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Projector on physical states in loop quantum gravity
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We construct the operator that projects on the physical states in loop quantum gravity. To this aim, we
consider a diffeomorphism-invariant functional integral over scalar functions. The construction defines a co-
variant, Feynman-like, spacetime formalism for quantum gravity and relates this theory to the spin foam
models. We also discuss how expectation values of the physical quantity can be computed.
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I. INTRODUCTION P(9.9’), which is formally written in terms of a functional
integral over 4-geometrigd4].
The loop approach to quantum gravity] based on the A step towards the definition of the project®mwas taken

Ashtekar variable$2] has been successful in establishing ain [6], where a perturbative expression for the exponential of
consistent and physically reasonable framework for théhe Hamiltonian smeared with a constant functhéfx) =N
mathematical description of quantum spacetifé This Was constructed. What was still missing was a suitable
framework has provided intriguing results on the quantuwﬂlffeomorpmsm-lnvarlant ‘notion of functional integration
properties of space, most notably detailed quantitative resul@ver N(x). Here, we consider an integration on the space of

on the discrete quanta of the geomd#y. The nonperturba- e scalar functions\N(x). This integral, modeled on the
tive dynamicsof the quantum gravitational field, however, is AShtekar-Lewandowski constructiga5] and considered by

not yet well understood. Two major questions are OpenTh|emann in the context of the general covariant quantiza-

First, several versions of the Hamiltonian constraint havé[Ion of Higgs fields|16], allows us to give a meaning to the

) right-hand side(RHS) of Eq. (1). Using it, we succeed in
been proposefl5—7], but the physical correctness of these - ; : ;
versions has been questioni&]. Second, a general scheme expressing théregularized matrix elements of the projector

f ) hvsical ¢ | Y 'IP in a well-defined power expansion. We then give a pre-
or extracting physical consequences from a given Hamilymin,y giscussion of the expectation values of physical ob-

tonian constraint and for computing expectations values 0ferapies. The construction works for a rather generic form
physical observables is not available. of the Hamiltonian constraint, which includes, as far a we
In this paper, we address the second of these problems—gow, the various Hamiltonians proposed so far.
solution of which, we think, is likely to be a prerequisite for  Ag realized in[6], the terms of the expansion &f are
addressing the first problefthe choice of the correct Hamil- natyrally organized in terms of a four-dimensional Feynman-
tonian constraint The problem we address is how expecta-graph-like graphic representation. Expressibncan thus be
tion values of physical observables can be computed, given geen also as the starting point fospacetimeepresentation
Hamiltonian constraint operatdr(x). (For an earlier at- of quantum gravity. Here, we complete the translation of
tempt in this direction, sefd].) We address this problem by canonical loop quantum gravity into covariant spacetime
constructing the “projector’P on the physical Hilbert space form initiated in [6]. The “quantum gravity Feynman
of the theory, namely on the space of the solutions of theyraphs” are two-dimensional colored branched surfaces, and
Hamiltonian constraint equation. Formally, this projector canghe theory takes the form of a “spin foam model” in the

be written as sense of Baefl7], or a “world sheet theory” in the sense of

Reisenbergell8], or a “theory of surfaces” in the sense of

P~ SH (X))~ DN1exd —i [ d3x N(x)H(x ) Iwasaki[19], and turns out to be remarkably similar to the
l_x[ (H() f [DN] F{ f (IHG) Barret-Crane moddPR0] and to the Reisenberger modalL]

D (see alsd22]). On the one hand, the construction presented

here provides a more solid physical grounding for these
in analogy with the representation of the delta function as thenodels; on the other hand, it allows us to reinterpret these
integral of an exponential. The idea of treating first classmodels as proposals for the Hamiltonian constraint in quan-
constraints in quantum theory by using a projector operatotum gravity, thus connecting two of the most promising di-
defined by a functional integration has been studied byections of investigations of quantum spacetiiaa].
Klauder [10], and considered also by Govaerfd1], The paper is organized as follows. In Sec. I, the basics of
Prokhorov and ShabanoM?2], Henneaux and Teitelboim loop quantum gravity are reviewed, organized from a novel
[13], and others. In the case of gravity, the matrix elementsind simpler perspective, which does not require the cumber-
of P between two states concentrated on two 3-geomedries some introduction of generalized connectigsse alsg24]).
andg’ can be loosely identified with Hawking's propagator Section Il presents the definition of the diffeomorphism-

invariant functional integral. In Sec. IV we construct the pro-

jector P and discuss the construction of the expectation
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Il. LOOP QUANTUM GRAVITY [24] for the construction of the elementary quantum field
perators on this space.

The SUZ2)-gauge-invariant states form a liner subspace
Lo in L. A convenient orthonormal basis in, is the spin

o oy X : . network basig 28], constructed as follow. Consider a graph
ics is specified by the usual Yang-Mills constraint, whlchr embedded irS. To each linke of T, assign a nontrivial

generates local SW) transformation, the diffeomorphism SU(2) irreducible representatiof., which we denote the

constrainD[f], which generates diffeomorphisms®fand  qor of the link. Consider a node of T, where the links
the Hamiltonian constraintd[ N], which generates the evo- e, ... ey meet; consider the invariant tensoren the ten-

lution of the initial data in theéphysically unobservableco- o, product of the representatiml, ] o of the links that

ordinate time. Herd is i_” the algebra of the group Diff of et at the node; the space of these tensors is finite dimen-
the diffeomorphisms ak.; namely, it is a smooth vector field gjona (or zero dimensionaland carries an invariant inner

on X, andN is a smooth scalar function ab. The theory et Choose an orthogonal basis in this spamed as-

admits a nonperturbative quantization as followBor a  gjgn o each node of I' one element,, of this basis. A spin

simple |ntrOQUctlon, se@24], for details sed3] and refer- network S=(I",{j},{v}) is given by a grapH’ and an as-

ences therein. signment of a colofj, to each linke and a basis invariant
tensorv,, to each node.

