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Bounds on negative energy densities in static space-times
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Certain exotic phenomena in general relativity, such as backward time travel, appear to require the presence
of matter with negative energy. While quantum fields are a possible source of negative energy densities, there
are lower bounds—known as quantum inequalities—that constrain their duration and magnitude. In this paper,
we derive new quantum inequalities for scalar fields in static space-times, as measured by static observers with
a choice of sampling function. Unlike those previously derived by Pfenning and Ford, our results do not
assume any specific sampling function. We then calculate these bounds in static three- and four-dimensional
Robertson-Walker universes, the de Sitter universe, and the Schwarzschild black hole. In each case, the new
inequality is stronger than that of Pfenning and Ford for their particular choice of sampling function.
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I. INTRODUCTION

In recent years, there has been much interest in var
exotic solutions of general relativity—such as traversa
wormholes@1,2#, the Alcubierre ‘‘warp drive’’ @3#, and the
Krasnikov ‘‘tube’’ @4#—that permit hyperfast or backwar
time travel. However, these space-times without excep
require the presence of matter which possessnegativeenergy
densities@5–8#, and hence violate the standard energy c
ditions.

Now, it is well known that quantum field theory, unlik
classical physics, allows energy density to be unbounde
negative at a point in space-time@9#. Should the theory place
no restrictions on this negative energy, quantum fields co
be used to produce gross macroscopic effects such as
mentioned above, or even a violation of cosmic censors
or the second law of thermodynamics. It is therefore imp
tant to have a quantitative handle on the permitted amoun
negative energy in a neighborhood of a space-time poin

Ford and Roman@10,11# have found inequalities which
constrain the duration and magnitude of negative ene
densities for quantized free, real scalar fields in Minkow
space. They show that a static observer, who samples
energy density by time-averaging it against the Lorentz
function

f ~ t !5
t0

p

1

t21t0
2 , ~1!

obtains a result which is bounded from below by a nega
quantity depending inversely on the characteristic timesc
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t0. For example, in the case of a massless scalar field in
dimensions, the averaged renormalized energy densityr in
any quantum state satisfies

r>2
3

32p2t0
4 . ~2!

This means the more negative the energy density tha
present in an interval, the shorter the duration of this inter
must be. Thus, this ‘‘quantum inequality’’—in a way rem
niscent of the uncertainty principle of quantu
mechanics1—serves to limit any large-scale, long-time o
currence of negative energy. In the infinite sampling tim
limit t0→`, it reduces to the usual averaged weak ene
condition ~for quantum fields@12,13#!.

Eveson and one of the present authors@14# have recently
presented a different derivation of the quantum inequali
for a massive scalar field inn-dimensional Minkowski space
~with n>2). The method used is straightforward—involvin
only the canonical commutation relations and the convo
tion theorem of Fourier analysis—and has the virtue of be
valid for any smooth, non-negative and even sampling fu
tion decaying sufficiently quickly at infinity. Furthermore
the resulting bounds turn out to be stronger than those
tained by Ford and Roman@10,11# when the Lorentzian sam
pling function is applied.

In the present paper, we extend this method to der
quantum inequalities for scalar fields in generally curved
static space-times using arbitrary smooth, non-negative~al-
though not necessarily even, as assumed in@14#! sampling
functions of sufficiently rapid decay. We obtain a low
bound on the averaged normal-ordered energy density in

1However, the derivation of the quantum inequalities does
depend on any putative time-energy uncertainty principle.
©1999 The American Physical Society16-1
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Fock space built on the static vacuum in terms of the app
priate mode functions. Since the normal-ordered energy d
sity in a given state is the difference between the renorm
ized energy density in this state and the~generally nonzero
and potentially negative! renormalized energy density of th
static vacuum, our bound also constrains the renormal
energy density~cf. @12#!.

We apply our bound to several examples where it can
explicitly evaluated, namely the three- and four-dimensio
Robertson-Walker universes, the de Sitter universe, and
Schwarzschild black hole. In all these cases, we ob
bounds which are up to an order of magnitude stronger t
those previously derived by Pfenning and Ford@12,13,15#
for the specific sampling function they used.

II. DERIVATION OF THE QUANTUM INEQUALITY

We shall consider (n11)-dimensional space-times th
are globally static, with time-like Killing vector] t . The met-
ric of such a space-time takes the general form

ds252ugtt~x!udt21gi j ~x!dxidxj , ~3!

wherex5(x1,x2 . . . ,xn) and i , j 51,2, . . . ,n. The equation
of a free, real scalar fieldf of massm>0 in this space-time
is
10401
-
n-
l-

d

e
l

he
in
n

2
1

ugttu
] t

2f1¹ i¹ if2m2f50. ~4!

