5!

With this proposal, the two boundary terms of the classi
contribution cancel for larger and the difference of the on
shell Euclidean classical actions leads to@19#

I M2I 05I BTZ2I BTZ0
52

2

p
@V~R!2V0~R0!#→22pr 1 .

~4.6!

Restoring the correct physical dimension, it is easy to sh
that the on-shell tree-level partition functionZ(0) becomes

ln Z(0)5
p2r 1

4pG
, ~4.7!

and this leads to the semiclassical Bekenstein-Hawking
tropy

S(0)5SH5S r 1

]

]r 1
11D ln Z(0)5

1

4

2pr 1

G
. ~4.8!

Furthermore, concerning the regularization of the ratio of
two functional determinants~representing the quantum co
rections!, our proposal implements the correct mathemati
procedure that is necessary when one is dealing with fu
tional determinants of elliptic operators on noncomp
manifolds ~see@25#!. In fact, in our case the manifolds ar
noncompact and a volume regularization~such as the one
previously introduced! must be used. Thus, we have

ln Zr52pr 11
1

2
ln~detLb!02

1

2
ln~detLb!M . ~4.9!
7-6
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In the case of scalar fields, one can compute the fu
tional determinants in the BTZ background. Using t
z-function regularization and the volume cutoffsR and R0,
as well as Eq.~3.34! with b5bH , one gets

ln Zr~R!5
pr 1

4G
1

b3/2V~R!

12p
2

1

2
lnZ0~2!

2
b3/2V0~R0!

12p
2

Fb

2
2

AbG~r 1!

2
, ~4.10!

where we have introduced the function

lnZ0~2!5 (
n51

`
1

n
„epnr1~Ab11!/22epnr1~Ab21!/2…22.

~4.11!

Now we can remove the volume cutoff, taking the limitR
→`. In this way the horizon divergences cancel out and
finite result can be written as

ln Zr5
pr 1

4G
1h~r 1!, ~4.12!

where

h~r 1!52
1

2
lnZ0~2!2

b3/2pr 1

12
2

Fb

2
2

AbG~r 1!

2
.

~4.13!

HereG can be identified with an effective Newton consta
and we stress that within this approach the horizon div
gences have been dealt with without an ultraviolet renorm
ization of it. This finite relative one-loop effective actio
may be thought to describe an effective classical geom
belonging to the same class of the nonrotating BTZ bla
hole solutions. This stems from the results contained in@17#,
where it has been shown that the constraints for pure gra
have a unique solution. As a consequence, one may in
duce a new effective radius by means of

ln Zr5
pR1

4G
, ~4.14!

where

R15r 11
4G

p
h~r 1!, ~4.15!

mimicking in this way the back reaction of the quantu
gravitational fluctuations. As a consequence, the new entr
is given by an effective Bekenstein-Hawking term, name

S(1)5
1

4

2pR1

G
. ~4.16!

One can evaluate the asymptotic behavior of the quan
h(r 1) for r 1→` and r 1→0, and then obtain the effectiv
radius. Notice thatH(r 1) and lnZ0(2) are exponentially
small for larger 1 . Thus,c being a numerical factor, we find
10401
c-

e

,
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ty

R1.r 11csGr1 , ~4.17!

wherecsGr1 are quantum corrections, which may be sm
since G is the inverse of the Planck length. On the oth
hand, for smallr 1 one has

R1.r 11
4G

p F s2

16r 1
2

1c1

s

r 1
1OXlnS r 1

sp D CG , ~4.18!

wherec1 is another numerical factor.
One can see that forr 1 sufficiently small the effective

radius becomes larger and positive. This means thatR1 ~as a
function of r 1) reaches a minimum for a suitabler 1 . This
result is in qualitative agreement with a very recent com
tation of the off-shell quantum correction to the entropy d
to a scalar field in the BTZ background@13# and for the pure
gravitational case@19#. In particular, it appears that the qua
tum gravitational corrections could become more and m
important as soon as the evaporation process continues
thus they cannot be neglected. This qualitative picture d
not take into account the back reaction. In order to do th
one must compute the vacuum expectation value of the st
tensor.

