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Bounds on negative energy densities in static space-times
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Certain exotic phenomena in general relativity, such as backward time travel, appear to require the presence
of matter with negative energy. While quantum fields are a possible source of negative energy densities, there
are lower bounds—known as quantum inequalities—that constrain their duration and magnitude. In this paper,
we derive new quantum inequalities for scalar fields in static space-times, as measured by static observers with
a choice of sampling function. Unlike those previously derived by Pfenning and Ford, our results do not
assume any specific sampling function. We then calculate these bounds in static three- and four-dimensional
Robertson-Walker universes, the de Sitter universe, and the Schwarzschild black hole. In each case, the new
inequality is stronger than that of Pfenning and Ford for their particular choice of sampling function.
[S0556-282(199)06610-2

PACS numbd(s): 04.62+v

[. INTRODUCTION to. For example, in the case of a massless scalar field in four
dimensions, the averaged renormalized energy depsity
In recent years, there has been much interest in variouany quantum state satisfies
exotic solutions of general relativity—such as traversable
wormholes[1,2], the Alcubierre “warp drive”[3], and the 3
Krasnikov “tube” [4]—that permit hyperfast or backward p=— 30728
time travel. However, these space-times without exception 0
require the presence of matter which possesgativeenergy
densities[5—8], and hence violate the standard energy con-This means the more negative the energy density that is
ditions. present in an interval, the shorter the duration of this interval
Now, it is well known that quantum field theory, unlike Must be. Thus, this “quantum inequality”—in a way remi-
classical physics, allows energy density to be unboundediiscent of the uncertainty principle of quantum
negative at a point in space-tifi@]. Should the theory place Mechanics—serves to limit any large-scale, long-time oc-
no restrictions on this negative energy, quantum fields coul@urrence of negative energy. In the infinite sampling time
be used to produce gross macroscopic effects such as thod@it to—, it reduces to the usual averaged weak energy
mentioned above, or even a violation of cosmic censorshigondition (for quantum field412,13).
or the second law of thermodynamics. It is therefore impor- Eveson and one of the present authd| have recently
tant to have a quantitative handle on the permitted amount d¥resented a different derivation of the quantum inequalities
negative energy ina neighborhood of a space_time point_ for a massive scalar field in-dimensional Minkowski space
Ford and Romari10,11 have found inequalities which (with n=2). The method used is straightforward—involving
constrain the duration and magnitude of negative energ@nly the canonical commutation relations and the convolu-
densities for quantized free, real scalar fields in Minkowskition theorem of Fourier analysis—and has the virtue of being
space. They show that a static observer, who samples thélid for any smooth, non-negative and even sampling func-

energy density by time-averaging it against the Lorentziartion decaying sufficiently quickly at infinity. Furthermore,
function the resulting bounds turn out to be stronger than those ob-

tained by Ford and Romdt0,11] when the Lorentzian sam-
pling function is applied.
tp 1 In the present paper, we extend this method to derive
f(t)= PRI E () quantum inequalities for scalar fields in generally curved but
0 static space-times using arbitrary smooth, non-negdtie
though not necessarily even, as assumefil#]) sampling

obtains a result which is bounded from below by a negativdunctions of sufficiently rapid decay. We obtain a lower
quantity depending inversely on the characteristic timescal@ound on the averaged normal-ordered energy density in the

2

*Electronic address: cjf3@york.ac.uk IHowever, the derivation of the quantum inequalities does not
Electronic address: E.Teo@damtp.cam.ac.uk depend on any putative time-energy uncertainty principle.
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Fock space built on the static vacuum in terms of the appro- ) , )

priate mode functions. Since the normal-ordered energy den- - mﬁt ¢+V'Vip—u¢p=0. (4)

sity in a given state is the difference between the renormal- t

ized energy density in this state and tfgenerally nonzero  Syppose it admits a complete, orthonormal set of positive

and potentially negatiyerenormalized energy density of the frequency solutions. We write these mode functions as
static vacuum, our bound also constrains the renormalized

