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Projector on physical states in loop quantum gravity
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We construct the operator that projects on the physical states in loop quantum gravity. To this aim, we
consider a diffeomorphism-invariant functional integral over scalar functions. The construction defines a co-
variant, Feynman-like, spacetime formalism for quantum gravity and relates this theory to the spin foam
models. We also discuss how expectation values of the physical quantity can be computed.
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I. INTRODUCTION

The loop approach to quantum gravity@1# based on the
Ashtekar variables@2# has been successful in establishing
consistent and physically reasonable framework for
mathematical description of quantum spacetime@3#. This
framework has provided intriguing results on the quant
properties of space, most notably detailed quantitative res
on the discrete quanta of the geometry@4#. The nonperturba-
tive dynamicsof the quantum gravitational field, however,
not yet well understood. Two major questions are op
First, several versions of the Hamiltonian constraint ha
been proposed@5–7#, but the physical correctness of the
versions has been questioned@8#. Second, a general schem
for extracting physical consequences from a given Ham
tonian constraint and for computing expectations values
physical observables is not available.

In this paper, we address the second of these problem
solution of which, we think, is likely to be a prerequisite f
addressing the first problem~the choice of the correct Hamil
tonian constraint!. The problem we address is how expec
tion values of physical observables can be computed, giv
Hamiltonian constraint operatorH(x). ~For an earlier at-
tempt in this direction, see@9#.! We address this problem b
constructing the ‘‘projector’’P on the physical Hilbert spac
of the theory, namely on the space of the solutions of
Hamiltonian constraint equation. Formally, this projector c
be written as

P;)
x

d„H~x!…;E @DN#expS 2 i E d3x N~x!H~x! D
~1!

in analogy with the representation of the delta function as
integral of an exponential. The idea of treating first cla
constraints in quantum theory by using a projector opera
defined by a functional integration has been studied
Klauder @10#, and considered also by Govaerts@11#,
Prokhorov and Shabanov@12#, Henneaux and Teitelboim
@13#, and others. In the case of gravity, the matrix eleme
of P between two states concentrated on two 3-geometrig
andg8 can be loosely identified with Hawking’s propagat
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P(g,g8), which is formally written in terms of a functiona
integral over 4-geometries@14#.

A step towards the definition of the projectorP was taken
in @6#, where a perturbative expression for the exponentia
the Hamiltonian smeared with a constant functionN(x)5N
was constructed. What was still missing was a suita
diffeomorphism-invariant notion of functional integratio
over N(x). Here, we consider an integration on the space
the scalar functionsN(x). This integral, modeled on the
Ashtekar-Lewandowski construction@15# and considered by
Thiemann in the context of the general covariant quanti
tion of Higgs fields@16#, allows us to give a meaning to th
right-hand side~RHS! of Eq. ~1!. Using it, we succeed in
expressing the~regularized! matrix elements of the projecto
P in a well-defined power expansion. We then give a p
liminary discussion of the expectation values of physical o
servables. The construction works for a rather generic fo
of the Hamiltonian constraint, which includes, as far a
know, the various Hamiltonians proposed so far.

As realized in@6#, the terms of the expansion ofP are
naturally organized in terms of a four-dimensional Feynm
graph-like graphic representation. Expression~1! can thus be
seen also as the starting point for aspacetimerepresentation
of quantum gravity. Here, we complete the translation
canonical loop quantum gravity into covariant spaceti
form initiated in @6#. The ‘‘quantum gravity Feynman
graphs’’ are two-dimensional colored branched surfaces,
the theory takes the form of a ‘‘spin foam model’’ in th
sense of Baez@17#, or a ‘‘world sheet theory’’ in the sense o
Reisenberger@18#, or a ‘‘theory of surfaces’’ in the sense o
Iwasaki @19#, and turns out to be remarkably similar to th
Barret-Crane model@20# and to the Reisenberger model@21#
~see also@22#!. On the one hand, the construction presen
here provides a more solid physical grounding for the
models; on the other hand, it allows us to reinterpret th
models as proposals for the Hamiltonian constraint in qu
tum gravity, thus connecting two of the most promising d
rections of investigations of quantum spacetime@23#.

The paper is organized as follows. In Sec. II, the basics
loop quantum gravity are reviewed, organized from a no
and simpler perspective, which does not require the cum
some introduction of generalized connections~see also@24#!.
Section III presents the definition of the diffeomorphism
invariant functional integral. In Sec. IV we construct the pr
jector P and discuss the construction of the expectat
values.
©1999 The American Physical Society15-1
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II. LOOP QUANTUM GRAVITY

General relativity can be expressed in canonical form
term of a~real! SU~2! connectionA defined over a 3D mani
fold S @2,25#. We takeS to be topologicallyS3. The dynam-
ics is specified by the usual Yang-Mills constraint, whi
generates local SU~2! transformation, the diffeomorphism
constraintD@ fW#, which generates diffeomorphisms ofS, and
the Hamiltonian constraintH@N#, which generates the evo
lution of the initial data in the~physically unobservable! co-
ordinate time. HerefW is in the algebra of the group Diff o
the diffeomorphisms ofS; namely, it is a smooth vector field
on S, andN is a smooth scalar function onS. The theory
admits a nonperturbative quantization as follows.~For a
simple introduction, see@24#, for details see@3# and refer-
ences therein.!

A. Hilbert space and spin networks basis

We start from the linear spaceL of quantum statesC(A)
which are continuous~in the sup-topology! functions of
~smooth! connectionsA. A dense~in L ’s pointwise topology!
subset of states inL is formed by the graph-cylindrical state
@15#. A graph-cylindrical stateCG, f(A) is a function of the
connection of the form

CG, f~A!5 f „U~e1 ,A!, . . . ,U~enA!…, ~2!

whereG is a graph embedded inS, e1 , . . . ,en are the links
of G, U(e,A)5P exp*eA is the parallel propagator SU~2!
matrix of A along the pathe, and f is a complex-valued
~Haar-integrable! function on @SU(2)#n. The function
CG, f(A) has domain of dependence on the graphG; one can
always replaceG with a larger graphG8 such thatG is a
subgraph ofG8, by simply taking f independent from the
group elements corresponding to the links inG8 but not inG.
Therefore any two given graph-cylindrical functions can
ways be viewed as defined on the same graphG. Using this,
a scalar product is defined on any two cylindrical functio
by

~CG, f ,CG,g!