V. VACUUM EXPECTATION VALUE
OF THE STRESS TENSOR

In this section, we shall compute the expectation value
the square of a quantum scalar field and its associated s
tensor expectation value on the black hole background.
latter will be used in the computation of the back reaction
solving the semiclassical Einstein equations

Rmn2
1

2
gmnR1Lgmn58pG^Tmn&. ~5.1!

With regard to this issue, it is worthwhile noticing that cu
tomarily used methods based on the correct behavior of
Green function to pick out a particular temperature for t
thermal state are useless in the present contest. Indeed,
methods consider the behavior of the Green function w
an argument belongs to some particular relevant point of
manifold, in particular points of the event horizons@26#, and
require a correct scaling limit for short distances as well
Hadamard’s behavior. In the present case, no horizon
pears and the singular points atr 50 are not in the manifold
as far as the Euclidean section of it is concerned. This
because any geodesic falling into these points spends a
finite amount of affine parameter. In the Lorentzian secti
some points atr 50, which are singular@9,17#, belong to the
manifold because, for instance, some timelike geodesics
reach such points in a finite period of proper time. Anyho
in this case, the set of points atr 50 represents a nake
singularity and the use of the principles above for argume
of the Green functions fixed atr 50 seems to be very prob
lematic. On the other hand, in the Euclidean section,
request of the absence of the conical singularities does
select any temperature. For these reasons we shall deal
all possible values of the inverse temperatureb.0, so that
7-7
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one has to consider the full~parabolic! isometry group of the
ground state@whereas, in the case of the zero-temperat
state, one should deal only with the elementgp2

of Eq.
~2.22!#.

Let us now consider a nonminimally coupled scalar fie
f, described by the action~3.5!. We recall that within the
z-function regularization, one has@27,28#

^f2~x!&5 lim
s→0

@z~s11,xuLb!1sz8~s11,xuLb!ln m2#.

~5.2!

The substantial equivalence between the formula above
the result of a point splitting procedure has been analyze
@28#. In D53, the localz function is regular ats51 and the
dependence on the scale parameterm2 drops out; thus one
has

^f2~y!&5
Ab

~4p!3/2
GS 2

1

2D1
b1/423/2

~4p!3/2

3(
nÞ0

Asn~y!

sinhsn~y!
K1/2@Absn~y!#

5
2Ab

4p
1

1

4p (
nÞ0

e2Absn(y)

sinhsn~y!
. ~5.3!

Notice that theH3 case corresponds to the first term in t
above equation and it turns out that the contribution is ne
tive; namely, one has

^f2~y!&H3
52

Ab

4p
. ~5.4!
on

10401
e

nd
in

a-

The second term can be referred to as the ‘‘topologi
term’’ and may be rewritten noticing that

sn~y!5 ln~11Cn1ACn
212Cn!, ~5.5!

where we have introduced the function

Cn~x,x8!5
~y2y8!21~x12x182bn1!21~x22x2822pn2!2

2yy8
,

~5.6!

which on the diagonal reads

Cn~y!5
2bn

2

y2
, bn

25
b2n1

2

4
1p2n2

2 . ~5.7!

A direct computation of the field fluctuation as a function
Cn leads to

^f2~y!&52
Ab

4p
1(

nÞ0
H„Cn~y!…, ~5.8!

with

H~Cn!5
2Ab23

p S 1

ACn

2
1

ACn12
D ~ACn1ACn12!122Ab.

~5.9!

The series which appears on the right hand side of Eq.~5.8!
is convergent as soon asb.0.

A similar computation in the BTZ case, namely,M.0,
yields the same result, but with
Cn~x,x8!5
~Nn/2y2N2n/2y8!21~Nn/2x12N2n/2x18!21~Nn/2x22N2n/2x28!2

2yy8
, ~5.10!
ated

ike
-

in place ofCn , where lnN52pr1 , and on the diagonal

Cn~r !5
r 2

r 1
2

sinh2 2pnr1 . ~5.11!