energy densitycf. [12]). fa(tx)=U,\(x)e”', 5

We apply our bound to several examples where it can be
explicitly evaluated, namely the three- and four-dimensionalvhere A denotes the set of quantum numbers needed to
Robertson-Walker universes, the de Sitter universe, and thePecify the modeéwhich may be continuous or discrete
Schwarzschild black hole. In all these cases, we obtaigeneral quantum scalar field can then be expanded as
bounds which are up to an order of magnitude stronger than
those previql_Jst deri\_/ed by I?fenning and Fo¢i,13,19 ¢:2 (a}\f)\-q-a;:f;‘) (6)
for the specific sampling function they used. A

Il. DERIVATION OF THE QUANTUM INEQUALITY in terms of crgatlon and anqlhllatlon.operataﬁs a, obey-
ing the canonical commutation relations
We shall consider r{+1)-dimensional space-times that
. N X . [a a =61, [a,,a ]=[aJr al 1=0 (7
are globally static, with time-like Killing vectof, . The met- Al AN SN Ay '

ric of such a space-time takes the general form and which generate the Fock space built on the static vacuum

ds?= —|gy(x)|dt?+ gij(x)dxidxj, (3) state|0). We shall be interested in the energy densitygof
along the world-linex“(t) = (t,xp) of a static observer, with
wherex=(x},x?... x" andi,j=1,2,...n. The equation x, kept fixed. If the field is in a normalized quantum state
of a free, real scalar fielep of massu=0 in this space-time |¢), the normal-ordered energy density as measured by such
is an observer at timeis [12,13
(:T,ulu” )=Re, %[U’{ U, (ala, )eer—ent—u,U, (aay e (T
NN tt

+[ViU:ViU)\r<a1a)\,>ei(w)\*w)\/)t+viu)\viU}\,<a)\aw>efi(w)\+w)\/)t]

+u?[UFU, (ala, et Uy, U, (ayay e ety (8)

whereu*=(|gy| ~Y20) is the observer's four-velocity, arid, and its derivatives are evaluatedxat We have also written
(- )y=(y|-|¢) for brevity. Recall that the normal-ordered energy density is the difference between the renormalized energy
density in the two statels/) and|0).

We now define a weighted energy density

sz':dK (T utu” ) i(t), (9

wheref is any smooth, non-negative function decaying at least as fast @04t infinity, and normalized to have unit
integral. Ford and coworkef40-13,13 employ the Lorentzian functiofl), whose specific properties play a key role in their
argumentsin particular, the Fourier transform of E(}.) is simply the function expf|wlty)]; we emphasize that our arguments
apply to generaf. Substituting from Eq(8), the weighted energy density measured by the observer is

W) Wy

p=ReE W[U:U)\l<a1a)\r>’f(0))\1_w)\)_U)\U)\r<a)\a)\r>%(a})\+ w}\r)]+[ViU:ViU}\r<aia)\r>%(a)Ar_w)\)
A
+ViU)\ViU)\/<a}\a)\r>’f(0))\+(1))\!)]+,(L2[U:U)\r<a;r\a)\r>f(w)\r_ (O)\)‘l‘ U)\U}\r<a)\a>\/>%(w)\+ w)\,)] y (10)
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where we define the Fourier transformfdby [12,13 assuming the Lorentzian sampling functicl). But
because Eq.16) is a more sharply peaked functiphalf the

F _ dt f(he 1ot 11 ar_ea.under_ the Lorentzian function lies vyittj_trh<t9, while_

(@) f (tye (1 this figure is3 + 1/r=0.82 for Eq.(16)], this is a first indi-

cation that the inequality derived here is a stronger result.
By applying the inequalityA2), proved in the Appendix, Finally, we record the fact that for the Lorentzian func-
to each of the caseg, = (w, /|9 ¥)U,, V;Uy, anduU,,  tion,
we obtain the following manifestly negative lower bound for

: — 4'[0
g [F2(0)[2=—"Ko(tolw])? (20)
i *
p== f de E (| ol UXUL+VIUXViU whereKy(x) is the modified Bessel function of zeroth order.

