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Can the cosmological constant support a scalar field?
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Static spherically symmetric gravitational equilibria of the real scalar field are discussed in the presence of
the cosmological constant. We find nontrivial solutions if we take the self-interaction of the field into account
while there is no such equilibria in the noninteracting case. The system has critical parameters beyond which
new solutions disappear. They are determined by the ratio of the cosmological horizon to the “Compton
radius” of the scalar field. We also discuss the stability of the solutions by means of a linear perturbation
method and find that the number of unstable modes depends on the node number of the scalar field.
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[. INTRODUCTION In this paper we investigate the self-gravitating real scalar
field in the presence of the cosmological constant and discuss
In 1968 a new type of star solution called a boson starwhether the cosmological constant can support the real scalar
which consists of a massive free complex scalar field, wagield in the static spherically symmetric spacetime, motivated
discovered 1-3]. Such an object is a macroscopic quantumby the following reasons. The nonexistence of a regular
state that is only prevented from collapsing gravitationallystatic solution is partly due to the boundary condition at the
by the Heisenberg uncertainty principle. Since the mass ofrigin or at infinity. Hence we expect that the previous result
the boson star is estimated lslg, s~ m%/m¢, wheremp and ~ May be changed _by the 903m0|09|03| constant, Whl_Ch pro-
m, are the Planck mass and the mass of the scalar fieldluces a cosmological horizon. Furthermore observational re-
respectivelym,, must be extremely small in order to form a sults support the existence of the cosmological congtat
boson star with a solar mass. However, a dramatic changd Particular recent observation of the type la supernova at
occurs if we take the self-interaction of the scalar field intoflzs? '?:3 stﬁpports atrlljn|verste with t??hcosinglogm;alt.constant
account. The mass of the boson star is expected thl e - rurthermore the existence of ne stalic solution may
3, 9 o produce new aspects to the dynamical evolution of the real
~mg/my [4,5], which is of the order of neutron stars, and

) ' scalar field in de Sitter spacetime, as we will discuss in Sec.
the boson star has a solar mass witf comparable with, \/ anq have an effect on physics in the inflationary or reheat-
e.g., the axion mass. Thereafter, many altered solutions WeFRq era of the universe.

derived, for example, soliton stars, which have a larger mass Tpis paper is organized as follows. In the next section, we
M s~ mg/m, [6] than the boson star ar@ stars[7]. These  explain the model and derive the basic equations. We show
self-gravitating solutions with a nonzero finite mass and nmontrivial solutions obtained by numerical calculation, and
singularity are called nontopological soliton stars. Cosmo-discuss why there are critical parameters, beyond which no
logical effects of these structures may be significant becausgontrivial solutions exist, in Sec. Ill. In Sec. IV we investi-
they can be one of the candidates for the dark matter of thgate the stability of the new solutions by using a perturbation
universe, although we have to clarify the mass and the interanalysis. We give our conclusions and remarks in the final
action of the particles of dark matter. section.

Several attempts have been made to construct a boson star
solution consisting of a real scalar field. Since equilibrium
soliton star solutions are possible due to the existence of Il. MODEL AND BASIC EQUATIONS
conserved Noether currenf§,8] associated with a global ) )
U(1) symmetry, a system of self-gravitating real massive We start with the action
scalar field does not admit regular static soluti¢@is-12).
Hence the real scalar field must collapse to a black hole, L L
escape to infinity, or oscillate periodically. Surprisingly the
latter solution exists as Seidel and Suen pointed [@G]. S:j d“x\/—_g[ 167TG(R_2A)_§(7P«¢ He—N()|,

