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Critical behavior in gravitational collapse of a perfect fluid
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To confirm the scenario of critical behavior in gravitational collapse in a previous paper we carry out a rather
complete analysis for perfect fluids with pressure proportional to density, in a wide range of the adiabatic index
v. In particular, the uniqueness of the relevant mode around a fixed point is established by a Lyapunov
analysis. This shows that critical phenomena occur not only for the radiation fluid but also for perfect fluids
with 1< y=<1.889. We also analyze the stability of other self-similar solutions and also discuss the universality
class.[S0556-282(198)04324-F

PACS numbgs): 04.40—b, 04.70.Bw, 64.60.Ak

[. INTRODUCTION spectrum is negative even if the eigenmodes do not form a
complete set(3) It is easier in the latter than in the former to
Choptuik[2] found a critical behavior in gravitational col- numerically obtain accurate values of the eigenvakiesd
lapse by a numerical study of a self-gravitating scalar fieldhence the critical exponeifiz;;. The uniqueness of the rel-
Evans and Colemaf8] found similar phenomena in spheri- evant mode in particular implies the existence of critical be-
cally symmetric collapse of a radiation fluid, with continuous havior like that observed if8] also for y#4/3 and the self-
self-similarity. The present authofd] showed that both similar solutions in5] are in fact responsible for the critical
qualitative and quantitative understanding is possible by inbehavior.
troducing renormalization group ideas: Theiquenessof We also find various self-similar solutions in Sec. Ill and
the relevantunstabl¢ eigenmode of the linear perturbations discuss their stabilitynumbers of relevant modes Sec. V.
around the critical self-similar space-time is essential for theSelf-similar solutions with more than one relevant mode are
scaling and the universality to be observed, and that the critiresponsible for multicritical behavior. We also discuss uni-
cal exponenfBg, is given by Bgy=1/k wherex is the first ~ versality class in Sec. Vi{the universality class is indepen-
Lyapunov exponent. The value obtained wa8g,  dently discussed by Gundlach and MarGarca [6]). By
=0.35580192, whose difference from those obtained for dhis we can predict that a class of equations of motion which
scalar field(0.37 [3] and a gravitational wavé.38 [4] was  are not necessarily scale invariant exhibits the same critical
beyond the possible numerical errors in their simulationsbehavior.
This showed that there is no universality between radiation For detailed calculations and explanations see R@f.
fluid collapse and other systems. Maisf| applied the
method to systems of perfect fluids with pressure propor- Il. EQUATIONS OF MOTION
tional to density and showed ho@g,, depends on the equa- _ ) _ _
tion of state, under the assumption that the same phenomena The line element of any spherically symmetric space-time
occur and the same scenario holds as in the case of a radig-Written as
tion fluid.
In this paper we present a thorough analysis of perfect dS°=—a?(t,r)dt?+a’(t,r)dr?+r(d6*+sir’6d4?).

fluid collapse, with various adiabatic indicgsIn particular, (2.9)
we go beyond1] to confirm the uniqueness of the relevant . . .
mode around the critical solution by a new method caIIedWe assume that the matter content is a perfect fluid with
Lyapunov analysisA Lyapunov analysis and the shooting EN€rdy-momentum  tensor Tap=pUalls+ P(Jan+ Ually),
method for an ordinary differential equation adopteq i  Wherep is the densityp is the pressure, and, is a unit time
are complementary to each other in the following sefge: K€ (colvector whose components are given hy
The former extracts eigenmodes in descending order of the —0{/vl—V " ur=a\_//vl—vz, with \ being the three-
real parts of their eigenvalues whereas the latter provides Velocity of fluid particles. We consider the cage=(y
information on« only in a finite region(2) The Lyapunov ~ —1)p, whereye(1,2) is a constantadiabatic index In
analysis can provide information on the continuous spectems of the variables= —In(—t), x=In(—r/t), and intro-

! i — —a2 2,2 ;
trum. In Sec. VI we show that the real part of the continuousducing N=c/ae’, A=a*, o=4xr“a’p, we can write the
equations of motiodEOM) in an autonomous form, which

makes the scale invariance of the system transparent:
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interested in corresponds tdiged pointof the renormaliza-