In the rest of this paper, we shall consider the quantum in-
= ) equality in specific examples of globally static space-times
[P0+ o))" (120 where the left-hand side of Egd.4) or (15) can be explicitly

evaluated. As these examples have been considered previ-
Using the field equation satisfied by the spatial mode funceusly by Pfenning and Ford 2,13,15, we shall at times be
tion [12,13: brief and refer to their papers for more details. For the most
part we will closely follow their notation and conventions.

+u2Ur U,

2

|t|

this inequality can be rewritten as We begin with a review of the quantum inequality in (
+1)-dimensional Minkowski space, the case that was
1= W)y treated in[14]. The mode functions for a free scalar field of
p=—— do 2
7)o 194l massu are

ViV,U, +

2) U,=0, (13
11l. MINKOWSKI SPACE

2
1
+2V' )|UA|2|f/72(cu+w )|2.
14 L
This is the desired quantum inequality, which is valid for Uk(X)Zmeik'x, o=k +p? (2D
general sampling function(t), subject to the above-stated [(2m)" 2]

conditions. Another useful form of it can be obtained by,,.ih each component of the-dimensionalspatia) momen-
introducing the new variable=w+ w, : tum covectork satisfying —oo<k;<o. The quantum in-
equality (14) becomes

1(> = ol
p=—=| dufu) ¥ + 5 VV)IUXIZ,
) omin A sfwy=<u |gtt| R 2
(15) p== 5 f f (2m )nwk“ (0+ wy)]
with opip=miny w, .
To simplify it any further would require a specific choice G, d d N
of f(t). For example, with the even sampling function =2, de ) do’o’ )
tg e |2
(0= e (16 aaCa Rl @2
whereC,, is equal to the area of the unib{1)-sphere di-
that is peaked at=0, we have vided by (2m)", i.e.,
2 w)[2=2mtoe 2o, 1 1
[F(w)[?=2to (17 - 3

T on-1_n2 1.
In this case, the quantum inequality can be expressed in 20T (zn)

terms of the Euclidean Green’s function .
If we make the change of variables= w+ o’ andv=w

, the quantum inequality22) can be rewritten as
Ge(txit!,x')= 2 UF 00U (x)enr™) (18
N

Cn L F IR (2 0+ u
PB—deU“ (w)]“u""tQ, ) (24

quite compactly as

p=—30Ge(—tg,X;tg,X), (199  where the function€),(x) are defined by

whereDEE(1/|gn|)at20+ V'V, is the Euclidean wave opera-
tor. This bound is, in fact, identical to one that was derived in

Qn(x)=(n+ 1)X7(”“)fxdy Y(y? ="t (25
1
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There are several special cases in which this bound can be

evaluated analyticallf14], notably massless fields in two
and four dimensions with the sampling functiéh. In the

former, the bound is four times stronger than that derived by

Ford and Romafl1], but 13 times weaker than the optimal
one of Flanaganl6]. In the latter case, the present bound is
& of Ford and Roman’s result.

IV. THREE-DIMENSIONAL CLOSED UNIVERSE

The line element for the static, three-dimensional closed

universe is

ds?= —dt?+a?(d6?+sinfo de?), (26)

PHYSICAL REVIEW 598 104016
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FIG. 1. Graph of the QI bound for the 3D closed universe

where a is the radius of the two-sphere at each constantdashed ling and that obtained by Pfenning and Fdswlid line),

time-slice, and the angular variables take valuesé&s ,
0< ¢ <27 (and will do so for all the space-times considered

againstu.

in this papey. We consider the massive scalar field equationeral properties. In particular, we shall present a general strat-

on this background with a coupling of strengtlo the scalar
curvatureR=2/a?:

O¢—(u*+¢ER)¢=0, (27)

egy for approximating finite summations like that in Eq.
(31).