Suppose it admits a complete, orthonormal set of posi
frequency solutions. We write these mode functions as

f l~ t,x!5Ul~x!e2 ivlt, ~5!

where l denotes the set of quantum numbers needed
specify the mode~which may be continuous or discrete!. A
general quantum scalar field can then be expanded as

f5(
l

~al f l1al
† f l* ! ~6!

in terms of creation and annihilation operatorsal
† , al obey-

ing the canonical commutation relations

@al ,al8
†

#5dll81, @al ,al8#5@al
† ,al8

†
#50, ~7!

and which generate the Fock space built on the static vac
stateu0&. We shall be interested in the energy density off
along the world-linexm(t)5(t,x0) of a static observer, with
x0 kept fixed. If the field is in a normalized quantum sta
uc&, the normal-ordered energy density as measured by s
an observer at timet is @12,13#
energy

it
ir

ts
^ :Tmnumun: &5Re(
l,l8

H vlvl8
ugttu

@Ul* Ul8^al
†al8&e

i (vl2vl8)t2UlUl8^alal8&e
2 i (vl1vl8)t#

1@¹ iUl* ¹ iUl8^al
†al8&e

i (vl2vl8)t1¹ iUl¹ iUl8^alal8&e
2 i (vl1vl8)t#

1m2@Ul* Ul8^al
†al8&e

i (vl2vl8)t1UlUl8^alal8&e
2 i (vl1vl8)t#J , ~8!

whereum5(ugttu21/2,0) is the observer’s four-velocity, andUl and its derivatives are evaluated atx0. We have also written
^ • &[^cu•uc& for brevity. Recall that the normal-ordered energy density is the difference between the renormalized
density in the two statesuc& and u0&.

We now define a weighted energy density

r5E
2`

`

dt^ :Tmnumun: & f ~ t !, ~9!

where f is any smooth, non-negative function decaying at least as fast as O(t22) at infinity, and normalized to have un
integral. Ford and coworkers@10–13,15# employ the Lorentzian function~1!, whose specific properties play a key role in the
arguments@in particular, the Fourier transform of Eq.~1! is simply the function exp(2uvut0)#; we emphasize that our argumen
apply to generalf. Substituting from Eq.~8!, the weighted energy density measured by the observer is

r5Re(
l,l8

H vlvl8
ugttu

@Ul* Ul8^al
†al8& f̂ ~vl82vl!2UlUl8^alal8& f̂ ~vl1vl8!#1@¹ iUl* ¹ iUl8^al

†al8& f̂ ~vl82vl!

1¹ iUl¹ iUl8^alal8& f̂ ~vl1vl8!#1m2@Ul* Ul8^al
†al8& f̂ ~vl82vl!1UlUl8^alal8& f̂ ~vl1vl8!#J , ~10!
6-2
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BOUNDS ON NEGATIVE ENERGY DENSITIES IN . . . PHYSICAL REVIEW D59 104016
where we define the Fourier transform off by

f̂ ~v!5E
2`

`

dt f~ t !e2 ivt. ~11!

By applying the inequality~A2!, proved in the Appendix,
to each of the casesql5(vl /ugttu1/2)Ul , ¹ iUl , andmUl ,
we obtain the following manifestly negative lower bound f
r:

r>2
1

2pE0

`

dv (
l

S vl
2

ugttu
Ul* Ul1¹ iUl* ¹ iUl

1m2Ul* UlD u f 1/2̂~v1vl!u2. ~12!

Using the field equation satisfied by the spatial mode fu
tion @12,13#:

¹ i¹ iUl1S vl
2

ugttu
2m2DUl50, ~13!

this inequality can be rewritten as

r>2
1

pE0

`

dv (
l

S vl
2

ugttu
1

1

4
¹ i¹ i D uUlu2u f 1/2̂~v1vl!u2.

~14!