N
W'x: —2+A-(2—v)o, (2.2b  tion group transformation. The equations for a self-similar
solution are then given by omitting terms containisigle-
A. A 2 NV rivatives in Eqs(2.2), which we will call Egs. (2.2). From
s X YNVw . e .
—+ T’: — v (2.20 Egs. (2.2a) and (2.2cj, one obtains an algebraic identity
20[1+(y—1)V?] 2yNVe
s yVV’§+(1+NV)%+ y(N+V)2V’X 1-A+ 1-\2 =3V (3.0
o 1- w 1-V
Instead of eliminating one variable, we will keep using four
_32-y) NV— 2+ yANV+(2— »)NVo, variables AN, ®,V) and use Eq(3.1) as a check at appro-
2 2 priate stages of our numerical calculation.
(2.20 Under a self-similar ansatz, the coordinate freedom
t—F (1) in Sec. Il reduces td—t=kt with constantk,
ws YV wy Y(A+NV)V, which corresponds to a translation in[the other transfor-
(Y= DVt 72t (v DIN+HV) =24+ ——=—T7—  mations alter the constastlines in (t,r) spacé. This free-
dom of the coordinate transformation allows one to adjust
7y—6 2—3y the value ofN arbitrarily at a given point. We fix the coor-
== (y=2)(y=DNo+ ——N+—F—AN. (228 ginate system by requiring that the sonic pdi@t be atx
=0.

Only four out of the above five equations are independent: Since we are interested in self-similar solutions which
Equation(2.2¢ is automatically satisfied by solutions of the could represenintermediate asymptocis the (nearjcritical
set(2.23, (2.2b, (2.2d, and(2.2¢, as long as they satisfy a space-times, they should have regular spatial profiles.
boundary condition A(s,—»)=1, V(s,—»)=w(s,—x) Namely, we require the following.

=0. We pick up the above set of four equations as our basic (i) The self-similar solution be analyti¢or at least
equations of motion, and use E@-20 as an auxiliary equa- smooth, in the sense of having an asymptotic expansion to all

tion. orders for all xe R,
The only coordinate transformation which preserves the (ii) The space-time and the matter be regukes 1 and
form of Eq.(2.1) is t—F ~(t), which corresponds to V=0, at the center(= —»).
. . Now, (2.2) is a set of ordinary differential equations
(8,x)=>(f"7(s),x—s+177(s)), (2.3 (ODE’s) for four variables A,N,®,V), which satisfies the

1 L ) Lipschitz condition except at the so-callsdnic point(see
where F~H(t)=—e™" "® with f=df/ds#0. Under this pelow).

transformation, the variablds (h=A,N,w,V) transform to Equations (2.2d) and (2.2e) can be written in the form

h given by
c oV
c d V,x B

wherea, b, c, d, e, andf are functions, none of which

Equations2.2) are of course invariant under this transforma-depends on derivatives @ and V. Solving the above in
tion. We can determine the coordinate system completely bfavor of w , andV ,, the resulting equation violates the Lip-
fixing the value ofN at a point, for example, a=0, on each  schitz condition at theonic pointwhere the determinant of

constants line. We shall retain the degree of freedom herethe coefficient matrix ok , andV , vanishesad—bc=0.

e

£l 3.2

h(s,X) (h=A,0,V),

S =1 ohsx) (h=N).

(2.9

and fix it later. Physically the sonic point is where the velocity of fluid par-
ticles seen from the observer on the constatihe is equal
IIl. CRITICAL (SELF-SIMILAR ) SOLUTION to the speed of sound,y—1. To have finite derivatives

and V , at the sonic point the rows of E¢3.2) must be

To carry out the first step of our scenario[h7], we first  proportional to each otheaf—ec=0. These two conditions
have to find out self-similar solutions, i.e., fixed points of together with the requirement that the variables allow power
renormalization group transformations. The behavior of selfseries expansions imply that the self-similar solution which
similar solutions has been extensively discussed bys regular at the sonic point is characterized by a single pa-
Bogoyavlenskii[ 8], followed by otherg49,10]. rameterV,=V.{0) [12].

Let us first require that the Space-time be self-similar, i.e., Asymptotic behavior of solutions of ODE’s (2_’2)33)(
thatN andA depend only orx: N=Ngdx), A=A{(x). [In _ +o can be most easily understood by viewing Egs. (2.2)
fact (see[11]), any spherically symmetric self-similar space- as a dynamical system and considering its fixed pdih#.
times can be expressed in that form if a freedom of coordiCondition (ii) implies that the asymptotic behavior as
nate transformatio(2.3) is used] Then it follows from Egqs. _, — jg
(2.2 that wgs and Vg are also functions ok only:
=wdX), V=V¢{x). In this sense, the space-time we are Ags(X)~1+A_e”, Ngx)~N_.e %
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W €%, Ve V_..€5 (3.3 To simplify the notation, we consider perturbationsAof

where coefficientsA_.., N_.., w_., V_. satisfy A_., =_In A N=InN, _“):m , andV. For example, the\ ver-
=2w_./3, N_,V_,=—2/3y. sion of Eqg.(4.1) in fact meansA(s,x) =Ag{X) + €Aya(S,X)

In the numerical calculation, we first fix the valig at ~ WhereA(s,x)=In A(s,X), As{X) =In As{x).