General relativity can be expressed in canonical form in’
term of a(rea) SU(2) connectionA defined over a 3D mani-
fold %, [2,25]. We take3, to be topologicallyS;. The dynam-

A. Hilbert space and spin networks basis The spin network staté# 5(A) is defined as
We start from the linear spadeof quantum state¥ (A)
which are continuougin the sup-topology functions of ‘I’s(A)=H H v,Rie(U(e,A)), (4
e n

(smooth connectionA. A dense(in L's pointwise topology
subset of states ih is formed by the graph-cylindrical states
[15]. A graph-cylindrical stateV - ((A) is a function of the
connection of the form

whereRI(U) is the matrix representing the &) group el-
ementU in the spinj irreducible representation, and the two
matrix indices ofRle(U(e,A)) are contracted into the two
Yr(A)=f(U(ep,A), ... U(eA), (2 tensorw, of the two nodes adjacent & An easy computa-
tion shows that(with an appropriate normalization of the
basis states,, [27]) the statesl ¢ form an orthonormal basis
in Hauy:

wherel is a graph embedded b, e, .. . e, are the links
of I', U(e,A)=P expfA is the parallel propagator IP)
matrix of A along the pathe, andf is a complex-valued
(Haar-integrable function on [SU(2)]". The function (Vs,Ws)=0r 1 6431 Ot} - (5)
W ¢(A) has domain of dependence on the gréplone can
always replacd™ with a larger graphl’’ such thatl’ is a
subgraph ofl’’, by simply takingf independent from the
group elements corresponding to the linkg'ihbut not inT". The Hilbert spacé,, carries a naturalnitary represen-
Therefore any two given graph-cylindrical functions can al-tation(Diff) of the diffeomorphism group ok.:

ways be viewed as defined on the same griaphlsing this,

B. Diffeomorphisms

— -1 i
a scalar product is defined on any two cylindrical functions [U(P)I(A)=($™A),  ¢eDiff. ©®
by It is precisely the fact thaH,,, carries this representation
(¥r,¥rg) which makes it of crucial interest for quantum gravity. In

other wordsH ,,, and its elementary quantum operators rep-
_ T T R TRY o resent a solution of the problem of constructing a represen-
f[su(z)lndul AUnf(Us---Un)gUs--Un) B ion of the semidirect product of a Poisson algebra of ob-
_ _ o ~servables with the diffeomorphisni30].
and extends by linearity and continuity to a well-defined  Notice that/ sends a state of the spin network basis into
[15,2€ scalar product oh.. The Hilbert completion of in  gnother basis state:

this scalar product is the Hilbert spakk,,,: the quantum
state space on which quantum gravity is defih&de refer to [U(P) s](A)=ths( ™ "A) = Prys(A). (7)

Intuitively, the spaceH ;s of the solutions of the quantum
L _ gravity diffeomorphism constraint is formed by the states
Haux is the state space of the old loop representafioh  inyariant undeis. However, no finite norm state is invariant
equipped with a scalar product which was first obtained through dnder/, and generalized-state techniques are needed. We
! : . X ) ) ;
path involving C* -algebraic techniques, generalized connectionsg oo here the construction B, [1,26,31, because the

anq functional “?eaS“@E"ZG- Later, the same scalar product was o) tion of the Hamiltonian constraint will be given below
defined algebraically ifi27] directly from the old loop representa-

tion. The construction ofH,,, given here is related to the one in

[15,26 but does not require generalized connections, infinite di-

mensional measures or the other fancy mathematical tools that weré?For later convenience, we choose a basis that diagonalizes the
employed at first. volume operatof4,29.
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along similar linesH 4+ is defined first as a linear subset of of the projectodl is equivalent to having solved the diffeo-
L*, the topological dual of. It is then promoted to a Hilbert morphism constraint.

space by defining a suitable scalar product oveH{;ss is Furthermore, the above construction can be expressed
the linear subset oL* formed by the linear functionalp  also in terms of certain formal expressions, which are of
such that particular interest because they can guide us in solving the
Hamiltonian constraint. Define a formal integration over the
pU(P) )= p() (8 diffeomorphism group Diff satisfying the two properties
for any ¢ e Diff. From now on we adopt a bra and ket nota-
tion. We write Eq.(8) as fD_”DqS: 1 (15
I
(plU($)1)=(pl®). © 4
and we write the spin network stafés as|S).
Equivalence classes of embedded spin networks under the J D¢ 8s,ps=Cy(s - (16)
action of Diff are denoted asand calleds-knots or, simply, Diff

spin networks. We denote &$S) the equivalence class to

Wh|Ch S be'ong_ Everys_knot s defines an e|emer(15| Of Then a diﬁeomorphism-invariant Std@ can be Wl’itten as a
Hgifs Via “state in H,,y integrated over the diffeomorphism group.”

That is,
(s|S)=0 if s#s(9

=c, if s=s(S). (10) Is(S)>=fDmD¢|u(¢)S>- 17

Herec, is the integer number of isomorphisitiscluding the In fact, Eqgs.(10) and (11) can be obtained from Eq€15),

identity) of the (abstrack colored graph of into itself that . . ; .
preserve the coloring and can be obtained from a diffeomor(—16)’ and(17). Using this, we can write the projection opera-

phism of 3. A scalar product is then naturally defined in tor I, defined in Eq(12), as
Haitr by

1= . 8
(sls')=(s/S) 1 Joeus 19

for an arbitraryS’ such thats(S')=s’. One sees immedi- Equivalently, we may write the group element as an expo-
ately that the normalized states (/&L)|s) form an orthonor-  nential of an algebra element, and formally integrate over the

mal basis. algebra rather than over the group, that is,

The spaceHy;;s is not a subspace ofl,,, (because
diffeomorphism-invariant states have “infinite norm’Nev- H:f Df”e—iD[f-]. (19)
ertheless, an important observation is that there is a natural