This is the desired quantum inequality, which is valid f
general sampling functionsf (t), subject to the above-state
conditions. Another useful form of it can be obtained
introducing the new variableu5v1vl :

r>2
1

pEvmin

`

duu f 1/2̂~u!u2 (
l s.t.vl<u

S vl
2

ugttu
1

1

4
¹ i¹ i D uUlu2,

~15!

with vmin[minlvl .
To simplify it any further would require a specific choic

of f (t). For example, with the even sampling function

f ~ t !5
2

p

t0
3

~ t21t0
2!2 ~16!

that is peaked att50, we have

u f 1/2̂~v!u252pt0e22uvut0. ~17!

In this case, the quantum inequality can be expresse
terms of the Euclidean Green’s function

GE~ t,x;t8,x8!5(
l

Ul* ~x!Ul~x8!evl(t2t8) ~18!

quite compactly as

r>2 1
4 hEGE~2t0 ,x;t0 ,x!, ~19!

wherehE[(1/ugttu)] t0
2 1¹ i¹ i is the Euclidean wave opera

tor. This bound is, in fact, identical to one that was derived
10401
-

in

n

@12,13# assuming the Lorentzian sampling function~1!. But
because Eq.~16! is a more sharply peaked function@half the
area under the Lorentzian function lies withinutu,t0, while
this figure is1

2 11/p.0.82 for Eq.~16!#, this is a first indi-
cation that the inequality derived here is a stronger resul

Finally, we record the fact that for the Lorentzian fun
tion,

u f 1/2̂~v!u25
4t0

p
K0~ t0uvu!2, ~20!

whereK0(x) is the modified Bessel function of zeroth orde
In the rest of this paper, we shall consider the quantum
equality in specific examples of globally static space-tim
where the left-hand side of Eqs.~14! or ~15! can be explicitly
evaluated. As these examples have been considered p
ously by Pfenning and Ford@12,13,15#, we shall at times be
brief and refer to their papers for more details. For the m
part we will closely follow their notation and conventions

III. MINKOWSKI SPACE

We begin with a review of the quantum inequality in (n
11)-dimensional Minkowski space, the case that w
treated in@14#. The mode functions for a free scalar field
massm are

Uk~x!5
1

@~2p!n2vk#
1/2

eik•x, vk5Auku21m2, ~21!

with each component of then-dimensional~spatial! momen-
tum covectork satisfying 2`,ki,`. The quantum in-
equality ~14! becomes

r>2
1

2pE0

`

dvE dnk

~2p!n
vku f 1/2̂~v1vk!u2

52
Cn

2pE0

`

dvE
m

`

dv8 v82~v822m2!n/221

3u f 1/2̂~v1v8!u2, ~22!

whereCn is equal to the area of the unit (n21)-sphere di-
vided by (2p)n, i.e.,

Cn[
1

2n21pn/2G~ 1
2 n!

. ~23!

If we make the change of variablesu5v1v8 and v5v8,
the quantum inequality~22! can be rewritten as

r>2
Cn

2p~n11!
E

m

`

du u f 1/2̂~u!u2un11QnS u

m D , ~24!

where the functionsQn(x) are defined by

Qn~x!5~n11!x2(n11)E
1

x

dy y2~y221!n/221. ~25!
6-3
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CHRISTOPHER J. FEWSTER AND EDWARD TEO PHYSICAL REVIEW D59 104016
There are several special cases in which this bound ca
evaluated analytically@14#, notably massless fields in tw
and four dimensions with the sampling function~1!. In the
former, the bound is four times stronger than that derived

Ford and Roman@11#, but 1 1
2 times weaker than the optima

one of Flanagan@16#. In the latter case, the present bound
9

64 of Ford and Roman’s result.

IV. THREE-DIMENSIONAL CLOSED UNIVERSE

The line element for the static, three-dimensional clos
universe is

ds252dt21a2~du21sin2u dw2!, ~26!

where a is the radius of the two-sphere at each const
time-slice, and the angular variables take values 0<u<p,
0<w,2p ~and will do so for all the space-times consider
in this paper!. We consider the massive scalar field equat
on this background with a coupling of strengthj to the scalar
curvatureR52/a2:

hf2~m21jR!f50, ~27!

whose mode-function solutions are given in terms of
usual spherical harmonicsYlm(u,w) by @13,15#

Ulm~x!5
1

~2v la
2!1/2

Ylm~u,w!, ~28!

for l 50,1,2, . . . andm52 l ,2 l 11, . . . ,l , with

v l5a21Al ~ l 11!12j1~am!2. ~29!