the sonic pointx=0, and use the power series expansion Perturbation equations are obtained by taking the first or-
there to derive the derivatives. Then starting from the soniéler variation in Eqs(2.2) from the self-similar solutiot sg:

ointx=0, we solve ODE'’s (2.2)towardsx= —o, using a
pRunge-Kutta fourth order int(egrz)itor, with reliable errogr esti- h(s,X)=Hs{X)+ €hyals.x), 4.0
mates. If at somex<0 either(1) A<l or (2) det=ad—bc
=0, we stop solving and conclude that tMg does not give
rise to a desired self-similar solution. The first ca8e(l) is
excluded because it is easily shown that solutions regular
the center(i.e., A—1 asx— —) must satisfyA=1 for all

whereh represents each oA(N,®,V). In the following, we
write V for V¢ and writeV,,, for perturbations. From Eqgs.

4?.2&), (2.2b, (2.20), and (2.29 we have equations of the
orm

xe R. The second case implies the existence of another sonic O O )
point betweerx=0 andx= —o. We can always find such a (O P dst o p )ax hyar= Qhyar, (4.2
solution with more than one sonic point by searching for its s X

part between its leftmost sonic point ares —, and then
solving Egs. (2.2) from the leftmost sonic point to the right
(towardsx= ).t

Our numerical results show that each allowégleads to
either of (1) or (2) above. Moreover, it is seen, both numeri-
cally and mathematically rigorously, that a desired self- —

wherePg andP, are 2<2 matrices and) is a 4X4 matrix,

all of which determined by the self-similar solution, and
hyar= (AvarsNyar, @var, V) 7. See[7] for explicit expressions.
From Eg.(2.20 we also have

similar solution exists at those values 8§, whereVy+0 FsPart OxPar
leads to cas€l) andV,—0 leads to cas€?). 29NV — 2yNw(1+V?)
We have searched for self-similar solutions which satisfy —=— W( vart ©ya) — (1——V2)2V"a" 4.3

the above conditiong) and (i) numerically, for all the al-
lowed values olV,. As has been extensively studied[B,
there exists a sequence of self-similar solutions, each gfyation of ordere, namely, Eq.(2.3) with f(s)=s+ ef4(s).

which is characterized by the number of zeroswfThe  1he transformatior{2.4) now becomestaking O(e) terms,
number of zeros is an integer starting from 1, and the one _ —d/dx, ~=d/ds]

with exactly one zero is the solution cited [i8], which we

We note that there is freedom of the coordinate transfor-

call the Evans-Coleman solution. Because of a numerical hyad $,X) + f1(S)hL(X) (h=A,@,V)
difficulty, we could find only self-similar solutions with an f_ (s x)= s . o
odd number of zeros of. hval(s,X) + f1(s)hedx) +f1(s)  (h=N).

(4.9

IV. PERTURBATION This in particular means that one can always require

We studied perturbations around self-similar solutions byN,,(s,xo)=0 for a fixedx,.
two different methods. The first one is to directly find out

eigenmodes by solving the system of ODE’s below. The sec- V. EIGENMODE ANALYSIS
ond one is to apply the so-called Lyapunov analysis. The ) N
former has the advantage that it reduces the problem to that A. Equations and boundary conditions

of solving ODE’s, and gives us fairly accurate estimates of Wwe consider eigenmodes of the forni,a(s,X)
eigenvalues, but has the disadvantage that it is almost impos-h o(X)e*S, with ke C being a constant. Substituting this
sible to search foevery possibleeigenvalue. The latter has |nto Egs.(4.2) and (4.3 ylelds a set of linear, homogeneous
the advantage that it can easily find out eigenvalues in defrst order ODE’s for NprApvau 2), which we call Egs.

scending order of their real part, but has disadvantages th? 2) and (4.3}, respectively. Equations (4.3gnd the first
(1) eigenvalue estimates are not so accurate(ande have row of Eq. (4.2) provide an algebraic identity:

to solve a partial differential equatiai®DE). However, we

here emphasize that the PDE we have to solve for the

Lyapunov analysis is a very regular one, and can be handle{jK_A)K N
P

2'yNVw)— (2w{1+(y— 1)VZ+ yNV}H _

by standard techniques for solving PDE'’s. 1—V?2 1-V? “p
2yw{N(1+V?)+2V} o 5 1
"However, it is quite unlikely that such solutions with more than (1-V?)? P ©.0

one sonic point exist, because the existence of only one sonic point
already reduces the freedom of parameters to discrete ones, aii#st as in the case of self-similar solutiojes. Eq. (3.1)]. As
other possible sonic points will further reduce it. in our treatment of self-similar solutions, we here treat
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Ay Ny, @p,V, as four unknown functions, and use E§.1) -Winst?gs%Xaaggir;%arpoggnidnfgrnder to get a solution which
as a check at appropriate steps of computation. We requirg?!ISlies our boundary ron.
Ng(s,0)=0 to fix the coordinate freedoit#.4).