5E
[SU(2)]n

dU1•••dUnf ~U1•••Un!g~U1•••Un! ~3!

and extends by linearity and continuity to a well-defin
@15,26# scalar product onL. The Hilbert completion ofL in
this scalar product is the Hilbert spaceHaux : the quantum
state space on which quantum gravity is defined.1 We refer to

1Haux is the state space of the old loop representation@1#,
equipped with a scalar product which was first obtained throug
path involving C* -algebraic techniques, generalized connectio
and functional measures@15,26#. Later, the same scalar product w
defined algebraically in@27# directly from the old loop representa
tion. The construction ofHaux given here is related to the one i
@15,26# but does not require generalized connections, infinite
mensional measures or the other fancy mathematical tools that
employed at first.
10401
n

-
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@24# for the construction of the elementary quantum fie
operators on this space.

The SU~2!-gauge-invariant states form a liner subspa
L0 in L. A convenient orthonormal basis inL0 is the spin
network basis@28#, constructed as follow. Consider a grap
G embedded inS. To each linke of G, assign a nontrivial
SU~2! irreducible representationj e , which we denote the
color of the link. Consider a noden of G, where the links
e1 , . . . ,eN meet; consider the invariant tensorsv on the ten-
sor product of the representationj e1

, . . . ,j eN
of the links that

meet at the node; the space of these tensors is finite dim
sional ~or zero dimensional! and carries an invariant inne
product. Choose an orthogonal basis in this space,2 and as-
sign to each noden of G one elementvn of this basis. A spin
network S5(G,$ j %,$v%) is given by a graphG and an as-
signment of a colorj e to each linke and a basis invarian
tensorvn to each noden.

The spin network stateCS(A) is defined as

CS~A!5)
e

)
n

vnRj e
„U~e,A!…, ~4!

whereRj (U) is the matrix representing the SU~2! group el-
ementU in the spin-j irreducible representation, and the tw
matrix indices ofRj e

„U(e,A)… are contracted into the two
tensorsvn of the two nodes adjacent toe. An easy computa-
tion shows that~with an appropriate normalization of th
basis statesvn @27#! the statesCS form an orthonormal basis
in Haux :

~CS ,CS8!5dG,G8d$ j %$ j 8%d$v%$v8% . ~5!

B. Diffeomorphisms

The Hilbert spaceHaux carries a naturalunitary represen-
tationU(Diff) of the diffeomorphism group ofS:

@U~f!c#~A!5c~f21A!, fPDiff. ~6!

It is precisely the fact thatHaux carries this representatio
which makes it of crucial interest for quantum gravity.
other words,Haux and its elementary quantum operators re
resent a solution of the problem of constructing a repres
tation of the semidirect product of a Poisson algebra of
servables with the diffeomorphisms@30#.

Notice thatU sends a state of the spin network basis in
another basis state:

@U~f!cS#~A!5cS~f21A!5cfS~A!. ~7!

Intuitively, the spaceHdi f f of the solutions of the quantum
gravity diffeomorphism constraint is formed by the stat
invariant underU. However, no finite norm state is invarian
underU, and generalized-state techniques are needed.
sketch here the construction ofHdi f f @1,26,31#, because the
solution of the Hamiltonian constraint will be given belo

a
s

i-
re2For later convenience, we choose a basis that diagonalizes
volume operator@4,29#.
5-2
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PROJECTOR ON PHYSICAL STATES IN LOOP . . . PHYSICAL REVIEW D 59 104015
along similar lines.Hdi f f is defined first as a linear subset
L* , the topological dual ofL. It is then promoted to a Hilber
space by defining a suitable scalar product over it.Hdi f f is
the linear subset ofL* formed by the linear functionalsr
such that

r„U~f!c…5r~c! ~8!

for anyfPDiff. From now on we adopt a bra and ket not
tion. We write Eq.~8! as

^ruU~f!c&5^ruc&, ~9!

and we write the spin network stateCS as uS&.
Equivalence classes of embedded spin networks unde

action of Diff are denoted ass and calleds-knots or, simply,
spin networks. We denote ass(S) the equivalence class t
which S belong. Everys-knot s defines an element̂su of
Hdi f f via

^suS&50 if sÞs~S!

5cs if s5s~S!. ~10!

Herecs is the integer number of isomorphisms~including the
identity! of the ~abstract! colored graph ofs into itself that
preserve the coloring and can be obtained from a diffeom
phism of S. A scalar product is then naturally defined
Hdi f f by

^sus8&[^suS8& ~11!

for an arbitraryS8 such thats(S8)5s8. One sees immedi
ately that the normalized states (1/Acs)us& form an orthonor-
mal basis.

The spaceHdi f f is not a subspace ofHaux ~because
diffeomorphism-invariant states have ‘‘infinite norm’’!. Nev-
ertheless, an important observation is that there is a na
‘‘projector’’ P from Haux to Hdi f f ,

P:uS&°us~S!&, ~12!

which sends the state inHaux associated with an embedde
spin networkS into the state inHdi f f associated with the
corresponding abstract spin network states. Notice thatP is
not really a projector, sinceHdi f f is not a subspace ofHaux ,
but we use the expression ‘‘projector’’ nevertheless, beca
of its physical transparency. SinceHdi f f can be seen as
subspace ofHaux* , the operatorP defines a~degenerate! qua-
dratic form ^ u &di f f on Haux :

^SuS8&di f f[^SuPuS8&5^s~S!uS8&5^s~S!us~S8!&. ~13!

Hdi f f can be defined also by starting with the pre-Hilb
spaceHaux equipped with the degenerate of a quadratic fo
^ u &di f f , and factoring and completing in the Hilbert nor
defined by^ u &di f f @32#. That is, states inHaux are the
~limits of sequences of! equivalence classes of states inHaux
under ^ u &di f f . In other words, knowing the ‘‘matrix ele
ments’’

^SuPuS8& ~14!
10401
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of the projectorP is equivalent to having solved the diffeo
morphism constraint.

