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Critical behavior in gravitational collapse of a perfect fluid
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To confirm the scenario of critical behavior in gravitational collapse in a previous paper we carry out a rather
complete analysis for perfect fluids with pressure proportional to density, in a wide range of the adiabatic index
g. In particular, the uniqueness of the relevant mode around a fixed point is established by a Lyapunov
analysis. This shows that critical phenomena occur not only for the radiation fluid but also for perfect fluids
with 1,g&1.889. We also analyze the stability of other self-similar solutions and also discuss the universality
class.@S0556-2821~98!04324-0#

PACS number~s!: 04.40.2b, 04.70.Bw, 64.60.Ak
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I. INTRODUCTION

Choptuik@2# found a critical behavior in gravitational co
lapse by a numerical study of a self-gravitating scalar fie
Evans and Coleman@3# found similar phenomena in spher
cally symmetric collapse of a radiation fluid, with continuo
self-similarity. The present authors@1# showed that both
qualitative and quantitative understanding is possible by
troducing renormalization group ideas: Theuniquenessof
the relevant~unstable! eigenmode of the linear perturbation
around the critical self-similar space-time is essential for
scaling and the universality to be observed, and that the c
cal exponentbBH is given bybBH51/k wherek is the first
Lyapunov exponent. The value obtained wasbBH
50.35580192, whose difference from those obtained fo
scalar field~0.37! @3# and a gravitational wave~0.38! @4# was
beyond the possible numerical errors in their simulatio
This showed that there is no universality between radia
fluid collapse and other systems. Maison@5# applied the
method to systems of perfect fluids with pressure prop
tional to density and showed howbBH depends on the equa
tion of state, under the assumption that the same phenom
occur and the same scenario holds as in the case of a r
tion fluid.

In this paper we present a thorough analysis of per
fluid collapse, with various adiabatic indicesg. In particular,
we go beyond@1# to confirm the uniqueness of the releva
mode around the critical solution by a new method cal
Lyapunov analysis. A Lyapunov analysis and the shootin
method for an ordinary differential equation adopted in@1#
are complementary to each other in the following sense:~1!
The former extracts eigenmodes in descending order of
real parts of their eigenvaluesk, whereas the latter provide
information onk only in a finite region.~2! The Lyapunov
analysis can provide information on the continuous sp
trum. In Sec. VI we show that the real part of the continuo
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spectrum is negative even if the eigenmodes do not form
complete set.~3! It is easier in the latter than in the former t
numerically obtain accurate values of the eigenvaluesk and
hence the critical exponentbBH . The uniqueness of the rel
evant mode in particular implies the existence of critical b
havior like that observed in@3# also forgÞ4/3 and the self-
similar solutions in@5# are in fact responsible for the critica
behavior.

We also find various self-similar solutions in Sec. III an
discuss their stability~numbers of relevant modes! in Sec. V.
Self-similar solutions with more than one relevant mode
responsible for multicritical behavior. We also discuss u
versality class in Sec. VII~the universality class is indepen
dently discussed by Gundlach and Martı´n-Garcı´a @6#!. By
this we can predict that a class of equations of motion wh
are not necessarily scale invariant exhibits the same crit
behavior.

For detailed calculations and explanations see Ref.@7#.

II. EQUATIONS OF MOTION

The line element of any spherically symmetric space-ti
is written as

ds252a2~ t,r !dt21a2~ t,r !dr21r 2~du21sin2udf2!.
~2.1!

We assume that the matter content is a perfect fluid w
energy-momentum tensor Tab5ruaub1p(gab1uaub),
wherer is the density,p is the pressure, andua is a unit time
like ~co!vector whose components are given byut

52a/A12V2, ur5aV/A12V2, with V being the three-
velocity of fluid particles. We consider the casep5(g
21)r, where gP(1,2) is a constant~adiabatic index!. In
terms of the variabless[2 ln(2t), x[ ln(2r/t), and intro-
ducing N[a/aex, A[a2, v[4pr 2a2r, we can write the
equations of motion~EOM! in an autonomous form, which
makes the scale invariance of the system transparent:

A,x

A
512A1

2v@11~g21!V2#

12V2 , ~2.2a!
©1999 The American Physical Society08-1
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N,x

N
5221A2~22g!v, ~2.2b!

A,s

A
1

A,x

A
52

2gNVv

12V2 , ~2.2c!

v ,s

v
1

gVV,s

12V2 1~11NV!
v ,x

v
1

g~N1V!V,x

12V2

5
3~22g!

2
NV2

21g

2
ANV1~22g!NVv,

~2.2d!

~g21!V
v ,s

v
1

gV,s

12V21~g21!~N1V!
v ,x

v
1

g~11NV!V,x

12V2

52~g22!~g21!Nv1
7g26

2
N1

223g

2
AN. ~2.2e!

Only four out of the above five equations are independe
Equation~2.2c! is automatically satisfied by solutions of th
set~2.2a!, ~2.2b!, ~2.2d!, and~2.2e!, as long as they satisfy
boundary condition A(s,2`)51, V(s,2`)5v(s,2`)
50. We pick up the above set of four equations as our ba
equations of motion, and use Eq.~2.2c! as an auxiliary equa
tion.