As in the case of self-similar solutions, we requirethat B. Gauge mode
the perturbations be analytic for atle R and (ii) that the In searching for possible eigenmodes, one has to pay at-
perturbed space-times be regular at the cen?(-g,r:(o at X tention to a “gauge mode” which emerges from a coordinate
= —0), transformation applied to the self-similar solution.

The perturbation solutions satisfying the analyticity con- Suppose one has a self-similar solutiofs,x) = Hg{x).
dition (i) at the sonic point are specified by one free paramSeen from another coordinafeelated by the coordinate
eter «, apart from the overall multiplicative factor. This can transformation(2.3)], its perturbation is given by setting
be seen as follows. First, we note that the sonic point is &,,=0 inh of Eq. (4.4):
regular singular pointfor the perturbations. That is, the sys-
tem of ODE'’s for perturbations (4.2)is singular where the , _
determinant of the matrix on the left-hand sidedS) of Eq. ~ f1(s)hsdX) (h=A,0,V),

(4.2)' vanishes: deP,=0. This is identical to the sonic point hyad's,X) = fi(ShX)+Ty(s) (h=N) 5.4
condition for self-similar solutions. Second, in order to have ! s ! '

a smooth solution at the sonic point, the third and fourth

rows of Eq. (4.2) must be proportional to each other at the For generalf,, this does not behave like an eigenmode.
sonic point, like in the case of the self-similar solution. This However, with the choice df,(s)=e"® ( arbitrary, h does
yields an algebraic relation betweéq(0), N,(0), w,(0),  behave as an eigenmode with eigenvatue

and V,(0). Third, we have another algebraic relation be-

tweenAy(0), N(0), wy(0), andV,(0) by Eq.(5.1). Fourth, ~ _ - h¥) |(h=A0,V)

the above two algebraic relations, together with our choice of hgaugd $,%; k) =€ hidx) + %) (h=N). (5.9
gaugeN(0)=0, enable us to express,(0) andV,(0) in

terms opr(O) and «. Then higher order expansion coeffi- The mode emerges via the coordinate transformation of the

cients of perturbations are given in termsEJ(O) and «. self-similar solutionhgs, and thus can _be considered as a
Because the system is linear and homogeneous, overall ndesult of a pure gauge transformatloE, “If? a zero mode n
L o .__translation-invariant systems. Because C is arbitrary, this

malizationA(0) is irrelevant. We thus see that the solution pure gauge mode forms a one-parameter family

which satisfieqi) is characterized by a single parameker Similarly, for any(nongauggeigenmodéd,, Eq ('4 2 for
This, together with the regularity conditidi) at the cen- hya(S,X) = h, (X)€" becomes pr A

ter, in general allows only discrete values farindeed, in van= P

view of Eq. (3.3, the system of ODE’s for perturbations —

KS ! _ —
(4.2)' takes on a simple form as— —«, given by a5, X) = )€+ T1(S)hsdX) (h=A,0,V),
val 1 . J—
hp(x)e**+f1(s)he{x)+f1(s) (h=N).
-1 0 0 O
_ — (5.6
Ap 1 00 ol|/[A
J No | _| 2_3 N, As long ash,#0, by takingf,(s)=e"®, this means trans-
X wp 4 0 Wy formedh,,, is also an eigenmode, with the sameThus we
Vv, 2(y=1) A have a one-parameter family of eigenmodeith the same
0 0 0 -2 eigenvaluex), which are mutually related by the gauge mode

(5.2 (5.5.

This linear homogeneous ODE with constant coefficients has

four independent solutions, given by C. Numerical results

Based on the above observations, we searched for the

0 0 0 1 desired eigenmodes as follows. We first fix a valuecofnd
-1 then starting fromx= 0 (the sonic point integrate Eq. (4.2)
1 0 0 e 2X 2-3y |ex to x=—o. When there appear nonzero components of the
o/’ 1] 0 ' 20—1) expanding modesfor sufficiently large|x|), we judge that
0 0 1 yo this « does not give a desired eigenmode and stopped.
5.3 Here we show the results for=4/3. Those for othety

are summarized in Sec. VIII. The eigenvalue with the largest
The last one should be excluded in view of the ident&yl), Rek is k=2.81055255, which corresponds to the exponent
and thus the asymptotic behavior of arbitrary solutions ofvalue Bgn=0.35580192, and which we believe to be exact
ODE's is described by linear combinations of the first three 0 the last digit. This is in good agreement with the value of
Now, one of them(the third ong blows up asx— —c. [3]. The profile oft_he eigenmode is found in Fig. 2[a]. In
Therefore we have to chooseso as to eliminate the un- our gauge, wherél(s,0)=0, we observe the gauge mode
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with == —(dﬁ /dx)(0)=0.35699, as explained in Sec. tion, vectors inl" are orthonormalized by the Gram-Schmidt
VB2 S8 ’ procedure. This is essential for avoiding numerical overflows
gnd underflows. For details see the Appendix. We can also

