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Spherically symmetric closed universe as an example of a 2D dilatonic model
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We study a two-dimensional dilatonic model describing a massless scalar field minimally coupled to the
spherically reduced Einstein-Hilbert gravity. The general solution of this model is given in the case when a
Killing vector is present. When interpreted in four dimensions, the solution describes either a static or a
homogeneous collision of incoming and outgoing null dust streams with spherical symmetry. The homoge-
neous universe is closed.@S0556-2821~99!01710-5#

PACS number~s!: 04.40.Nr, 04.20.Jb
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I. INTRODUCTION

In a recent paper@1# we gave the general solution of th
Einstein field equations describing the collision of sphe
cally symmetric null dust streams when the resulting spa
time is static. For special parameter values the solution
found independently by Kramer@2#, who obtained also static
and stationary solutions describing the collision of cylind
cal null dust beams@3#. The spherically symmetric stati
solution has the two dimensional~2D! interpretation@1# of a
scalar field in minimal coupling with dilatonic gravity, whic
arises from the dimensional reduction of the Einstein-Hilb
action.

In this paper we present a general solution in the c
when an additional Killing vector~not necessarily timelike!
is present. This corresponds to theso(3)% R algebra in a
four dimensional~4D! picture. The system is characterize
by the action

S5E d2xA2grFR@g#1
1

2
gab¹a ln r¹b ln r1

2

rG
2

1

2E d2xA2ggab¹aw¹bw. ~1!

Herer is the dilaton,gab the two-metric,R the Ricci scalar
of the gab-compatible two-connection¹ and w the scalar
field. We obtain the dynamical equations in the followin
way. First we pass to a conformal metrichab5h21gab and
vary the action~1! with respect tor, hab andw. ~The varia-
tion with respect toh gives nothing new but the trace of th
equation obtained by varying with respect tohab). Then we
impose the flatness of the metrichab and choose null coor
dinatesx6. In this way the 4D line element takes the for
ds252h(x1,x2)dx1dx21r(x1,x2)dV2 and the equa-
tions are

dw: w ,1250 ~2!

dh11: r ,112r ,1~ ln s! ,152
1

2
~w ,1!2 ~3!

dh22: r ,222r ,2~ ln s! ,252
1

2
~w ,2!2 ~4!
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dh12: r ,121
1

2
r21/2s50 ~5!

dr: ~ ln s! ,122
1

4
r23/2s50. ~6!

Here commas denote derivatives and we have introduced
notations5hr1/2. In deriving Eq.~6! the trace of thedhab

equation was employed. Insertingr ,12 from Eq. ~5! in the
]2 derivative of Eq.~3!, we find Eq.~6!. This interdepen-
dence of the equations is not surprising, as there are Bia
identities to be satisfied. The wave equation~2! leaves us
with the D’Alembert solutionw5w1(x1)1w2(x2), a sum
of left- and right-mover fields. Before proceeding to sol
the problem in the case when a symmetry is present,
review how the solution emerges in the cases when no
only one component of the scalar field is present.

II. VACUUM SOLUTION

It is easy to solve the remaining three equations~3!–~5! in
the vacuum casew50. After dividing byr ,1 andr ,2 respec-
tively, Eqs. ~3! and ~4! can immediately be integrated t
obtain

r ,65H7s, ~7!

whereH7(x7) are arbitrary integration functions dependin
only on one coordinate. Next we eliminates from the above
two equations and Eq.~5!. The resulting system can be inte
grated once more, finding

H6r ,652m62r1/2, ~8!

wherem6(x6) form a second set of integration functions.
comparison with Eq.~7! however leaves us withm65M
5const and the algebraic relation

s5
2M2r1/2

H1H2
. ~9!

Inserting this expression ofs in Eq. ~7! an integration
yields 2M lnu2M2r1/2u1r1/25K62F7, where F7(x7)
5*x7

dx̃7/2H7( x̃7) and K6(x6) are integration functions
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which can be again eliminated by comparing the right ha
sides:K61F652A5const. Thus a second algebraic re
tion betweenr ands has emerged:

u2M2r1/2uexpS r1/2

2M D5expS 2A2F12F2

2M D . ~10!

Our choice of the null coordinatesx6 is not unique. They
can be changed by a coordinate transformation belongin
the conformal subgroup of diffeomorphisms tox̂6

5x6(x6). Under such a transformation the variabler re-
mains unchanged while s transforms as ŝ
5s/(x1) ,1(x2) ,2 . By choosing the new null coordinate
defined by the differential equation 4MH6(x6) ,61x650
and fixing the integration constants in a convenient way~to
annihilate the constantA), Eqs.~9!, ~10! become

s5
16M2~2M2r1/2!

x̂1x̂2

~2M2r1/2!expS r1/2

2M D52uM ux̂1x̂2. ~11!