The only coordinate transformation which preserves
form of Eq. ~2.1! is t°F21(t), which corresponds to

~s,x!°„f 21~s!,x2s1 f 21~s!…, ~2.3!

where F21(t)52e2 f 21(s) with ḟ [d f /dsÞ0. Under this
transformation, the variablesh (h5A,N,v,V) transform to
h̃ given by

h̃~s,x!5H h~s,x! ~h5A,v,V!,

ḟ ~s!h~s,x! ~h5N!.
~2.4!

Equations~2.2! are of course invariant under this transform
tion. We can determine the coordinate system completely
fixing the value ofN at a point, for example, atx50, on each
constants line. We shall retain the degree of freedom he
and fix it later.

III. CRITICAL „SELF-SIMILAR … SOLUTION

To carry out the first step of our scenario in@1,7#, we first
have to find out self-similar solutions, i.e., fixed points
renormalization group transformations. The behavior of s
similar solutions has been extensively discussed
Bogoyavlenskii@8#, followed by others@9,10#.

Let us first require that the space-time be self-similar, i
that N andA depend only onx: N5Nss(x), A5Ass(x). @In
fact ~see@11#!, any spherically symmetric self-similar spac
times can be expressed in that form if a freedom of coo
nate transformation~2.3! is used.# Then it follows from Eqs.
~2.2! that vss and Vss are also functions ofx only: v
5vss(x), V5Vss(x). In this sense, the space-time we a
10400
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interested in corresponds to afixed pointof the renormaliza-
tion group transformation. The equations for a self-simi
solution are then given by omitting terms containings de-
rivatives in Eqs.~2.2!, which we will call Eqs. (2.2)8. From
Eqs. (2.2a)8 and (2.2c)8, one obtains an algebraic identity

12A1
2v@11~g21!V2#

12V2 52
2gNVv

12V2 . ~3.1!

Instead of eliminating one variable, we will keep using fo
variables (A,N,v,V) and use Eq.~3.1! as a check at appro
priate stages of our numerical calculation.

Under a self-similar ansatz, the coordinate freed
t°F21(t) in Sec. II reduces tot° t̃ 5kt with constantk,
which corresponds to a translation inx @the other transfor-
mations alter the constantx lines in (t,r ) space#. This free-
dom of the coordinate transformation allows one to adj
the value ofN arbitrarily at a given point. We fix the coor
dinate system by requiring that the sonic point@9# be atx
50.

Since we are interested in self-similar solutions whi
could representintermediate asymptocisof the ~near-!critical
space-times, they should have regular spatial profi
Namely, we require the following.

~i! The self-similar solution be analytic~or at least
smooth, in the sense of having an asymptotic expansion t
orders! for all xPR,

~ii ! The space-time and the matter be regular,A51 and
V50, at the center (x52`).

Now, (2.2)8 is a set of ordinary differential equation
~ODE’s! for four variables (A,N,v,V), which satisfies the
Lipschitz condition except at the so-calledsonic point~see
below!.

Equations (2.2d)8 and (2.2e)8 can be written in the form

S a b

c dD S v ,x

V,x
D5S e

f D , ~3.2!

where a, b, c, d, e, and f are functions, none of which
depends on derivatives ofv and V. Solving the above in
favor of v ,x andV,x , the resulting equation violates the Lip
schitz condition at thesonic pointwhere the determinant o
the coefficient matrix ofv ,x and V,x vanishes:ad2bc50.
Physically the sonic point is where the velocity of fluid pa
ticles seen from the observer on the constantx line is equal
to the speed of sound,Ag21. To have finite derivativesv ,x
and V,x at the sonic point the rows of Eq.~3.2! must be
proportional to each other:a f2ec50. These two conditions
together with the requirement that the variables allow pow
series expansions imply that the self-similar solution wh
is regular at the sonic point is characterized by a single
rameterV0[Vss(0) @12#.

Asymptotic behavior of solutions of ODE’s (2.2)8 as x
→6` can be most easily understood by viewing Eqs. (2.8
as a dynamical system and considering its fixed points@12#.
Condition ~ii ! implies that the asymptotic behavior asx
→2` is

As.s.~x!;11A2`e2x, Nss~x!;N2`e2x,
8-2



io
n

ti

r

on
a
it

t

ri-
lf

sf

on

ic
n

b
ut
e
h
th
o

po
s
d
th

th
dl

or-

.

d

for-

ire

is
s

at

an
o

, a
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vss;v2`e2x, Vss;V2`ex, ~3.3!