The Ylm(u,w) obey the sum rule

(
m52 l

l

uYlm~u,w!u25
2l 11

4p
, ~30!

which can be used in Eqs.~14! and ~15! to show that

r>2
1

8p2a2E
0

`

dv(
l 50

`

~2l 11!v l u f 1/2̂~v1v l !u2

52
1

8p2a2E
v0

`

du u f 1/2̂~u!u2 (
l 50

N(u)

~2l 11!v l .

~31!

Here,N(u)[max$nPZ:vn<u%, i.e.,

N~u!5 b A124@2j1~am!22~au!2#21

2 c, ~32!

wherebxc denotes the integer part ofx.
While the bound in Eq.~31! can be readily evaluate

using numerical techniques, it may be worthwhile to fi
simplify it analytically as much as possible. This may
useful if one should want to draw conclusions about its g
10401
be

y

d

t

n

e

t

-

eral properties. In particular, we shall present a general s
egy for approximating finite summations like that in E
~31!.

The summation in Eq.~31! can be evaluated using th
trapezoidal rule of numerical integration@e.g., see Eq.~3.6.1!
of @17##:

(
n50

N

g~n!5E
0

N

dx g~x!1
1

2
@g~0!1g~N!#1

N

12
g9~z!

~33!

for some zP(0,N). In the present case,g(x)5(2x
11)Ax(x11)12j1(am)2, and the integral in Eq.~33! can
be evaluated analytically. Furthermore,g9(z) is non-
decreasing in the interval in question, so its occurrence
Eq. ~31! can be replaced byg9(N), at the expense of weak
ening the bound slightly. We obtain the final inequality

r>2
1

8p2a3E
v0

`

du u f 1/2̂~u!u2H E
0

N(u)

dx g~x!

1
1

2
@g~0!1g„N~u!…#1

N~u!

12
g9„N~u!…J , ~34!

with

E dx g~x!5
2

3
@x~x11!12j1~am!2#3/2,

g9~x!5
3~2x11!

Ax~x11!12j1~am!2

2
1

4

~2x11!3

@x~x11!12j1~am!2#3/2
. ~35!

The graph of the bound in Eq.~31! is plotted against mas
in Fig. 1, fora51 andj50. As usual, the sampling functio
f (t) is taken to be the Lorentzian function~1!, with t051.
When plotted on the same scale, that of Eq.~34! is almost
indistinguishable from the former graph. For comparison,

FIG. 1. Graph of the QI bound for the 3D closed univer
~dashed line!, and that obtained by Pfenning and Ford~solid line!,
againstm.
6-4
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BOUNDS ON NEGATIVE ENERGY DENSITIES IN . . . PHYSICAL REVIEW D59 104016
corresponding bound obtained by Pfenning and Ford@13,15#
is also plotted in Fig. 1. It is clear that our bound is strong
for all values of mass.

V. FOUR-DIMENSIONAL ROBERTSON-WALKER
UNIVERSE

We shall first consider the case of the open universe,
fore proceeding to the closed universe. The line element

ds252dt21a2@dx21sinh2x~du21sin2udw2!#, ~36!

wherea characterizes the scale of the spatial section, an
<x,`. The mode functions for a scalar field of massm are
@18#

Uqlm~x!5
1

~2vqa3!1/2
Pql

(2)~x!Ylm~u,w!,

vq5Aq211

a2 1m2, ~37!

with 0,q,` and l ,m as usual. The functionsPql
2(x) sat-

isfy

Pql
(2)~x!}sinhlxS d

d coshx D l 11

cosqx, ~38!

and obey the sum rule

(
l ,m

uPql
(2)~x!Ylm~u,w!u25

q2

2p2 . ~39!

The right-hand side does not depend on the angular v
ables, as is expected of a system with isotropic symme
Hence, the quantum inequality~14! becomes

r>2
1

4p3a3E
0

`

dvE
0

`

dq vqq2u f 1/2̂~v1vq!u2. ~40!

Note that this bound is identical in form to that in~four-
dimensional! Minkowski space. Both Eqs.~22! and~40! can,
in fact, be written as

r>2
1

4p3E
0

`

dvE
C

`

dv8 v82Av822C2u f 1/2̂~v1v8!u2

52
1

16p3EC

`

du u f 1/2̂~u!u2u4Q3S u

CD , ~41!

where

C[A e

a2 1m2, e5H 0 Minkowski space;

1 open universe,
~42!

and an explicit expression~and graph! for Q3(x) can be
found in @14#. The Minkowski space result is obviously re
covered in the limit of infinitea. Furthermore, sinceQ3(x) is
an increasing function on@1,̀ ), the bound for generala is
10401
r

e-

0

ri-
y.

tighter than that in Minkowski space for all sampling fun
tions f (t). Pfenning and Ford@13,15# also noted this for their
particular choice off (t).