Furthermore, the above construction can be expres
also in terms of certain formal expressions, which are
particular interest because they can guide us in solving
Hamiltonian constraint. Define a formal integration over t
diffeomorphism group Diff satisfying the two properties

E
Di f f

Df51 ~15!

and

E
Di f f

Df dS,fS5cs(S) . ~16!

Then a diffeomorphism-invariant stateus& can be written as a
‘‘state in Haux integrated over the diffeomorphism group.
That is,

us~S!&5E
Di f f

DfuU~f!S&. ~17!

In fact, Eqs.~10! and ~11! can be obtained from Eqs.~15!,
~16!, and~17!. Using this, we can write the projection oper
tor P, defined in Eq.~12!, as

P5E
Di f f

Df U@f#. ~18!

Equivalently, we may write the group element as an ex
nential of an algebra element, and formally integrate over
algebra rather than over the group, that is,

P5E D fW e2 iD [ fW ] . ~19!

This equation has a compelling interpretation as the defi
tion of the projector on the kernel of the diffeomorphis
constraint operatorDa(x) via

P;)
a,x

d„Da~x!…;E D fW expS 2 i E d3x fa~x!Da~x! D
~20!

as in

d~x!5
1

2pE2`

1`

dp e2 ipx. ~21!

We shall define the projector on the kernel of the Ham
tonian constraint in a similar manner.

III. DIFFEOMORPHISM-INVARIANT MEASURE

In this section, we construct a measure on the spac
scalar functions@16#, which will be needed for defining the
analogue of Eq.~19! for the Hamiltonian constraint. Con
sider smooth functionsN:S→S1 on the three-manifoldS,
taking value on the intervalI 5@0,T@ . We keep track of the
5-3
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CARLO ROVELLI PHYSICAL REVIEW D 59 104015
‘‘length of the intervalI,’’ T, instead of normalizing it to 1
because this will simplify keeping track of dimensions in t
physical application. LetN be the space of such function
equipped with thesup topology. LetF(N) be a continuous
complex function on the infinite dimensional topologic
vector spaceN, and denote the space of these functions asL.
Let $xi%5x1 , . . . ,xn be a set of~disjoint! points in S, and
f :(I )n→C a complex integrable function ofn real variables.
Consider a functionFPL of the form

F $xi %, f
~N!5 f „N~x1!, . . . ,N~xn!…, ~22!

namely, a function ofN having the the set$xi% as its domain
of dependence. The set of functions of this form forms
dense linear subspace ofL, in the pointwise topology.

The simplest nontrivial of such functions is obtained
picking a single pointx and choosingf (N)5N. Notice that
this defines precisely the Gel’fand transformFx(N)5N(x)
or, in Gel’fand’s enchanting notation

x~N!5N~x!. ~23!

Since the functions of the form~22! can be seen as a gene
alization of Gel’fand’sFx(N), we denote them as ‘‘genera
ized Gel’fand functions,’’ or, simply, Gel’fand functions
Gel’fand functions can be seen as the scalar-field analogu
the Ashtekar-Lewandowski’s graph-cylindrical functions~2!,
which are defined for connection fields.

Define the following linear form on the Gel’fand func
tions:

E DN F$xi %, f
~N!5

1

~T!nEI n
dN1 . . . dNn f ~N1 , . . . ,Nn!.

~24!

HeredNi /T is the normalized Lebesque measure on the
terval I. Finally, denote the closure ofL in the norm

uuFuu5E DNuF~N!u ~25!

asL1@N#; the linear form~24! extends by continuity~in the
L1 topology defined by this norm! to all of L1@N#.

A simple class of integrable functions is given by polyn
mial Gel’fand functions. We have indeed

E DN 15
1

TEI
dN 151,

E DN N~x!5
1

TEI
dN N5

1

T

1

2
T25

1

2
T. ~26!

Notice that for quadratic functionals we must distinguish t
cases

E DN N~x!N~y!5
1

T2EI
E

I
dN1dN2N1N25

1

4
T2,

~27!
10401
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E DN N~x!N~x!5
1

TEI
dN N25

1

T

1

3
T35

1

3
T2.

~28!

Namely, we must distinguish the case in which the arg
ments of the two functionsN( ) are distinct or the same
The general pattern should be clear. A general polynom
functionalFn1 , . . . ,nK

will have nk pointsx1
(k) , . . . ,xnk

(k) in its

domain of dependence in which the functionN(x) appear
with powerk. A simple calculation yields then

I n1 . . . nK
5E DN Fn1 , . . . ,nK

5E DN@N~x1
(1)!•••N~xn1

(1)!#

3@N~x1
(2)!•••N~xn2

(2)!#2 •••

3@N~x1
(K)!•••N~xnK

(K)!#K

5T(
k

nk)
k51

K S 1

k11D nk

[dn1 , . . . ,nK
. ~29!

The diffeomorphism group Diff ofS acts naturally onN,
via (fN)(x)5N„f21(x)…, wheref:S→S is in Diff. It is
easy to see that the integral~24! is diffeomorphism invariant:

E @DN#F@fN#5E @DN#F@N#. ~30!

This follows from the fact that the RHS of Eq.~24! is clearly
insensitive to a diffeomorphism transformation onN.

IV. DYNAMICS: THE REGULARIZED PROPAGATOR

We now come to the construction of the physical st
spaceHphysand the partition function of the theory. We hav
to solve the Dirac’s Hamiltonian constraint equation

H@N#c50 ~31!

for the quantum Hamiltonian constraintH@N#.

