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Spherically symmetric closed universe as an example of a 2D dilatonic model
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We study a two-dimensional dilatonic model describing a massless scalar field minimally coupled to the
spherically reduced Einstein-Hilbert gravity. The general solution of this model is given in the case when a
Killing vector is present. When interpreted in four dimensions, the solution describes either a static or a
homogeneous collision of incoming and outgoing null dust streams with spherical symmetry. The homoge-
neous universe is closed50556-282(199)01710-5

PACS numbd(s): 04.40.Nr, 04.20.Jb

I. INTRODUCTION 1
89" pa-tzp =0 (5
In a recent papelrl] we gave the general solution of the
Einstein field equations describing the collision of spheri- 1
cally symmetric null dust streams when the resulting space- 6p: (Ino),_— Zp_3/20'=0. (6)
time is static. For special parameter values the solution was

found mdependently_ by Kram@_?]_, who obtal_n(_ad also Stalic - are commas denote derivatives and we have introduced the
and stationary solutions descrlbmg_the collision of cyhnqlrl- notationo=hp¥2 In deriving Eq.(6) the trace of thed»®#

ca: null EUSt hbeamig]. Thg sphenpally symmetric sftat|c equation was employed. Insertipg, _ from Eq. (5) in the
solution has the two dimensionéD) interpretatior{1] of a d_ derivative of Eq.(3), we find Eq.(6). This interdepen-

o i lric faut, M gence of he eaons ot g, s er e i
identities to be satisfied. The wave equati@ leaves us

action. ; ) : - —(y—
. L with the D’Alembert solutionp=¢ " (X")+ ¢ (X7), a sum
In this paper we present a general soluthn In th? CaS§t left- and right-mover fields. Before proceeding to solve
when an additional Killing vecto¢not necessarily timelike the problem in the case when a symmetry is present, we

o s e o o et aaae e how the soluion emerges n he cases wen no o
P : y only one component of the scalar field is present.

by the action

II. VACUUM SOLUTION

S=f dzx\/—gp[R[gH— Eg“'BValanﬁIn;H—E _ N _ _
2 p It is easy to solve the remaining three equati@)s-(5) in

1 the vacuum case=0. After dividing byp , andp _ respec-
_EJ d2x1/—gg“5Va<pVB<p. (1) g\é(tegn Egs. (3) and (4) can immediately be integrated to

Herep is the dilatong,; the two-metric,R the Ricci scalar p.=H%o, )

of the g,z-compatible two-connectioV and ¢ the scalar .

field. We obtain the dynamical equations in the following whereH ™ (x*) are arbitrary integration functions depending
way. First we pass to a conformal meteig, ;= h’lgalg and  only on one coordinate. Next we eliminatefrom the above
vary the action(1) with respect tgp, 7*# and¢. (The varia-  two equations and Ed5). The resulting system can be inte-
tion with respect tdh gives nothing new but the trace of the grated once more, finding

equation obtained by varying with respect#6°). Then we . .

impose the flatness of the metrig, ; and choose null coor- H*p .=2m"—p*? (8

dinatesx™. In this way the 4D line element takes the form . _ ) )
d=—h(x*,x")dx"dx +p(x*,x")dQ? and the equa- wherem=(x~) form a second set of integration functions. A

comparison with Eq(7) however leaves us witn*=M

tions are ; _
=const and the algebraic relation
: _= 2
d¢: ¢,-=0 2 oM 2
! T ®
/AR P,++_P,+(|n0'),+:_§(<P,+)2 ©)

Inserting this expression ofr in Eqg. (7) an integration
yields 2M Inj2M—p'3 + p?=K=—F*, where F*(x%)

1
. _ __ = 2 S
on + p———p-(na) 2(90") @ =X dx*/2H* (x¥) andK=(x™) are integration functions,
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which can be again eliminated by comparing the right handrder differential equation for the function® emerges, with
sides:K*+F*=2A=const. Thus a second algebraic rela-the solution
tion betweerp and o has emerged:

12 2A—-F*—F~
= exp( —) . (10

1

, m+=|v|—Zf dx"H (@,,)% (13

|2|v|—p1’2|exp(—
2M

2M

We define a convenient null coordinaté by dV
=—dx*/H*. (This is related to the Kruskal coordinate in-
Our choice of the null coordinates” is not unique. They troduced in the vacuum case by'=4Md InX*.) Expressed
can be changed by a coordinate transformation belorjging 95 a function oV, the integration functiom* becomes
the conformal subgroup of diffeomorphisms ta™
=y~ (x™). Under such a transformation the variallere-

