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Can the cosmological constant support a scalar field?
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Static spherically symmetric gravitational equilibria of the real scalar field are discussed in the presence of
the cosmological constant. We find nontrivial solutions if we take the self-interaction of the field into account
while there is no such equilibria in the noninteracting case. The system has critical parameters beyond which
new solutions disappear. They are determined by the ratio of the cosmological horizon to the ‘‘Compton
radius’’ of the scalar field. We also discuss the stability of the solutions by means of a linear perturbation
method and find that the number of unstable modes depends on the node number of the scalar field.
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ta
a
m
lly

e
a
n
to

d

e
a

n
o
u
th
te

s
m

l
iv

ol
he

r.

lar
uss
alar

ted
lar

the
ult
ro-

l re-

at
ant
ay

real
ec.
at-

we
ow

nd
no

i-
ion
nal

dopt
I. INTRODUCTION

In 1968 a new type of star solution called a boson s
which consists of a massive free complex scalar field, w
discovered@1–3#. Such an object is a macroscopic quantu
state that is only prevented from collapsing gravitationa
by the Heisenberg uncertainty principle. Since the mass
the boson star is estimated asMbs;mPl

2 /mf , wheremPl and
mf are the Planck mass and the mass of the scalar fi
respectively,mf must be extremely small in order to form
boson star with a solar mass. However, a dramatic cha
occurs if we take the self-interaction of the scalar field in
account. The mass of the boson star is expected to beMbs

;mPl
3 /mf

2 @4,5#, which is of the order of neutron stars, an
the boson star has a solar mass withmf comparable with,
e.g., the axion mass. Thereafter, many altered solutions w
derived, for example, soliton stars, which have a larger m
Mss;mPl

4 /mf
3 @6# than the boson star andQ stars@7#. These

self-gravitating solutions with a nonzero finite mass and
singularity are called nontopological soliton stars. Cosm
logical effects of these structures may be significant beca
they can be one of the candidates for the dark matter of
universe, although we have to clarify the mass and the in
action of the particles of dark matter.

Several attempts have been made to construct a boson
solution consisting of a real scalar field. Since equilibriu
soliton star solutions are possible due to the existence
conserved Noether currents@6,8# associated with a globa
U~1! symmetry, a system of self-gravitating real mass
scalar field does not admit regular static solutions@9–12#.
Hence the real scalar field must collapse to a black h
escape to infinity, or oscillate periodically. Surprisingly t
latter solution exists as Seidel and Suen pointed out@13#.
This nonstatic solution is called the oscillating boson sta
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In this paper we investigate the self-gravitating real sca
field in the presence of the cosmological constant and disc
whether the cosmological constant can support the real sc
field in the static spherically symmetric spacetime, motiva
by the following reasons. The nonexistence of a regu
static solution is partly due to the boundary condition at
origin or at infinity. Hence we expect that the previous res
may be changed by the cosmological constant, which p
duces a cosmological horizon. Furthermore observationa
sults support the existence of the cosmological constant@14#.
In particular recent observation of the type Ia supernova
z50.83 supports a universe with the cosmological const
@15#. Furthermore the existence of the static solution m
produce new aspects to the dynamical evolution of the
scalar field in de Sitter spacetime, as we will discuss in S
V, and have an effect on physics in the inflationary or rehe
ing era of the universe.

This paper is organized as follows. In the next section,
explain the model and derive the basic equations. We sh
nontrivial solutions obtained by numerical calculation, a
discuss why there are critical parameters, beyond which
nontrivial solutions exist, in Sec. III. In Sec. IV we invest
gate the stability of the new solutions by using a perturbat
analysis. We give our conclusions and remarks in the fi
section.

II. MODEL AND BASIC EQUATIONS

We start with the action

S5E d4xA2gF 1

16pG
~R22L!2

1

2
]mf ]mf2V~f!G ,

~1!

wheref is the real scalar field andV(f) is its potential. We
shall assume a spherically symmetric spacetime and a
the following metric:
©1999 The American Physical Society02-1
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ds252S 12
2Gm~ t,r !

r
2

L

3
r 2De22d~ t,r !dt2

1S 12
2Gm~ t,r !

r
2

L

3
r 2D 21

dr2

1r 2~du21sin2udw2!. ~2!

m(t,r ) is the mass function, which is the quasilocal ma
defined by Ref.@16#, andd(t,r ) is the lapse function.