This nonstatic solution is called the oscillating boson star. )
*Electronic address: torii@th.phys.titech.ac.jp where¢ is the real scalar field and(¢) is its potential. We
"Electronic address: maeda@th.phys.titech.ac.jp shall assume a spherically symmetric spacetime and adopt
*Electronic address: narita@se.rikkyo.ac.jp the following metric:
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26m(t,r) A L\ Lo ing 6=6—65*, and rescaling the time coordinate as
dg=—|1- 22 D2 |em2atngy o .
r 3 =e”~ ° t, we recover our boundary condition.
Gt A -1 Now we discuss concrete forms of the potential of the
+(1_ 2Gmtr) _rZ) dr? scalar field. First we consider the convex potentigi)
3 =mj3$2. We can puiho=0 without loss of generality. Since
+r2(d6?+sirfad¢?). (2 dVId¢|,—>0,¢"|,—o is positive by Eq.(9). This means

. . L . that the scalar field> begins to increase near the origin. Eq.
m(t,r) is the mass function, which is the quasilocal mass(g) is rewritten asdb g 9 a

defined by Ref[16], and §(t,r) is the lapse function.

The field equations derived from E¢L) with the metric 5 2 e, - d(9)
(2) are Bo'+||=+4nrd IB?+B' |¢p'=———. (10
r d¢
~ ~o i osta T o ~ .~
m'=4mrt 5 B7eT¢7+ 5 B “+V(9) |, (3 Here we assume that has the extremum, i.e' =0 be-

tween the origin and the cosmological horizon. At the extre-
mum of ¢ Eq. (10) becomes

5'=—4mT[B 2e¥°$*+ 2], @)
~ ~n e~ ~5n d’{/(’a))
m=4712B93’, (5) Bé"™=—1= (12)
¢
< 1.~ ~ dV(¢) When ¢>0, i.e., dV/d$>0,¢" is always positive. This
_adp—1 1 Ir2a— 9 I —p—6__ "7 » 1LE., , .
(B d] +=lre "Bl =e a3 ©®  means that the extremum is not the maximum but the mini-
mum. Henceg increases monotonically to the cosmological
2m 1., horizon. On the cosmological horizon E4.0) becomes
=l-—-—=T
F 3 ° 0
B'¢ = M (12)
where we have used dimensionless variables normalized by do

A andG ast=At, T=yAr, m=JAGm, $=/G¢ and

V=GV/A. A dot and a prime denote derivatives with re- The left-hand side is negative becalseis always negative

~ ~ , around the cosmological horizon, while the right-hand side is

spect tot andr, respectively. . _ positive. This is a contradiction. As a result, there is no regu-
dm orderhtot:‘md c? static ZQ',UUO”' W‘; have to d'stUSS 'r?lar static solution with the convex potential except for the

advance the boundary conditions at the origin and on t Frivial solution $=0. This result is different from the usual

funetions around the origin And Substuting them nto stat 050N Sr 62 =3, where the time dependence of a phase
. . - ong 9 of the complex scalar field plays an important role and gives
field equations, we find

nontrivial configurations.

8w Next we investigate a double well potentidl()

m= —=-V/( Po)r3+-- -, (1) =X($2-70?)2/4, wherex=\/GA andv=+/Guv are the re-
scaled self-coupling constant and vacuum expectation value,
respectively. Before we proceed to the nontrivial case, we

2

5= 6,— 4_77 d_Y ..., (8) mention the trivial squtiorls. ;I'hgre are two analytic solu-
9 \de b=, tions, one of which is(a) ¢=v, m=0, §=0. This is tbe
usual de Sitter solution. The other one (i) $=0,m
_ . 1dV 5 =mAv2r33, 5=0. This is another de Sitter solution. How-
¢:¢o+g£ o e+ (9 ever, the latter includes not only the cosmological constant
=dq but also the “effective cosmological constant” defined by

i o ) ~_ Aeg=2m\v*, because the scalar field sits on the top of the
We integrate the static field equations from the origin withpotential. Obviously, the latter is the excited solution. In the
shooting parameter$, and 5y, which are chosen to satisfy nontrivial case we can also restrigt>0 because the scalar
the boundary conditions on the cosmological horizon. On th?ield has reflection symmetry. If we puho>7, the same

hor!zor_1 We assume that g:urvature, field variables, and the'c’iiscussion as in the convex potential case holds and there is
derivatives are finite. In this paper we pi(tr ;) =0. If we are ) ~ o~ e }
no regular solution. If we put€ ¢,<v, dV/d¢ is negative

interested in a different boundary condition suchdas 6* -~ S
#0, we can always have such a boundary condition withougind then¢” becomes negative by E¢(9) and hencep de-
further calculation because the constant difference is abFreases near the origin. In the intermediate region (Ed).
sorbed in the time coordinate by rescaling. That is, introducindicates that there is no local maximum when < <0