where coefficientsA2` , N2` , v2` , V2` satisfy A2`

52v2`/3, N2`V2`522/3g.
In the numerical calculation, we first fix the valueV0 at

the sonic pointx50, and use the power series expans
there to derive the derivatives. Then starting from the so
point x50, we solve ODE’s (2.2)8 towardsx52`, using a
Runge-Kutta fourth order integrator, with reliable error es
mates. If at somex,0 either ~1! A,1 or ~2! det5ad2bc
50, we stop solving and conclude that thisV0 does not give
rise to a desired self-similar solution. The first case (A,1) is
excluded because it is easily shown that solutions regula
the center~i.e., A→1 asx→2`! must satisfyA>1 for all
xPR. The second case implies the existence of another s
point betweenx50 andx52`. We can always find such
solution with more than one sonic point by searching for
part between its leftmost sonic point andx52`, and then
solving Eqs. (2.2)8 from the leftmost sonic point to the righ
~towardsx5`!.1

Our numerical results show that each allowedV0 leads to
either of~1! or ~2! above. Moreover, it is seen, both nume
cally and mathematically rigorously, that a desired se
similar solution exists at those values ofV0 , whereV010
leads to case~1! andV020 leads to case~2!.

We have searched for self-similar solutions which sati
the above conditions~i! and ~ii ! numerically, for all the al-
lowed values ofV0 . As has been extensively studied in@8#,
there exists a sequence of self-similar solutions, each
which is characterized by the number of zeros ofV. The
number of zeros is an integer starting from 1, and the
with exactly one zero is the solution cited in@3#, which we
call the Evans-Coleman solution. Because of a numer
difficulty, we could find only self-similar solutions with a
odd number of zeros ofV.

IV. PERTURBATION

We studied perturbations around self-similar solutions
two different methods. The first one is to directly find o
eigenmodes by solving the system of ODE’s below. The s
ond one is to apply the so-called Lyapunov analysis. T
former has the advantage that it reduces the problem to
of solving ODE’s, and gives us fairly accurate estimates
eigenvalues, but has the disadvantage that it is almost im
sible to search forevery possibleeigenvalue. The latter ha
the advantage that it can easily find out eigenvalues in
scending order of their real part, but has disadvantages
~1! eigenvalue estimates are not so accurate and~2! we have
to solve a partial differential equation~PDE!. However, we
here emphasize that the PDE we have to solve for
Lyapunov analysis is a very regular one, and can be han
by standard techniques for solving PDE’s.

1However, it is quite unlikely that such solutions with more th
one sonic point exist, because the existence of only one sonic p
already reduces the freedom of parameters to discrete ones
other possible sonic points will further reduce it.
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To simplify the notation, we consider perturbations ofĀ

5 ln A, N̄5 ln N, v̄5 ln v, and V. For example, theĀ ver-
sion of Eq.~4.1! in fact meansĀ(s,x)5Āss(x)1eĀvar(s,x)
whereĀ(s,x)[ ln A(s,x), Āss(x)[ ln Ass(x).

Perturbation equations are obtained by taking the first
der variation in Eqs.~2.2! from the self-similar solutionHss:

h~s,x!5Hss~x!1ehvar~s,x!, ~4.1!

whereh represents each of (Ā,N̄,v̄,V). In the following, we
write V for Vss and writeVvar for perturbations. From Eqs
~2.2a!, ~2.2b!, ~2.2d!, and ~2.2e! we have equations of the
form

F S O O

O Ps
D ]s1S I O

O Px
D ]xGhvar5Qhvar, ~4.2!

wherePs andPx are 232 matrices andQ is a 434 matrix,
all of which determined by the self-similar solution, an
hvar5(Āvar,N̄var,v̄var,V)T. See@7# for explicit expressions.
From Eq.~2.2c! we also have

]sĀvar1]xĀvar

52
2gNVv

12V2 ~N̄var1v̄var!2
2gNv~11V2!

~12V2!2 Vvar. ~4.3!

We note that there is freedom of the coordinate trans
mation of ordere, namely, Eq.~2.3! with f (s)5s1e f 1(s).
The transformation~2.4! now becomes@taking O(e) terms,
85d/dx, ˙ 5d/ds#

h̃var~s,x!5H hvar~s,x!1 f 1~s!hss8 ~x! ~h5Ā,v̄,V!,

hvar~s,x!1 f 1~s!hss8 ~x!1 ḟ 1~s! ~h5N̄!.
~4.4!

This in particular means that one can always requ
N̄var(s,x0)[0 for a fixedx0 .

V. EIGENMODE ANALYSIS

A. Equations and boundary conditions

We consider eigenmodes of the formhvar(s,x)
5hp(x)eks, with kPC being a constant. Substituting th
into Eqs.~4.2! and~4.3! yields a set of linear, homogeneou
first order ODE’s for (N̄p ,Āp ,v̄p ,Vp), which we call Eqs.
(4.2)8 and (4.3)8, respectively. Equations (4.3)8 and the first
row of Eq. (4.2)8 provide an algebraic identity:

~k2A!Āp1S 2gNVv

12V2 D N̄p1S 2v$11~g21!V21gNV%

12V2 D v̄p

1S 2gv$N~11V2!12V%

~12V2!2 DVp50, ~5.1!

just as in the case of self-similar solutions@cf. Eq. ~3.1!#. As
in our treatment of self-similar solutions, we here tre

int
nd
8-3
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Āp ,N̄p ,v̄p ,Vp as four unknown functions, and use Eq.~5.1!
as a check at appropriate steps of computation. We req
N̄p(s,0)50 to fix the coordinate freedom~4.4!.