We now turn to the closed or Einstein universe, with li
element

ds252dt21a2@dx21sin2x~du21sin2udw2!#, ~43!

where 0<x<p. The mode functions are@18#

Unlm~x!5
1

~2vna3!1/2
Pnl

(1)~x!Ylm~u,w!,

vn5An~n12!

a2 1m2, ~44!

with n50,1,2, . . . , l 50,1, . . . ,n, m52 l ,2 l 11 . . . ,l , and

Pnl
(1)~x!} sinlxS d

d cosx D l 11

cosh~n11!x. ~45!

Using the sum rule

(
l ,m

uPnl
(1)~x!Ylm~u,w!u25

~n11!2

2p2 , ~46!

we obtain the quantum inequality

r>2
1

4p3a3E
0

`

dv (
n50

`

vn~n11!2u f 1/2̂~v1vn!u2

52
1

4p3a3E
m

`

duu f 1/2̂~u!u2 (
n50

N(u)

vn~n11!2,

~47!

with

N~u![ bA~au!22~am!21121c. ~48!

An obvious special case to investigate isam51, in which
vn5m(n11). The sum in Eq.~47! may then be evaluated
exactly, to give

r>2
1

16p3a4Em

`

duu f 1/2̂~u!u2
„N~u!11…2„N~u!12…2.

~49!

This bound may be weakened slightly, by replacingN(u)
5 bau21c with the larger quantityau21, to give

r>2
1

16p3Em

`

duu f 1/2̂~u!u2S u41
2u3

a
1

u2

a2D . ~50!

It clearly differs from the massless Minkowski bound b
O(1/a) terms. The bounds in Eqs.~49! and ~50! are plotted
in Fig. 2 against mass. The difference between these
graphs can be further minimized using the approximatio
below, but at the expense of having a more complicated
6-5
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pression for the bound. The corresponding bound derive
@13,15# is also plotted on the same graph.

Returning to the general case, we note that Eq.~47! can
be written as

r>2
1

4p3a4E
m

`

duu f 1/2̂~u!u2(
n51

N8

n2An21~am!221,

~51!

where N8[ baAu22m2c. The finite sum can again be ap
proximated analytically using the trapezoidal rule, now in t
form

(
n51

N

g~n!5E
1

N

dx g~x!1
1

2
@g~1!1g~N!#1

N21

12
g9~z!

~52!

for somezP(1,N). From the fact that the second derivativ
of g(x)5x2Ax21(am)221 is non-decreasing in this inter
val, we obtain the inequality

r>2
1

4p3a4E
m

`

duu f 1/2̂~u!u2H E
1

N8
dx g~x!

1
1

2
@g~1!1g~N8!#1

N821

12
g9~N8!J , ~53!

with

E dx g~x!5
1

4
x@x21~am!221#3/2

2
1

8
@~am!221#xAx21~am!221

2
1

8
@~am!221#2ln„x1Ax21~am!221…,

FIG. 2. Graphs of the QI bounds for the 4D closed universe w
am51: Eq. ~49! using a dashed line, Eq.~50! using a dotted line,
and that obtained by Pfenning and Ford~solid line!.
10401
in

e

g9~x!52Ax21~am!2211
5x2

Ax21~am!221

2
x4

@x21~am!221#3/2
. ~54!

The bound in Eq.~51! and its approximation in Eq.~53!
are plotted in Fig. 3 againstm, for a51. As can be seen, th
approximation is only very slightly weaker than the exa
bound. Also plotted in Fig. 4 is the bound obtained
@13,15#, for comparison with Eq.~51!.

VI. de SITTER SPACE-TIME

A convenient static parametrization of the de Sitter u
verse is

ds252S 12
r 2

a2Ddt21S 12
r 2

a2D 21

dr2

1r 2~du21sin2u dw2!, ~55!

h FIG. 3. Graphs of the QI bounds for the 4D closed universe:
~51! using a solid line, and its approximation~53! using a dashed
line.