In particular, in the massless conformally invariant case,
has

^f2~r !&BTZ52
1

8p
1

1

2A2p
(
n51

` S 1

ACn

2
1

ACn12
D ,

~5.12!

in agreement with the result reported in@9#.
e

As far as the expectation value of the stress tensor rel
to the fieldf is concerned, inD53 we have@29,30#

^Tmn~x!&5zmn~1,xuLb!, ~5.13!

where the right hand side of the equation above is defined~in
the sense of the analytical continuation! as

zmn~s,xuLb!5(
n

ln
2sTmn~fn* ,fn!, ~5.14!

with fn representing the eigenfunctions of the Laplace-l
operatorLb andTmn(fn* ,fn) being the classical stress ten
sor evaluated on the modes. The latter is defined as

Tmn~f* ,f!5
2

Ag

dI @f* ,f#

dgmn
, ~5.15!
7-8
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whereI @f* ,f#f* 5f is the associated classical action.
Furthermore, it is possible to show that@29,30#

zmn~s,xuLb!5Lmnz~s,xuLb!2
1

2
gmnz~s21,xuLb!

1 z̄mn~s,xuLb!, ~5.16!

where

Lmn5jRmn1S j2
1

4DgmnD2j¹m¹n ~5.17!

and, again in the sense of the analytical continuation,

z̄mn~s,xuLb!5
1

2 (
n

ln
2s~]mfn* ]nfn1]nfn* ]mfn!.

~5.18!

As a result, inD53, sincez(0,xuLb)50, one has

^Tmn~x!&5 lim
s→1

@Lmnz~s,xuLb!1 z̄mn~s,xuLb!#. ~5.19!

Now, recalling that we are dealing with quotient manifol
H3/G, the image sum method can be applied. In general,
z functions are thus the sum of two contributions, namel

z~s,x,x8uLb!5zH3
~s,x,x8uLb!1zG~s,x,x8uLb!.

~5.20!

Thus, in our case, the expectation value of the stress te
splits into the sum of the related contributions:

^Tmn~x!&5^Tmn~x!&H3
1^Tmn~x!&G. ~5.21!

Let us compute the first contribution. NowzH3
(s,xuLb) is

independent fromx, and thus

lim
s→1

LmnzH3
~s,xuLb!522jzH3

~1,xuLb!gmn
H3

5
jAb

2p
gmn

H3
,

~5.22!

gmn
H3

being theH3 metric. Furthermore, making use of th
eigenfunctions reported in the Appendix, one easily finds
following analytical continuation:

z̄mn
H3

~s,xuLb!5
1

12p2G~s!
FGS 3

2DGS s2
3

2Db3/22s

1GS 5

2DGS s2
5

2Db5/22sGgmn
H3

. ~5.23!

In this way we obtain the result

^Tmn~x!&H3
5

Ab

4p S b21

3
12j Dgmn

H3
52

m2

3
^f2~y!&H3

gmn
H3

,

~5.24!
10401
ur
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e

with the related trace

gH3
mn^Tmn~x!&H3

52m2^f2~y!&H3
~5.25!

in agreement with the general formula1 @27#

gmn^Tmn~x!&5z~0,xuA!2S m21
j2jD

4jD21
D D ^f2~x!&.

~5.26!

In particular, in the massless conformally coupled case
has^Tmn(x)&H3

50, in agreement with the fact thatH3 is a
homogeneous symmetric space and that the confor
anomaly vanishes in odd dimensions.

For the topological nontrivial part̂Tmn(x)&G, it is conve-
nient to proceed as follows.

Making use of the of the eigenvalues equation for t
scalar eigenfunctions,

Lbfn5lnfn , ~5.27!

and the background metric form, a standard calculation
the stress tensor evaluated on the modes~5.15! leads to

2Tmn~fn* ,fn!~x!

5~122j!~¹mfn* ¹nfn1fn* ¹m¹nfn!

1S 2j2
1

2Dgmn@~¹ufnu!21fn* Dfn#2
m2

3
gmnufnu2

1S 1

3
gmnfn* Dfn2fn* ¹m¹nfnD

1$fn→fn* ,fn*→fn%2
lngmn

3
ufnu2. ~5.28!