As in the case of self-similar solutions, we require~i! that
the perturbations be analytic for allxPR and ~ii ! that the
perturbed space-times be regular at the center (Āp50 at x
52`!.

The perturbation solutions satisfying the analyticity co
dition ~i! at the sonic point are specified by one free para
eterk, apart from the overall multiplicative factor. This ca
be seen as follows. First, we note that the sonic point
regular singular pointfor the perturbations. That is, the sy
tem of ODE’s for perturbations (4.2)8 is singular where the
determinant of the matrix on the left-hand side~LHS! of Eq.
(4.2)8 vanishes: detPx50. This is identical to the sonic poin
condition for self-similar solutions. Second, in order to ha
a smooth solution at the sonic point, the third and fou
rows of Eq. (4.2)8 must be proportional to each other at t
sonic point, like in the case of the self-similar solution. Th
yields an algebraic relation betweenĀp(0), N̄p(0), v̄p(0),
and Vp(0). Third, we have another algebraic relation b
tweenĀp(0), N̄p(0), v̄p(0), andVp(0) by Eq.~5.1!. Fourth,
the above two algebraic relations, together with our choice
gaugeN̄p(0)50, enable us to expressv̄p(0) andVp(0) in
terms of Āp(0) andk. Then higher order expansion coeffi
cients of perturbations are given in terms ofĀp(0) andk.
Because the system is linear and homogeneous, overall
malizationĀp(0) is irrelevant. We thus see that the soluti
which satisfies~i! is characterized by a single parameterk.

This, together with the regularity condition~ii ! at the cen-
ter, in general allows only discrete values fork. Indeed, in
view of Eq. ~3.3!, the system of ODE’s for perturbation
(4.2)8 takes on a simple form asx→2`, given by

]xS Āp

N̄p

v̄p

Vp

D 5S 21 0 0 0

1 0 0 0

223g

2~g21!
0 0 0

0 0 0 22

D S Āp

N̄p

v̄p

Vp

D .

~5.2!

This linear homogeneous ODE with constant coefficients
four independent solutions, given by

S 0
1
0
0
D , S 0

0
1
0
D , S 0

0
0
1
D e22x, S 1

21
223g

2~g21!

0

D e2x.

~5.3!

The last one should be excluded in view of the identity~5.1!,
and thus the asymptotic behavior of arbitrary solutions
ODE’s is described by linear combinations of the first thr
Now, one of them~the third one! blows up asx→2`.
Therefore we have to choosek so as to eliminate the un
10400
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wanted expanding mode in order to get a solution wh
satisfies our boundary condition.

B. Gauge mode

In searching for possible eigenmodes, one has to pay
tention to a ‘‘gauge mode’’ which emerges from a coordina
transformation applied to the self-similar solution.

Suppose one has a self-similar solutionh(s,x)5Hss(x).
Seen from another coordinate@related by the coordinate
transformation~2.3!#, its perturbation is given by setting
hvar[0 in h̃ of Eq. ~4.4!:

h̃var~s,x!5H f 1~s!hss8 ~x! ~h5Ā,v̄,V!,

f 1~s!hss8 ~x!1 ḟ 1~s! ~h5N̄!.
~5.4!

For generalf 1 , this does not behave like an eigenmod
However, with the choice off 1(s)[ek̄s (k̄ arbitrary!, h̃ does
behave as an eigenmode with eigenvaluek̄:

h̃gauge~s,x;k̄ !5ek̄sS hss8 ~x!

hss8 ~x!1k̄ D ~h5Ā,v̄,V!

~h5N̄!.
~5.5!

The mode emerges via the coordinate transformation of
self-similar solutionhss, and thus can be considered as
result of a pure gauge transformation, like a ‘‘zero mode’’
translation-invariant systems. Becausek̄PC is arbitrary, this
pure gauge mode forms a one-parameter family.

Similarly, for any~nongauge! eigenmodehp , Eq.~4.4! for
hvar(s,x)5hp(x)eks becomes

h̃var~s,x!5H hp~x!eks1 f 1~s!hss8 ~x! ~h5Ā,v̄,V!,

hp~x!eks1 f 1~s!hss8 ~x!1 ḟ 1~s! ~h5N̄!.
~5.6!

As long ashpÓ0, by taking f 1(s)5eks, this means trans-
formedh̃var is also an eigenmode, with the samek. Thus we
have a one-parameter family of eigenmodes~with the same
eigenvaluek!, which are mutually related by the gauge mo
~5.5!.