The field equations derived from Eq.~1! with the metric
~2! are

m̃854p r̃ 2F1

2
B21e2dḟ̃21

1

2
Bf̄821Ṽ~f̃ !G , ~3!

d8524p r̃ @B22e2dḟ̃21f̃82#, ~4!

ṁ̃54p r̃ 2Bḟ̃f̃8, ~5!

2@edB21ḟ̃ #•1
1

r̃ 2
@ r̃ 2e2dBf̃8#85e2d

dṼ~f̃ !

df̃
, ~6!

B[12
2m̃

F
2

1

3
r̃ 2,

where we have used dimensionless variables normalize
L andG as t̃[ALt, r̃[ALr , m̃[ALGm, f̃[AGf and
Ṽ[GV/L. A dot and a prime denote derivatives with r
spect tot̃ and r̃ , respectively.

In order to find a static solution, we have to discuss
advance the boundary conditions at the origin and on
cosmological horizon (r 5r c). First, expanding the field
functions around the origin and substituting them into sta
field equations, we find

m̃5
8p

6
Ṽ~f̃0! r̃ 31•••, ~7!

d5d02
4p

9 S dṼ

df̃
D 2U

f̃5f̃0

r̃ 31•••, ~8!

f̃5f̃01
1

6

dṼ

df̃
U

f̃5f̃0

r̃ 21•••. ~9!

We integrate the static field equations from the origin w
shooting parametersf̃0 andd0 , which are chosen to satisf
the boundary conditions on the cosmological horizon. On
horizon we assume that curvature, field variables, and t
derivatives are finite. In this paper we putd(r c)50. If we are
interested in a different boundary condition such asd→d*
Þ0, we can always have such a boundary condition with
further calculation because the constant difference is
sorbed in the time coordinate by rescaling. That is, introd
10400
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ing d̄[d2d* , and rescaling the time coordinate ast̄
5e2d* t̃ , we recover our boundary condition.

Now we discuss concrete forms of the potential of t
scalar field. First we consider the convex potentialṼ(f̃)
5mf

2 f̃2. We can putf̃0>0 without loss of generality. Since

dṼ/df̃ur 50.0, f̃9ur 50 is positive by Eq.~9!. This means
that the scalar fieldf̃ begins to increase near the origin. E
~6! is rewritten as

Bf̃91F S 2

r̃
14p r̃ f̃82D B21B8G f̃85

dṼ~f̃ !

df̃
. ~10!

Here we assume thatf̃ has the extremum, i.e.,f̃850 be-
tween the origin and the cosmological horizon. At the ext
mum of f̃ Eq. ~10! becomes

Bf̃95
dṼ~f̃ !

df̃
. ~11!

When f̃.0, i.e., dV/df̃.0, f̃9 is always positive. This
means that the extremum is not the maximum but the m
mum. Hencef̃ increases monotonically to the cosmologic
horizon. On the cosmological horizon Eq.~10! becomes

B8f̃85
dṼ~f̃ !

df̃
. ~12!

The left-hand side is negative becauseB8 is always negative
around the cosmological horizon, while the right-hand side
positive. This is a contradiction. As a result, there is no re
lar static solution with the convex potential except for t
trivial solution f̃[0. This result is different from the usua
boson star case@1–3#, where the time dependence of a pha
of the complex scalar field plays an important role and giv
nontrivial configurations.

Next we investigate a double well potentialṼ(f̃)
5l̃(f̃22 ṽ2)2/4, wherel̃5l/GL and ṽ5AGv are the re-
scaled self-coupling constant and vacuum expectation va
respectively. Before we proceed to the nontrivial case,
mention the trivial solutions. There are two analytic so
tions, one of which is~a! f̃[ ṽ, m̃[0, d[0. This is the
usual de Sitter solution. The other one is~b! f̃[0, m̃