Then, we can make use of Eq.~5.13!, noticing that the last
term in the equation above cannot product a contribution
the final stress tensor because it should be proportional

gmn@z~0,xuLb!2zH3
~0,xuLb!#50, ~5.29!

which vanishes sinceD53 is odd so that bothz functions
above vanish fors50 ~remember that there is no conform
anomaly in odd-dimensional space times!. Moreover, follow-
ing the analysis contained in@30#, it is possible to prove tha
the functionzmn

G (1,xuLb) of the topological nontrivial part of
the stress tensor can be computed as the coincidence lim
the corresponding off-diagonalz function. This is because
the corresponding series does not contain the identity
ment which gives rise to divergences. In general, the equ
lence drops out for this element just because of the existe
of a singularity at the coincidence limit. In practice, conce

1The coefficient 1/2jD which appears in Eq.~13! of @27# is mis-
printed, and has to be corrected to 1/(4jD21).
7-9
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ing the nontrivial topological part of the stress tensor, fro
Eqs.~5.28! and ~5.13!, one finds that it reduces to

^Tmn~x!&G5~122j!Amn1S 2j2
1

2DgmnA

1
1

3
gmnB2Bmn2

m2

3
gmnzG~1,xuLb!,

~5.30!

where we have defined

Amn5 lim
x8→x

1

2
@~¹m¹n81¹m8 ¹n!

1~¹m¹n1¹m8 ¹n8!#zG~1,x,x8uLb!, ~5.31!

with A5gmnAmn and

Bmn5 lim
x8→x

1

2
@~¹m¹n1¹m8 ¹n8!#zG~1,x,x8uLb!, ~5.32!

with B5gmnBmn . Moreover, since

zG~1,x,x8uLb!5(
nÞ0
H„Cn~x,x8!…, ~5.33!

a direct calculation in the coordinate system (y,x1 ,x2) leads
to

Amn5(
nÞ0

F S 8bn
4H9

y6
1

2bn
2H8

y4 D dm0dn01
2bn

2H8

y2
gmn

H3G ,

~5.34!

A5(
nÞ0

F8bn
4H9

y4
1

8bn
2H8

y2 G , ~5.35!

Bmn5(
nÞ0

F S 4bn
4

y6
dm0dn01

b2n1
2

y4
dm1dn1

1
4p2n2

2

y4
dm2dn2DH91S gmn

H3
1

2bn
2

y2
gmn

H3 DH8G ,

B5(
nÞ0

F S 4bn
4

y4
1

4bn
2

y2 DH91S 31
6bn

2

y2 DH8G ,

~5.36!

where the prime means derivatives with respect toCn .
Summarizing, we have found that the complete renorm

ized stress tensor is that written on the right hand side of
~5.21! where the former term is given in Eq.~5.24! taking
account of Eq.~5.4!, and the latter is given in Eq.~5.30!
taking account of Eqs.~5.9!, ~5.33! and the expressions fo
Amn ,A,Bmn ,B written above. Moreover, notice that the d
pendence onj andm2 arises only fromH and its derivatives,
and is given by Eq.~5.9!; theb dependence is instead due
bn andH and is given by Eqs.~5.7! and ~5.9!.
10401
l-
q.

In the zero-temperature case one has the same result
replacingbn

2 with p2n2
2 , dropping the term proportional tob

in Bmn , and considering only the sum overn2.
With regard to the stress tensor trace one finally has

gmn^Tmn~x!&G54S j2
1

8DA2m2zG~1,x,uLb!, ~5.37!

so that the total contribution reads

gmn^Tmn~x!&5^T&54S j2
1

8DA2m2^f2~x!&

5F2S j2
1

8DD2m2G^f2~x!&, ~5.38!

again in agreement with Eq.~5.26! and @27#.2 Thus, for a
massless and conformally coupled scalar field, one also h
vanishing contribution.

VI. BACK REACTION ON THE METRIC

In this section, we shall discuss the back reaction on
BTZ ground state due to the quantum fluctuations. Since
temperature is admissible, we chooseb5`, which corre-
sponds to fixing the temperature of the ground state at
lowest possible valueT50.

To begin with, we rewrite the semiclassic Einstein equ
tions in the form (L521)

Rmn522gmn18pG~^Tmn&2gmn^T&!

522gmn18pG^T̂mn&, ~6.1!

where we have used the result

R526216pG^T&. ~6.2!