C. Numerical results

Based on the above observations, we searched for
desired eigenmodes as follows. We first fix a value ofk, and
then starting fromx50 ~the sonic point!, integrate Eq. (4.2)8
to x52`. When there appear nonzero components of
expanding modes~for sufficiently largeuxu!, we judge that
this k does not give a desired eigenmode and stopped.

Here we show the results forg54/3. Those for otherg
are summarized in Sec. VIII. The eigenvalue with the larg
Rek is k.2.81055255, which corresponds to the expon
value bBH.0.35580192, and which we believe to be exa
to the last digit. This is in good agreement with the value
@3#. The profile of the eigenmode is found in Fig. 2 of@1#. In
our gauge, whereN̄p(s,0)[0, we observe the gauge mod
8-4
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with k̄52(dN̄ss/dx)(0).0.35699, as explained in Se
V B.2

To confirm our scenario, we performed a thorough sea
of other eigenmodes in the region 0<Rek<15, uIm ku
<14, and foundnone, except for the above-mentioned re
evant mode and the gauge mode. We also performed a
complete search in the region21.5<Rek,0, uIm ku,2.
There is an eigenmode with Rek&21.4, which is consisten
with the results of the Lyapunov analysis in Sec. VI.

Our search of eigenmodes in this section has a drawb
in that it is theoretically impossible to cover the whole valu
of kPC ~unless, of course, one employs more sophistica
mathematical techniques!. Moreover, it is nota priori obvi-
ous whether the eigenmodes form a complete set of b
functions. To fill these gaps, and to further confirm our s
nario, we perform a Lyapunov analysis in Sec. VI.

D. Modes for other self-similar solutions

As has been stated in Sec. III, there exists a series
self-similar solutions~specified by the number of zeros o
V!, in which the Evans-Coleman solution can be conside
as the first one~exactly one zero forV!. We have searched
for relevant eigenmodes for the first several self-similar
lutions and foundmore than onerelevant modes~see Table
I!. This implies that the other self-similar solutions are irr
evant for the generic critical behavior. However, our analy
is less complete for these higher self-similar solutions,
cause~1! we have not done the analysis for~possible! self-
similar solutions with an even number of zeros ofV and~2!
there might be more relevant modes than are reporte
Table I.

VI. LYAPUNOV ANALYSIS

To further confirm the uniqueness of the relevant mo
we performed a Lyapunov analysis around the critical so
tion.

A. Numerical methods

The Lyapunov analysis is a method of extracting eig
values in descending order. It involves time integration
the linearized EOM~4.2! around the self-similar solution. I
takes advantage of the fact that the eigenmodes with la
Rek dominate at late times and that the volume, defined
an ~arbitrarily chosen! inner product onG, of the parallelepi-
ped spanned by the eigenmodes correspond
k1 ,k2 , . . . ,kn approachesek1k2 . . . kn. During the integra-

2Maison @5# states that the gauge mode reported in@1# ~same as
reported here! ‘‘seems to be erroneous.’’ The fact is that our repo
in @1# ~and of course here! is correct. The confusion seems to be d
to the different gauges used in the analysis. Here and in@1# we use

the gaugeN̄p(s,0)50 at the sonic point, while Maison@5# and we

in Sec. VI use the gaugeN̄p(s,2`)50. The former gauge gives th
gauge mode atk̄.0.35699, while the latter gives it atk̄51; the
difference in the values ofk̄ is well understood in view of Eq.~5.5!.
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tion, vectors inG are orthonormalized by the Gram-Schmi
procedure. This is essential for avoiding numerical overflo
and underflows. For details see the Appendix. We can a
have information on the imaginary part of eigenvalues by
period of oscillation in times.

We have performed the above calculation by numerica
solving the PDE’s~4.2! for the linear perturbation. We em
phasize that solving the PDE’s~4.2! is much easier than
solving the full EOM close to the critical point, because li
ear perturbations are well behaved in contrast with ne
critical solutions whose derivatives are diverging in (t,r )
coordinates.

We used the first order Lax scheme, and the second o
Lax-Wendroff scheme for time evolution. We show the r
sults from the Lax-Wendroff scheme. To simplify the co
ing, we employed a new gaugeN̄var(s,2`)50. In this
gauge we observe the gauge mode atk̄51. We have made
appropriate coordinate transformations to stabilize the in
gration schemes.

We imposed the free boundary condition at the so
point j[ex51. This can be done because no informati
can come in from outside the sonic point. The latter fac
easily seen mathematically by studying the characteri
curves or physically by recalling that spherically symmet
metric perturbations contain no gravitational waves and
determined by the matter degrees of freedom.