“projector” IT from H,,, to Hy;ss, _ . o . -
prol aux T Tdift This equation has a compelling interpretation as the defini-

I1:|S)—|s(S)), (12  tion of the projector on the kernel of the diffeomorphism
constraint operatob ,(x) via

which sends the state id,,, associated with an embedded
spin networkS into the state inHy;;¢ associated with the N N 2 . 3, fa
corresponding abstract spin network statdlotice thatll is 1 gx 3(Da(x)) J Df exp( IJ X (x)Da(x)
not really a projector, sincH 4;;s is not a subspace &, (20
but we use the expression “projector” nevertheless, because
of its physical transparency. Sind¢y;; can be seen as a asn

subspace ofi},,,, the operatofI defines gdegeneratequa-

dratic form( | )girs ON Hayy: 8(x)= %fwdp e X, (22)
(SIS )ait=(STI|S")=(s(S)|S") =(s(S)[s(S")). (13

We shall define the projector on the kernel of the Hamil-
Hgiss can be defined also by starting with the pre-Hilberttonian constraint in a similar manner.
spaceH . equipped with the degenerate of a quadratic form

( | )airr, and factoring and completing in the Hilbert norm IIl. DIFFEOMORPHISM-INVARIANT MEASURE
defined by( | )qits [32]. That is, states irH, are the _ )
(limits of sequences dkquivalence classes of statesHg, In this section, we construct a measure on the space of
ments” analogue of Eq(19) for the Hamiltonian constraint. Con-
sider smooth function®N:>—S; on the three-manifolc,
(SIS’ (14)  taking value on the intervdl=[0,T[. We keep track of the
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“length of the intervall,” T, instead of normalizing it to 1, 1 11 1
because this will simplify keeping track of dimensions in the j DN N(X)N(x) = $f dN NZ:; §T3=§T2-
physical application. LefV" be the space of such functions, ! 28)
equipped with thesup topology. LetF(N) be a continuous

complex function on the infinite dimensional topological Namely, we must distinguish the case in which the argu-
vector spaceV, and denote the space of these functionfas ments of the two functiondl( ) are distinct or the same.
Let {xj}=Xy, ... X, be a set of(disjoint) points inX, and  The general pattern should be clear. A general polynomial

f:(1)"—C a complex integrable function afreal variables.  functionalF, o will have n, pointsx{¥, ... x in its
; : 10 K Kk
Consider a functiorF £ of the form domain of dependence in which the functidi{x) appear
F{xi},f(N):f(N(Xl)v NG, (22) with powerk. A simple calculation yields then

namely, a function oN having the the seftx;} as its domain In, . ..nK:f DNFn . n

of dependence. The set of functions of this form forms a

dense linear subspace 6f in the pointwise topology. _ ) 1)
The simplest nontrivial of such functions is obtained by = | DNIN(x;”)---N(x;,")]

picking a single poink and choosing (N)=N. Notice that @) 22

this defines precisely the Gel'fand transfof(N)=N(x) XINCGT) -+ - N(X )]

or, in Gel'fand’s enchanting notation
XINOED) - - NOED) 1€

X(N)=N(x). (23 K
1\

Since the functions of the forrf22) can be seen as a gener- =T< nkkﬂl k+1
alization of Gel'fand’'sF,(N), we denote them as “general- -
ized Gel'fand functions,” or, simply, Gel'fand functions. =dn,, ... n, (29
Gel’fand functions can be seen as the scalar-field analogue of
the Ashtekar-Lewandowski’s graph-cylindrical functidis, The diffeomorphism group Diff ok, acts naturally onV,
which are defined for connection fields. via (¢N)(X)=N(¢ 1(x)), where ¢:3—3 is in Diff. It is

Define the following linear form on the Gel'fand func- easy to see that the integka#) is diffeomorphism invariant:
tions:

1 f [DN]F[(;SN]:J'[DN]F[N]. (30)

(M"

f DN Fyy; 1(N)= fnle...dan(Nl,...,Nn).
! This follows from the fact that the RHS of E(R4) is clearly

(24) insensitive to a diffeomorphism transformation Nn

HeredN; /T is the normalized Lebesque measure on the in-

tervall. Finally, denote the closure df in the norm IV. DYNAMICS: THE REGULARIZED PROPAGATOR

We now come to the construction of the physical state
||F||:j DN|F(N)| (25) spaceH ,pysand the partition function of the theory. We have
to solve the Dirac’s Hamiltonian constraint equation

asL,[N]; the linear form(24) extends by continuityin the H[N]#=0 (3D
L* topology defined by this nonrto all of L,[N]. o .
A simple class of integrable functions is given by polyno- for the quantum Hamiltonian constraiff N].
mial Gel'fand functions. We have indeed
A. Hamiltonian constraint: First version

f DN 1= EJdN 1=1, The operatoH[N] that we consider is a small modifica-
T tion of the Riemanian Hamiltonian constraint defined3h
However, we make only use of the general structure of this
1 11,1 operator, which is common to several of the proposed vari-
J DN N(x) = TJ’ldN N=35T=5T. (26)  ants. We take a symmetric version H[N], which “cre-
ates” as well as “destroying” links. The matrix elements of

Notice that for quadratic functionals we must distinguish twoH[N] are given by
cases e
(PIHIN]|#)=(¥ICIN]|p) +(SICIN]|¥),  (32)
1 1 ; . : , :
DN NGON(Y)= — | | dNydN,N;N,==T2, whereC[N] is the nonsymmetric Thiemann’s constraint.
J ()(y)T2j|J|12124

We recall that the operatdZ[N], acting on a spin net-
(270 work statels), is given by a sum of terms, one per each node
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The precise definition o€[N] is the following:
C[N][s)=Af(s)sf;i.N). (34