104002-2



CAN THE COSMOLOGICAL CONSTANT SUPPORT A ...

or ¢>v and that there is no local minimum when< —v or
0<$<v. On the cosmological horizon E(L2) says thaip’
has the opposite sign afV/d¢, which meansg’ >0 if @
<—por0<¢<v, andé’<0 if —v<$<0 or$p>v. Con-

sequently the only consistent behavior for the scalar field is

the following case:(c) ¢ starts with the value € ¢o<v
from the origin and goes over the potential barfeassing

$=0), and then it decreases monotonicallyte < é(r )

<0 on the cosmological horizon or oscillates once or severa

times in the region of-v<$<v. In each oscillationp must
go over the top of the potential. Finaliy takes —v <o

<0 with ¢’ <0 or 0<¢<v with ¢’ >0 on the cosmologi-
cal horizon.

Ill. STATIC SOLUTIONS

Now we turn to the numerical analysis. By adjusting the
shooting parameters, we found the nontrivial solutions wher
X\ andv satisfy a certain condition which we will discuss
later. These solutions are classified into several families by
the node numben of the scalar field. Figure 1 shows con-

figurations of the scalar field with=1 for v=0.1 and vari-

ous\. The structure spreads to the cosmological scale. Fo™®
large X, which means that the cosmological constant is

small, the scalar field continues to staéy=v even for quite

larger. If ¢ is much different from its vacuum value near the

origin, ¢ changes rapidly by Eq11) and has large kinetic

energy. However, as the cosmological constant is not large
enough to support the gravitational force produced by suct

energy, the scalar field will collapse. Henge must take
almost vacuum value around the origin.

As X\ decreases, the amplitude @f becomes small and
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FIG. 1. The configurations of the scalar field= G ¢ with one
node f=1). We setv=/Gv=0.1 and show the solutions far

finally the solution coincides with the excited de Sitter solu-=\/GA =450, 500, 700, 2000(a) shows between the origin and

tion (b) (¢=0) at some critical value ok =\.,=423. We
show the critical parameters in thev plane in Fig. 2. In the
right-hand side of each lined& 1,2,3), there exist nontrivial
solutions withn=1,2,3. On the critical lines the solution
becomes the excited de Sitter solutigm).

the cosmological horizon. As becomes smalip, approaches zero
and the solution coincides with the excited de Sitter solution in the

X— A limit. (b) shows beyond the cosmological horizon. The ra-

dial coordinate is normalized by the radius of the cosmological
horizons, which arer.=Ar.=1.5124, 1.4563, 1.2531 foi

What is the physical meaning of existence of the critical=\/GA =500, 700, 2000, respectively. The scalar field oscillates
parameters? In order to answer this question we examinaound its vacuum value-v with damping. We can see that the
nontrivial solutions near the critical lines. When we shift the spacetime approaches de Sitter spacetime asymptotically.

parameters
13

Ver— V=0t 016, (14)

wheree is an infinitesimal parameter, the field functions shift

as

- - o~ - 1.
bis— ¢= Pyst 1€+ §¢252+ sy

~ ~ ~ ~ 1.
Mys— M=Myg+ My e+ §m262+ _— (16)

1
5ds—> 5: 5ds+ 51€+ _5262+ sty

. @

where $4s=0, 83s=0, and myg=7mAvers. Substituting

Egs.(13)—(17) into Eqg.(6) and taking the first order af, we
obtain

1]~ 2mgs L\~ |1 -~ -
},—2{#(1— = —§r2)¢11 =—Nid.. (18

Introducing new variableg, =T ¢;, A=1+27\ve,, and

z=/A/3T, Eq.(18) becomes
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0.25 T T T T or negative evenP,(0)=0, and the solutions of the Leg-
[ endre equation satisfy the boundary condition at the origin;
moreover are also regular on the cosmological horizon (