B. Numerical results

Figure 1 shows the dependence of Rek on g. The largest
eigenvalue is real and agrees well with the first eigenva
~which is real! found by solving the two-point boundar
problem of an ODE in Sec. V. The second largest eigenva
is that of the gauge mode, which should be exactly equa
1. For g<1.2 the third and fourth largest eigenvalues a
real, and the fifth is imaginary. Forg51.3,1.4 the third is
real and the fourth and fifth are imaginary, which are co
plex conjugate. Those forg>1.4 are complex. We can con
sider that there is a crossover of Lyapunov exponents co

TABLE I. Relevant modes found for other self-similar solu
tions, which are labeled by the number of zeros ofV.

Self-similar solution k

1 ~Evans-Coleman! 2.8105525488
3 8.456

3.464
1.665
0.497

5 15.80
7.13
3.22
1.51
0.500

7 15.97
6.92
3.20
1.50
8-5
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FIG. 1. Dependence of Lyapunov exponents Rek on g. The lines show the Lyapunov exponents. The top line, labeled ‘‘releva
represents the relevant mode, and the second line, labeled ‘‘gauge,’’ represents the gauge mode, whose Lyapunov exponent e
theoretically. Forg,1.3, the third and the fourth largest modes are real~labeled ‘‘real’’!. For g51.3 andg51.4 the third is real and the
fourth and fifth are complex conjugate. Forg.1.4 the third and fourth are complex conjugate~labeled ‘‘cc’’!. We see that the complex
conjugate pair takes over the real eigenvalue twice in 1,g&1.889. The graph shows there is auniquerelevant mode for all values ofg
analyzed.
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sponding to the real eigenvalue and the complex p
betweeng51.2 andg51.3. Forg>1.5 the third and fourth
are a complex conjugate pair, so that there is another cr
over of Lyapunov exponents corresponding to the real eig
value and the complex pair betweeng51.4 andg51.5. For
largeg it seems that many eigenmodes with close values
Rek are present. Our preliminary computation of ten mod
for g51.889 shows that there are at least nine modes in
range 20.6<Rek<20.4, though it seems that not all o
them are degenerate in Rek.

Figure 1 establishes the uniqueness of the relevant m
in the collapse of perfect fluids withp5(g21)r,1,g
&1.889. From this we can conclude that critical behav
must be observed for all of these models with 1,g
&1.889. It should be noted that the results from o
Lyapunov analysis in particular show that the continuo
spectrum is confined to the region Rek,20.4 because oth
erwise we would find a solution which grows or decays m
slowly than e20.4s in the cospace of the unique releva
mode. The existence of a nonzero gap below zero for ir
evant modes and the continuous spectrum is essentia
sharp critical behavior to be observed.

VII. UNIVERSALITY CLASS

Though we have concentrated our analysis on perfect
ids with equation of statep5(g21)r, we can predict by a
renormalization group analysis that the same critical beh
ior ~with the same critical exponent! can be observed for a
class of equation of states, auniversality class. The main
idea is as follows. Under the scaling transformation wh
10400
ir

s-
n-

f
s
e

de

r

r
s

e

l-
for

u-

v-

h

induces the renormalization group transformationon phase
space, the EOM is transformed into a new EOM for scale
variables. We call this transformation a renormalizati
group transformation on thespace of EOM’s, whose fixed
points correspond to scale-invariant systems. If a renorm
ization group drives the EOM to a fixed point, and if th
fixed point shows a critical behavior, the original syste
exhibits the same critical behavior; i.e., it is in the sam
universality class as the fixed point. See@13# or @7# for de-
tails. The universality class is discussed independently
Gundlach@6#.

As an example, let us consider an equation of state

L6ªp2~g21!r2 f ~r!50. ~7.1!

The EOM for this system is given by Eqs.~2.2! and ~7.1!.
@We writeL6 in Eq. ~7.1! because it is the sixth of the EOM.#
The system withf [0 is a perfect fluid that we have studie
in detail, and it exhibits critical behavior. Let us consider
scaling transformation which acts onr andp as

r~s![e22sr~e2st,e2sr !, p~s![e22sp~e2st,e2sr !.
~7.2!

Under the renormalization group transformation induc
from the scaling transformation, the EOM~2.2! are invariant,
while L6 is transformed into

L6
~s!5p~s!2~g21!r~s!2 f ~s!~r~s!!,

f ~s!~x![e22sf ~e2sx!. ~7.3!
8-6
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The system withf [0, whereL6* [p2(g21)r, is a fixed
point.

Our problem is to determine the models~forms of f !
which belong to the same universality class as thef [0
model. The model belongs to the same universality clas
that of f [0, as long as~for fixed x!

f ~s!~x!→0 ~s→`!. ~7.4!

This is the sufficient condition we are after. An example of
which shows the same critical behavior asf [0 is given by
f (x)5xd with 0<d,1.

VIII. SUMMARY OF RESULTS

We have performed the analysis presented in Secs. III
for perfect fluid, with 1,g<2. As has been noted in@8–10#,
a self-similar solution of Evans-Coleman type~i.e., with one
zero ofV! ceases to exist forg*1.889. For Evans-Coleman
type self-similar solutions, the Lyapunov analysis of Sec.
establishes that there is a unique relevant mode, and thu
can observe the critical behavior. Then, the precise value
the relevant eigenvaluek are obtained by the shootin
method of Sec. V, and the critical exponent is given
bBH51/k.