To confirm our scenario, we performed a thorough searc . , . > :
have information on the imaginary part of eigenvalues by the

of other eigenmodes in the region=Rex<15, |Im k| i S
<14, and foundhone except for the above-mentioned rel- Period of oscillation in times.

evant mode and the gauge mode. We also performed a less W& have performed the above calculation by numerically
complete search in the region 1.5<Re <0, |Im /<2 solving the PDE'S4.2) for the linear perturbation. We em-

There is an eigenmode with Res—1.4, which is consistent Phasize that solving the PDEL2) is much easier than
with the results of the Lyapunov analysis in Sec. VI. solving the full EOM close to the critical point, because lin-

Our search of eigenmodes in this section has a drawbac®®’ perturbqtions are well *?eh?“’ed in cqntra;t W!th near-
in that it is theoretically impossible to cover the whole vz‘;lluescr't'cgl‘_I solutions whose derivatives are diverging inrj
of ke C (unless, of course, one employs more sophisticate&oc\’/(l mateg. he f dor L o dih dord
mathematical techniqugsMoreover, it is nota priori obvi- € used the first order Lax scheme, and the second order

ous whether the eigenmodes form a complete set of bas I -V\f/endrc;:‘f scheme f(()jr tiﬁme ﬁvolution. We slhowhthe rg-
functions. To fill these gaps, and to further confirm our sceSults from the Lax-Wendroff scheme. To simplify the cod-

nario, we perform a Lyapunov analysis in Sec. VI. ing, we employed a new gauglly,(s,—«)=0. In this
gauge we observe the gauge modecatl. We have made

appropriate coordinate transformations to stabilize the inte-
) ) ) ration schemes.

As_ hgis been_stated in _Sec. lll, there exists a series of \ye imposed the free boundary condition at the sonic
self-similar solutions(specified by the number of zeros of point é=e*=1. This can be done because no information
V), in which the Evans-Coleman solution can be consideredan come in from outside the sonic point. The latter fact is
as the first ondexactly one zero fol). We have searched gasjly seen mathematically by studying the characteristic
fO( relevant eigenmodes for the first several self-similar so¢rves or physically by recalling that spherically symmetric
lutions and foundnore than oneelevant modegsee Table metric perturbations contain no gravitational waves and are
). This implies that the other self-similar solutions are irrel- yetermined by the matter degrees of freedom.
evant for the generic critical behavior. However, our analysis
is less complete for these higher self-similar solutions, be-
cause(1l) we have not done the analysis fqrossible self-

D. Modes for other self-similar solutions

B. Numerical results

similar solutions with an even number of zeros\bfind (2) Figure 1 shows the dependence of Ren y. The largest
there might be more relevant modes than are reported ifligenvalue is real and agrees well with the first eigenvalue
Table I. (which is rea)] found by solving the two-point boundary
problem of an ODE in Sec. V. The second largest eigenvalue
V1. LYAPUNOV ANALYSIS is that of the gauge mode, which should be exactly equal to

1. For y<1.2 the third and fourth largest eigenvalues are
To further confirm the uniqueness of the relevant modeeal, and the fifth is imaginary. Fop=1.3,1.4 the third is
we performed a Lyapunov analysis around the critical solureal and the fourth and fifth are imaginary, which are com-
tion. plex conjugate. Those foy=1.4 are complex. We can con-
sider that there is a crossover of Lyapunov exponents corre-

A. Numerical methods TABLE I. Relevant modes found for other self-similar solu-

. . . ti hich labeled by th ber of 9/of
The Lyapunov analysis is a method of extracting e|gen-'ons’ Which are 'abeled by the hurmnber ot zeroso

values in descending order. It involves time integration of
the linearized EOM4.2) around the self-similar solution. It