Now, we have found the general expressions of the expe
tion values^Tmn&. As a consequence, the semiclassic me
shows a nonconstant scalar curvature as well as a non
stant Ricci tensor. Furthermore, these nonconstant quan
are singular in the limitr→0. In the conformally coupled
case,̂ T& is vanishing, butRmn is still not constant and even
tually one has to deal with a ‘‘distorted’’ black hole solutio
whose nature comes from solving the semiclassical back
action equations at first order in the Planck lengthG. To this
aim, it is an usual approach starting from the general st
radial symmetric solution in the coordinates (t,r ,w), the
ones of our background, namely, the ground state of the B
solution. Now a subtle point arises: in this background
one-loop approximation may break down~fluctuations in
^Tmn& would be of the same order of^Tmn&). In order to cure
this flaw, a possible trick consists in consideringN indepen-
dent scalar fields instead of one, withN very large such that

NG5Ĝ is small and fixed@31,32,9#. This has two effects:
from one side the ratio of the fluctuations to^Tmn& becomes

2See previous footnote.
7-10
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negligible in proximity of the horizon; on the other side, th
one-loop approximation may become almost exact, beca
higher loop terms are of the orderO(1/N). Within this new
scheme of approximation, a quite natural ansatz which
consistent with the gauge of the background is@33,11#

ds252e2Ĝc(r )@r 21Ĝ«~r !#dt21
1

r 21Ĝ«~r !
dr21r 2dw2.

~6.3!

Denoting

A~r !5@r 21Ĝ«~r !#21, B~r !5e2Ĝc(r )A21~r !,
~6.4!

a standard calculation leads to

R0
052

B9

2AB
1

B8

4AB S A8

A
1

B8

B D2
B8

2rAB
, ~6.5!

R1
152

B9

2AB
1

B8

4AB S A8

A
1

B8

B D1
A8

2rA2
,

~6.6!

R2
25

1

2rA S A8

A
2

B8

B D . ~6.7!

The Einstein equation associated with the mixed (0,0) co
ponents gives

«8~r !516pr ^T0
0~r !&, ~6.8!

and a suitable combination of these components leads al

2rc8~r !58p@^T0
0~r !&2^T1

1~r !&#1O~Ĝ!, ~6.9!

where, in the second equation, we have retained only

leading term inĜ. As solutions of the two differential equa
tions above, we may take

«~r !516pE dr r ^T0
0~r !&, ~6.10!

c~r !58pE dr

r
@^T1

1~r !&2^T0
0~r !&#,

~6.11!

the constants of integration chosen in order to have
ground state (M50) solution when the back reaction
switched off. In the conformally coupled case, the compu
tion is easier and, within our choice of the integration co
stants, one has

«~r !52
zR~3!

p3r
1F~r !, ~6.12!
10401
se

is

-

to

e

e

-
-

c~r !52
1

4l (
n51

` S 11
p2n2r 2

l 2 D 23/2

,

~6.13!

where

F~r !5
1

2p2 (
n51

`
1

n2
@p2n2r 2~11p2n2r 2!23/2

12~11p2n2r 2!21/2#. ~6.14!

Notice that the two seriesc(r ) andF(r ) converge as long
as r .0.

As anticipated, a curvature singularity is present atr 50,
but this singularity may be hidden by the quantum corr
tions as soon as there exist positive real solutions to
equationg1150, i.e,

ĜF~r !5
ĜzR~3!

p3r
2r 2. ~6.15!

Let us consider this equation forr .0.
F(r ) is a smooth, monotonically nonincreasing, a

strictly positive function ofr with a unique flex atr 5r f near
r 50; moreover, it takes the limitzR(2)/p2 for r→01 and
vanishes forr→1`. On the other hand, the function whic
appears on the right hand side of Eq.~6.15! is smooth and
monotonically nonincreasing too; furthermore, it is positi

for r 3,ĜzR(3)/p3, divergent in the limitr→01, and shows

a unique flex inr 35ĜzR(3)/p3 where the function takes th
only zero in the considered domain.

In this way, it remains proved that, for each values ofĜ,
there exists at least one and at most three positive and
solutions to the Eq.~6.15!, so that the singularityr 50 is
always shielded by an event horizon, the radius of wh
coincides with the rightmost zero whereg11 changes sign
~such a zero always exists!; notice that, after that zero,g11

.0. In any cases, whenĜ is small sufficiently @Ĝ
,p3r f

3/zR(3)#, only one zero arises whereg11 changes sign.
Restoring the correct physical dimensions, the event hori
satisfies

0,r 1,F Ĝl 2z~3!

p3 G 1/3

, ~6.16!

which, anyhow, cannot be arbitrarily large. Qualitatively, w
expect the nonconformally coupled case to be similar to
one discussed here. Furthermore, the singularity dres
phenomenon illustrated here for the massless BTZ black h
has a four-dimensional analogue@34# associated with the re
cent discovery of a class of four-dimensional AdS topolo
cal black holes@35–37#.