The result is shown in Table II. In particular, it is con
firmed that the relevant eigenmodes found by Maison@5# are
actually unique, and thus are responsible for the critical
havior. The value of the critical exponentbBH depends
strongly ong. Moreover, the limitg→1 seems to be discon
tinuous.~For the dust,g51, we expect a trivial critical be-
havior with bBH51.! This may be because the domain
attraction of the Evans-Coleman-type self-similar solut
vanishes asg→11.

IX. DISCUSSION

There remain several open questions to be answered
First, it should be emphasized that our analysis in Se

II–VIII confirms only the local behavior of the renormaliza
tion group flow, around specific self-similar solutions. A
though the self-similar solutions with more than one zero
V will be irrelevant for generic critical behavior~because all
such solutions analyzed have more than one relevant mo!,
it would be interesting to know theglobal behavior of the
flow, in particular, how these self-similar solutions are
lated.

Second, now that various kinds of critical behavior f
different models have been observed, it would be interes
to ask what happens in a mixed system~e.g., perfect
fluid1scalar fields!. We performed a preliminary analysis i
this direction. That is, we considered a ‘‘mixed’’ system
radiation fluid with a real scalar field, whose energ
momentum tensor is given byTab5ruaub1p(uaub1gab)
1¹af¹bf2(1/2)gab¹

cf¹cf, and studied the linear sta
bility of the Evans-Coleman self-similar solution in th
mixed system.~It is easily seen that eigenmodes decoup!
Lyapunov analysis in Sec. VI, applied to this mixed syste
shows that the Evans-Coleman self-similar solution ha
10400
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a

unique relevant mode~given by the relevant mode of th
radiation fluid!, and all scalar eigenmodes are irreleva
This means that the Evans-Coleman self-similar solution
stable under the scalar perturbation, and we will observe
same radiation fluid critical behavior for the mixed syste
~at least when the scalar field is sufficiently weak!. It would

TABLE II. Values of k and bBH51/k for 1,g<1.889. The
last digit is rounded.

g k bBH

1.00001 9.4629170 0.10567566
1.0001 9.45592488 0.10575380
1.001 9.38660322 0.10653481
1.01 8.74868715 0.11430286
1.03 7.61774326 0.13127247
1.04 7.16334221 0.13959964
1.05 6.76491004 0.14782163
1.06 6.41269915 0.15594058
1.08 5.81789124 0.17188358
1.1 5.33435815 0.18746398
1.12 4.93282886 0.20272343
1.15 4.44235059 0.22510605
1.18 4.0484584 0.2470076
1.2 3.82545008 0.26140715
1.22 3.62729455 0.27568756
1.25 3.36750228 0.29695600
1.28 3.14337431 0.31812947
1.3 3.00990875 0.33223599
1.32 2.88714829 0.34636253

4/3 2.81055255 0.35580192
1.36 2.66838221 0.37475891
1.38 2.57025726 0.38906611
1.4 2.47850858 0.40346844
1.42 2.39245265 0.41798110
1.44 2.31150728 0.43261815
1.46 2.23517329 0.44739260
1.48 2.16301995 0.46231659
1.5 2.09467339 0.47740140
1.52 2.02980720 0.49265763
1.55 1.93841621 0.51588508
1.58 1.85338883 0.53955219
1.6 1.79989076 0.5555893
1.62 1.74873002 0.5718436
1.64 1.69974510 0.5883235
1.66 1.65278973 0.6050376
1.68 1.60773076 0.6219947
1.7 1.56444628 0.6392038
1.72 1.52282404 0.6566747
1.74 1.48276003 0.6744180
1.76 1.44415717 0.6924454
1.78 1.40692422 0.7107703
1.8 1.37097467 0.7294081
1.88 1.2383842 0.8075039
1.888 1.2259859 0.8156700
1.889 1.2244458 0.8166960
8-7
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be interesting to investigate the behavior of the system w
out the restriction that the scalar field is weak; in particul
where does the crossover between two types~fluid, scalar! of
critical behavior occur?

A ‘‘critical behavior’’ such as observed in gravitationa
collapse is not limited to self-gravitating systems. In fa
similar phenomena can be observed in much simpler
tems, such as the nonlinear heat equation, where we
rigorously carry out the analysis. However, if a solution
the EOM blows up in such simple systems, it usually me
that the equation is not physically applicable in the blow
region, and the blowup is an artifact of a bad approximati
General relativity provides rare examples where the blow
of solutions does have a physical meaning—the formation
a black hole.

It is extremely desirable to develop a mathematically r
orous analysis of the critical behavior for a physically inte
esting model such as a radiation fluid or a scalar field.
are planning to come back to this problem in the near futu
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APPENDIX: THE LYAPUNOV ANALYSIS

The Lyapunov method has been extensively used in n
linear analysis@14#. To make our presentation self-contain
and transparent, we present a concise mathematical des
tion of the method, restricted to the situation we are int
ested in.