The remaining freedom in the choice of the null coordina
is to scale one of them by a constant and the other one by
reciprocal of this constant. In the second equation of E
~11! we have used that the expressionsx̂1x̂2 and 2M
2r1/2 have the same sign, as can be seen from the posi
ness of s. Inserting r1/25R and s5hR we obtain the
Schwarzschild solution with massM ~positive or negative!
with curvature coordinateR and conformal factorh written
in terms of the Kruskal coordinates. A similar derivation w
given by Synge@4#.

For the valueM50 of the first integration constant th
derivation has to be slightly modified. Then in place of E
~10! we haver1/252A2F12F2 and the new null coordi-
natesx̂6562(A2F6) are chosen. The solution is the fl
space-time

h51, x̂12 x̂252R. ~12!

III. CHIRAL SOLUTION

The chiral case, when only one component of the sc
field is present, has been solved for a quite general clas
dilatonic Lagrangians, obtaining generalized Vaidya so
tions @5#. We illustrate how the solution emerges for th
system~1! in the case of the left-mover fieldw5w1 ~thus
w250). Then Eq.~4! can be integrated, obtaining Eq.~7!
containingr ,2 . By insertings from Eq. ~5! and integrating
as in the vacuum case we find the (1) equation of Eqs.~8!.
Inserting this into Eq.~3! and employing again Eq.~5! a first
10401
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order differential equation for the functionm1 emerges, with
the solution

m15M2
1

4E dx1H1~w,1!2. ~13!

We define a convenient null coordinateV by dV
52dx1/H1. ~This is related to the Kruskal coordinate in
troduced in the vacuum case bydV54Md ln x̂1.) Expressed
as a function ofV, the integration functionm1 becomes

m15M1
1

4E dV~w ,V!2. ~14!

In terms of the curvature coordinateR and conformal factor
h852H1h, the remaining field equations@ther ,2 equation
from Eqs.~7! and ther,1 equation from Eqs.~8!# give

2R,252h8, 2R,V512
2m1~V!

R
. ~15!

Writing the line element~with h8 andV in place ofh and
x1) in terms of the coordinates (R,V) we obtain the incom-
ing Vaidya solution @6# ds252@122m1(V)/R#dV2

12dRdV1R2dV2, with m1 as the mass function. Waug
and Lake@7# have shown that a closed form of this solutio
can be given in double null coordinates only for linear a
exponential mass functions. This implies by Eq.~14! that the
scalar field has to be also a linear or exponential function
order to be able to integrate the second equation~15!.

IV. SOLUTION WITH SYMMETRY

Until now we have discussed the cases where at least
of the two components of the scalar field vanishes. If b
components are present, we can use them in the constru
of new null coordinatesx̃65w6/A2. In terms of these null
coordinates, dropping the tildes, we obtain the system

r ,112r ,1~ ln s! ,1521 ~16!

r ,222r ,2~ ln s! ,2521 ~17!

2r ,121r21/2s50. ~18!

The general solution for the system~16!–~18! is not yet
known in closed form.~Miković @8# has given the solution in
the form of a perturbative series in powers of the outgo
energy-momentum component!.

Our purpose is to generalize the solution given in@1# for
any Killing vector tangent to the surface defined byu
5const andw5const. From the Killing equations we fin
that the Killing vectorK5„K1(x1),K2(x2),0,0… satisfies
K1r ,11K2r ,250 and (K1h) ,11(K2h) ,250. The last
relation implies the existence of a potentialN defined by
4-2
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hK656N,7 . The remaining Killing equations in terms o
the potentialN are

N,2r ,15N,1r ,2 ~19!

N,665N,6S r ,6

2r
1~ ln s! ,6D .

~20!

The potentialN can be eliminated from the system~19!,
~20! in the following way. We expressN,12 from the ]2

derivative of Eq.~19! and we substitute it into the]1 deriva-
tive of Eq. ~19! in which alsoN,66 are replaced by thei
expressions~20!. By insertingN1 from Eq.~19!, we obtain a
differential equation inr ands. Eliminating the second de
rivatives r ,66 from Eqs.~16! and ~17!, we find r ,15cr ,2
wherec251. This implies thatr depends on a single var
ablex11cx2. It is immediate to show that the same pro
erty holds for s and N. The Killing vector is K5a(c,
21,0,0), wherea is a constant. Thus Eqs.~16!–~18! lead to
a system of ordinary differential equations

d2r

d~x11cx2!2
1

cs

2r1/2
50

dr

d~x11cx2!

d ln s

d~x11cx2!
512

cs

2r1/2
.

~21!

We introduce timelike and spacelike coordinatest and r
respectively byx65t6r in terms of which the metric is
ds25h(2dt21dr2)1rdV2. There are two cases to discus
~a! when all metric functions depend only onr ~static case!
or ~b! when they depend solely ont ~homogeneous case!.