Self-similar solution K

takes advantage of the fact that the eigenmodes with large 1 (Evans-Coleman 2.8105525488
Re « dominate at late times and that the volume, defined by 3 8.456
an (arbitrarily chosehinner product orl’, of the parallelepi- 3.464
ped spanned by the eigenmodes corresponding 1.665
K1,Ko,...,Kn approaches iz --*n_ During the integra- 0.497
5 15.80
7.13
>Maison[5] states that the gauge mode reportedlih(same as 3.22
reported herg“seems to be erroneous.” The fact is that our report 151
in[1] (and of course hejés correct. The confusion seems to be due 0.500
to the different gauges used in the analysis. Here and]ine use 7 15.97
the gaugeﬁp(s,O)=O at the sonic point, while Maisof5] and we 6.92
in Sec. VI use the gauggp(s, —)=0. The former gauge gives the 3.20
gauge mode ak=0.35699, while the latter gives it ai=1; the 1.50

difference in the values of is well understood in view of Ed5.5).
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FIG. 1. Dependence of Lyapunov exponentsdRen y. The lines show the Lyapunov exponents. The top line, labeled “relevant,”
represents the relevant mode, and the second line, labeled “gauge,” represents the gauge mode, whose Lyapunov exponent equals unity
theoretically. Fory<1.3, the third and the fourth largest modes are tkdieled “real”). For y=1.3 andy= 1.4 the third is real and the
fourth and fifth are complex conjugate. Fgr>1.4 the third and fourth are complex conjugd@beled “cc”). We see that the complex
conjugate pair takes over the real eigenvalue twice<y:(1.889. The graph shows there isiaiquerelevant mode for all values of
analyzed.

sponding to the real eigenvalue and the complex paiinduces the renormalization group transformat@m phase
betweeny=1.2 andy=1.3. Fory=1.5 the third and fourth space the EOM is transformed into a new EOM for scaled
are a complex conjugate pair, so that there is another crossariables. We call this transformation a renormalization
over of Lyapunov exponents corresponding to the real eigergroup transformation on thepace of EOM’swhose fixed
value and the complex pair betwegn- 1.4 andy=1.5. For  points correspond to scale-invariant systems. If a renormal-
large y it seems that many eigenmodes with close values oization group drives the EOM to a fixed point, and if the
Re k are present. Our preliminary computation of ten modedixed point shows a critical behavior, the original system
for y=1.889 shows that there are at least nine modes in thexhibits the same critical behavior; i.e., it is in the same
range —0.6<Rex<-0.4, though it seems that not all of universality class as the fixed point. Se&] or [7] for de-
them are degenerate in Re tails. The universality class is discussed independently by
Figure 1 establishes the uniqueness of the relevant modeéundlach[6].
in the collapse of perfect fluids witp=(y—1)p,1<vy As an example, let us consider an equation of state
=1.889. From this we can conclude that critical behavior
must be observed for all of these models with< % Lez=p—(y—1)p—f(p)=0. (7.9
=<1.889. It should be noted that the results from our ) o
Lyapunov analysis in particular show that the continuous! N EOM for this system is given by Eq&.2) and (7.1).
spectrum is confined to the region Re —0.4 because oth- [We writeLg in Eq.(7.1) because it is the sixth of the EOM.
erwise we would find a solution which grows or decays morel he system withf=0 is a perfect fluid that we have studied
slowly than e %% in the cospace of the unique relevant i d(_ata|l, and it exh|b|ts cr_mcal behavior. Let us consider a
mode. The existence of a nonzero gap below zero for irreScaling transformation which acts gnandp as
evant modes and the continuous spectrum is essential for

Lo . —n2 — — ) a2 — —
sharp critical behavior to be observed. p¥=e"#p(e t,er), p®=e *p(ete Sr)t7 )

VII. UNIVERSALITY CLASS Under the renormalization group transformation induced
Though we have concentrated our analysis on perfect fifrom the scaling transformation, the EQI.2) are invariant,
ids with equation of statp=(y—1)p, we can predict by a While Lg is transformed into
renormalization group analysis that the same critical behav-

ior (with the same critical exponentan be observed for a LY =p—(y—=1)p® =1 (p'®),
class of equation of states, umiversality class The main
idea is as follows. Under the scaling transformation which fO(x)=e"25f(e2%x). (7.3
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The system withf=0, where ’ng—(y—l)p, is a fixed TABLE I1I. Values of k and Bgy=1/k for 1<y=<1.889. The
point. last digit is rounded.