FIG. 4. Graphs of the QI bounds for the 4D closed universe:
~51! using a dashed line, and that of Pfenning and Ford~solid line!.
6-6
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with 0<r<a. The surfacer 5a is the particle horizon for
an observer located at the origin. In this representation,
mode functions for a scalar field with massm and energyv
are

Uklm~x!5
1

~4pa2k!1/2
f kl~z!Ylm~u,w!, ~56!

where we denotez[r /a andk[av. The latter continuously
parametrizes the mode function from zero to infinity, whill
and m are as in Sec. IV. The radial function can then
solved in terms of the hypergeometric functionF(a,b;c;z)
as @19#

f kl~z!5
G~bl

1!G~bl
2!

G~ l 1 3
2 !G~ ik !

zl~12z2! ik/2FS bl
1 ,bl

2 ; l 1
3

2
;z2D ,

~57!

with

bl
6[

1

2 S l 1
3

2
1 ik6A9

4
2a2m2D . ~58!

Using the sum rule~30! in the quantum inequality~14!,
we have for an observer at the origin,

r>2
1

64p3a4E
0

`

dvE
0

`

dk(
l 50

`
2l 11

k U G~bl
1!G~bl

2!

G~ l 1 3
2 !G~ ik !

U2

3 lim
z→0

H 4k2

12z2 1
1

z2 ]z@z2~12z2!]z#J z2l

3UFS bl
1 ,bl

2 ; l 1
3

2
;z2D U2

u f 1/2̂~v1k/a!u2. ~59!

In fact, only the l 50 and l 51 terms contribute@cf. Eqs.
~4.126! and~4.127! of @13##, and the expression may be sim
plified to give

r>2
1

8p5a4E
0

`

dvE
0

`

dk sinh~pk!

3$~k21a2m2!uG~b0
1!G~b0

2!u214uG~b1
1!G~b1

2!u2%

3u f 1/2̂~v1k/a!u2. ~60!

As was noted in@12,13#, there are two cases for which th
gamma functions in Eq.~60! can be evaluated analytically
namely whenm50 and A2/a. Assuming the Lorentzian
sampling function~1! and using Eq.~20!, we obtain, for the
massless case,

r>2
t0

2p4a2E
0

`

dvE
0

`

dv8~5v812a2v83!

3K0„t0~v1v8!…2. ~61!

Defining the new variablesu5v1v8 andv5v8, the bound
becomes
10401
e

2
t0

2p4a2E
0

`

du K0~ t0u!2E
0

u

dv~5v12a2v3!. ~62!

This can be explicitly evaluated using the integral

E
0

`

du ua21K0~ t0u!25
2a23

t0
aG~a!

GS a

2 D 4

~63!

to obtain

r>2
3

32p2t0
4

9

64F11
16

9

5

3S t0

a D 2G . ~64!

This bound is at least four times stronger than that obtai
in @12,13#:

r>2
3

32p2t0
4 F11

5

3S t0

a D 2G . ~65!

In the limit a→` or t0→0, we expect to recover the resul
for Minkowski space. Indeed, the bound in Eq.~64! is then
9

64 that in Eq.~65!, as was observed in@14#.
When m5A2/a, we similarly obtain the quantum in

equality

r>2
3

32p2t0
4

9

64F11
16

9 S t0

a D 2G , ~66!

in contrast to that derived in@12,13#:

r>2
3

32p2t0
4 F11S t0

a D 2G . ~67!

The bound in Eq.~60! and that derived in@12,13# are plotted
for generalm, anda51, in Fig. 5.

We have, in fact, proved that for generalm, the de Sitter
bound~60! differs from the Minkowski space bound~24! by
terms no greater than ordera21/2 as a→`, and so our re-
sults for these cases agree in this limit. This estimate
volves bounds on the integrand in Eq.~60! which are uni-
form in k andv. The proof, which we omit, is accordingly
somewhat technical. It is unclear whether the argument

FIG. 5. Graphs of the QI bounds for de Sitter space-time:
~60! using a dashed line, and that of Pfenning and Ford~solid line!.
6-7
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be strengthened to show that the deviation is in fact O(a22)
in general, as it is for the specific cases considered in E
~64! and ~66!.

VII. SCHWARZSCHILD SPACE-TIME

As the final example, we shall examine the quantum
equalities in a black hole space-time. The line element
the Schwarzschild black hole of massM is

ds252S 12
2M

r Ddt21S 12
2M

r D 21

dr2

1r 2~du21sin2u dw2!. ~68!