The summation in Eq(31) can be evaluated using the
trapezoidal rule of numerical integratipe.g., see Eq.3.6.1
of [17]]:

whose mode-function solutions are given in terms of the

usual spherical harmonic§,,(6,¢) by [13,15

Uim(X)= WYIm( 0.¢), (28)
for1=0,1,2... andm=—1,—-1+1,... ], with
o=a }WI(I+1)+2&+(ap)?. (29)
The Y,,(6,¢) obey the sum rule
[
21+1
2_
2 Min(b,0) ==, (30
which can be used in Eg§l4) and(15) to show that
_ - e 2
p= 8772a2fo dwgo 21+ 1) o[ f w+ )|
1 (e N(u)
—_ 72011 |2
m[wodlﬂf (U)| I:EO 21+1) o, .
(31
Here,N(u)=maXneZ:w,<u}, i.e.,
1-4[2&+ (ap)’—(au)?]—1
Ny | 42 (g) @1-1) o,

where| x| denotes the integer part &f

While the bound in Eq(31) can be readily evaluated
using numerical techniques, it may be worthwhile to first
simplify it analytically as much as possible. This may be
useful if one should want to draw conclusions about its gen

" N 1 N
2 g(m fo dx g(x) + 5[9(0) +g(N)]+ 159"(0)

(33

for some {e(ON). In the present caseg(x)=/(2x
+1)Vx(x+1)+2&+ (aw)?, and the integral in Eq:33) can

be evaluated analytically. Furthermorg”({) is non-
decreasing in the interval in question, so its occurrence in
Eqg. (31) can be replaced byg”(N), at the expense of weak-
ening the bound slightly. We obtain the final inequality

foc du |f/172(u)|2[ fN(U)dx g(x)
0

2.3
8w a’) .,

p==

N(u) .

1
+ 5[9(0)+9(N(U))]+ 12 9 (N(U))], (34)
with

f dx g(x)= g[x(x+ 1)+2&+ (au)?]3?

, 3(2x+1)

X =
g'(x) VX(X+1)+2&+ (ap)?
1 (2x+1)3

A [x(x+1)+2é+(ap)?]¥2 39

The graph of the bound in E€31) is plotted against mass
in Fig. 1, fora=1 andé=0. As usual, the sampling function
f(t) is taken to be the Lorentzian functidf), with to=1.
When plotted on the same scale, that of E2f}) is almost
indistinguishable from the former graph. For comparison, the
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corresponding bound obtained by Pfenning and F&8J15  tighter than that in Minkowski space for all sampling func-
is also plotted in Fig. 1. It is clear that our bound is strongertions f(t). Pfenning and For{i13,15 also noted this for their

for all values of mass. particular choice of (t).
We now turn to the closed or Einstein universe, with line
V. FOUR-DIMENSIONAL ROBERTSON-WALKER element
UNIVERSE

ds?’=—dt?+ a’[dy?+sirx(d 6%+ sirfode?)], (43
We shall first consider the case of the open universe, be- _
fore proceeding to the closed universe. The line element iswhere O< y<. The mode functions arei 8]

ds?=—dt?+a’[dy?+sinttx(d6*+sirfdde?)], (36)

, . , Unim(X) = s 15700 Yim(6,0),
wherea characterizes the scale of the spatial section, and 0 (2wpa®)
< y<<oo, The mode functions for a scalar field of massre
18 n(n+2)
[18] Wn= = + u?, (44)
1 _
Ugm() = ———=21157(0) Yim(6,0), withn=0,1,2...,1=0,1,...n,m=—1I,—1+1...J,and
(2wqa®)
I+1
+1 () [ +1)x.
0= qa2 2 @7 I (o) sm')((d COSX) cosin+1)x. (49