5pl̃ ṽ2r̃ 3/3, d[0. This is another de Sitter solution. How
ever, the latter includes not only the cosmological constanL
but also the ‘‘effective cosmological constant’’ defined b
Leff52pl ṽ4, because the scalar field sits on the top of t
potential. Obviously, the latter is the excited solution. In t
nontrivial case we can also restrictf̃0.0 because the scala
field has reflection symmetry. If we putf̃0. ṽ, the same
discussion as in the convex potential case holds and the
no regular solution. If we put 0,f̃0, ṽ, dṼ/df̃ is negative
and thenf̃9 becomes negative by Eq.~9! and hencef̃ de-
creases near the origin. In the intermediate region Eq.~11!

indicates that there is no local maximum when2 ṽ,f̃,0
2-2
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CAN THE COSMOLOGICAL CONSTANT SUPPORT A . . . PHYSICAL REVIEW D59 104002
or f̃. ṽ and that there is no local minimum whenf̃,2 ṽ or
0,f̃, ṽ. On the cosmological horizon Eq.~12! says thatf̃8

has the opposite sign ofdṼ/df̃, which meansf̃8.0 if f̃

,2 ṽ or 0,f̃, ṽ, andf̃8,0 if 2 ṽ,f̃,0 or f̃. ṽ. Con-
sequently the only consistent behavior for the scalar fiel
the following case:~c! f̃ starts with the value 0,f̃0, ṽ
from the origin and goes over the potential barrier~passing
f̃50), and then it decreases monotonically to2 ṽ,f̃(r c)
,0 on the cosmological horizon or oscillates once or sev
times in the region of2 ṽ,f̃, ṽ. In each oscillationf̃ must
go over the top of the potential. Finallyf̃ takes 2 ṽ,f̃

,0 with f̃8,0 or 0,f̃, ṽ with f̃8.0 on the cosmologi-
cal horizon.

III. STATIC SOLUTIONS

Now we turn to the numerical analysis. By adjusting t
shooting parameters, we found the nontrivial solutions wh
l̃ and ṽ satisfy a certain condition which we will discus
later. These solutions are classified into several families
the node numbern of the scalar field. Figure 1 shows con
figurations of the scalar field withn51 for ṽ50.1 and vari-
ous l̃. The structure spreads to the cosmological scale.
large l̃, which means that the cosmological constant
small, the scalar field continues to stayf̃' ṽ even for quite
larger. If f̃ is much different from its vacuum value near th
origin, f̃ changes rapidly by Eq.~11! and has large kinetic
energy. However, as the cosmological constant is not la
enough to support the gravitational force produced by s
energy, the scalar field will collapse. Hencef̃ must take
almost vacuum value around the origin.

As l̃ decreases, the amplitude off̃ becomes small and
finally the solution coincides with the excited de Sitter so
tion ~b! (f̃[0) at some critical value ofl̃5l̃cr>423. We
show the critical parameters in thel̃-ṽ plane in Fig. 2. In the
right-hand side of each line (n51,2,3), there exist nontrivia
solutions with n51,2,3. On the critical lines the solutio
becomes the excited de Sitter solution~b!.

What is the physical meaning of existence of the criti
parameters? In order to answer this question we exam
nontrivial solutions near the critical lines. When we shift t
parameters

l̃cr→l̃5l̃cr1l̃1e, ~13!

ṽcr→ ṽ5 ṽcr1 ṽ1e, ~14!

wheree is an infinitesimal parameter, the field functions sh
as

f̃dS→f̃5f̃dS1f̃1e1
1

2
f̃2e21•••, ~15!

m̃dS→m̃5m̃dS1m̃1e1
1

2
m̃2e21•••, ~16!
10400
is

al

n

y

or
s

e
h

-

l
ne

t

ddS→d5ddS1d1e1
1

2
d2e21•••, ~17!

where f̃dS50, ddS50, and m̃dS5pl̃crṽcr
4 r̃ 3. Substituting

Eqs.~13!–~17! into Eq.~6! and taking the first order ofe, we
obtain

1

r̃ 2 F r̃ 2S 12
2m̃dS

r̃
2

1

3
r̃ 2D f̃18G 852l̃crvcr

2 f̃1 . ~18!