~a! We have discussed this case in detail in@1#. The fact
that the dilatonr5R2 has only radial dependence sugge
to introduceR as a new radial coordinate. The metric b
10401
:

s
-

comes ds252hdt21 f 21dR21R2dV2, where the metric
function f is defined by the differential equation

S dR

dr D 2

5 f h. ~22!

By introducing the notationb52/h we recover, from Eqs.
~21!, Eqs.~2.7!, ~2.8! of @1#.

~b! Now the dilaton depends only on time. We introdu
R as a new time variable and obtain the metricds25
2 f 21dR21hdr21R2dV2, where the metric functionf is
defined similarly to Eq.~22!:

S dR

dt D
2

5 f h. ~23!

From Eqs.~21! we find equations very much similar to Eq
~2.7!, ~2.8! of @1#. Both are written concisely as

f
d ln f

d ln R
52b2 f 2c

f
d ln b

d ln R
52b1 f 1c, ~24!

wherec521 refers to the static case andc51 to the homo-
geneous case.

The solving procedure of this system follows closely@1#,
the only difference being in the definition of the new va
ables P56(2 f b)1/2 and L56(12cb)/(2 f b)1/2, allowed
to take either positive or negative values. We find

cCR5eL2
22LFB~L !, FB~L !5B1EL

ex2
dx ~25!

b5
CR

eL2 , f 5
2FB

2~L !

eL2
CR

~26!

ds252
2ceL2

R

C
dL21

eL2

cCR
dr21R2dV2 ~27!
g

FIG. 1. ~a! The functionCR is positive in a domain ofL centered at the origin, when the parameterB50 is chosen.~b! The plot of

(CR1uCRu)/2 for a wide range of the constantB shows a shift of the admissible domain ofL in the positive or negative direction dependin
on the sign ofB.
4-3



a

r

rs
s

c
it

d
e

n
se

o-
s.

e

ear
s
to

n

al

e
by

r
o-

ses

rm
r-
m-
ian
aic
-
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whereB andC.0 are constants and Eq.~25! determinesR
as function ofL.

V. CONCLUDING REMARKS

The metric~27!, either static~then t replacesr andL is a
radial coordinate! or homogeneous, has a true singularity
R50. Although the Ricci scalar vanishesR50, other sca-
lars, likeRabR ab52C2/e2L2

R2 and the Kretschmann scala
RabcdR abcd which has the denominator (CR)6, are ill-
behaved atR50.

The 4D interpretation of the source is again twofold. Fi
we have the general picture of colliding null dust stream
valid even without the assumption of a Killing vector. Se
ond we can interpret the source as an anisotropic fluid w
no tangential pressures and both the energy density an
dial pressure equal tob/8pR25C/eL2

R ~these also becam
infinite at R50).

Note that in contrast with@1#, the transcendental functio
FB(L) is not constrained to be positive. In the static ca
becauseFB(L)52F2B(2L), the negative values ofL lead
just to another copy of the solution written in@1# for positive
L, as was explained in@9#. The consequences in the hom
geneous case are deeper, as will be seen in what follow
natural requirement the new time variableL should satisfy is
to be a monotonous function oft. From Eqs.~25! the relation
d(CR)/dL522FB(L) emerges. By fixing the sign in th
square root of Eq.~23! appropriately~2 for F.0 and1 for
F,0!, we getd(CR)/dt522F/R. In conclusion

dL

dt
5R.0. ~28!

Another remark is that atd(CR)/dL50 the functionf van-
ishes; thus the metric written in the coordinates (R,r ,u,f)
10401
t

t
,

-
h
ra-

,

A

has a coordinate singularity, which however does not app
in the form ~27! of the metric, when the coordinate
(L,r ,u,f) are employed. This feature is closely related
the fact that both the transformationst→R and L→R are
ill-behaved atFB(L)50, whereas the direct transformatio
t→L, given by Eq.~28!, is regular.

A delicate issue is the signature of the metric~27!. To
have a homogeneous metric (c51) with L as time andr as
radial coordinate, as claimed, the conditionR.0 should be
satisfied. This translates to haveL confined to a finite range
LP(L02 ,L01), as can be seen in Fig. 1 from the numeric
plot of Eqs. ~25!. The constantC provides a scale as in
the static case. The other constantB shifts the admissible
domain ofL to negative values whenB.0 and conversely.
The singularity is on the boundariesL06 of the admissible
range ofL.

The function R is the time-dependent radius of th
Kantowski-Sachs type homogeneous universe described
Eq. ~27!. It is first increasing to a maximum value afte
which it decreases to zero. This universe, filled by a tw
component radiation, is born from a singularity and collap
into another singularity.
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