. ) _ Using the sum rule
with 0<q< andl,m as usual. The functiond(x) sat-

isfy (n+1)?
- 2 (00 Yin(6,0) =57, (46)
H(T)(x)ocsion( ) cosqy, (39) |
K d coshy we obtain the quantum inequality
and obey the sum rule %
1 * 21512 2
o p?—m Odwngo op(N+1)?[fY" o+ w,)|
2 G (0 Yin(0,9)7=5 . (39
’ 1 e N(u)
The right-hand side does not depend on the angular vari- Z—WJ du|f1’2(u)|220 wp(n+1)2,
ables, as is expected of a system with isotropic symmetry. " n= 47
Hence, the quantum inequalit¢4) becomes
1 " " with
=———=—=| d d 2|1+ 2. (40
P 4w3a~°’fo "’fo ogd ot wg)% (40 N(u)=|\(au)2=(ap)?+1-1]. 48)
Note that this bound is identical in form to that (four- An obvious special case to investigatajg=1, in which
dimensional Minkowski space. Both Eq$22) and(40) can, w,=u(n+1). The sum in Eq(47) may then be evaluated
in fact, be written as exactly, to give

1 (= (= N
p;—mfo da)fcdw’w2 0 = CYfY v+ w")|? p=

fwdu|f/172(u)|2(N(u)+ 1)2(N(u) +2)2.

- 167%a*) 1
(49
_ L (7172 0204 u
T 16l duf*5(w)[*u*Qs| 5] (4 This bound may be weakened slightly, by replachgu)
g =|au—1] with the larger quantitau—1, to give
where 1 e old 2
12 2 4
€ 0 Minkowski space; p== 16 3f dulf¥4(u)| (U +?+¥)- (50
C=\/—>+u? €= ) (42 (R
a 1 openuniverse,

It clearly differs from the massless Minkowski bound by
and an explicit expressiofand graph for Qsz(x) can be O(1/a) terms. The bounds in Eq&t9) and(50) are plotted
found in[14]. The Minkowski space result is obviously re- in Fig. 2 against mass. The difference between these two
covered in the limit of infinitea. Furthermore, sinc®;(x) is  graphs can be further minimized using the approximations
an increasing function opl=), the bound for genera is  below, but at the expense of having a more complicated ex-
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FIG. 2. Graphs of the QI bounds for the 4D closed universe with  FIG. 3. Graphs of the QI bounds for the 4D closed universe: Eq.
ap=1: Eq.(49) using a dashed line, E¢50) using a dotted line, (51) using a solid line, and its approximati@f3) using a dashed

and that obtained by Pfenning and Fgsilid line). line.
pression for the bound. The corresponding bound derived in 52
[13,19 is also plotted on the same graph. 9"(X)= 2>+ (ap)2— 1+ >
Returning to the general case, we note that @d) can \/x7+(a,u)?—1
be written as
X4
- . (59
Lo o N [+ (ap)?~11%2
>_ n2 2_
p= 4w3a4fﬂdu|f (u)| n§=:l n“yn“+(apm)°—1,
(5D The bound in Eq(51) and its approximation in Eq53)

are plotted in Fig. 3 againgt, fora=1. As can be seen, the
where N’ =|ayuZ— x2]. The finite sum can again be ap- @Pproximation is only very slightly weaker than the exact

proximated analytically using the trapezoidal rule, now in thebound. Also plotted in Fig. 4 is the bound obtained in
form [13,15, for comparison with Eq(51).

S N 1 N-1 _
ngl g(n)= Jl dx g(x)+ 5[9(1)4_9(,\1)]4_ P 9"(¢) VI. de SITTER SPACE-TIME

(52) A convenient static parametrization of the de Sitter uni-

verse is

for somel e (1,N). From the fact that the second derivative

of g(x)=x?yX*+ (aw)?—1 is non-decreasing in this inter- 42— r2 a2 r2 7ld 5
val, we obtain the inequality =—|1-z)dtt+{1-—5] dr

- 4deu|f’172<u>|2[ ffdxg(x)

a3
4ma” ),

+r2(d6?+sirfode?), (55)

p=
0.000

!