Let us explain our notation. The sum over the repeated indi-
cesB andi is understood. The indexruns over the nodes in

s. The indexB=(l",1",€’,€") runs over the coupled (I")

of (distincY links adjacent to each nodend overe’ ande”,
which take the values- 1 or — 1. Thes-knot s? was intro-
duced in[33]. It is defined as the right-hand part of Fig. 1:
that is, by adding two new nodés andi” on the two links

I" andl” (determined byB), respectively, adding a new link
€addegColored 1/2 joining " andi”, and altering the color of

FIG. 1. Action of the Hamiltonian constraint on a trivalent node.

i of s. Sketchy(a more precise definition will be given be-
low), each such term creates an extra lelyeq4joining two
pointsi’ andi” on two distinct links adjacent t and alters
the colors of the links betweerandi’ and betweem andi”.
The result is multiplied by a coefficient depending only on

the colors ofs and by the value of the smearing functibh the links jomg?gl anﬂ| (anld, r;s’pectlvely,. alnd,|,) by;l
“in the point where the nodeis located.” This is illustrated ©F —1 according to the value af' (respectivelye”). A7(s)
in Fig. 13 is a coefficient defined ifi5] whose explicit form is com-

puted in[34].

It is important to observe tha&&[N] is defined as a map Summarizing, we have

from Hgi¢s to HZ .. In this definition there is a subtle inter-
play between diffeomorphism-invariant and non- (SIC[N]|s)=AP(s)N(xs;)(S|sP). (35)
diffeomorphism-invariant aspects of the Hamiltonian con- ’

straint, which is a key aspect of the issue we are consideringwhere (S|s)=(s|S)=(s|s(S)); see Egs.(10) and (13)].
and must be dealt with with care. The rea&jiN] is defined Clearly, C[N] can equivalently be viewed as an operator
on Hyj¢¢, namely on the diffeomorphism-invariant states, isfrom H,, to Hyi¢;, by writing

that it is on these states that the “precise position” of the

pointsi andi” and of the linke,qqcqis irrelevant! However, (s|CIN][S)=AP(s)N(xs)(s[s(S)F). (36)
C[N] is not diffeomorphism invariant, and therefore
C[N]|s) is not inHg;¢, because a diffeomorphism modifies
N. The feature ofC[N]|s) that breaks diffeomorphism in-
variance is the fact that it contains a factor given by t.he valug 5| H[N]|s)= AB(s)N(xs;)(S|sP) + AP(S)N(xs)(S(S)F]s).
of N(x) in the point in which the nodé is located: this

location is not a diffeomorphism invariant notion. (37)

Before presenting the precise definition ©fN], which . .
takes care both of its diffeomorphism-invariant and its non-only one of the two terms on the RHS of this equation may

diffeomorphism-invariant features, we need to define certairti)e nonva}nlshlng: the first, has two nodes more thanthe
* second, ifS has two nodes less than

peCUla et s it il sboeat I he S We can smplty o rtation by inoctcing an ndex

be é scalar function o. We define the stat¢s;i N in =(B, 1) where+ 1 indicates that a link is added andl
* . . . LN) . indicates that the link is removed. We obtain

H.. by (again, we interchange freely bra and ket notation

[Recall thats(S) is thes-knot to whichS belongs] This fact
allows us to define the symmetrized opera®2) by

(SIHIN][s)=Af(s)N(xsi)(S[s"), (38)
;L,NIS)=N(xg;)(s|S), 33
(s:,NIS)=N(x5)(s|S) C R
wherexg; is the position of the node @that gets identified A{”"l(s):Kf*“(siﬂ). (39
with the nodeé of sin the scalar product. Notice that the state . . - .
|s;i,N) is “almost” a diffeomorphism-invariang-knot state: ~ Notice that the precise position efg¢eq(and thus* and
in facts, it is “almost” insensible to the location & The ") drops out from the final formula, because of the diffeo-

only aspect of this location to which it is sensible is the morphism invariance of the quanti(38|sf‘>.5 This is essen-
location of the node. In fact, on the RHS of E®3), the tial, because if a specific position fegyq.qhad to be cho-
diffeomorphism-invariant quantitys|S) is multiplied by the  sen, diffeomorphism invariance would be badly broken. One
value ofN( ) in the point in which the node i is locatelhe  can view the coordinate distaneebetweeni andi’ (and
Hamiltonian constraint defined by Thiemann acts onbetweeni andi”) as a regulating parameter to be taken to
diffeomorphism-invariant states and creates stateldjn,, zeroafter the matrix elementé36) have been evaluated. The
of the form(33). limit e—0 is discontinuous, buts|S?) is independent from

e for e sufficiently small, and therefore the limit of these

30n agiven state, the Hamiltonian acts on a finite number of

points, but the operator itself acts on all space points. 50One must only worry about the positioning fygeq Up to iso-
“More precisely, only on these states can the regulator used in thepy. This is carefully defined ifi5], following a construction by
quantization of the classical quantity be removed. Lewandowski.
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matrix elements is trivial. Thus, the operator is definedthe pointi in (the RHS of Fig. 1, andy may be the coordi-
thanks to two key tricks(1) the diffeomorphism invariance nates of the poinit’ (on the RHS of Fig. L Now, later on,
of the statds) acted upon allows us to get rid of the precise expressions such as E@1) will appear within functional
position of e,q4eq; (2) the lack of diffeormorphism invari-  integrals overN. Inside these integrals, the only feature of
ance of(S| allows us to give meaning to the point; these two positions that matters is whetiRery or not (see
“where the node is located,” and therefore allows us to giveSec. ll)). Therefore, the only feature of the positionegfgeq
meaning to the smearing of the operator with a giyeon-  that matters is whether its end points, nameélyandi” in
diffeomorphism-invariantfunction N(x). Fig. 1, are on top of or not. This is the only dependence on
This is whyH[N] is defined as a map from;;; toH%,,.  the regulator(the position ofe,q4ed that survives in the
The first of these two key facts, which allow the quantumintegral. More precisely, in the integration owsr the arbi-
Hamiltonian constraint operator to exist, was recognized irfrariness in the regularization reduced to the arbitrariness of

[33], the second if5]. the decision of whether or not we should think at', andi”
on the RHS of Fig. 1, as on top of the pointn the LHS or
B. Hamiltonian constraint: Second version not.