Our problem is to determine the moddf®rms of )

which belong to the same universality class as fke0 Y K Ben
model. The model belongs to the same universality class as 1 gooo1 0.4629170 0.10567566
that of f=0, as long asfor fixed x) 1.0001 9.45502488 0.10575380
f(s)(x)—>0 (500 (7.4 1.001 9.38660322 0.10653481
) ) 1.01 8.74868715 0.11430286

. . " 1.03 7.61774326 0.13127247
ThI.S is the sufficient condl.tl.on we are 'after. An exgmpld of 1.04 716334221 0.13959964
which sﬁhov_vs the same critical behavior fas0 is given by 1.05 6.76491004 014782163
F() =" with 0<&<1. 1.06 6.41269915 0.15594058

1.08 5.81789124 0.17188358
VIll. SUMMARY OF RESULTS 1.1 5.33435815 0.18746398

We have performed the analysis presented in Secs. llI-VI 112 4.93282886 0.20272343
for perfect fluid, with 1< y<2. As has been noted [8-10, 1.15 4.44235059 0.22510605
a self-similar solution of Evans-Coleman tyfe., with one 118 4.0484584 0.2470076
zero ofV) ceases to exist foy=1.889. For Evans-Coleman- 12 3.82545008 0.26140715
type self-similar solutions, the Lyapunov analysis of Sec. VI 122 3.62729455 0.27568756
establishes that there is a unique relevant mode, and thus we  1.25 3.36750228 0.29695600
can observe the critical behavior. Then, the precise values of  1.28 3.14337431 0.31812947
the relevant eigenvaluec are obtained by the shooting 13 3.00990875 0.33223599
method of Sec. V, and the critical exponent is given by 1.32 2.88714829 0.34636253
Ban=1/x. 4/3 2.81055255 0.35580192

The result is shown in Table II. In particular, it is con- 1.36 2.66838221 0.37475891
firmed that the relevant eigenmodes found by Maigsrare 1.38 2.57025726 0.38906611
actually unique, and thus are responsible for the critical be- 1.4 2.47850858 0.40346844
havior. The value of the critical exponemg, depends 1.42 2.39245265 0.41798110
strongly ony. Moreover, the limity— 1 seems to be discon- 1.44 231150728 0.43261815
tinuous.(For the dust,y=1, we expect a trivial critical be- 1.46 223517329 0.44739260
havior with Bgy=1.) This may be because the domain of 1.48 2 16301995 0.46231659
attraction of the Evans-Coleman-type self-similar solution 15 2 09467339 0.47740140
vanishes ag—1". 1.52 2.02980720 0.49265763

1.55 1.93841621 0.51588508
IX. DISCUSSION 1.58 1.85338883 0.53955219
. . 1.6 1.79989076 0.5555893

There remain several open questions to be answered.

First, it should be emphasized that our analysis in Secs. 1.62 1.74873002 0.5718436
[I-VIII confirms only thelocal behavior of the renormaliza- 1.64 1.69974510 0.5883235
tion group flow, around specific self-similar solutions. Al- 1.66 1.65278973 0.6050376
though the self-similar solutions with more than one zero of 1.68 1.60773076 0.6219947
V will be irrelevant for generic critical behavidbecause all 17 1.56444628 0.6392038
such solutions analyzed have more than one relevant ynode 1.72 1.52282404 0.6566747
it would be interesting to know thglobal behavior of the 1.74 1.48276003 0.6744180
flow, in particular, how these self-similar solutions are re- 1.76 1.44415717 0.6924454
lated. 1.78 1.40692422 0.7107703

Second, now that various kinds of critical behavior for 18 1.37097467 0.7294081
different models have been observed, it would be interesting 1.88 1.2383842 0.8075039
to ask what happens in a mixed system.g., perfect 1.888 1.2259859 0.8156700
fluid+scalar fields We performed a preliminary analysis in 1.889 1.2244458 0.8166960

this direction. That is, we considered a “mixed” system of
radiation fluid with a real scalar field, whose energy-

momentum tensor is given by,,= pu,up+ p(UzUp+ Jap) unique relevant modégiven by the relevant mode of the

+ VbV —(1/12)g.,VehV . d, and studied the linear sta- radiation fluid, and all scalar eigenmodes are irrelevant.

bility of the Evans-Coleman self-similar solution in this This means that the Evans-Coleman self-similar solution is
mixed system(lt is easily seen that eigenmodes decoyple. stable under the scalar perturbation, and we will observe the
Lyapunov analysis in Sec. VI, applied to this mixed system,same radiation fluid critical behavior for the mixed system

shows that the Evans-Coleman self-similar solution has #&at least when the scalar field is sufficiently wgdk would
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be interesting to investigate the behavior of the system within particular those with large Re Here x is a complex
out the restriction that the scalar field is weak; in particular,number ancE® is a complex vector with RE®,Im E°e V. In
where does the crossover between two ty(fiesd, scalay of  Eg.(A3) and belows (ando) can be any number in the case
critical behavior occur? of a fixed point, whereas it is restricted to be an integer
A “critical behavior” such as observed in gravitational multiple of A in the case of a periodic orbit.