1 ! N 1 14 !
#5190 +gN) 1+ —5—g"(N) |, (63

-0.005 -
with E
o
1 , , i -0.010
dx g(x)= ZX[X +(ap)—1]
1 2 -0.015 : ' ‘
_g[(aﬂ) —1]xyx“+(apm)°—1 o 1 2 3 4
n
1 ; .
_ - 2_112 2 2_ FIG. 4. Graphs of the QI bounds for the 4D closed universe: Eq.
a 117In(x+ yx“+(a 1),
8 [(ap) JinC (au) ) (51) using a dashed line, and that of Pfenning and Fedtid line).
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with O<r=<a. The surface = « is the particle horizon for
an observer located at the origin. In this representation, th
mode functions for a scalar field with magsand energyw

are

Uiim(X) 5T Yim(6, ), (56)

B (4ma’k)V

where we denote=r/a andk=aw. The latter continuously
parametrizes the mode function from zero to infinity, wtiile
and m are as in Sec. IV. The radial function can then be
solved in terms of the hypergeometric functiBia,b;c;z)
as[19]

_F(br)r(bl_) | ik/ ( + . 3. )
kI(Z —mZ(l—Zz) 2F b| ,b| ,|+§,22 ,
(57)
with
+_ 3 . + 9 L5
b= 3| 1+ 5 +ik \J7 —a?u?). (58)

Using the sum ruldg30) in the quantum inequality14),
we have for an observer at the origin,

Zo21+1

def dk>
0 0 i k
2

1
64m°a*

(b)I (b)) |?
T(1+ 3)T(ik)|

p=—

=0

X lim
z—0

1-7°

1
+ ?02[22( 1—- 22)(92]] 2

|

In fact, only thel=0 andl=1 terms contributdcf. Egs.
(4.126 and(4.127 of [13]], and the expression may be sim-
plified to give

3 L\
X |Fl b by il 5522 | [P ot ka2 (59)

1

8m°a*

p==

dewjxdksinr(wk)
0 0
X{(K?+a?u?)|T (bg )T (bg )|?+4|T (b )T (by)[?}

X | Y2 w+kla)|?. (60)

As was noted 12,13, there are two cases for which the
gamma functions in Eq60) can be evaluated analytically,
namely whenu=0 and \2/«. Assuming the Lorentzian
sampling function1) and using Eq(20), we obtain, for the
massless case,

to
2_
P 27T4

2[ 'deA dw'(5w'+2a2w,3)
aJo 0
XKo(to(w+ (1),))2. (61)

Defining the new variables=w+ o' andv=w’, the bound
becomes

PHYSICAL REVIEW [39 104016
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FIG. 5. Graphs of the QI bounds for de Sitter space-time: Eq.
(60) using a dashed line, and that of Pfenning and Redtid line).

—t—ordu Ko(t u)zfud (5v+2a%03). (62
2774&’2 0 0 0 1% 1 av ).

This can be explicitly evaluated using the integral

o 2a—3 @ 4
fo du u“’lKo(tou)zztgr(a) F(E) (63)
to obtain
3 9 16 5/t 2
P*ma{”m(z) : 64

This bound is at least four times stronger than that obtained

in[12,13:
2
eyl

In the limit a— or t;— 0, we expect to recover the results
for Minkowski space. Indeed, the bound in EG4) is then
= that in Eq.(65), as was observed ii4].

When w=2/a, we similarly obtain the quantum in-
equality

3
3272t

5

to
3

a

p= (65)

_ 3 9 - 16/t 2 o6
P= " n2d 64" 9lal | (66
in contrast to that derived ifi2,13:
3 1+<t°)2 6
=——— e
P= " 32728 a (67)

The bound in Eq(60) and that derived if12,13 are plotted
for generaly, anda=1, in Fig. 5.

We have, in fact, proved that for genegal the de Sitter
bound(60) differs from the Minkowski space bour(@4) by
terms no greater than order ¥2 as «—, and so our re-
sults for these cases agree in this limit. This estimate in-
volves bounds on the integrand in E§O) which are uni-
form in k and w. The proof, which we omit, is accordingly
somewhat technical. It is unclear whether the argument can
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be strengthened to show that the deviation is in fact )  and
in general, as it is for the specific cases considered in Egs.
(64) and (66).