0.20 : . )
i =r, orz=1). Comparing Eq(19) with Eq. (20), we obtain
0.15 | - (v+2)(v—1)
o [ o~ =32 ~2 . (23
A Bvg—2mvg(v+2)(v—1)
0.10 ~
Whenv=1 or —2, A\, becomes zero and the solutions cor-
I respond to the usual de Sitter solutiG@. Whenv=3 or
0.05 ~ ~ ~
: -4, \V=10/(30P?-2070P%, and when »=5 or
i | . . . -6, \P=28/(3?2-56m1v?%. These equations corre-
0.00 0.2 0.4 0.6 0.8 710 Spond to the critical lines witm=1 andn=2 in Fig. 2,
A/IGA respectively. Generally the critical line with nodeis ex-
pressed by
FIG. 2. The critical parameters of the nontrivial solutions with
noden=1, 2, 3. In the right-hand side of each Iin~e the nontrivial ~m 2n(2n+3)
solution exists. The critical lines are expressed)\é5§=2n(2n Ny = (29

~ ~ _ ~ (N2 _ ~(n4a’
+3)/[30M2—2n(2n+3)70M*] and approach"=0 andv{" Svg ~—4mN(2n+3)vg

= \/3/47n(2n+3) in the largex" limit. On the critical lines the

™ . ~ _ ~(n)
nontrivial solutions coincide with the excited de Sitter solution. We can see that the critical lines approaxéﬁ’ 0 andvg

= 3/4mn(2n+3) in the largex " limit.

Equation(24) is expressed as

d ~, dy 3. ~, |~
— (1—22)$ +| 24+ A2 | ¥1=0, (19 - s
dz dz A Reos
= =n(2n+3), (25)
This has the same form as the well known Legendre differ- Com

ential equation _ _ __
where Rooe= V3/(1+ X e) = V3/(1+27A0%) is the typical
%[(1_22)% + (vt 1)u=0. (20  scale of the cosmological horizon aNgome= V20?2 is the
d dz “Compton radius” of the scalar field. Note that usually the
- . .Compton radius indicates the size of the region around the
In the present case, the boundary conditions at the origigyigin where the energy of the field concentrates. In the
(r=0 andz=0) are ¢;=C,(=const) and$;=0, i.e.,y;  present case, however, the scalar field takes almost vacuum
=0 andy’ =C,(=const). On the other hand, the behavior value around the origin and at the cosmological horizon. Our
of the Legendre functiof®, around the origin is “Compton radius” indicates the size of the intermediate re-
gion where the scalar field is around the top of the potential
sinvar v barrier. Equatior(25) shows that ratio 0Rgos andX compare
ﬁr r 2] (2D pounded from below by constan{2n+3) for each node
number. This means that ag,m, becomes smallX—X,)
When v¢ Z(Z: integer),P,(0)#0 from the properties of the structure becomes large and it cannot be packed into the

the T function. Hence it is enough to check its behaviorradiusR... Finally nontrivial solutions cannot exist fox
whenv is a natural numbem and zero because the Legendre <Ner-

function satisfiesP,(0)=P_,_4(0). When v=2n—1 is Since nontrivial solutions are smooth on the cosmological
positive odd, singm)=0 and O<I'(-)I'(-) <=, thenP,(0)  norizon, they can be extended beyond the cosmological ho-
=0. On the other hand, when=2n is positive even or zero, jzon to null infinity Z*. As the sign ofB is changed on the

sin(m)=0 andT'(-)I'(-)=<, thenP,(0) is indefinite. By  cosmological horizon, the behavior of the scalar fields is
using properties of th& function Eq.(21) is rewritten as  qgyite different from that within the cosmological horizon.
L Let us examine them around the vacuum expectation value
v v
P,(0)=— \/—;5 CO{EW) SII’](EW) r

