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Massive higher spin states in string theory and gravitational quadrupoles
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In this paper we study three point functions of the type II superstring involving one graviton and two
massive states, focusing in particular on the spin-7

2 fermions at the first mass level. Defining a gravitational
quadrupole ‘‘h factor,’’ we find that the nonminimal interactions of string states in general are parametrized by
hÞ1, in contrast with the preferred field theory value ofh51 ~for tree-level unitarity!. This difference arises
from the fact that consistent gravitational interactions of strings are related to the presence of a complete tower
of massive states, not present in the ordinary field theory case.@S0556-2821~99!01908-6#

PACS number~s!: 04.62.1v, 04.50.1h, 11.25.2w
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I. INTRODUCTION

While the matter of consistent interactions of mass
higher spin fields with gravity has been fairly well studied
the context of field theory@1#, less is known in the case o
string theory. Although for the latter, one may argue th
strings musta priori present a consistent theory of gravity,
is nevertheless instructive to examine the nature of such
teractions and to determine in particular how strings achi
such a consistency.

The simplest recipe for coupling massive fields to grav
~the ‘‘minimal coupling’’! is inherently ambiguous. Indeed
by replacing ordinary derivatives with covariant derivativ
one is still free to add to the action terms that vanish on
space; the commutator of two covariant derivatives, for
stance. In Ref.@2# a prescription was given for fixing som
of the ambiguities. There, by imposing tree-level unitarity
to the Planck scale on forward ‘‘Compton’’ scattering amp
tudes of a single massive high-spin field, many coefficie
in its action were fixed unambiguously. In particular, it w
shown that starting from spin-5

2, tree-level unitarity requires
the presence of terms proportional to the Riemann tenso
the three-point vertex describing single-graviton emiss
and absorption by the fermions.

Tree-level unitarity is really the statement that an intera
ing theory is weakly coupled up to a certain energy sca
MPlanckor (a8)21/2, for instance. The recipe of Ref.@2# is not
immediately applicable to string theory. The spectrum
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string theory, indeed, contains many particles of ev
increasing spin, some of which degenerate in mass. Thus
instance, tree-level unitarity of a massive high-spin parti
is achieved in string theory in part because of the three-p
vertex, but also because an infinite number of particles
ever-increasing mass and spin propagate as interme
states. To find which one-graviton vertex is selected
string theory, one must therefore resort to direct calculati

More specifically, we begin in Sec. II with an investig
tion of the superstring three-point vertex involving on
graviton and two spin-72 fermions at the first string mas
level. Our reasons for this choice are twofold:~i! it is known
that difficulties with tree level unitarity do not arise for ma
sive particles of spins less than5

2, and~ii ! closed string cal-
culations are simplified for states on the leading Reg
trajectory—in this case spin-7

2 for spacetime fermions at th
first mass level. Note that we work in the weak field appro
mation throughout the paper, and work to linearized orde
the gravitational field as we only concentrate on three-po
gravitational vertices.

Section III focuses on the ‘‘gravitational quadrupole
term, that is the three-point vertex proportional to the R
mann tensor. In Sec. III we compare the results obtai
from superstring theory with the predictions of tree-lev
unitarity. Section IV extends the computation of the thre
point vertex and effective action to states of arbitrary sp
and contains some comments on the implications of our
sults for tree-level unitarity in strings.

II. MASSIVE THREE-POINT FUNCTIONS

We begin by examining the simplest massive string int
actions of the type II string, namely, three-point functions
the first mass level. In this case, the~ten-dimensional! closed
©1999 The American Physical Society13-1
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superstring states fall into theSO(9) spin representations1

@441841128#L3@441841128#R . Correspondingly, in
four dimensions, such states carry spins up to four. Focu
on spacetime fermions@i.e., the Ramond-Neveu-Schwarz~R-
NS! sector#, we now describe the vertex operator for em
sion or absorption of states in the 128344 of SO(9) and in
the (q,q̄)5(2 1

2 ,21) ghost picture. While the string ampl
tudes are calculated in ten dimensions, the compactifica
to four dimensions is straightforward on a six-torus, with t
128- and 44-dimensional representations yielding spins u
3
2 and 2, respectively.