> (214 1)|R(w|r)]?
VIl. SCHWARZSCHILD SPACE-TIME =0

As the final example, we shall examine the quantum in- 2
equalities in a black hole space-time. The line element for - 4|V|2|Zo 2+ D[Biw)]*, r—2M,
the Schwarzschild black hole of maskis

4w?, r—oo,
2M 2m\ 1t
dSZZ—(l—T dt2+ 1—7) dr2 (72)
+r2(de?+sirt0 de?). (68) |f we further assume the low-energy conditoMz <1,
then[22]
For simplicity, we shall only consider a massless scalar field
in this space-time. The mode functions, in the region exterior (113 -
. i H —+
to the horizonr >2M, take the forn20] Bi(w)= EESE] (—4iMw) ™. (73
Uw|m(x)=(4—)1/2R|(w|r)Y|m(0,90), These results can be substituted into &), and the bound
TWw

explicitly evaluated using the integr&63). However, the
maximum value ofl for which the expansion in Eq70) is
valid depends on the order of the leading terms which have
Uaim(X)= MW—Q))MR'(‘”“)Y'm(G"p)’ been dropped iB,(w). If Eq. (73) is exact to (M w)' *?],
(69) then only thel =0 terms should be retained, as tBe con-
tribution would be smaller than the correctionBg[12,13.
where, as usual is the energy of the field an¥,(6,¢) Near the horizon, the quantum inequality can be ex-
are the spherical harmonicR (w|r) and R/(w|r) are the pressed in terms of the observer’s proper time:
outgoing and ingoing solutions to the radial part of the wave
equation, respectively. Although this equation cannot be ( 2M)1/2

— —

solved analytically, the asymptotic forms of the solutions are =177 t (74
known near the horizon and at infinity.
Again, using the sum rul€30), we see that the quantum

inequality (14) becomes as
= f f Z (21+1) 3 1 (2M7p\? 1 2|\/|)-1
= 2_ JR— —_— —
16m 0w 15 P~ 32m27| 24l 12 r
! 2012 (75)
2 a - : ’
X ) oM 4r2(9[r (1—2M/r)a,] 64 r

r
where the ellipsis denotes higher-order terms that have been

- - . dropped. This is to be compared with the result derived in
X[IR (@[04 |R /(o' |N) PN w+ 0")|? (700 [12,13:

In writing this, we are assuming that the mode functions are 3 1/ 2M 7\ 2 oM
defined to have positive frequency with respect to the time- p=— 5 4[_( 5 0) (1_ _)
like Killing vector g, . This is the Boulware vacuum. Now, in 3277y 61 1 r

the two regions WherR|(w|r) and R|(w|r) are known ex-

2M
plicitly, we have[21] +1+(1- - +.-- (76)
ZO 2+ DR |(w|r)|? The bound in Eq(75) is betweeng and: that in Eq.(76),
at least in the present approximation. Note that in either case,
4w?(1—2M/r)" 1, r—2Mm, the bound becomes arbitrarily negative near the horizon of
the black hole.
iz E (21+1)|B)(w)|2, T—*, (71 On thelother hand, the quantum inequality for an observer
r<i=o near infinity becomes
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3 9 L 2M+ 2M 21+161 70\ 2
2_—_ —_— — —_— _ | —
P~ 32027, 64 ro\T 93T

o Bl

while the corresponding inequality obtained[it2,13 is
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o ] 1 (77)
APPENDIX

The inequality needed to prove the results in Sec. Il is a
generalization of one which was first derived[it¥] using
the convolution theorem. Suppodeis a smooth, non-

2 negative function of, decaying at least as fast astOf) for

2
p=— 3232 4( ﬂjL ﬂ 1+% E) t— * o, Let operatorsS™ be defined by
T T r r
2M 3 ) 2 " ~ J— +
_(T> 1+(T 4. (78) S*=Herm , {f(wyr— @) a\0yrayay:
AN
if(a))\‘*'w}\/)q)\rq)\a)\ra)\}, (Al)

Again, the former bound is betweef and the latter. It

gives the correct Minkowski space result in the limitso where theq, are complex coefficientsand Herm X= (X

or M—0. + X" is the Hermitian part of an operatdt We will show
that the expectation valué$™) obey