Thei lav b diff hismm-i . q We can view this choice in the following terms. The op-
e Interplay between diffeomorphism-invariant and Non-g 5.6 C[N] creates new nodes at positions which are dis-

diffeomorphism-invariant constructs described above needﬁlaeed from the original node by a distaneewheree is to

to bg crafted even more finely, In order to t.)e a_ble to €XPOhe |ater taken to zergiaking this limit is in fact necessary in
nentiate the Hamiltonian constraint and derive its kernel. Iy 4. 1o identify the quantum operator with the desired clas-

fact,t_lr; (_)rder to exponent!lalm?][N] a:nd dto lexp_?rr:d thz e>f[p0- ¢ sical quantity. The choice is whether to taketo zero before
nential in powers, we will have to deal with products of J " qorthe integration oveX.

H[N]’s. In order for these products to be well defined, the Let us denote the position of the nodef S (the node

domain of the operator must include its range, whickes ;1o ypopby x. Denote the two new nodes created by the
sentially Hayx. Therefore we need to extend the action of ion of the operator ag andy”. And denote the position
HIN] from Hgir to Hayx. The price for this extension is, of ¢ yhe nodei after the action of the operator gs(nothing
course, that the operator becomes dependent on the regui%-rcesxzy a priori). The natural choices ard) y=x, '’

tor, namely, on the precise position in whiefyyeqiSs added. £X, V'EX, (2) y#£X, Y #X, Y'#X, and (3) y=x y”=x
However, we can do sbere because such dependence will ,_ ' ' ’ ' ' ’

. ) . . y'=X.
disappear in the integration ovak The choice is exquisitely quantum field theoretical: we are
We defineH[N] on H,,, by simply picking a particular g y4a ;

iy . 2 o defining here the product of operator-valued distributions,

position fore,qgeqin the definition ofS™: and we encounter an ambiguity in the renormalization of the

 N(v. ) A o regularized product. We thus have three options for the regu-
HIN][S)=N(X)A(S)|S). A0 |arization of the operator produc§[N]---C[N], corre-

where, clearly,A%(S)=A%(s(S)). [When a=(8,—1), no sponding to the three choices above.

modification is necessary. That is, a link is removed irrespec- tcho'cfet(s) IS not (teasny) dcorrr:p_atéble_ V\I'(';h the symme_tn-l
tively from its precise location.In a quadratic expression zation ot the operator, and ¢ oic8) yields a nonsensica
vanishing of all the matrix elements of the projector. Thus,

this yields we adopt, at least provisionally, choi€®) (which, after all,
(SIH[NJH[N]|s) is probably the most natupalThat is, we assume thattself
is not displaced by the Hamiltonian constraint operator,
:Ai“(S{lll)Ai“(S)N(xSélc_«zYiZ)N(xs_cqyil)(Slsf“ll‘i’j . while i’ andi” are created in positions which adistinct
't l2 "t from the position ofi (see Fig. 1
47 For a product ofn operators(with the same smearing

function), we have
Here i, labels the nodes of. After the action of the first

operator, and thus the additidor subtractiohn of one link, .
we obtainsi“ll. The indexi, runs over the nodes (sf“ll, and (SI(HIND"|s)

therefore its range is larggor smallej than the index, =N(x)- - -N(X)A"Y(S) - - - AT(S™ -1y
because of the two new nodés the two nodes removéd 1 L
Notice that in each of the terms of the sum on the RHS of
Eq. (41) (that is, for each fixed value of the indices ><<s|s'i“1' "'i'“n>, (43)
i1,aq,i,a5) We have a product Lo
N(YIN(x), (42)

;"11""{_"1:1, and we have
s

wherex andy are the positions of the two nodes acted upondenoted simply agy, . .. X, the positions of the sequence
by the two operators. In particular, the secdfidN] operator  of nodes acted upon in a given term. According to the regu-
may act on one of the nodes created by the first operatdarization chosen, this sequence contains points which are

H[N]. For instancex in Eq. (42) may be the coordinates of distinct except when a node is acted upon repeatedly.

Whereij runs over the nodes of
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C. Expansion

Our task is now to define the spate,,,s, using the
various tools developed above. We aim at definktg,,
following the linesH ;¢ is defined by the operatdf in Egs.
(19) and(13). That is, we want to construct the operator

P:f DNe 'HINI (44)
whose matrix elements
(slPls")= [ DN(sle MM,
define the quadratic form
(sls")pnys=(s[Pls"). (46)

PHYSICAL REVIEW D 59104015

feomorphisms and rewrite E48) using Eq.(17) as

(s|Pqls)= D</>J DN(u(¢)Sle"M]s"),
Diff ING|<T
(49)
whereSis any spin network such that
s(S)=s. (50
Next, we expand the exponent in powers
(s|Pq|s’)= Dqﬁf DN
Diff IN(X)|<T
o (=) ANy
X(U($)S|| 2 ——(HIND"|[s").
n=0 N!
(51

Using the explicit form(43) of the Hamiltonian constraint

Hphys is then the Hilbert space defined over the pre-Hilbertoperator and acting with( ) explicitly we obtain

spaceH girs by the quadratic forn§ | ),n,s. As forII (see
Sec. Il B, we will call P a “projector,” slightly forcing the
usual mathematical meaning of this term.