Massive vertex operators have been discussed previo
in Ref. @3#. Working in the R-NS sector, the vertex operat
for the 128344 state may be written as
ri
io
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VF
~21/2,21!~z,z̄!5umnr

a ~X!Sae2f/2]Xme2f̄c̄n]̄Xr1vmnr
ȧ ~X!

3~gl!ȧ
bcmclSbe2f/2e2f̄c̄n]̄Xr. ~1!

In this expressionSa ande2f/2 represent the spin fields fo
the two-dimensional fermionscm and the superconforma
ghostsb, g respectively. The wave functionsu and v are
now constrained by demanding thatVF

(21/2,21)(z,z̄) is
Becchi-Rouet-Stora-Tyupin~BRST! invariant, i.e. that

@Q,VF
(21/2,21)(z,z̄)# and similarly @Q̄,VF

(21/2,21)(z,z̄)# van-
ish up to a total derivative. The BRST charge for the type
string theory is given by
Q5E dzc~z!S 2
1

2
hmn]Xm]Xn2

1

2
hmncm]cn2

3

2
b]g2

1

2
]bg D ~z!

1E dzS bc]c1
1

2
ghmncm]Xn2

1

4
bg2D ~z!, ~2!

and a similar expression forQ̄. We find that @Q,VF
(21/2,21)(z,z̄)#5]@c(z)VF

(21/2,21)(z,z̄)# and @Q̄,VF
(21/2,21)(z,z̄)#

5 ]̄@ c̄( z̄)VF
(21/2,21)(z,z̄)# when the wave functionsu andv satisfy

~gl!b
ḃ]lvmnr

ȧ ~X!dȧḃ1
&

~D22!
umnr

a ~X!dab50, ]mumnr
a ~X!50,

~gl!aḃ]lumnr
a ~X!1~D22!vmnr

ȧ ~X!dȧḃ50, ~gm!ȧ
bvmnr

ȧ ~X!50,

~gm!aḃumnr
a ~X!2~D22!]mvmnr

ȧ ~X!dȧḃ50, ]numnr
a ~X!5]nvmnr

ȧ ~X!50, ~3!
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whereD510 is the space-time dimension. Conformal inva
ance thus provides equations of motion and gauge condit
for the wave functionsumnr

a (X) and vmnr
ȧ (X). These con-

straints can be written in a compact form if we combineu
andv into a Dirac spinorc5((D22)v

u ):

gl]lcmnr~X!1&cmnr~X!50,

gmcmnr~X!5]mcmnr~X!5]ncmnr~X!5]rcmnr~X!50.
~4!

We observe thatcmnr(X) obeys a massive Dirac equatio
and a set of gauge conditions. In order to extract the c
plings of massive spin-7

2 particles to gravity we need to ca
culate the three-point scattering amplitude of two spin-7

2 fer-

1Both IIA and IIB theories have identical massive spectra; th
interactions, however, are in general distinct.
-
ns

u-

mions and a graviton. To satisfy the superconformal gh
charge condition we consider the graviton vertex operato
the (q,q̄)5(21,0) picture

VG
~21,0!~z,z̄!5hmn~X!cme2f]̄Xn1]lhmn~X!cme2fc̄lc̄n,

~5!

where the graviton wave function obeyshhmn(X)
5]mhmn(X)50. We proceed now to calculat
^VF