A. Hamiltonian constraint: First version

The operatorH@N# that we consider is a small modifica
tion of the Riemanian Hamiltonian constraint defined in@5#.
However, we make only use of the general structure of t
operator, which is common to several of the proposed v
ants. We take a symmetric version ofH@N#, which ‘‘cre-
ates’’ as well as ‘‘destroying’’ links. The matrix elements o
H@N# are given by

^cuH@N#uf&5^cuC@N#uf&1^fuC@N#uc&, ~32!

whereC@N# is the nonsymmetric Thiemann’s constraint.
We recall that the operatorC@N#, acting on a spin net-

work stateus&, is given by a sum of terms, one per each no
5-4
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i of s. Sketchy~a more precise definition will be given be
low!, each such term creates an extra linkeadded joining two
points i 8 and i 9 on two distinct links adjacent toi, and alters
the colors of the links betweeni andi 8 and betweeni andi 9.
The result is multiplied by a coefficient depending only
the colors ofs and by the value of the smearing functionN
‘‘in the point where the nodei is located.’’ This is illustrated
in Fig. 1.3

It is important to observe thatC@N# is defined as a map
from Hdi f f to Haux* . In this definition there is a subtle inter
play between diffeomorphism-invariant and no
diffeomorphism-invariant aspects of the Hamiltonian co
straint, which is a key aspect of the issue we are consider
and must be dealt with with care. The reasonC@N# is defined
on Hdi f f , namely on the diffeomorphism-invariant states,
that it is on these states that the ‘‘precise position’’ of t
pointsi andi 9 and of the linkeadded is irrelevant.4 However,
C@N# is not diffeomorphism invariant, and therefo
C@N#us& is not inHdi f f , because a diffeomorphism modifie
N. The feature ofC@N#us& that breaks diffeomorphism in
variance is the fact that it contains a factor given by the va
of N(x) in the point in which the nodei is located: this
location is not a diffeomorphism invariant notion.

Before presenting the precise definition ofC@N#, which
takes care both of its diffeomorphism-invariant and its no
diffeomorphism-invariant features, we need to define cer
peculiar elements ofHaux* , which will appear in the defini-
tion. Consider ans-knot s and leti be one of its nodes. LetN
be a scalar function onS. We define the stateus; i ,N& in
Haux* by ~again, we interchange freely bra and ket notatio!

^s; i ,NuS&5N~xS,i !^suS&, ~33!

wherexS,i is the position of the node ofS that gets identified
with the nodei of s in the scalar product. Notice that the sta
us; i ,N& is ‘‘almost’’ a diffeomorphism-invariants-knot state:
in facts, it is ‘‘almost’’ insensible to the location ofS. The
only aspect of this location to which it is sensible is t
location of the node. In fact, on the RHS of Eq.~33!, the
diffeomorphism-invariant quantitŷsuS& is multiplied by the
value ofN( ) in the point in which the node i is located. The
Hamiltonian constraint defined by Thiemann acts
diffeomorphism-invariant states and creates states inHaux* ,
of the form ~33!.

3On a given state, the Hamiltonian acts on a finite number
points, but the operator itself acts on all space points.

4More precisely, only on these states can the regulator used in
quantization of the classical quantity be removed.

FIG. 1. Action of the Hamiltonian constraint on a trivalent nod
10401
-
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e

-
in

The precise definition ofC@N# is the following:

C@N#us&5Ai
b~s!usi

b ; i ,N&. ~34!

Let us explain our notation. The sum over the repeated in
cesb andi is understood. The indexi runs over the nodes in
s. The indexb5( l 8,l 9,e8,e9) runs over the couples (l 8,l 9)
of ~distinct! links adjacent to each nodei and overe8 ande9,
which take the values11 or 21. Thes-knot si

b was intro-
duced in@33#. It is defined as the right-hand part of Fig.
that is, by adding two new nodesi 8 and i 9 on the two links
l 8 and l 9 ~determined byb), respectively, adding a new link
eaddedcolored 1/2 joiningi 8 andi 9, and altering the color of
the links joiningi 8 and i ~and, respectively,i 9 and i ) by 11
or 21 according to the value ofe8 ~respectivelye9). Ai

b(s)
is a coefficient defined in@5# whose explicit form is com-
puted in@34#.

Summarizing, we have

^SuC@N#us&5Ai
b~s!N~xS,i !^Susi

b&. ~35!

@where ^Sus&[^suS&5^sus(S)&; see Eqs.~10! and ~13!#.
Clearly, C@N# can equivalently be viewed as an opera
from Haux to Hdi f f* , by writing

^suC@N#uS&5Ai
b~s!N~xS,i !^sus~S! i

b&. ~36!

@Recall thats(S) is thes-knot to whichSbelongs.# This fact
allows us to define the symmetrized operator~32! by

^SuH@N#us&5Ai
b~s!N~xS,i !^Susi

b&1Āi
b~s!N~xS,i !^s~S! i

bus&.

~37!

Only one of the two terms on the RHS of this equation m
be nonvanishing: the first, ifShas two nodes more thans; the
second, ifS has two nodes less thans.

We can simplify our notation by introducing an indexa
5(b,61) where11 indicates that a link is added and21
indicates that the link is removed. We obtain

^SuH@N#us&5Ai
a~s!N~xS,i !^Susi

a&, ~38!

where

Ai
b,21~s!5Āi

b,11~si
b!. ~39!

Notice that the precise position ofeadded ~and thusi 8 and
i 9) drops out from the final formula, because of the diffe
morphism invariance of the quantity^Susi

a&.5 This is essen-
tial, because if a specific position foreadded had to be cho-
sen, diffeomorphism invariance would be badly broken. O
can view the coordinate distancee betweeni and i 8 ~and
betweeni and i 9) as a regulating parameter to be taken
zeroafter the matrix elements~36! have been evaluated. Th
limit e→0 is discontinuous, but̂suSi

b& is independent from
e for e sufficiently small, and therefore the limit of thes

he

5One must only worry about the positioning ofeadded up to iso-
topy. This is carefully defined in@5#, following a construction by
Lewandowski.

.

5-5
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CARLO ROVELLI PHYSICAL REVIEW D 59 104015
matrix elements is trivial. Thus, the operator is defin
thanks to two key tricks:~1! the diffeomorphism invariance
of the stateus& acted upon allows us to get rid of the preci
position of eadded; ~2! the lack of diffeormorphism invari-
ance of ^Su allows us to give meaning to the pointxS,i
‘‘where the node is located,’’ and therefore allows us to g
meaning to the smearing of the operator with a given~non-
diffeomorphism-invariant! function N(x).

This is whyH@N# is defined as a map fromHdi f f to Haux* .
The first of these two key facts, which allow the quantu
Hamiltonian constraint operator to exist, was recognized
@33#, the second in@5#.