Notice that the Hamiltonian constraint we use is a density
of weight 1(instead of 2, as in the original Ashtekar formal-

ism); therefore the integration variabM is a scalar field.
This fact allows us to interpret the integrationNhin terms
of the integral defined in Sec. fIThe importance of having

a weight-1 Hamiltonian constraint in the quantum theory was

realized by Thiemanh5].

We begin by regularizing the integréd5) by restricting
the integration domain of the functional integral[iDN] to
the subdomain formed by all the functioNsthat satisfy

wpdsh=3, S o[
XDN N((x; ) -N((x;,))
AT ) AT (s,
(52

wherei; runs over the nodes @”f‘ll
used Eq.50) and

(53
IN(X)[<T, (47)
which follows from it. Notice that, as promised, the only
whereT is a regularization parameter with the dimensions off€maining diffeomorphism-dependent quantities are the ar-
time. The physical limit is recovered far— . We write guments of the functions( ). But since theDN integral is
diffeomorphism invarianfsee Eq(30)], the integration over

Diff can be trivially performed using Eq15). Also, notice
that theN(x)'s appear only in the polynomials. Thus we

48
“9 have

(slPrish=]  DN(sle s
IN()[<T

Notice that the regularizatio@7) is diffeomorphism invari-
ant.

By taking advantage from the diffeomorphism invariance
of expression(48), we can insert an integration over the dif-

xil(T)Ai':‘(Sal """ “:1)~ o

(PP in

(slpalsn=3, 0,

=0 In

(59

where

50ne might be puzzled by the fact that the measure defined in Sec.
Il is normalized, while the measure in EQ1), which is the formal
analogue of expressiof#4), must not be normalized, nor can be
seen as the limit of normalized measures. The problem, however, is . ) . .
that the choice of the measure in E@4) must incorporate the Now, the last integral is precisely the integral of a poly-
renormalization of the divergence comifiat least from the vol- ~ homial Gel'fand function discussed in the previous section.
ume of the gauge orbit. The normalization of the measure is needefihe only difference here is that the domain of thid inte-
to make our expressions converge, and should be viewed, we thingral is between-T andT instead of between O aril The
as a quantum field theoretical subtraction. effect of this is just to put all the odd terms to zero and to
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double the even terms. Let be the number of points that
appeark times in the Iistxin, -+ Xi, SO that

Ek: Kne=n. (56)

We obtain

PR xil(T):(l_k[ e(k))dnl ,,,,, o (57)

whered, . , is defined in Eq(29), ande(k) is defined

for any integem by

FIG. 2. The elementary vertex.
e(2n)=2,
In particular, let the sequena&2) be generated by a se-
e(2n+1)=0. (58  guence ofn actions of single terms of the Hamiltonian con-
straint acting ors:

From Egs.(29) and(56), we have

on:{s,si‘zl,si‘z}jz, o slal1 '''''''' i’:"}. (63
k Nk
Iy « (T)=H e(k) T_ =T”H Lk). We call such a sequence a “spin foam,” and we represent it
T K k+1 k' (k+1)" as a branched-colored 2D surface. A branched-colored sur-

(59 face is a collection of elementary surfadésces carrying a
_ _ color. The faces join in edges carrying an intertwiner. The
Inserting Eq.(59) into Eq. (54), we conclude edges, in turn, join in vertices. A branched colored surface
with n vertices can be identified with a sequel(8) if it can
be sliced(in “constant time” slice$ such that any slice that
does not cut a vertex is one of the spin networks in (68).
In other words, the branched-colored surface can be seen as
e(k) the spacetime world sheet or world history of the spin net-
work that evolves unden actions of the Hamiltonian con-

(s PTls'>=n§0 T(s|P(M|s"), (60)

_| n
prsy=— S

i1, g, ey K (K1) straint.
o wrw . an Each action of the Hamiltonian constraint splits a node of
XAT(STE T B ATS(SIS'T T the spin network into three nodésr combine three nodes
61) into one, and thus generates a vertex of the branched sur-

face. Thus, as in the usual Feynman diagrams, the vertices

Notice that the integration ovéd has cancelled the loca- describe the elementary interactio_ns of the t_heory. In particy—
tion dependence of the regularization. More precisely, th ar, here one sees that the complicated action of the Hamil-

position of the added links and nodes is cancelled by sancf[ﬁn'an d|§played In Flg.dl,twr;;]ch r_nakles ta node ts_pllt mio
wiching between diffeomorphism-invariant states, leaving Irée nodes, corresponds 1o thé simpiest geometric vertex.
Figure 2 is a picture of the elementary vertex. Notice that it

the arguments oN() as the only regularization-dependent . . .
9 0 ; y reg pe! Jepresents nothing but the spacetime evolution of the el-

ementary action of the Hamiltonian constraint, given in Fig.

We recall that the technique for the explicit computationl' _An example O,f a sqrfa_ce in the sum is given in Fig. 3 we
write do,=sUs’ to indicate that the spin foanmwr, is

of the coefficients\{(s) is given in[34]. The last equation is I . . )

an explicit and computable expression, term by term finitegggggzgeb% tgae Og"t'tﬁleags] fllptaldsepln networksinds’. We
for the regularized matrix elements of the projector on the ! n piitu
physical state space of the solutions of the Hamiltonian con- n (K)

' 1
straint. Alon)= Eﬂl A(v)l_k[ (k+1)"’

tion overN.

(64)

D. Interpretation: Spin foam wherev run over the vertices of,, and the amplitude of a

The terms of the sum61) are naturally labelled by single vertex is
branched-colored surfac¢8,17,1§ or “spin foams.” Each a1
surface represents a history of thdnot state. More pre- A)=A °(s 0. (65

N
cisely, consider a finite sequenog of n+1 spin networks ) )
The amplitude of a vertex depends only on the coloring of

S0+S1, + - Sp- (62)  the faces and edges adjacent to the vertex.
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I

gral should converge nicely. Thus, we may expect the expan-
sion inT to be meaningful for suitable observablsge next
section.