(21/2,21)(z1 ,z̄1)VG
(21,0)(z2 ,z̄2)VF

(21/2,21)(z3 ,z̄3)&.
To calculate superstring three-point functions involvi

spin fields we use the techniques developed in Ref.@4#. In
particular, we note that three-point functions always factor
into a product of a holomorphic and an antiholomorph
piece. We recall that the closed string graviton vertex ope
tor, Eq. ~5!, is simply a product of separate left- and righ
moving gauge boson vertices. Starting with the holomorp
Ramond sector, we now calculate the three-point function
two massive fermions with a gauge boson. Dynamical iss
of massive string states in open string theory were discus
in Ref. @5#.

r
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The vertex operators which describe massive spin-3
2 fer-

mions and massless gauge bosons in theq52 1
2 and q5

21 ghost pictures, respectively, are given by

VF
~21/2!~z,z̄!5um

a~X!Sae2f/2]Xm1vm
ȧ~X!

3~gl!ȧ
bcmclSbe2f/2,

VB
~21!~z,z̄!5Am~X!cme2f. ~6!

Conformal invariance implies thatAm andc5((D22)v
u ) sat-

isfy

gl]lcm~X!1&cm~X!50, gmcm~X!5]mcm~X!50,

hAm~X!5]mAm~X!50. ~7!

The gauge conditionsg•c5]•c50 eliminate the spin-12
components and thus the vector-spinor wave functioncm

a

describes a pure spin-3
2 massive open string state.

Taking into account momentum conservation and the c
ditions that different polarizations obey, we find

AFF
g ~c1m ,k1 ;A2s ,k2 ;c3m ,k3!

5
1

&
@c̄1mgsA2sc3

m2c̄1mgsA2sg1c3nk2
mk2

n#

1 i @c̄1mg1c3
n2c̄1mg2c3

n#k2
mA2

n , ~8!

whereg1(g2) projects the Dirac spinorc onto its positive
~negative! chirality components~in the ten-dimensiona
sense!.

While this is meant to be viewed as the holomorphic co
ponent of the closed string amplitude, it also has the in
pretation as an open string calculation of a single pho
emission from a spin-3

2 particle. To this linear order in the
gauge field, the corresponding effective field theoretic L
grangian reproducing the three-point function~8! is given by

L~3/2!52
i

2
c̄m~glDl1m!cm2

1

2m
c̄mFmncn

1
1

m2 c̄m]mFnlglg1cn1¯ , ~9!

where m5& and Dm5]m1 iAm . The ellipses represen
both terms that possibly vanish on-shell and terms which
10401
-

-
r-
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necessary to implement the physical state constraints~includ-
ing the introduction of nonphysical degrees of freedom!. In
the present paper we are mainly interested only in the fo
of the interaction between massive higher-spin string sta
and external gravitational or electromagnetic fields and
in the details of the additional terms necessary for the c
sistency of the effective Lagrangian.2

Completing the spin-72 calculation, we now examine th
antiholomorphic sector, corresponding to gauge boson em
sion from a massive spin-2 boson. The calculation
straightforward, especially for the NS sector in the covari
formalism. The corresponding vertex operators in the gh
pictureq50 andq521 read

VB
~0!~z,z̄!5Am~X!]̄Xm, VB

~21!~z,z̄!5fmn~X!e2f̄c̄m]̄Xn,
~10!

while the resulting amplitude is given by

ABB
g ~f1mn ,k1 ;A2s ,k2 ;f3mn ,k3!

5f1mnf3ls@hmlhnsA2•k314hmlk2
[nA2

s]

2hmlk2
nk2

sA2•k322k2
mk2

lk2
[nA2

s] #, ~11!

with corresponding~open string! effective Lagrangian

L~2!52
1

2
DrfmnDrfmn2

1

2
m2fmnfmn12ifmnFnsfms

2
2i

m2 ~fmn]nFrs]rfm
s2fmn]m]lFnsfs

l!. ~12!