Introducing new variablesc̃15 r̃ f̃1 , A5112pl̃crṽcr
4 , and

z̃5AA/3 r̃ , Eq. ~18! becomes

FIG. 1. The configurations of the scalar fieldf̃5AGf with one

node (n51). We setṽ5AGv50.1 and show the solutions forl̃
5l/GL5450, 500, 700, 2000.~a! shows between the origin an

the cosmological horizon. Asl̃ becomes small,f̃0 approaches zero
and the solution coincides with the excited de Sitter solution in

l̃→l̃cr limit. ~b! shows beyond the cosmological horizon. The r
dial coordinate is normalized by the radius of the cosmologi

horizons, which are r̃ c5ALr c51.5124, 1.4563, 1.2531 forl̃
5l/GL5500, 700, 2000, respectively. The scalar field oscilla

around its vacuum value2 ṽ with damping. We can see that th
spacetime approaches de Sitter spacetime asymptotically.
2-3
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d

dz̃
F ~12 z̃2!

dc̃1

dz̃
G1S 21

3

A
l̃crṽcr

2 D c̃150, ~19!

This has the same form as the well known Legendre dif
ential equation

d

dzF ~12z2!
du

dzG1n~n11!u50. ~20!

In the present case, the boundary conditions at the or
( r̃ 50 and z̃50) are f̃15C1(5const) andf̃1850, i.e., c̃1

50 andc̃85C2(5const). On the other hand, the behav
of the Legendre functionPn around the origin is

Pn~0!52
sinnp

2Ap3
GS n11

2 DGS 2
n

2D . ~21!

When n¹Z(Z: integer),Pn(0)Þ0 from the properties of
the G function. Hence it is enough to check its behav
whenn is a natural numbern and zero because the Legend
function satisfiesPn(0)5P2n21(0). When n52n21 is
positive odd, sin(np)50 and 0,G(•)G(•),`, thenPn(0)
50. On the other hand, whenn52n is positive even or zero
sin(np)50 andG(•)G(•)5`, then Pn(0) is indefinite. By
using properties of theG function Eq.~21! is rewritten as

Pn~0!52
1

Ap3
cosS n

2
p D sinS n

2
p DGS n11

2 DGS 2
n

2D
5

1

Ap
cosS n

2
p DGS n11

2 D Y GS n12

2 D . ~22!

If we assumen52n or 0, cos(np/2)561, and 0,G(•)/
G(•),`, thenPn(0)Þ0. As a result, whenn is positive odd

FIG. 2. The critical parameters of the nontrivial solutions w
noden51, 2, 3. In the right-hand side of each line the nontriv

solution exists. The critical lines are expressed asl̃cr
(n)52n(2n

13)/@3ṽcr
(n)222n(2n13)p ṽcr

(n)4# and approachṽcr
(n)50 and ṽcr

(n)

5A3/4pn(2n13) in the largel̃cr
(n) limit. On the critical lines the

nontrivial solutions coincide with the excited de Sitter solution.
10400
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r

or negative even,Pn(0)50, and the solutions of the Leg
endre equation satisfy the boundary condition at the orig
moreover are also regular on the cosmological horizonr
5r c or z51). Comparing Eq.~19! with Eq. ~20!, we obtain

l̃cr5
~n12!~n21!

3ṽcr
2 22p ṽcr

4 ~n12!~n21!
. ~23!

Whenn51 or 22, l̃cr becomes zero and the solutions co
respond to the usual de Sitter solution~a!. When n53 or
24, l̃cr

(1)510/(3ṽcr
(1)2220p ṽcr

(1)4), and when n55 or

26, l̃cr
(2)528/(3ṽcr

(2)2256p ṽcr
(2)4). These equations corre

spond to the critical lines withn51 and n52 in Fig. 2,
respectively. Generally the critical line with noden is ex-
pressed by

l̃cr
~n!5

2n~2n13!

3ṽcr
~n!224pn~2n13!ṽcr

~n!4
. ~24!

We can see that the critical lines approachṽcr
(n)50 andṽcr

(n)

5A3/4pn(2n13) in the largel̃cr
(n) limit.