The difficulty of constructing interesting physical observ-
ables invariant under four-dimensional diffeomorphisms in
general relativity in well knowrj35] and we do not discuss
this problem here. Instead, we notice that given an operator
A on Hgy¢¢, invariant under three-dimensional diffeomor-
phisms, one can immediately construct a fully gauge-

invariant operato© simply by

O=PAP. (69)

For instanceA may be the volum& of 3, operatof{4,29 or
the projector on a given eigenspace\obf

A=48(V,v), (70)

i

FIG. 3. A term of second order.
wherev is one of the eigenvalues &f. Consider the expec-
Using this, we can rewrite Eq$60), (61) as tation value ofO in a physical state

_(s|OIS)anys_(s|PAPIs)
<S|S>phys <S|P|S>

While we expect this quantity to be finitéor an appropriate

(0) (71)

<s|PT|s’>=nZOT“ > Aoy). (66)

on ,30’n=SUS'

The key novelty with respect t®] is the factor

A), the numerator and the denominator are presumably inde-

pendently divergent, as one may expect in a field theory. Our

strategy to computéO), therefore, must be to take the

H e(k) _ (67) —oo limit of the ratio, and not of the numerator and of the
k (k+1)" denominator independently. We thus properly define
. . . S|PtAPt|s
The integersn, are determined by the number of multiple <OT>:M (72)
actions ofH[N] on the same vertex. (sPrs)
The last expression leads immediately to the form of theyq
(regularized “vacuum-to-vacuum” transition amplitude or _
the partition function of the theory (O)= lim (Oq). (73
T—o
- Both the numerator and the numerator in EXR) can be
— n
ZT_anO T ;n Alan) 68 \written as power series i. Therefore we have
for o’s with no boundaries. In other words, the theory is 2 T a,
defined as a sum over spin foamrg, where the amplitude (0)= lim ”—, (74)
A(o,) of a spin foam is determined, via E¢4), by the Tooo E T
product of the amplitudeé\(v) of its vertices. Thus, the m m
theory is determined by giving the amplitud€v) of the
vertex, as a function of adjacent colors. where
E. Physical observables a= > (s P{M[s')(s'|[V[s")(s"[P{"™|s")  (75)

m=0,n

The expressions we have defined depend on the regulator
T. A naive limit T—« yields to meaningless divergences. a
On the other hand, it is natural to expect to be able to remove b,=(s|P{V|s). (76)
the regulator only within expressions for physical expecta-
tion values. Loosely speaking, the integfdi) defines a The matrix elementgs| P(T“)|s> are explicitly given in Eq.
deltalike distribution, and does not converge to any function(61). Notice that they are finite and explicitly computable.
itself; however, its contraction with a smooth function shouldEquation(72) defines a function of analytic in the origin.

converge. In particular, for finitd the integral contracted We leave the problem of determining the conditions under
with a function gives the integral of the Fourier transform of which the higher order terms are small, and of finding tech-

the function over the intervdl—T,T]. If the function has a niques for analytically continuing it to infinity on the Rie-
Fourier transform that decays reasonably fast, then the intanann sphere, for future investigations.
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F. Quantum ADM surfaces

An important lesson is obtained by writing the expression

PHYSICAL REVIEW D 59 104015

are precisely the relevant observables in the classical theory
as well. We illustrate them in the following section.

for the expectation values in the spin foam version. Consider,

for simplicity, the case in whictA is diagonal in the loop

basis.(This is true for the volume, which is the reason for the

choice of the basis in the intertwiners space, in Seg.Iil.
this case, Eq(75) becomes

a= 3 (SIPIs)AS)(S PE s (77

Recalling Eqs(61) and(66), this can be rewritten as

an=2

Tn

A(on), (78)

Z V(s')

G. Four-dimensional diffeomorphism-invariant observables
can be localized in time

Claims that diffeomorphism invariant observables cannot
be localized in time can be found in the literature, and have
generated much confusion. These claims are mistaken. Let
us illustrate why a physical general relativistic measurement
localized in time is nevertheless represented by a
diffeomorphism-invariant quantity.

Consider a state of the solar system. The state can be
given by giving positions and velocities of the planets and
the value of the gravitational field on a certain initial ADM-
surface— or, equivalently, at a certain coordinate timé&/e
can ask the following question: “How high will Venus be on
the horizon, seen from Alexandria, Egypt, on sunrise of

where thes’ are all possible spin networks that cut the sur-ptolemy’s 40th birthday?” In principle, this quantity can be

face o, into two (past and futurgeparts.

Equation(78) shows that the expectation value Of is
given by the average & on all thediscrete Arnowitt-Deser-
Misner- (ADM-)like spatial slices 'sthat cut the quantum
spin foam. Summarizing,

A(oy)

2T [Z A(s')

n 9n | s

(0)= lim

Tooo

(79
; ™ A(om)

(Tm

The sum ino, is over spin foamgwith n vertices. For every
spin foam, the sum s’ is over all its “spacelike” slices.

computed as follows. First, solve the Einstein equations by
evolving the initial data in the coordinate tinheThis can be
done using an arbitrary time-coordinate choice, and provides
the Venus horizon height(t). Then, search on the solution
for the coordinate timep; corresponding to the physical
event used to specify the tim@unrise time of Ptolemy’s
birthday, in the examp)e The desired number is finalli
=h(tpy), which is a genuine diffeomorphism-invariant ob-
servable, independent from the coordinate timesed. The
quantityH is coordinate-time independent, but it is also well
localized in time.