B. Hamiltonian constraint: Second version

The interplay between diffeomorphism-invariant and no
diffeomorphism-invariant constructs described above ne
to be crafted even more finely, in order to be able to ex
nentiate the Hamiltonian constraint and derive its kernel
fact, in order to exponentiateH@N# and to expand the expo
nential in powers, we will have to deal with products
H@N# ’s. In order for these products to be well defined, t
domain of the operator must include its range, which is~es-
sentially! Haux . Therefore we need to extend the action
H@N# from Hdi f f to Haux . The price for this extension is, o
course, that the operator becomes dependent on the re
tor, namely, on the precise position in whicheadded is added.
However, we can do sohere, because such dependence w
disappear in the integration overN.

We defineH@N# on Haux by simply picking a particular
position foreadded in the definition ofSi

a :

H@N#uS&5N~xi !Ai
a~S!uSi

a&. ~40!

where, clearly,Ai
a(S)5Ai

a
„s(S)…. @When a5(b,21), no

modification is necessary. That is, a link is removed irresp
tively from its precise location.# In a quadratic expressio
this yields

^SuH@N#H@N#us&

5Ai
a~Si 1

a1!Ai
a~S!N~xS

i 1

a1
i 2

a2 ,i 2
!N~xS

i 1

a1,i 1
!^Susi 1

a1
i 2

a2&.

~41!

Here i 1 labels the nodes ofs. After the action of the first
operator, and thus the addition~or subtraction! of one link,
we obtainsi 1

a1. The indexi 2 runs over the nodes ofsi 1

a1, and

therefore its range is larger~or smaller! than the indexi 1,
because of the two new nodes~or the two nodes removed!.

Notice that in each of the terms of the sum on the RHS
Eq. ~41! ~that is, for each fixed value of the indice
i 1 ,a1 ,i 2 ,a2) we have a product

N~y!N~x!, ~42!

wherex andy are the positions of the two nodes acted up
by the two operators. In particular, the secondH@N# operator
may act on one of the nodes created by the first oper
H@N#. For instance,x in Eq. ~42! may be the coordinates o
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the pointi in ~the RHS of! Fig. 1, andy may be the coordi-
nates of the pointi 8 ~on the RHS of Fig. 1!. Now, later on,
expressions such as Eq.~41! will appear within functional
integrals overN. Inside these integrals, the only feature
these two positions that matters is whetherx5y or not ~see
Sec. III!. Therefore, the only feature of the position ofeadded
that matters is whether its end points, namely,i 8 and i 9 in
Fig. 1, are on top ofi or not. This is the only dependence o
the regulator~the position ofeadded) that survives in the
integral. More precisely, in the integration overN, the arbi-
trariness in the regularization reduced to the arbitrarines
the decision of whether or not we should think ati, i 8, andi 9
on the RHS of Fig. 1, as on top of the pointi on the LHS or
not.

We can view this choice in the following terms. The o
eratorC@N# creates new nodes at positions which are d
placed from the original node by a distancee, wheree is to
be later taken to zero~taking this limit is in fact necessary in
order to identify the quantum operator with the desired cl
sical quantity!. The choice is whether to takee to zero before
or after the integration overN.

Let us denote the position of the nodei of S ~the node
acted upon! by x. Denote the two new nodes created by t
action of the operator asy8 andy9. And denote the position
of the nodei after the action of the operator asy ~nothing
forcesx5y a priori!. The natural choices are~1! y5x, y8
Þx, y9Þx, ~2! yÞx, y8Þx, y9Þx, and ~3! y5x, y85x,
y95x.

The choice is exquisitely quantum field theoretical: we a
defining here the product of operator-valued distributio
and we encounter an ambiguity in the renormalization of
regularized product. We thus have three options for the re
larization of the operator productsC@N#•••C@N#, corre-
sponding to the three choices above.

Choice~3! is not ~easily! compatible with the symmetri-
zation of the operator, and choice~2! yields a nonsensica
vanishing of all the matrix elements of the projector. Thu
we adopt, at least provisionally, choice~1! ~which, after all,
is probably the most natural!. That is, we assume thati itself
is not displaced by the Hamiltonian constraint operat
while i 8 and i 9 are created in positions which aredistinct
from the position ofi ~see Fig. 1!.

For a product ofn operators~with the same smearing
function!, we have

^Su~H@N# !nus&

5N~x1!•••N~xn!Ai 1

a1~S!•••Ai n

an~Si 1 , . . . ,i n21

a1 , . . . ,an21!

3^Sus8 i 1 , . . . ,i n

a1 , . . . ,an&, ~43!

where i j runs over the nodes ofs8 i 1 , . . . ,i j 21

a1 , . . . ,a j 21, and we have

denoted simply asx1 , . . . ,xn the positions of the sequenc
of nodes acted upon in a given term. According to the re
larization chosen, this sequence contains points which
distinct except when a node is acted upon repeatedly.
5-6
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C. Expansion

Our task is now to define the spaceHphys, using the
various tools developed above. We aim at definingHphys
following the linesHdi f f is defined by the operatorP in Eqs.
~19! and ~13!. That is, we want to construct the operator

P5E DNe2 iH [N] , ~44!

whose matrix elements

^suPus8&5E DN^sue2 iH [N] us8&, ~45!

define the quadratic form

^sus8&phys5^suPus8&. ~46!

Hphys is then the Hilbert space defined over the pre-Hilb
spaceHdi f f by the quadratic form̂ u &phys. As for P ~see
Sec. II B!, we will call P a ‘‘projector,’’ slightly forcing the
usual mathematical meaning of this term.

Notice that the Hamiltonian constraint we use is a den
of weight 1~instead of 2, as in the original Ashtekar forma
ism!; therefore the integration variableN is a scalar field.
This fact allows us to interpret the integration inN in terms
of the integral defined in Sec. III.6 The importance of having
a weight-1 Hamiltonian constraint in the quantum theory w
realized by Thiemann@5#.

We begin by regularizing the integral~45! by restricting
the integration domain of the functional integral in@DN# to
the subdomain formed by all the functionsN that satisfy

uN~x!u,T, ~47!

whereT is a regularization parameter with the dimensions
time. The physical limit is recovered forT→`. We write

^suPTus8&[E
uN(x)u,T

DN^sue2 iH [N] us8&. ~48!

Notice that the regularization~47! is diffeomorphism invari-
ant.