1
mains unchanged while o transforms as o m*=M+ Zf dV(e )2 (14)
=o/(x") +(x"),— . By choosing the new null coordinates
defined by the differential equationMiH*(x™) . +x =0
and fixing the integration constants in a convenient \itay
annihilate the constarf), Egs.(9), (10) become

In terms of the curvature coordinaeand conformal factor
h’=—H"h, the remaining field equatiorithe p _ equation
from Eqgs.(7) and thep,, equation from Eqs(8)] give

16M2(2M — p172 2m*(V
_ ( p) DR _=—h', 2Ry=1- R()

o

—— (15
X X

" Writing the line elementwith h’ andV in place ofh and
p 4o *) in terms of the coordinatedx(V) we obtain the incom-
2M —p12 p(—)=2|v| X 17y X . .
( R PTY IMIx"x (1) ing Vaidya solution [6] ds’=—[1—2m"(V)/R]dV?
+2dRdV+R?dQ?, with m* as the mass function. Waugh

. . ) ) and Lake[7] have shown that a closed form of this solution
The remaining freedom in the choice of the null coordinates.;, pe given in double null coordinates only for linear and

s to scale one ‘?f them by a constant and the othe_r one by tr’la"?xponential mass functions. This implies by Ety) that the
reciprocal of this constant. In the second equation of EqSqcaar field has to be also a linear or exponential function in

(11) we have used that the expressiosx~ and 2M  order to be able to integrate the second equafi
— p*? have the same sign, as can be seen from the positive-

ness ofo. Inserting p=R and o=hR we obtain the

Schwarzschild solution with madd (positive or negative IV. SOLUTION WITH SYMMETRY

with curvature coordinat® and conformal factoh written Until now we have discussed the cases where at least one
in terms of the Kruskal coordinates. A similar derivation wasgf the two components of the scalar field vanishes. If both
given by Syngd4]. components are present, we can use them in the construction

For the valueM =0 of the first integration constant the
derivation has to be slightly modified. Then in place of Eq.
(10) we havep*?=2A—F"—F~ and the new null coordi-

natesx” = +2(A—F™) are chosen. The solution is the flat

of new null coordinatex™ = ¢*//2. In terms of these null
coordinates, dropping the tildes, we obtain the system

space-time p++—p+(lno) =-1 (16)
L p———p_(Ino) _=-1 (17)

h=1, xt*—-x"=2R. (12
2p'+,+p71/20'=0. (19

Ill. CHIRAL SOLUTION . .
The general solution for the systefh6)—(18) is not yet

The chiral case, when only one component of the scalaknown in closed form(Mikovic [8] has given the solution in
field is present, has been solved for a quite general class dfie form of a perturbative series in powers of the outgoing
dilatonic Lagrangians, obtaining generalized Vaidya solu-energy-momentum componént
tions [5]. We illustrate how the solution emerges for the  Our purpose is to generalize the solution givenlihfor
system(1) in the case of the left-mover fielg=¢" (thus any Killing vector tangent to the surface defined oy

¢~ =0). Then Eq.(4) can be integrated, obtaining E() =const andg=const. From the Killing equations we find
containingp _ . By insertingo from Eq. (5) and integrating that the Killing vectorK= (K *(x*),K ~(x7),0,0) satisfies
as in the vacuum case we find the Y equation of Eqs(8). K*p++K p_=0and (C"h) .+(K"h) _=0. The last

Inserting this into Eq(3) and employing again E@5) a first  relation implies the existence of a potentidldefined by
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hK *==N - . The remaining Killing equations in terms of comes ds’=—hdt?+f 'dR?+R?dQ?, where the metric

the potentialN are functionf is defined by the differential equation
dR)?2
N'fp’+:N’+p’7 (19) (E) :fh. (22)
P+ By introducing the notatio8= 2/h we recover, from Egs.
N,--=N . Z*‘('n a) x| (21), Egs.(2.7), (2.9 of [1].

(20) (b) Now the dilaton depends only on time. We introduce
R as a new time variable and obtain the metde®=
—f YdR?+hdr?+R?dQ?, where the metric functior is

The potentialN can be eliminated from the systefh9), defined similarly to Eq(22):

(20) in the following way. We expressl . _ from the d_

derivative of Eq.(19) and we substitute it into the, deriva- drR
tive of Eq. (19) in which alsoN ... are replaced by their (a
expression$20). By insertingN . from Eq.(19), we obtain a

differential equation irp and 0. Eliminating the second de- From Eqgs.(21) we find equations very much similar to Egs.