collapse is not limited to self-gravitating systems. In fact, We assume that the eigenvalue problek3) has a com-
similar phenomena can be observed in much simpler syplete set of discrete eigenvectors, denoted BY
tems, such as the nonlinear heat equation, where we caa{E{};,_,, ., with the corresponding eigenvalues
rigorously carry out the analysis. However, if a solution of{Ki}i:m’_ _,Rex;=Rex,=Re k= ....Each Rex; is called

the EOM blows up in such simple systems, it usually meansheith Lyapunov exponentHere we implicitly assume that

that the equation is not physically applicable in the blowupwe can always find; with the largest real part after we have
region, and the blowup is an artifact of a bad approximationdefined «;, . .. ,x;_;.) We observe that ifx; is not real,
General relativity provides rare examples where the blowuphere is an intege #i with x;» = k| andES, =E™* , where
of solutions does have a physical meaning—the formation Ogsterisks(except for those on or |) denotel a complex con-
a bIIa_ck hole. . . . jugate in this appendix. We define={E;}i_;, . by E;
tis extremely deswa_b_le to devel_op a mathem_atlcall_y g-_Ec if k; is real, andE;=ReE®, E.»=ImES if «; is not
orous analysis of the critical behavior for a physically inter- =" = ©/ A o ' !
esting model such as a radiation fluid or a scalar field. wd&l i<i* and Ei=E™ . Any real vectorF can be ex-
are planning to come back to this problem in the near futurePanded bye or &°as
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where fL=f"* = (1/2) (f'+ V= 1f'). Without loss of gen-
erality, we assume all eigenvectors are normalized so that
[ReE7|?+ | Im Ef|?=1, althoughE;’s are not necessarily or-
thogonal with respect to the inner prodyet:).

Let F={F;}1<i<n denote am-frame of(linearly indepen-
dent, real vectors and let spatf be the subspace o¥

The Lyapunov method has been extensively used in norsPanned by 7. Below we often omit ki<n in F
linear analysig14]. To make our presentation self-contained ={Fi}1<i=n if no confusion occurs. We define several op-
and transparent, we present a concise mathematical descr@prations on frames. First given an operaXoV—V we de-
tion of the method, restricted to the situation we are interfine &, an operator on frames induced froXy by X7
ested in. ={X(F;)}1<i<n- We in the following consider the cases

Let us consider the linearization of a flow on a real Hil- whereX is either a linear operatdsuch asT,) or the nor-
bert spaceor a real Hilbert manifoltlaround an orbit. It is  Malization operatoN: NF=F/||F|. Second, we define the

APPENDIX: THE LYAPUNOV ANALYSIS

determined by an equation orthogonalization operat@d®F— F' ={F},<i<,, whereF’
is defined by
f
—=(8)=A(s)f(s), (A1) i
ds < (F{.F) _
Fi=F1, F{=F—-2 WF;, 2<i=n.
where eachf(s) is an element of real Hilbert spad¢ a =1 ]

complete vector space with inner product, a(@) is a real (A5)

function determined by théackgroung orbit which we are

considering. Let(-,-) denote the inner product anft|  We can prove the following.

=(-,-) denote the norm defined by the inner product. We Proposition.For almost everyr, i.e., except for measure-
have A(s)=A in Eq. (A1) when the orbit is a fixed point, zero cases, we have

andA(s+A)=A(s) when it is a periodic orbit with period-

icity A. We concentrate on these cases below. 1 (OT.P)l
Let us define time evolution operatdt:V—V by Re k= Im —In ———— (AB)
e MO IF]
f(0)=F, f(s)=TF, (A2)
wheref is a solution of Eq(A1). We wish to find eigenval-  3we think that the proposition is well known, but since we did not
uesk and eigenvectork® of T satisfying find a proof in the literature, we refer the reader to Appendix D of
[7] where we gave a simple proof for the case of perigdicon-
TEC=e"ES, (A3) sidered here.
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1, (3) Find F'=07,F and F"=NOT,F by the Gram-
= lim — lZl Nl o), (A7) Schmidt procedure:
i Fi=F1. F{=FUIF,
for 1<i=<n, wherex;(l,0)=In|[OT,(NOT,)' *F]i. -1
Remark.The first expressiorfA6) of the proposition is F/=F -2 (F/ FOF, F'=F/IF], i=2.
mathematically straightforward, but is not suitable for nu- =t
merical calculations, due to serious overflow and underflow
problems in large time integration. To overcome this diffi- (4) Add \;=In||F7|| to A,
culty, we employ the second expressi@) of the propo- : ! v
sition, and we performed the calculation in the following (5) Define newF=F" and go back td2).
manner in practice.

(A8)

Aj/mo, wherem is the number of iteration, gives the

(1) PrepareF and letA;=0. Lyapunov exponent Re according to the proposition, be-
(2) Evolve Fin time by T, , and defineF’' =7_F. causeNO is equivalent to the Gram-Schmidt procedure.
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