In practice, there is no need for computing the solution of
the equations of motioffior all times t It is sufficient to
evolve just fromt to tp;, and if t andtp; are sufficiently

This is a nice geometric result. It clarifies the physicalCl0Se, an expansion irt4;—t) can be effective.
interpretation of the four-dimensional space generated by the The same should happen in the quantum theory. We char-
expansion inT: it is the quantum version of the four- acterize the state of the solar system by means ofrtba-
dimensional spacetime of the classical theory. To see thi§auge-invariantstate|s), describing the system at a coordi-

consider, for instance, the observable defined in &G),

nate timet. If we are interested in the expectation value of an

namely, the projector on a given eigenspace of the volume@bservableH at a timetp, and iftp, is sufficiently close td,
Classically, the volume is defined if a gauge fixing that iden-We may then expect, on physical grounds, that the expansion

tifies a spacelike “ADM” surface, is given. In Eq(79), we

(79) will be well behaved. In other words, we do not need to

see that in the quantum theory the role of this spacelike suvolve the spin network stafs) forever, if what we want to
face is taken by the “ADM-like” spatial slices of the quan- know is something that happens shortly after the moment in

tum spin foams’. Thus, we must identify the surfaceson
the spin foam with the classical ADM-surfac@soth are

gauge constructsand therefore we must identify the spin

foam itself as théquantum version of thefour-dimensional
spacetime of the classical thedry.

which the quantum state is). Nevertheless, what we are
computing is 4D diffeomorphism-invariant quantity.

As an example that is more likely to be treatable in the
quantum theory, consider an observable such as the volume
V. of the constant-extrinsic-curvature ADM slice with given

If the spin foam represents spacetime, the expansion p&Xtrinsic curvaturé{(x) =k. Assume we have an operatdr
rameterT—introduced above simply as a mathematical trickcorresponding to the local extrinsic curvature. Then,

for representing the delta function as the integral of an
exponential—can be identified as a genuine time variéble
has the right dimensiohsThis fact provides us with an in-

Vi~ P8(K,K)VS(K,K)P. (80)

Once more)/. is a 4D diffeomorphism-invariant observable

titive grasping on the regime of validity of the expansion|qcjized in time. Given an extrinsic curvature operakor

itself. It is natural to expect that E¢73) might converge for

observables that are sufficiently “localized in time.” These

"I thank Mike Reisenberger for this observation.

the methods developed here should provide an expansion for
the expectation value a&f, . Inserting Eq(80) into Eq.(79),

with O=V,, the delta function selects the ADM slices with

the correct extrinsic curvature from the sumsh and the
mean value oV, is given by the average over such slices
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appearing in the time development | generated by the (ii) The choice of the position of the nodes considered in
Hamiltonian constraint. Ifs) is sufficiently closgin time)to  Sec. IV B is somewhat arbitrary and other possibilities might
a K=k surface, then, on physical grounds, we have somée explored.(iii) A possible modification of the formalism
reasons to hope the expansidrto be well behaved. Thus, that could be explored is to restrict the range of the integra-
the diffeomorphism-invariant quantum computatiolVgfre-  tion in N to positive definiteN'’s, in analogy with the Feyn-

produces the structure of the classical computation. man propagator(iv) The spacetime geometry of thmdi-
vidual) spin foams has not yet been fully understood and
V. CONCLUSIONS deserves extensive investigations(on this, see

) . ) [17,18,21,22,3B. (v) We have completely disregarded the
We have studied the dynamics of nonperturbative quantorentzian aspects of the theory. These can be taken into
tum gravity. Because of the diffeomorphism invariance ofaccount by using the Barbero-Thiemann Lorentzian Hamil-
the theory, this dynamics is captured by the “project®” tonjan constrain{5] or, alternatively, along the lines ex-
on the physical states that solve the Hamiltonian constrainbmred by Markopoulou and Smolifi7]. (vi) The limit T
We have constructed an expansion for tregularized pro- o should be better understood: how can we find it from
jector P and for the expectation values of physical observ-he knowledge of a finite number of the, and b, coeffi-
ables. The expansion is constructed using some formal M&jents in Eq.(74)? (vii) Finally, the formalism developed
nipulations_ and _by using a diffeomorphism-_invarian'g here makes contact with the spin-foam modéB—22). We
functional integration on a space a scalar functions. Thigejieve that the relation between these approaches deserves
construction may represent a tool for exploring the physicsg pe studied in detail.
defined by various Hamiltonian constraints. _ The key issue is whether the measure that we have em-
~Our main result is summarized in Eq$0),(61), which  pjoyed is the “correct” one: intuitively, whether this mea-
give the regularized projector, and E(84),(76), which give  gyre has the property that the integral of the exponential
the expectation value of a physical observable, both in term@ives the delta function or wheth®ris in fact, in the appro-
of finite and explicitly computable quantities. Equivalently, priate sense, a projector. We will discuss this point else-
the theory is defined in the spin-foam formalism by the paryyhere.
tition function Z given in Eqs.(64),(65),(68). The expecta-  The nonperturbative dynamics of a diffeomorphism-
tion values are then given in E79) as averages over the jnyariant quantum field theory is still a very little explored

spin foam. The spin-foam formalism is particularly interest-territory; the scheme proposed here might provide a path into
ing, because it provides a spacetime-covariant formulation ofyis ynfamiliar terrain.

a diffeomorphism-invariant theory. The partition functi@n

is expressed in the manner of Feynman as a sum over paths, ACKNOWLEDGMENTS
but these paths atepologicallydistinct and discretéso that
we have a sum rather than an integral | thank Don Marolf, Mike Reisenberger, Roberto De-

Several aspects of our construction are incomplete an@ietri, Thomas Thiemann, and Andrea Barbieri for important
deserve more detailed investigatiofi$.The physical discus- exchanges and for numerous essential clarifications. This
sion on the range of validity of the expansions consideredvork was supported by NSF Grant PHY-95-15506, and by
should certainly be made more mathematically precisethe UnitePropre de Recherche du CNRS 7061.
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