VIIl. CONCLUDING REMARKS

1 (= —
Si > d fl/2 + 2 2 A2
In summary, we have derived new quantum inequalities (s 27TJ'0 w; [ eto)lfal A2)

(14) or (15 on the normal-ordered averaged energy density

in static space-times, that are valid _for quite general samy any normalized quantum state, whéi&(t)= V() is the

pling functions. They were then applied to several Sta”dari{]ointwise square-root dfi(t).

examples using the Lorentzian sampling functio©f To obtain this result, first define a functignby

course, other space-times could readily be considered, such '

as Rindler space, flat space with perfectly reflecting mirrors,

and other black hole$12,13.) The resulting bounds are

stronger than previous results, and would lead to even tighter

constraints on the various exotic space-times mentioned at

tmhgntzgg;?glir:]go?;g;.e paper. Before we conclude, a few comWe haveg(e) = g(— ) because* is real, and
An important question is whether our quantum inequali-

ties are optimal. This could, for example, be proved by find- (g*9)(w)=f(w) (A4)

ing a quantum state that saturates the bound, which would

pecessarlly belong to the _kernel of all the operators(w) by the convolution theorem, wheseis given by

in Eg. (A6). However, it is known that our bound, when

applied to a massless scalar field in two-dimensional

Minkowski space, is & times weaker than the optimal value (g1*9)(w)= f

obtained by Flanagalil6]. Unfortunately, his derivation re- -

lies on some special features of two-dimensional massless

field theory, and does not appear to generalize to other mon¥ext, define the following operators on the space of quantum

realistic cases. states:
An interesting application of our quantum inequality

would be to the static Morris-Thorne—type wormho|ds.

Ford and Roman have applied the flat-space version of their O (@)=, {9(w—w,)q\a\*g(w+»,)0,ay}.

guantum inequalities to this case, and have found that they > (A6)

constrain the size of such wormholgg. They justified this

procedure by making the sampling time scale much shorter

than the minimum characteristic curvature scale, so thapSind the canonical commutation relatiof® and symme-

space-time appears locally flat. However, it would be desir!fiZing in A, A", we obtain

able to verify this calculation using the full curved space

results; this should not be too difficult once the form of the

scalar field mode functions in the wormhole space-time have 2For clarity, we shall denote complex conjugation by an overline

been determined. in this Appendix.

9(w)= —— TP(0). (A3)

V27

o

_do'gye=0)g(w).  (AS)
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f:dwoi(wﬁoi(w)

-,

do Y, {g(0—wy)g(0—v,/) qydyala,

AN

+9(w+w),)g(w+ wx')Qxaaxa;{r

+g(w—wy)d(o+ o) qdyalal,

*g(w+w\)g(w—w,/ )0\qy-aay}

—s741[ doI g roPaln @)

N

whereS* are given by

*=Herm E {F(wy ,ww)CIMMaIaw
AN

*G(wy,wy/)0y 0yay 8y}, (A8)

andF, G are
F(wh,wx,)=f:dw{g(w—wx)m
+g(0+ ) g9(0+ )}
=J:dw{g(w—wx)g(—w+wx')
+g(—w—0),)g(0+ o)}
=f:dwg(w>\r—w)g(w—w>\)

=(g*9)(wy —w)) = (0, — ),
(A9)

PHYSICAL REVIEW B9 104016

o

G(w) -wx'):f dw{g(w+w,)g(w—w,:)

0

+9(w—w))g(w+w))}

= f:dw{g(w—l— 0))g(w) — )

+(wy~0)g(o+ o)}
- dwgtoregio o

=(g*Q)(wy+ wy)=F(wy+wy).
(A10)

The final equalities show that EA8) agrees with the defi-
nition (Al).

Since the left-hand side of E¢A7) is manifestly non-
negative, we conclude that the expectation valuesofin
any normalized quantum state must satisfy the inequality

(S7)=- fwde lg(w+o)|?a\? (A1)

0 )N

which is the desired resulfA2). Note that the inequality
proved in[14] corresponds to the special case whereghe
are real and is an even function of.
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