By taking advantage from the diffeomorphism invarian
of expression~48!, we can insert an integration over the d

6One might be puzzled by the fact that the measure defined in
III is normalized, while the measure in Eq.~21!, which is the formal
analogue of expression~44!, must not be normalized, nor can b
seen as the limit of normalized measures. The problem, howeve
that the choice of the measure in Eq.~44! must incorporate the
renormalization of the divergence coming~at least! from the vol-
ume of the gauge orbit. The normalization of the measure is nee
to make our expressions converge, and should be viewed, we t
as a quantum field theoretical subtraction.
10401
t

y

s

f

feomorphisms and rewrite Eq.~48! using Eq.~17! as

^suPTus8&5E
Di f f

DfE
uN(x)u,T

DN^U~f!Sue2 iH [N] us8&,

~49!

whereS is any spin network such that

s~S!5s. ~50!

Next, we expand the exponent in powers

^suPTus8&5E
Di f f

DfE
uN(x)u,T

DN

3^U~f!SuS (
n50

`
~2 i !n

n!
~H@N# !nD us8&.

~51!

Using the explicit form~43! of the Hamiltonian constrain
operator and acting withU(f) explicitly we obtain

^suPTus8&5 (
n50

`
~2 i !n

n! E
Di f f

DfE
uN(x)u,T

3DN N„f~xi n
!…•••N„f~xi 1

!…

3Ai n

an~si 1 , . . . ,i n21

a1 , . . . ,an21!•••Ai 1

a1~s!^sus8 i 1 , . . . ,i 1

a1 , . . . ,an&,

~52!

wherei j runs over the nodes ofs8 i 1 , . . . ,i j 21

a1 , . . . ,a j 21. We have also

used Eq.~50! and

s~Si 1 , . . . ,i j

a1 , . . . ,a j !5si 1 , . . . ,i j

a1 , . . . ,a j . ~53!

which follows from it. Notice that, as promised, the on
remaining diffeomorphism-dependent quantities are the
guments of the functionsN( ). But since theDN integral is
diffeomorphism invariant@see Eq.~30!#, the integration over
Diff can be trivially performed using Eq.~15!. Also, notice
that theN(x)’s appear only in the polynomials. Thus w
have

^suPTus8&5 (
n50

`
~2 i !n

n!
I xi n

, . . . ,xi 1
~T!Ai n

an~Si 1 , . . . ,i n21

a1 , . . . ,an21!•••

3Ai 1

a1~S!^sus8 i 1 , . . . ,i 1

a1 , . . . ,an&, ~54!

where

I xi n
, . . . ,xi 1

~T!5E
uN(x)u,T

DN N~xi n
!•••N~xi 1

!. ~55!

Now, the last integral is precisely the integral of a pol
nomial Gel’fand function discussed in the previous secti
The only difference here is that the domain of thedN inte-
gral is between2T andT instead of between 0 andT. The
effect of this is just to put all the odd terms to zero and
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double the even terms. Letnk be the number of points tha
appeark times in the listxi n

, . . . ,xi 1
, so that

(
k

knk5n. ~56!

We obtain

I xi n
, . . . ,xi 1

~T!5S)
k

e~k! Ddn1 , . . . ,nk
, ~57!

wheredn1 , . . . ,nk
is defined in Eq.~29!, ande(k) is defined

for any integern by

e~2n!52,

e~2n11!50. ~58!

From Eqs.~29! and ~56!, we have

I xi n
, . . . ,xi 1

~T!5)
k

e~k!S Tk

k11D nk

5Tn)
k

e~k!

~k11!nk
.

~59!

Inserting Eq.~59! into Eq. ~54!, we conclude

^suPTus8&5 (
n50

`

Tn^suP(n)us8&, ~60!

^suP(n)us8&5
~2 i !n

n! (
i 1 , . . . ,i n;a1 , . . . ,an

)
k

e~k!

~k11!nk

3Ai n

an~si 1 , . . . ,i n21

a1 , . . . ,an21!•••Ai 1

a1~s!^sus8 i 1 , . . . ,i 1

a1 , . . . ,an&.

~61!

Notice that the integration overN has cancelled the loca
tion dependence of the regularization. More precisely,
position of the added links and nodes is cancelled by sa
wiching between diffeomorphism-invariant states, leav
the arguments ofN() as the only regularization-depende
terms. This dependence, in turn, is cancelled by the inte
tion overN.

We recall that the technique for the explicit computati
of the coefficientsAi

a(s) is given in@34#. The last equation is
an explicit and computable expression, term by term fin
for the regularized matrix elements of the projector on
physical state space of the solutions of the Hamiltonian c
straint.

D. Interpretation: Spin foam

The terms of the sum~61! are naturally labelled by
branched-colored surfaces@6,17,18# or ‘‘spin foams.’’ Each
surface represents a history of thes-knot state. More pre-
cisely, consider a finite sequencesn of n11 spin networks

s0 ,s1 , . . . ,sn . ~62!
10401
e
d-
g
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In particular, let the sequence~62! be generated by a se
quence ofn actions of single terms of the Hamiltonian co
straint acting ons0:

sn5$s,si 1

a1,si 1i 2

a1a2, . . . ,si 1 , . . . ,i n

a1 , . . . ,an%. ~63!

We call such a sequence a ‘‘spin foam,’’ and we represen
as a branched-colored 2D surface. A branched-colored
face is a collection of elementary surfaces~faces! carrying a
color. The faces join in edges carrying an intertwiner. T
edges, in turn, join in vertices. A branched colored surfa
with n vertices can be identified with a sequence~63! if it can
be sliced~in ‘‘constant time’’ slices! such that any slice tha
does not cut a vertex is one of the spin networks in Eq.~63!.
In other words, the branched-colored surface can be see
the spacetime world sheet or world history of the spin n
work that evolves undern actions of the Hamiltonian con
straint.