The three-point function for the closed string statesAFF
h

follows by combining the holomorphic and antiholomorph
three-point functions for the open string states, Eqs.~8! and
~11!. Note that extracting the spin-7

2 amplitude from the ten-
sor productAFF

g(left)3ABB
g(right) involves symmetrization on the

vector indices arising from the holomorphic and antiho
morphic polarizations. We find

2See, e.g., Ref.@6# for a discussion about the need to introdu
nonphysical degrees of freedom for higher spin string states.
3-3
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AFF
h ~c1mnl ,k1 ;hmn ,k2 ;c3mnl ,k3!5AFF

g~ left!3ABB
g~right!

5c̄1mnlgsc3
mnlhsrk3

r12c̄1mnlgsc3
mnr~hrsk2

l2hl
sk2r!1 i&~ c̄1mnlg1c3s

nl

2c̄1snlg2c3m
nl!hmrk2

sk3r12i&~ c̄1mnlg1c3s
nr2c̄1snlg2c3m

nr!

3~hm
rk2

sk2
l2hmlk2

sk2r!2c̄1mnlgs~11g1!c3r
nlhsdk3

dk2
mk2

r2c̄1mnlgs~112g1!

3c3
mrd~hsdk2

nk2rk2
l2hs

lk2
nk2rk2d!2 i&~ c̄1mnlg1c3s

nr2c̄1snlg2c3m
nr!

3hmdk2
sk3dk2

lk2r2 i&~ c̄1mnlg1c3srd2c̄1snlg21c3mrd!

3~hmdk2
sk2

nk2
lk2

r2hmlk2
sk2

nk2
dk2

r!1c̄1mnlgsg1c3r
ndhsek3

ek2
mk2

lk2dk2
r

1c̄1mnlgsg1c3rde~hs
ek2

nk2
mk2

lk2
dk2

r2hs
lk2

nk2
mk2

ek2
dk2

r!. ~13!
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As a result the effective Lagrangian that reproduces this
ticular three-point function contains terms up to five deriv
tives. Up to terms that vanish on-shell~but that are neverthe
less crucial for the consistency of such a massive higher-
Lagrangian!, we find

Leff5A2gF1

2
c̄mnl~gs¹r1m!cmnl

2
1

m
c̄mnlS Rmanb2

1

8
RmarsgrshnbDcab

l

2
1

m2 „c̄mnlRs~ma!rgs~11g1!]rca
nl

2c̄mnl] (mRa)snbgs~112g1!cab
l
…

2
1

m3 ~ c̄mnl] (nRb)sma]acab
l

1c̄mnl]m]aRnblgcabg!

2
2

m4 ~ c̄mnl]m]aRs~bn!dgsg1]dcab
l

2c̄mnl]n]d] (lRg)smrgsg1crdg!G . ~14!

Several points are in order here. First of all, working with t
three-point function, we only obtain information up to linea
ized order in the gravitonhmn . For this reason, at this orde
there is no distinction between bare and covariant derivat
of the Riemann tensor that appear in Eq.~14!. Secondly, this
effective Lagrangian is by no means unique, as we are
ways allowed to shift it by terms vanishing on-shell. In pa
ticular, we note that theg-transverse conditiong•c50 al-
lows use of the on-shell identity

c̄mnlRmarsgrshnbcab
l52c̄mnlRmanbcab

l

2c̄mnlRmarsgrs
nbcab

l, ~15!
10401
r-
-

in

s
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-

indicating that even the leading two-derivative term is by
means unique. Furthermore, note that the presence of
ten-dimensional chirality projectiong1 for spacetime fermi-
ons indicates that, even while massive, such states main
chiral interactions with gravity. It is at this point where th
difference between massive IIA and IIB string states sho
up. The complete type II spectrum includes in fact a pair
spin-72 states at the first mass level, one each from the R-
and the NS-R sectors. In our conventions, Eq.~14! corre-
sponds to the state from the R-NS sector, while a sim
equation with eitherg2 or g1 would describe the state from
the NS-R sector for the type IIA or IIB theory, respectivel

Finally, the effective gravitational interactions of strin
states at higher mass levels have correspondingly higher
rivative couplings. Physically, this corresponds to the int
tive notion that highly excited strings are spread out, a
hence feel tidal effects arising from the curvature of spa
time. This departure from the minimal coupling prescripti
leads to violation of the strong equivalence principle@7#.
This is just a fact of life; in relativistic quantum field theor
particles have an intrinsic size: their Compton waveleng
This makes them behave in some respect as extended
jects, sensitive to tidal forces.