2
=fh. (23

rivatives p . .. from Eqs.(16) and(17), we findp .=cp - (2.7), (2.9 of [1]. Both are written concisely as
wherec?=1. This implies thap depends on a single vari-
ablex*+cx™. It is immediate to show that the same prop- dinf
erty holds foro and N. The Killing vector is = «(c, fm:_ﬁ_f_c
—1,0,0), wherex is a constant. Thus Eq6l6)—(18) lead to
a system of ordinary differential equations ding
fdln R B+f+c, (24
d?p co

wherec= —1 refers to the static case anek 1 to the homo-
geneous case.
The solving procedure of this system follows closgdly,
dp dino co the only difference being in the definition of the new vari-
- ——1- _ ablesP=+(2fB)Y? and L=+ (1—cpB)/(2f B)*?, allowed
d(x"+cx7) d(x"+cx) 2p'2 o1 to take either positive or negative values. We find

+——=0
d(xt+cx )2 2pt?

L
, o , _ cCR=e"— 2L dg(L), <1>B(L):3+f e“dx (25
We introduce timelike and spacelike coordinatesndr

respectively byx==t=r in terms of which the metric is
ds’=h(—dt?+dr?) + pdQ?. There are two cases to discuss: CR 2d3(L)
(@ when all metric functions depend only onstatic casg B= 2 f= '-2—CR (26)
or (b) when they depend solely anhomogeneous case € €
(a) We have discussed this case in detai[ih The fact

L2 L2
that the dilatonp=R? has only radial dependence suggests _ 2R, € 2. 12402
. . : . =— + ——=dre+
to introduceR as a new radial coordinate. The metric be- ds’ C dL CRdr RdQ @7
(a) CR (b)

(CR+|CR|) /2

5000
4000
3000

N
2000 \\\\gt:o:.:.:.

5
AR
000
X
S0
B0
X

X S5 S

e sgesey

1000 I
NN e 2wy
22 NSy,
~1000 S, "\“\.:.:.:.,l"
S VAN s s S

’0
%
3,

0.5 1

FIG. 1. (a) The functionCR is positive in a domain of. centered at the origin, when the parameer 0 is chosen(b) The plot of
(CR+|CR])/2 for a wide range of the constaBtshows a shift of the admissible domainlofn the positive or negative direction depending
on the sign ofB.
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has a coordinate singularity, which however does not appear
in the form (27) of the metric, when the coordinates
(L,r,0,¢) are employed. This feature is closely related to
the fact that both the transformationhs-R andL—R are
ill-behaved atdg(L)=0, whereas the direct transformation
t—L, given by Eq.(28), is regular.

A delicate issue is the signature of the metf&?). To
have a homogeneous metric= 1) with L as time and as
radial coordinate, as claimed, the conditiBe>0 should be
satisfied. This translates to halzeconfined to a finite range
Le(Lo_,Los), as can be seen in Fig. 1 from the numerical

we have the general picture of colliding null dust streams{:)r:Ot of !Eqs. (29). ;I]'he c;]onstantc prox!]ccites ha sc;\le_ a;blln
valid even without the assumption of a Killing vector. Sec- € static case. The other constahsshifts the admissible

ond we can interpret the source as an anisotropic fluid witlfomain ofL to negative values wheB>0 and conversely.
no tangential pressures and both the energy density and rdle singularity is on the boundari¢s. of the admissible

whereB and C>0 are constants and E5) determinesR
as function ofL.

V. CONCLUDING REMARKS

The metric(27), either statigthent replaces andL is a
radial coordinateor homogeneous, has a true singularity at
R=0. Although the Ricci scalar vanish&=0, other sca-
lars, like R4, R 2°=2C2/e?-°R? and the Kretschmann scalar
RabcdR 2°¢? which has the denominatorCR)®, are ill-
behaved aR=0.

The 4D interpretation of the source is again twofold. First

dial pressure equal t8/8mR2=C/e-’R (these also became
infinite atR=0).
Note that in contrast withl], the transcendental function

range ofL.
The function R is the time-dependent radius of the
Kantowski-Sachs type homogeneous universe described by

®g(L) is not constrained to be positive. In the static case,Ed: (27). It is first increasing to a maximum value after

becausebg(L)=—® _g(—L), the negative values ¢f lead
just to another copy of the solution written|ifh] for positive

which it decreases to zero. This universe, filled by a two-
component radiation, is born from a singularity and collapses

L, as was explained if9]. The consequences in the homo- into another singularity.
geneous case are deeper, as will be seen in what follows. A

natural requirement the new time varialblshould satisfy is
to be a monotonous function @fFrom Eqs(25) the relation
d(CR)/dL=—2dy(L) emerges. By fixing the sign in the
square root of Eq(23) appropriately(— for >0 and+ for
$<0), we getd(CR)/dt=—2d/R. In conclusion

dL
——=R>0.

T (28

Another remark is that al(CR)/dL=0 the functionf van-
ishes; thus the metric written in the coordinat&sr( 6, ¢)
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