Each action of the Hamiltonian constraint splits a node
the spin network into three nodes~or combine three node
into one!, and thus generates a vertex of the branched
face. Thus, as in the usual Feynman diagrams, the vert
describe the elementary interactions of the theory. In part
lar, here one sees that the complicated action of the Ha
tonian displayed in Fig. 1, which makes a node split in
three nodes, corresponds to the simplest geometric ve
Figure 2 is a picture of the elementary vertex. Notice tha
represents nothing but the spacetime evolution of the
ementary action of the Hamiltonian constraint, given in F
1. An example of a surface in the sum is given in Fig. 3. W
write ]sn5søs8 to indicate that the spin foamsn is
bounded by the initial and final spin networkss ands8. We
associate to eachsn the amplitude

A~sn!5
1

n! )v51

n

A~v !)
k

e~k!

~k11!nk
, ~64!

wherev run over the vertices ofsn and the amplitude of a
single vertex is

A~v !5Ai v

av~si 1 , . . . ,i v21

a1 , . . . ,av21!. ~65!

The amplitude of a vertex depends only on the coloring
the faces and edges adjacent to the vertex.

FIG. 2. The elementary vertex.
5-8
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Using this, we can rewrite Eqs.~60!, ~61! as

^suPTus8&5 (
n50

`

Tn (
sn ,]sn5søs8

A~sn!. ~66!

The key novelty with respect to@6# is the factor

)
k

e~k!

~k11!nk
. ~67!

The integersnk are determined by the number of multip
actions ofH@N# on the same vertex.

The last expression leads immediately to the form of
~regularized! ‘‘vacuum-to-vacuum’’ transition amplitude o
the partition function of the theory

ZT5 (
n50

`

Tn(
sn

A~sn! ~68!

for s ’s with no boundaries. In other words, the theory
defined as a sum over spin foamssn , where the amplitude
A(sn) of a spin foam is determined, via Eq.~64!, by the
product of the amplitudesA(v) of its vertices. Thus, the
theory is determined by giving the amplitudeA(v) of the
vertex, as a function of adjacent colors.

E. Physical observables

The expressions we have defined depend on the regu
T. A naive limit T→` yields to meaningless divergence
On the other hand, it is natural to expect to be able to rem
the regulator only within expressions for physical expec
tion values. Loosely speaking, the integral~44! defines a
deltalike distribution, and does not converge to any funct
itself; however, its contraction with a smooth function shou
converge. In particular, for finiteT the integral contracted
with a function gives the integral of the Fourier transform
the function over the interval@2T,T#. If the function has a
Fourier transform that decays reasonably fast, then the i

FIG. 3. A term of second order.
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gral should converge nicely. Thus, we may expect the exp
sion inT to be meaningful for suitable observables~see next
section!.

The difficulty of constructing interesting physical obser
ables invariant under four-dimensional diffeomorphisms
general relativity in well known@35# and we do not discuss
this problem here. Instead, we notice that given an oper
A on Hdi f f , invariant under three-dimensional diffeomo
phisms, one can immediately construct a fully gaug
invariant operatorO simply by

O5PAP. ~69!

For instance,A may be the volumeV of S operator@4,29# or
the projector on a given eigenspace ofV

A5d~V,v !, ~70!

wherev is one of the eigenvalues ofV. Consider the expec
tation value ofO in a physical state

^O&5
^suOus&phys

^sus&phys
5

^suPAPus&

^suPus&
. ~71!

While we expect this quantity to be finite~for an appropriate
A), the numerator and the denominator are presumably in
pendently divergent, as one may expect in a field theory.
strategy to computêO&, therefore, must be to take theT
→` limit of the ratio, and not of the numerator and of th
denominator independently. We thus properly define

^OT&5
^suPTAPTus&

^sPTs&
~72!

and

^O&5 lim
T→`

^OT&. ~73!

Both the numerator and the numerator in Eq.~72! can be
written as power series inT. Therefore we have

^O&5 lim
T→`

(
n

Tnan

(
m

Tmbm

, ~74!

where

an5 (
m50,n

^suPT
(m)us8&^s8uVus9&^s9uPT

(n2m)us8& ~75!

and

bn5^suPT
(n)us&. ~76!

The matrix elementŝsuPT
(n)us& are explicitly given in Eq.

~61!. Notice that they are finite and explicitly computabl
Equation~72! defines a function ofT analytic in the origin.
We leave the problem of determining the conditions un
which the higher order terms are small, and of finding te
niques for analytically continuing it to infinity on the Rie
mann sphere, for future investigations.
5-9
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F. Quantum ADM surfaces

An important lesson is obtained by writing the express
for the expectation values in the spin foam version. Consi
for simplicity, the case in whichA is diagonal in the loop
basis.~This is true for the volume, which is the reason for t
choice of the basis in the intertwiners space, in Sec. II.! In
this case, Eq.~75! becomes

an5 (
m50,n

^suPT
(m)us8&A~s8!^s8uPT

(n2m)us&. ~77!

Recalling Eqs.~61! and ~66!, this can be rewritten as

an5(
sn

S (
s8

V~s8!DA~sn!, ~78!

where thes8 are all possible spin networks that cut the s
facesn into two ~past and future! parts.

Equation~78! shows that the expectation value ofO is
given by the average ofA on all thediscrete Arnowitt-Deser-
Misner- (ADM-)like spatial slices s8 that cut the quantum
spin foam. Summarizing,

^O&5 lim
T→`

(
n

Tn(
sn

F(
s8

A~s8!GA~sn!

(
m

Tm(
sm

A~sm!

. ~79!

The sum insn is over spin foams~with n vertices!. For every
spin foam, the sum ins8 is over all its ‘‘spacelike’’ slices.

This is a nice geometric result. It clarifies the physic
interpretation of the four-dimensional space generated by
expansion inT: it is the quantum version of the four
dimensional spacetime of the classical theory. To see
consider, for instance, the observable defined in Eq.~70!,
namely, the projector on a given eigenspace of the volu
Classically, the volume is defined if a gauge fixing that ide
tifies a spacelike ‘‘ADM’’ surfaceS is given. In Eq.~79!, we
see that in the quantum theory the role of this spacelike
face is taken by the ‘‘ADM-like’’ spatial slices of the quan
tum spin foams8. Thus, we must identify the surfacess8 on
the spin foam with the classical ADM-surfaces~both are
gauge constructs!, and therefore we must identify the sp
foam itself as the~quantum version of the! four-dimensional
spacetime of the classical theory.7

If the spin foam represents spacetime, the expansion
rameterT—introduced above simply as a mathematical tr
for representing the delta function as the integral of
exponential—can be identified as a genuine time variable~it
has the right dimensions!. This fact provides us with an in
tuitive grasping on the regime of validity of the expansi
itself. It is natural to expect that Eq.~73! might converge for
observables that are sufficiently ‘‘localized in time.’’ The

7I thank Mike Reisenberger for this observation.
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are precisely the relevant observables in the classical th
as well. We illustrate them in the following section.