III. NONMINIMAL COUPLING AND THE
GRAVITATIONAL QUADRUPOLE

Nonminimal couplings to the Riemann tensor were d
cussed in Ref.@2# in the context of point particle field theory
where it was shown that tree-level unitarity for particles
spin.2 demands the presence of just such a nonmini
term. The authors of Ref.@2# give a general expression fo
the required nonminimal addition to the action for both in
ger and half-integer spins. For the former, the on-shell
grangian~also ignoring auxiliary fields!3 for a boson of spin
s takes the form

3See, e.g., Ref.@8# for an explicit form of the massive higher spi
Lagrangian.
3-4



l
q

e
n-
or
e

re

it

of
e

hat
e-

of

ry

s

e
q.

is
ac-
t
in

ully

e

-
ew-

nd

ute
t
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L5
1

2
f~s!~¹m¹m2m2!f~s!1

s~s21!

2
fmn¯

~s! Rmanbfab
~s!
¯

1¯ . ~16!

The resulting equation of motion forf (s) may then be ex-
pressed as

~¹m¹m2m2!f~s!1FRmnls

1

2
Smn

1

2
SlsGf~s!1¯50,

~17!

where ellipses indicate terms vanishing on shell, andSmn are
the Lorentz generators in the spin-s representation,

~Smn!$a%
$b%52sd [m

[a1
hn][ b1da2¯as]

b2¯bs] , ~18!

where all symbols are antisymmetric with weight 1.
On the other hand, for spin-(n1 1

2 ) fermions in four di-
mensions, the nonminimal Lagrangian is

L5c̄~n!~gm¹m2m!c~n!1
n~n21!

2m
c̄mn¯

~n! R1manbcab
~n!¯

1¯ ~19!

~again only up to terms vanishing on-shell!. Here Rmnls
1

5Rmnls1 1
2 Rmnabgab

ls is a feature of the four-dimensiona
theory. Taking the first order equation of motion from E
~19! and multiplying by (gm¹m1m), we obtain the second
order equation

~¹m¹m2m2!c~n!1FRmnls

1

2
Smn

1

2
SlsGc~n!1¯50,

~20!

where this time

~Smn!$a%
$b%5

1

2
gmnd

@a1¯an#

@b1¯bn#
12nd [m

[a1
hn][ b1da2¯an]

b2¯bn]

~21!

is the Lorentz generator in the spin-(n1 1
2 ) representation.

We now see from Eqs.~17! and~20! that both integer and
half-integer spin fields have identical forms for the preferr
nonminimal coupling resulting from tree-level unitarity co
cerns. Furthermore, since the Riemann coupling has the f
of a gravitational quadrupole moment, these results of R
@2# are suggestive of a gravitational version of the cor
sponding statement of ‘‘g52’’ as a natural value for the
gyromagnetic ratio for electromagnetic couplings@9#.

The above discussion suggests the definition of a grav
tional quadrupole ‘‘h factor’’ that may be determined from
the equations of motion according to

~¹m¹m2m2!w1hFRmnls

1

2
Smn

1

2
SlsGw1¯50.

~22!

While theh factor may equally well be defined in terms
the nonminimal coupling ofw to the Riemann tensor in th
10401
.

d

m
f.
-

a-

Lagrangian, such a definition is complicated by the fact t
there is an inherent ambiguity in the minimal coupling pr
scription itself ~which is not present for the equations
motion!. Using this definition, the results of Ref.@2# may be
concisely summarized by the statement thath51 is the pre-
ferred value of theh factor based on the above field theo
considerations.