For simplicity, we shall only consider a massless scalar fi
in this space-time. The mode functions, in the region exte
to the horizonr .2M , take the form@20#

U
→

v lm~x!5
1

~4pv!1/2
R
→

l~vur !Ylm~u,w!,

U
←

v lm~x!5
1

~4pv!1/2
R
←

l~vur !Ylm~u,w!,

~69!

where, as usual,v is the energy of the field andYlm(u,w)
are the spherical harmonics.RW l(vur ) and RQ l(vur ) are the
outgoing and ingoing solutions to the radial part of the wa
equation, respectively. Although this equation cannot
solved analytically, the asymptotic forms of the solutions
known near the horizon and at infinity.

Again, using the sum rule~30!, we see that the quantum
inequality ~14! becomes

r>2
1

16p3E
0

`

dvE
0

`dv8

v8
(
l 50

`

~2l 11!

3H v82

12
2M

r

1
1

4r 2 ] r@r 2~122M /r !] r #J
3@ uR

→

l~v8ur !u21uR
←

l~v8ur !u2#u f 1/2̂~v1v8!u2. ~70!

In writing this, we are assuming that the mode functions
defined to have positive frequency with respect to the tim
like Killing vector ] t . This is the Boulware vacuum. Now, i
the two regions whereRW l(vur ) andRQ l(vur ) are known ex-
plicitly, we have@21#

(
l 50

`

~2l 11!uR
→

l~vur !u2

.H 4v2~122M /r !21, r→2M ,

1

r 2 (
l 50

`

~2l 11!uBl~v!u2, r→`,
~71!
10401
s.

-
r

ld
r

e
e
e

e
-

and

(
l 50

`

~2l 11!uR
←

l~vur !u2

.H 1

4M2(
l 50

`

~2l 11!uBl~v!u2, r→2M ,

4v2, r→`.

~72!

If we further assume the low-energy condition 2Mv!1,
then @22#

Bl~v!.
~ l ! !3

~2l 11!! ~2l !!
~24iM v! l 11. ~73!

These results can be substituted into Eq.~70!, and the bound
explicitly evaluated using the integral~63!. However, the
maximum value ofl for which the expansion in Eq.~70! is
valid depends on the order of the leading terms which h
been dropped inBl(v). If Eq. ~73! is exact to O@(Mv) l 12#,
then only thel 50 terms should be retained, as theB1 con-
tribution would be smaller than the corrections toB0 @12,13#.

Near the horizon, the quantum inequality can be e
pressed in terms of the observer’s proper time:

t05S 12
2M

r D 1/2

t0 ~74!

as

r>2
3

32p2t0
4 H 1

24S 2Mt0

r 2 D 2S 12
2M

r D 21

1
9

64F11S 12
2M

r D G1•••J , ~75!

where the ellipsis denotes higher-order terms that have b
dropped. This is to be compared with the result derived
@12,13#:

r>2
3

32p2t0
4 H 1

6 S 2Mt0

r 2 D 2S 12
2M

r D 21

111S 12
2M

r D1•••J . ~76!

The bound in Eq.~75! is between9
64 and 1

4 that in Eq.~76!,
at least in the present approximation. Note that in either c
the bound becomes arbitrarily negative near the horizon
the black hole.

On the other hand, the quantum inequality for an obser
near infinity becomes
6-8
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r>2
3

32p2t0
4

9

64H 12
2M

r
1S 2M

r D 2F11
16

9

1

3 S t0

r D 2G
2S 2M

r D 3F11
16

9 S t0

r D 2G1•••J , ~77!

while the corresponding inequality obtained in@12,13# is

r>2
3

32p2t0
4 H 12

2M

r
1S 2M

r D 2F11
1

3 S t0

r D 2G
2S 2M

r D 3F11S t0

r D 2G1•••J . ~78!

Again, the former bound is between964 and 1
4 the latter. It

gives the correct Minkowski space result in the limitr→`
or M→0.

VIII. CONCLUDING REMARKS

In summary, we have derived new quantum inequalit
~14! or ~15! on the normal-ordered averaged energy den
in static space-times, that are valid for quite general sa
pling functions. They were then applied to several stand
examples using the Lorentzian sampling function.~Of
course, other space-times could readily be considered,
as Rindler space, flat space with perfectly reflecting mirro
and other black holes@12,13#.! The resulting bounds ar
stronger than previous results, and would lead to even tig
constraints on the various exotic space-times mentione
the beginning of the paper. Before we conclude, a few co
ments are in order.