G. Four-dimensional diffeomorphism-invariant observables
can be localized in time

Claims that diffeomorphism invariant observables can
be localized in time can be found in the literature, and ha
generated much confusion. These claims are mistaken.
us illustrate why a physical general relativistic measurem
localized in time is nevertheless represented by
diffeomorphism-invariant quantity.

Consider a state of the solar system. The state can
given by giving positions and velocities of the planets a
the value of the gravitational field on a certain initial ADM
surface— or, equivalently, at a certain coordinate timet. We
can ask the following question: ‘‘How high will Venus be o
the horizon, seen from Alexandria, Egypt, on sunrise
Ptolemy’s 40th birthday?’’ In principle, this quantity can b
computed as follows. First, solve the Einstein equations
evolving the initial data in the coordinate timet. This can be
done using an arbitrary time-coordinate choice, and provi
the Venus horizon heighth(t). Then, search on the solutio
for the coordinate timetPt corresponding to the physica
event used to specify the time~sunrise time of Ptolemy’s
birthday, in the example!. The desired number is finallyH
5h(tPt), which is a genuine diffeomorphism-invariant ob
servable, independent from the coordinate timet used. The
quantityH is coordinate-time independent, but it is also w
localized in time.

In practice, there is no need for computing the solution
the equations of motionfor all times t. It is sufficient to
evolve just fromt to tPt , and if t and tPt are sufficiently
close, an expansion in (tPt2t) can be effective.

The same should happen in the quantum theory. We c
acterize the state of the solar system by means of the~non-
gauge-invariant! stateus&, describing the system at a coord
nate timet. If we are interested in the expectation value of
observableH at a timetPt and if tPt is sufficiently close tot,
we may then expect, on physical grounds, that the expan
~79! will be well behaved. In other words, we do not need
evolve the spin network stateus& forever, if what we want to
know is something that happens shortly after the momen
which the quantum state isus&. Nevertheless, what we ar
computing is 4D diffeomorphism-invariant quantity.

As an example that is more likely to be treatable in t
quantum theory, consider an observable such as the vol
Vc of the constant-extrinsic-curvature ADM slice with give
extrinsic curvatureK(x)5k. Assume we have an operatorK
corresponding to the local extrinsic curvature. Then,

Vk;Pd~K,k!Vd~K,k!P. ~80!

Once more,Vc is a 4D diffeomorphism-invariant observab
localized in time. Given an extrinsic curvature operatorK,
the methods developed here should provide an expansio
the expectation value ofVk . Inserting Eq.~80! into Eq.~79!,
with O5Vk , the delta function selects the ADM slices wit
the correct extrinsic curvature from the sum ins8, and the
mean value ofVk is given by the average over such slic
5-10
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appearing in the time development ofus& generated by the
Hamiltonian constraint. Ifus& is sufficiently close~in time! to
a K5k surface, then, on physical grounds, we have so
reasons to hope the expansionT to be well behaved. Thus
the diffeomorphism-invariant quantum computation ofVk re-
produces the structure of the classical computation.

V. CONCLUSIONS

We have studied the dynamics of nonperturbative qu
tum gravity. Because of the diffeomorphism invariance
the theory, this dynamics is captured by the ‘‘projector’’P
on the physical states that solve the Hamiltonian constra
We have constructed an expansion for the~regularized! pro-
jector P and for the expectation values of physical obse
ables. The expansion is constructed using some formal
nipulations and by using a diffeomorphism-invaria
functional integration on a space a scalar functions. T
construction may represent a tool for exploring the phys
defined by various Hamiltonian constraints.

Our main result is summarized in Eqs.~60!,~61!, which
give the regularized projector, and Eqs.~74!,~76!, which give
the expectation value of a physical observable, both in te
of finite and explicitly computable quantities. Equivalent
the theory is defined in the spin-foam formalism by the p
tition function Z given in Eqs.~64!,~65!,~68!. The expecta-
tion values are then given in Eq.~79! as averages over th
spin foam. The spin-foam formalism is particularly intere
ing, because it provides a spacetime-covariant formulatio
a diffeomorphism-invariant theory. The partition functionZ
is expressed in the manner of Feynman as a sum over p
but these paths aretopologicallydistinct and discrete~so that
we have a sum rather than an integral!.

Several aspects of our construction are incomplete
deserve more detailed investigations.~i! The physical discus-
sion on the range of validity of the expansions conside
should certainly be made more mathematically prec
el
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~ii ! The choice of the position of the nodes considered
Sec. IV B is somewhat arbitrary and other possibilities mig
be explored.~iii ! A possible modification of the formalism
that could be explored is to restrict the range of the integ
tion in N to positive definiteN’s, in analogy with the Feyn-
man propagator.~iv! The spacetime geometry of the~indi-
vidual! spin foams has not yet been fully understood a
deserves extensive investigations~on this, see
@17,18,21,22,36#!. ~v! We have completely disregarded th
Lorentzian aspects of the theory. These can be taken
account by using the Barbero-Thiemann Lorentzian Ham
tonian constraint@5# or, alternatively, along the lines ex
plored by Markopoulou and Smolin@7#. ~vi! The limit T
→` should be better understood: how can we find it fro
the knowledge of a finite number of thean and bn coeffi-
cients in Eq.~74!? ~vii ! Finally, the formalism developed
here makes contact with the spin-foam models@20–22#!. We
believe that the relation between these approaches des
to be studied in detail.

The key issue is whether the measure that we have
ployed is the ‘‘correct’’ one: intuitively, whether this mea
sure has the property that the integral of the exponen
gives the delta function or whetherP is in fact, in the appro-
priate sense, a projector. We will discuss this point el
where.

The nonperturbative dynamics of a diffeomorphism
invariant quantum field theory is still a very little explore
territory; the scheme proposed here might provide a path
this unfamiliar terrain.
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