Turning to the spin-72 Lagrangian~14! it is clear that it
cannot be written in the ‘‘preferred’’ form of Eq.~19!, even
through the use of the on-shell manipulation~15!.4 As a re-
sult this provides evidence thathÞ1 for massive string state
in general. In order to determine the spin-7

2 h factor, we first
make use of Eq.~15! and work in four dimensions to not
that the second order equation of motion arising from E
~14! has the form

~¹r¹r2m2!cmnl13S Rmanb1
1

2
RmarsgrshnbDcab

l

1¯50. ~23!

On the other hand, for spin72, Eq. ~22! gives instead

~¹r¹r2m2!cmnl16hS Rmanb1
1

4
RmarsgrshnbDcab

l

1¯50, ~24!

which clearly has a different Lorentz structure. What th
indicates is that, even when restricted to on-shell inter
tions, there are in facttwo possible distinct Lorentz-invarian
and parity conserving interactions that may be written
terms of the Riemann coupling. Thus a single ‘‘h factor’’ is
insufficient, and in fact two parameters are necessary to f
characterize this lowest order nonminimal interaction.

On the other hand, working in the Newtonian limit, w
find that bothRmanbcab¯ and (Rmarsgrshnb)cab¯ reduce
to the same form, related to the~nonrelativistic! quadrupole
momentQi j . In particular, in four dimensions, the compo
nents of the Riemann tensor are given in terms of the N
tonian potentialf as

R0i0 j5] i] jf,

Ri jkl 5d ik] j] lf1d j l ] i]kf2d i l ] j]kf2d jk] i] lf. ~25!

Furthermore, nonrelativistically, the transverse a
g-transverse conditions oncmn¯ give both c0¯
5O(p/M )c i¯!1 andg ic i¯!1. Thus we find

Rmanbcab¯→Rik jl c
kl¯522] ( i]

kfc j )
k¯1d i j ]k] lfckl¯,

~26!

where the last term, having a trace form, does not contrib
diagonally to the leading spin-7

2 quadrupole interaction, bu
instead gives an off-diagonal interaction between spins7

2 and
3
2. For the other possibility, we find instead

4The factor of1
2 arises in Eq.~14! because therecmnl is a Majo-

rana spinor, while in Eq.~19! c (n) is a Dirac spinor.
3-5
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~Rmarsgrshnb!cab¯

→Riklmg lmck¯524] i]kfck¯12g i~]k] lfgkc l¯!.

~27!

This time the last term~having ag-trace form! corresponds
to an off-diagonal interaction between spins7

2 and 5
2.

With the above in mind, in practice we define the ‘h
factor’’ of Eq. ~22! only in the Newtonian limit~in other
words focusing on angular momentum and not Lorentz g
erators!. As a result, the diagonal spin-7

2 equation of motion
~23! reduces to

~¹r¹r2m2!c i jk26] ( i] lfc l
jk)1¯50, ~28!

where ellipses now also include off-diagonal interactio
with lower-spin states~that are always present and fall on th
subleading Regge trajectories!. Contrasting this with

~¹r¹r2m2!c i jk29h] ( i] lfc l
jk)1¯50, ~29!

which follows from Eq.~24!, finally allows us to determine
that h5 2

3 for this particular massive spin-7
2 string state.

At this point we must clarify an apparent paradox. T
nonrelativistic formula for the quadrupole moment is,
space-time dimensionD:

Qi j 5E dD21x@~D21!xixj2d i j x2#T00, i , j 51,...,D21.

~30!