An important question is whether our quantum inequa
ties are optimal. This could, for example, be proved by fin
ing a quantum state that saturates the bound, which wo
necessarily belong to the kernel of all the operatorsO6(v)
in Eq. ~A6!. However, it is known that our bound, whe
applied to a massless scalar field in two-dimensio

Minkowski space, is 112 times weaker than the optimal valu
obtained by Flanagan@16#. Unfortunately, his derivation re
lies on some special features of two-dimensional mass
field theory, and does not appear to generalize to other m
realistic cases.

An interesting application of our quantum inequali
would be to the static Morris-Thorne–type wormholes@1#.
Ford and Roman have applied the flat-space version of t
quantum inequalities to this case, and have found that t
constrain the size of such wormholes@5#. They justified this
procedure by making the sampling time scale much sho
than the minimum characteristic curvature scale, so
space-time appears locally flat. However, it would be de
able to verify this calculation using the full curved spa
results; this should not be too difficult once the form of t
scalar field mode functions in the wormhole space-time h
been determined.
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APPENDIX

The inequality needed to prove the results in Sec. II i
generalization of one which was first derived in@14# using
the convolution theorem. Supposef is a smooth, non-
negative function oft, decaying at least as fast as O(t22) for
t→6`. Let operatorsS6 be defined by

S65Herm (
l,l8

$ f̂ ~vl82vl!qlql8al
†al8

6 f̂ ~vl1vl8!ql8qlal8al%, ~A1!

where theql are complex coefficients,2 and Herm X[ 1
2 (X

1X†) is the Hermitian part of an operatorX. We will show
that the expectation values^S6& obey

^S6&>2
1

2pE0

`

dv(
l

u f 1/2̂~v1vl!u2uqlu2 ~A2!

in any normalized quantum state, wheref 1/2(t)[Af (t) is the
pointwise square-root off (t).

To obtain this result, first define a functiong by

g~v!5
1

A2p
f 1/2̂~v!. ~A3!

We haveg(v)5g(2v) becausef 1/2 is real, and

~g!g!~v!5 f̂ ~v! ~A4!

by the convolution theorem, where! is given by

~g1!g2!~v!5E
2`

`

dv8g1~v2v8!g2~v8!. ~A5!

Next, define the following operators on the space of quant
states:

O6~v!5(
l

$g~v2vl!qlal6g~v1vl!qlal
†%.

~A6!

Using the canonical commutation relations~7! and symme-
trizing in l, l8, we obtain

2For clarity, we shall denote complex conjugation by an overl
in this Appendix.
6-9
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E
0

`

dvO6~v!†O6~v!

5E
0

`

dv (
l,l8

$g~v2vl!g~v2vl8! qlql8al
†al8

1g~v1vl!g~v1vl8!qlql8alal8
†

6g~v2vl!g~v1vl8! qlql8al
†al8

†

6g~v1vl!g~v2vl8!qlql8alal8%

5S611E
0

`

dv(
l

ug~v1vl!u2uqlu2, ~A7!

whereS6 are given by

S65Herm (
l,l8

$F~vl ,vl8!qlql8al
†al8

6G~vl ,vl8!ql8qlal8al%, ~A8!

andF, G are

F~vl ,vl8!5E
0

`

dv$g~v2vl!g~v2vl8!

1g~v1vl!g~v1vl8!%

5E
0

`

dv$g~v2vl!g~2v1vl8!

1g~2v2vl!g~v1vl8!%

5E
2`

`

dvg~vl82v!g~v2vl!

5~g!g!~vl82vl!5 f̂ ~vl82vl!,
~A9!
tt

10401
G~vl ,vl8!5E
0

`

dv$g~v1vl!g~v2vl8!

1g~v2vl!g~v1vl8!%

5E
0

`

dv$g~v1vl!g~vl82v!

1g~vl2v!g~v1vl8!%

5E
2`

`

dv g~v1vl!g~vl82v!

5~g!g!~vl1vl8!5 f̂ ~vl1vl8!.

~A10!

The final equalities show that Eq.~A8! agrees with the defi-
nition ~A1!.

Since the left-hand side of Eq.~A7! is manifestly non-
negative, we conclude that the expectation value ofS6 in
any normalized quantum state must satisfy the inequality

^S6&>2E
0

`

dv(
l

ug~v1vl!u2uqlu2, ~A11!

which is the desired result~A2!. Note that the inequality
proved in@14# corresponds to the special case where theql

are real andf is an even function oft.
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