Equation~24! is expressed as

S R̃cos

l̃Comp
D 2

5n~2n13!, ~25!

where R̃cos5A3/(11l̃eff)5A3/(112pl̃ ṽ4) is the typical

scale of the cosmological horizon andl̃Comp5A2/l̃ ṽ2 is the
‘‘Compton radius’’ of the scalar field. Note that usually th
Compton radius indicates the size of the region around
origin where the energy of the field concentrates. In
present case, however, the scalar field takes almost vac
value around the origin and at the cosmological horizon. O
‘‘Compton radius’’ indicates the size of the intermediate r
gion where the scalar field is around the top of the poten
barrier. Equation~25! shows that ratio ofR̃cos and l̃Comp are
bounded from below by constantn(2n13) for each node
number. This means that asl̃Comp becomes small (l̃→l̃cr)
the structure becomes large and it cannot be packed into
radius R̃cos. Finally nontrivial solutions cannot exist forl̃
,l̃cr .

Since nontrivial solutions are smooth on the cosmologi
horizon, they can be extended beyond the cosmological
rizon to null infinity I1. As the sign ofB is changed on the
cosmological horizon, the behavior of the scalar fields
quite different from that within the cosmological horizo
Let us examine them around the vacuum expectation va

ṽ. Note that Eq.~11! shows the scalar field can have th
maximum ~minimum! when f̃. ṽ (f̃, ṽ). Introducing a
new variablew̃[f̃2 ṽ and neglecting the second and high
orders ofw̃, we find that Eq.~10! is rewritten as

w̃91mw̃852v2w̃, ~26!

where
2-4
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m5F2

r̃
1B21B8G , ~27!

v2522l̃ ṽ2B21. ~28!

As m is always positive beyond the cosmological horizo
the second term of Eq.~26! works as a friction term. Hence
the field w̃ behaves as a damped oscillator around
vacuum valueṽ with the frequencyv. The frequency of the
oscillation becomes smaller as the spacetime approache
finity because of theB21 effect as well as of the friction
force. Around the other vacuum value2 ṽ, the situation is
the same as above. Figure 1~b! shows the configurations o
the scalar field of the nontrivial solutions withn51 and ṽ
50.1. We can find that they oscillate with damping arou
f̃52 ṽ. For then52 solution, the scalar fields damp tof̃
5 ṽ. As a result, the spacetime approaches the de Sitte
lution asymptotically and has the same global structure a
Sitter spacetime.

IV. STABILITY ANALYSIS

In this section we investigate the stability of solutio
obtained in the previous section. First we expand the fi
functions as

f̃~ t̃ , r̃ !5f̃0~ t̃ !1
f̃1~ t̃ , r̃ !

r̃
e, ~29!

m̃~ t̃ , r̃ !5m̃0~ t̃ !1m̃1~ t̃ , r̃ !e, ~30!

d~ t̃ , r̃ !5d0~ t̃ !1d1~ t̃ , r̃ !e, ~31!

around the static solutionf̃0 , m̃0 , and d0 . Substituting
them into Eqs.~3!–~6!, we obtain

ṁ̃154p r̃ 2B0f̄08ḟ̃1 , ~32!

2ed0B0
21f̈̃11@e2d0B0f̃18#8

2F1

r̃
~e2d0B0!818p r̃ e2d0l~f̃0

22 ṽ2!f̃0f̃08

1le2d0~3f̃0
22 ṽ2!G f̃1

2F2

r̃
~ r̃ e2d0f̃08!828p r̃ e2d0f̃08

3Gm̃150, ~33!

whereB05122m̃0 / r̃ 2F2/3. Next f̃1 andm̃1 are approxi-
mated by harmonic functions as

f̃15j~ r̃ !ei s̃ t̃ , ~34!
10400
,
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m̃15h~ r̃ !ei s̃ t̃ . ~35!

From Eq.~32! the relation betweenj andh is

h54p r̃ B0f̃08j. ~36!

With Eqs. ~33! and ~36!, the perturbation equation of th
scalar field becomes

2
d2j

dr̃* 2
1U~ r̃ !j5s̃2j, ~37!

where we employ the tortoise coordinater̃ * defined by

dr̃*

dr̃
5ed0B0

21 , ~38!

and the potential function is

U~r !5e2d0B0F1

r̃
~e2d0B0!818p r̃ e2d0l~f̃0

22 ṽ2!f̃0f̃08

1le2d0~3f̃0
22 ṽ2!

14p r̃ B0f̃08H 2

r̃
~ r̃ e2d0f̃08!828p r̃ e2d0f̃08

3J G .

~39!

If there exists even one bound state with negative eigenv
s̃2, the perturbed variablesf̃1 andm̃1 diverge exponentially
and the solution becomes unstable.