VII. CONCLUDING REMARKS

In this paper, one-loop quantum properties of the grou
state of the BTZ black hole have been discussed in de
7-11
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considering a scalar quantum field propagating in the cla
cal background of the massless BTZ black hole. No rest
tion to the gravitational coupling and the mass of the sca
field has been assumed, and the one-loop effective action
the expectation value for the energy-momentum stress te
have been computed. As applications of these results,
leading order quantum correction to the BTZ black hole
tropy and the back reaction to the classical metric due to
quantum fluctuations have been presented. With regard to
latter, we have confirmed that, in the presence ofN confor-
mally coupled scalar fields and in the largeN limit, the quan-
tum fluctuations tend to dress the original naked singular
similarly to the effect found in the four-dimensional ca
@35#. This may be interpreted as a quantum implementa
of the cosmic censorship hypothesis.
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APPENDIX

In this appendix, we shall briefly outline the computati
of the heat-kernel trace for the scalar Laplace operator on
noncompact hyberbolic spaceH3, starting from the spectra
theorem. Although the final result is well known~see, for
example,@38,39#!, we think that it is useful to present her
an elementary derivation.

To begin with, let us introduce the operatorL52D21,
D being the Laplace operator onH3. Thus

Kt
H3

~x,x8uD!5^xuetDux8&5e2t^xue2tLux8&, ~A1!

where x5(y,w)PH3. Our aim is so to compute the he
kernel ^xue2tLux8&. The eigenvalues equation forL is

Lc5@2y2~D21]y
2!1y]y21#c5l2c, ~A2!

whereD2 is the Laplace operator onR2 ~the transverse mani
fold!, which satisfies the eigenvalues equation

2D2f k~w!5k2f k~w!, ~A3!

where

f k~w!5
eik•w

2p
, k25k•k. ~A4!

With the ansatz

c5f~y! f k~w!, ~A5!

one gets the equation
10401
i-
-
r
nd
or

he
-
e
he

,

n

l-

he

y2f92yf81~l2112k2y2!f50, ~A6!

whose solutions are MacDonald’s functions

f~y!5yKil~ky!, ~A7!

with l non-negative. As a result, the spectrum is continuo
and the generalized eigenfunctions are

cl,k~x!5yKil~ky! f k~w!. ~A8!

The nontrivial spectral measure, which plays an import
role, is given by

m~l!5
2

p2
l sinhpl. ~A9!

The spectral theorem yields

^xue2tLux8&5E
0

`

dl m~l!e2tl2E d2k

2p
eik•uyy8

3Kil~ky!Kil~ky8!, ~A10!

whereu5w2w8. The integration overk can be performed,
making use of polar coordinates in the plane, and gives

E
0

`

dk kE
0

2p

du eiku cosuyy8Kil~ky!Kil~ky8!

5
l2

m~l!

Pil21/2
21/2

„coshs~x,x8!…

A2p sinhs~x,x8!
. ~A11!

Since

Pil21/2
21/2 @coshs~x,x8!#5A2

p

sinls~x,x8!

Asinhs~x,x8!
, ~A12!

an elementary integration overl gives

Kt
H3

~x,x8uL !5
1

~4pt !3/2

s~x,x8!

sinhs~x,x8!
expF2

s2~x,x8!

4t G ,
~A13!

from which Eq.~3.8! easily follows.
Along the same lines, we determine the generaliz

eigenfunctions of the Laplace operator on the ground s
solutionH 0

3. It is convenient again to deal with the operat
L. One has a continuous and discrete spectrum, because
7-12
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the transverse manifold is a compact two-dimensional to
One has

cl,0~x!5y11 il, cl,k~x!5yKil~ny!
eiw•n

A2pb
,

~A14!

wherex5(2pn1 /b,n2). As a result, the kernel of the opera
g
nt
o-

T

lli

10401
s.tor F(L), whereF(•) is a smooth function, reads

^xuF~L !ux8&5E
0

`

dlF~l!y812 ily11 il

1(
kÞ0

yy8

2pbE0

`

dlm~l!F~l!

3ein•uKil~ny!Kil~ny8!. ~A15!
A

ys.

ed

ce-
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