The action of particles of spins. 1
2 can have a nonminima

coupling proportional to the Einstein tensor:

DS5E dDxBmnGmn , ~31!

whereBmn is a bilinear in the spin-s field. To linear order in
the gravitational field, this induces the following change
the stress energy tensor:

T005] i] jB
i j 1¯ , Ti

i5~32D !] i] jB
i j 1¯ . ~32!

Here ellipses stands for terms that do not contribute to
gravitational quadrupole. Substituting this equation into f
mula ~30! we obtain a nonzero change of the quadrupo
10401
-

s

e
-
,

induced by terms that vanish on the Einstein shell.5 The so-
lution to this paradox is that Eq.~30! is a good definition of
the quadrupole only for nonrelativistic matter. In more ge
eral cases this definition is wrong,even in the Newtonian
limit. The correct definition is obtained by computing th
energy of the particle in a static, slowly varying extern
Newtonian potentialf. The change in energy due to th
quadrupole is

DH5
1

2~D21!
Qi j ] i] jf. ~33!

This formula is insensitive by construction to all terms th
vanish on the Einstein shell. In the Newtonian limit, the m
ric is g0052122f, gi j 5$12@2/(D23)#f%d i j , all other
terms vanish. This induces the following change in the
ergy:

DH5E dD21xfS T001
1

D23
Tii D . ~34!

Thus, the correct expression for the quadrupole is obtai
by replacingT00 with T001(D23)21Ti

i in Eq. ~30!. By sub-
stituting Eq.~32! into this new expression we find that th
contribution to the quadrupole due to nonminimal coupli
to the Ricci tensor vanishes, as it should. Equation~30! can
be used in the Newtonian limit only whenTi

i'0, as it holds,
for instance, in macroscopic nonrelativistic matter.

IV. GENERALIZATION TO HIGHER SPIN

The results for the massive spin-7
2 state are easily gener

alized to arbitrary massive higher spin string states inter
ing with a graviton. As usual, the three-point function fa
torizes into separate holomorphic and antiholomorphic pa
For simplicity we focus on states on the leading Regge
jectory, namely states of spinn1 1

2 and n11, respectively,
for the R and NS sectors at mass leveln.

In the Ramond sector, the spin-(n1 1
2 ) vertex operator is

given by

VF
~21/2!~z,z̄!

5um1¯mn

a ~X!Sae2f/2]Xm1
¯]Xmn

1vm1¯mn

ȧ ~X!~gl!ȧ
bcm1clSbe2f/2]Xm2

¯]Xmn.

~35!

The resulting three-point functionAFF
g contains terms up to

O@(a8k2)n#. To lowest order, we find

5Terms proportional to the scalar curvature tensor do not cont
ute to the quadrupole.
3-6
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AFF
g ~c1 ,k1 ;A2s ,k2 ;c3 ,k3!5

n!

&
F c̄1m1

¯mn
A2sgsc3

m1¯mn2 i
2n

m
~ c̄1am2¯mn

g2c3b
m2¯mn

2c̄1bm2¯mn
g1c3a

m2¯mn!k2
ak2

b1¯ G , ~36!
e
ich
a

he
n

e
io

,

e

a

e
et,

al

c-
o-

s
ory.

ngs
ing
wherem5A2n is the mass of thenth excited level.
Prior to examining the closed string graviton amplitud

we note that the effective field theoretic Lagrangian wh
reproduces this three-point function for the open string m
be written as

Ln11/2
~open!52

i

2
c̄m1¯mn

~gsDs1m!cm1¯mn

2
1

2m (
i 51

n

c̄m1¯mn
Fm in icm1¯n i

m” i
¯mn1¯ . ~37!

From the form of the Lagrangian we can verify that the t
gyromagnetic ratiog for all such massive fermionic ope
string states on the leading Regge trajectory is equal to 2@9#.

For the spin-(n11) state in the NS sector, we find, on th
other hand, the leading behavior for the three-point funct

ABB
g ~j1 ,k1 ;z2 ,k2 ;j3 ,k3!