By numerical calculation, we find one or two negativ
eigenmodes in then51 case depending on the parametersl̃

and ṽ. The boundary which divides the number of negati
eigenmodes takes a value close to the critical parameterl̃cr

and ṽcr . For example, there are two negative modes be
l̃;500 for fixed ṽ50.1. Figure 3 shows the zero-nod
eigenfunction of the solutions withn51, ṽ50.1, and severa
values ofl̃. We confirmed that the solutions with largern
have alson or n11 negative eigenmodes. As a result, all
the nontrivial solutions are found to be unstable.

V. CONCLUSION

We investigated the massive real scalar field in the st
spherically symmetric spacetime with the cosmological c
stant. We showed that there is no nontrivial solution if t
field has only a mass term. However, taking the se
interaction of the field into account, we found nontrivial s
lutions. These structures are interesting because no static
gularity free solution exists without the cosmologic
constant. The distribution of the structure spreads out to
cosmological scale and is far from the boson star pict
whose energy is concentrated in a small region described
2-5
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TAKASHI TORII, KENGO MAEDA, AND MAKOTO NARITA PHYSICAL REVIEW D 59 104002
its Compton radius. There are critical parametersl̃cr or ṽcr
beyond which there are no nontrivial solutions. The critic
parameters are determined by the ratio of the cosmolog
horizon to the ‘‘Compton radius’’ of the scalar field. Whe
the structure becomes too large, it cannot be packed into
cosmological horizon. New solutions are extendable bey
the cosmological horizon and the scalar field oscilla
around its vacuum expectation values. The spacetime
proaches the de Sitter solution asymptotically and has
same global structure as the de Sitter spacetime.

Linear perturbation analysis shows that new solutions
unstable even for radial perturbations. The reason of t
instability is interpreted as follows. The scalar field is n
fixed to the vacuum expectation value at the two bounda
~the origin and the cosmological horizon! but sits on the
potential barrier. Hence when the scalar field is perturbed
easily slips down. If enough friction is added in Eq.~6! by
considering another potential or by adopting another ma
field, this kind of structure may be stabilized.

Although we focused only on the static solutions, th
may affect the dynamic evolution of the scalar field in
Sitter spacetime, in particular, the critical behavior of t

FIG. 3. The configurations of eigenfunction of the perturbat

equation of the scalar field. We setṽ5AGv50.1, n51 and show

the solutions forl̃5l/GL5600, 800, 1000. The eigenvalues fo

each eigenfunction ares̃2520.911,20.594,20.484.
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scalar field in gravitational collapse discovered by Chopt
@17#. He showed that one parameter families of interpolat
solutions have a critical valuep* , beyond which the black
hole forms at infinitesimal mass. Since the black hole m
changes continuously as the parameter changes, this tr
tion is called a type II transition. Interestingly the black ho
mass has a simple power-law formMbh}up2p* ug, whereg
is the critical exponent. Near the critical value the field a
ymptotically approaches the discretely self-similar critic
solution. Recently a different type of transition has been d
covered for the Einstein-Yang-Mills system@18# and for the
Einstein-Klein-Gordon system@19#. In these systems the
black hole formation can turn on at finite mass~type I tran-
sition! as well as at infinitesimal mass~type II transition!. In
the type I transition the critical solution is the Bartnik
McKinnon solution @20#, which is a static singularity free
solution of the Einstein-Yang-Mills system, and the oscilla
ing soliton star solution in the unstable branch@13#, which is
a periodically oscillating singularity free solution in th
Einstein-Klein-Gordon system, respectively. The necess
condition of the critical solution is that it has at least o
unstable mode@21#. Hence we expect that our solutions wi
n51 could be the critical solution of the type I transition
the gravitational collapse in de Sitter spacetime.

From a different point of view, our solution provides a
example of cosmic no-hair conjecture. The scalar field m
escape over the cosmological horizon and the spacetime
proaches the de Sitter solution. Otherwise the scalar fi
may collapse to a black hole solution and the spacetime m
develop into the Schwarzschild–de Sitter solution. Furth
more the present system has a black hole solution@22#. This
is also an important issue, which is related to the fundam
tal problem of black hole no-hair conjecture.
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