Let us consider the linearization of a flow on a real H
bert space~or a real Hilbert manifold! around an orbit. It is
determined by an equation

d f

ds
~s!5A~s! f ~s!, ~A1!

where eachf (s) is an element of real Hilbert spaceV, a
complete vector space with inner product, andA(s) is a real
function determined by the~background! orbit which we are
considering. Let~•,•! denote the inner product andi•i
[A(•,•) denote the norm defined by the inner product. W
haveA(s)5A in Eq. ~A1! when the orbit is a fixed point
andA(s1D)5A(s) when it is a periodic orbit with period
icity D. We concentrate on these cases below.

Let us define time evolution operatorTs :V→V by

f ~0!5F, f ~s!5TsF, ~A2!

where f is a solution of Eq.~A1!. We wish to find eigenval-
uesk and eigenvectorsEc of Ts satisfying

TsE
c5eksEc, ~A3!
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in particular those with large Rek. Here k is a complex
number andEc is a complex vector with ReEc,Im EcPV. In
Eq. ~A3! and below,s ~ands! can be any number in the cas
of a fixed point, whereas it is restricted to be an integ
multiple of D in the case of a periodic orbit.

We assume that the eigenvalue problem~A3! has a com-
plete set of discrete eigenvectors, denoted byE c

[$Ei
c% i 51,2, . . . , with the corresponding eigenvalue

$k i% i 51,2, . . . ,Rek1>Rek2>Rek3> . . . . Each Reki is called
the i th Lyapunov exponent.~Here we implicitly assume tha
we can always findk i with the largest real part after we hav
defined k1 , . . . ,k i 21 .! We observe that ifk i is not real,
there is an integeri * Þ i with k i* 5k i8 andEi*

c
5Ei

c* , where
asterisks~except for those oni or j ! denote a complex con
jugate in this appendix. We defineE5$Ei% i 51,2, . . . by Ei

5Ei
c if k i is real, andEi5ReEi

c , Ei* 5Im Ei
c if k i is not

real, i , i * and Ei*
c

5Ei
c* . Any real vectorF can be ex-

panded byE or E c as

F5(
i 51

`

f iEi5Re (
i 51

`

f c
i Ei

c , ~A4!

where f c
i 5 f c

i* * 5(1/2)(f i1A21 f i* ). Without loss of gen-
erality, we assume all eigenvectors are normalized so
iReEi

ci21i Im Ei
ci251, althoughEi ’s are not necessarily or

thogonal with respect to the inner product~•,•!.
LetF5$Fi%1< i<n denote ann-frame of~linearly indepen-

dent, real! vectors and let spanF be the subspace ofV
spanned byF. Below we often omit 1< i<n in F
5$Fi%1< i<n if no confusion occurs. We define several o
erations on frames. First given an operatorX:V→V we de-
fine X, an operator on frames induced fromX, by XF
[$X(Fi)%1< i<n . We in the following consider the case
whereX is either a linear operator~such asTs! or the nor-
malization operatorN: NF[F/iFi . Second, we define the
orthogonalization operatorOF°F85$Fi8%1< i<n , whereF8
is defined by

F18[F1 , Fi8[Fi2(
j 51

i 21
~F j8 ,Fi !

iF j8i2 F j8 , 2< i<n.

~A5!

We can prove the following.3

Proposition.For almost everyF, i.e., except for measure
zero cases, we have

Re k i5 lim
m→`

1

ms
ln

i~OTmsF! i i
iFi i

~A6!

3We think that the proposition is well known, but since we did n
find a proof in the literature, we refer the reader to Appendix D
@7# where we gave a simple proof for the case of periodicA con-
sidered here.
8-8
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5 lim
m→`

1

ms (
l 51

m

l i~ l ,s!, ~A7!

for 1< i<n, wherel i( l ,s)[ lni@OTs(NOTs) l 21F# i i .
Remark.The first expression~A6! of the proposition is

mathematically straightforward, but is not suitable for n
merical calculations, due to serious overflow and underfl
problems in large time integration. To overcome this dif
culty, we employ the second expression~A7! of the propo-
sition, and we performed the calculation in the followin
manner in practice.

~1! PrepareF and letL i50.
~2! EvolveF in time by Ts , and defineF85TsF.
10400
-
w

~3! Find F95OTsF and F-5NOTsF by the Gram-
Schmidt procedure:

F195F18 , F1-5F19/iF19i,

Fi95Fi82(
j51

i21

~Fj- ,Fi8!Fj- , Fi-5Fi9/iFi9i, i>2.

~A8!

~4! Add l i5 lniFi9i to L i .

~5! Define newF5F- and go back to~2!.

L i /ms, where m is the number of iteration, gives th
Lyapunov exponent Reki according to the proposition, be
causeNO is equivalent to the Gram-Schmidt procedure.
and
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