5n! j1am1m2¯mn
j3bn1

m2¯mnz2l@~habk3
l2halk2

b

1hblk2
a!hm1n11n~hn1lk2

m12hm1lk2
n1!hab1¯#,

~38!

where once againm5A2n. In general, as for the fermions
the complete expression contains terms up toO@(a8k2)n#.
Viewed as an open string amplitude, the corresponding
fective Lagrangian has the form

Ln11
~open!52

1

2
Dlfm0¯mn

Dlfm0¯mn2
1

2
m2fm0¯mn

fm0¯mn

1 i(
i 50

n

fm0¯mn
Fm in ifm0¯n i

m” i
¯mn1¯ . ~39!

As expected, this indicates that the nonminimal electrom
netic coupling toFmn gives preciselyg52 for the open
string.

Turning now to the closed string, combining Eqs.~36!
and ~38! and symmetrizing on the vector indices~corre-
sponding to the maximal spin state at mass leveln! gives the
following on-shell form of the effective Lagrangian:
10401
,

y

n

f-

g-

L2n13/25A2gF1

2
c̄~2n11!~gm¹m1m!c~2n11!

2
n~n11!

2m
c̄m0m1¯m2nS Rm0n0m1n12

1

4~n11!

3Rm0n0lsglshm1n1Dcn0n1

m2¯m2n1¯ G . ~40!

The resulting second order equation forc takes the form

~¹r¹r2m2!cm0m1¯
1F2S SL2

1

2D S SR2
1

2DRm0n0m1n1

1
1

2 S S2
1

2DRm0n0lsglshm1n1Gcn0n1¯
1¯50,

~41!

whereSL5n11 andSR5n1 1
2 are the components of th

spin contributed by left and right movers on the world she
respectively, andS5SL1SR(52n1 3

2 ) is the total ~space-
time! spin. Using this suggestive form of the nonminim
interaction, we find the correspondingh factor to be

h5
2SLSR

S S2
1

2D 2 ~half-integer spins!. ~42!

A similar calculation in the NS-NS sector~also on the lead-
ing Regge trajectory! gives similarly

h5
2SLSR

S~S21!
~ integer spins!. ~43!

Note the resemblance to the stringg-factor result@10#

gL52
^Sz

R&
Sz

, gR52
^Sz

L&
Sz

. ~44!

Based on the factorization of the graviton three-point fun
tion in terms of holomorphic and antiholomorphic gauge b
son amplitudes and theg51 result for all massive open
string states, it is now apparent that theh-factor result, Eqs.
~42! and ~43!, is equally valid for all massive string state
and is not restricted to those on the leading Regge traject

V. CONCLUSIONS

In this paper we have examined the three-point coupli
of massive higher-spin string states with gravity. Focus
3-7
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on the spin-72 state at the first mass level of the type II strin
we have obtained an effective Lagrangian reproducing
on-shell interactions to linearized order in the graviton.
particular, this effective Lagrangian contains a nonminim
two-derivative coupling of the form (c̄Rc), which was ex-
amined by the authors of Ref.@2# in the context of tree-leve
unitarity. Since this has the form of a gravitational quad
pole interaction, we have defined the gravitational ‘‘h fac-
tor’’ ~in analogy with the electromagneticg factor! and dem-
onstrated that Ref.@2# givesh51 as a preferred value of th
h factor in field theory.

On the other hand, in a string theory,h is determined from
a combination of left- and right-moving components of t
spin for massive closed string states. Although generic
hÞ1 in string theory in contrast to the field theoretic resu
this is certainly not a disaster for string theory. In field theo
ta

,

10401
,
ll

l

-

ly
,

the tree-level unitarity results hold for a single mass
higher spin particle interacting with gravity, while in strin
theory tree-level unitarity is achieved not only by the thre
point interaction but also because a whole tower of state
arbitrarily large masses and spins propagate as interme
states.
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