F( _ 3) v. Note that Eq.(11) shows the scalar field can have the
2 maximum (minimum) when ¢>7v ($<v). Introducing a
1 v r v+1 r v+2
N 327 T2 2
If we assumev=2n or 0, cos¢n/2)==*+1, and G<I'(-)/

new variablep=¢—v and neglecting the second and higher
I'(-)<oe, thenP,(0)#0. As a result, whem is positive odd  where

v+1

P,(0)=— -

v+1
2

(22) orders ofg, we find that Eq(10) is rewritten as

"+ pe' =—wlp, (26)
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2 my = 5(7)e't. 35
ue|ZiB1m | 27 1=7(r) (35)

r From Eq.(32) the relation betwee and 7 is
w?=—-2Xv?B" % (28) n=47TBohié. (36)

As p is always positive beyond the cosmological horizon,with Egs. (33) and (36), the perturbation equation of the
the second term of Eq26) works as a friction term. Hence scalar field becomes

the field ¢ behaves as a damped oscillator around the ,
~ d2¢ -~
vacuum valuey with the frequencyw. The frequency of the FUT)E= 32, 37)

oscillation becomes smaller as the spacetime approaches in- B dr*2

finity because of theB~! effect as well as of the friction

force. Around the other vacuum valuev, the situation is where we employ the tortoise coordinate defined by
the same as above. Figuré)l shows the configurations of
the scalar field of the nontrivial solutions with=1 andv
=0.1. We can find that they oscillate with damping around
$=—"0. For then=2 solution, the scalar fields damp @
=7. As a result, the spacetime approaches the de Sitter s@nd the potential function is
lution asymptotically and has the same global structure as de

Sitter spacetime. U(r)=e" %8B,

*

dr
— =e%B,!, (38)
dr

1 ~ ~ o o~~~
= (e ™Bo)' +8mre *N(¢6—0%) dodg
IV. STABILITY ANALYSIS ~y o~
. : . . . . +1e”%(3h5—v?)
In this section we investigate the stability of solutions

obtained in the previous section. First we expand the field ~ o~ 2~ s~ ~ 5,3
functions as +4mrBody f(re O0dg)' —8mre 0gy" |.
me o~ = (BT (39)
d(t,r)=do(t) + —=—¢, (29)
r If there exists even one bound state with negative eigenvalue
— e e e o2, the perturbed variables,; andm; diverge exponentially
m(t,r)=mp(t)+my(t.r)e, (30 and the solution becomes unstable.
s ~ s By numerical calculation, we find one or two negative
8(1,r)=do(t) + o1(t,r)e, (3)  ejgenmodes in tha=1 case depending on the parameders

andv. The boundary which divides the number of negative
eigenmodes takes a value close to the critical paramkters
andv,,. For example, there are two negative modes below
N~500 for fixed v=0.1. Figure 3 shows the zero-node
eigenfunction of the solutions with=1, v=0.1, and several

values ofx. We confirmed that the solutions with larger
—e%B; Yy +[e By} ]’ have alsa or n+1 negative eigenmodes. As a result, all of
the nontrivial solutions are found to be unstable.

around the static solutiomby, Mg, and &,. Substituting
them into Eqs(3)—(6), we obtain

my=4712Body i, (32)

1 - e
?(e“sOBO)’+877re‘50)\(¢8—v2)¢0¢6

V. CONCLUSION

+re %(392-1?) (¢,

We investigated the massive real scalar field in the static
spherically symmetric spacetime with the cosmological con-
stant. We showed that there is no nontrivial solution if the
field has only a mass term. However, taking the self-
interaction of the field into account, we found nontrivial so-
o g ~ lutions. These structures are interesting because no static sin-
whereBo=1—2m,/r —F?/3. Next$, andm, are approxi- gularity free solution exists without the cosmological

2~—5""/ A= 8043 |
—|=(re”%0¢)) —8mre” %¢i’Im=0, (33

r

mated by harmonic functions as constant. The distribution of the structure spreads out to the
5 R cosmological scale and is far from the boson star picture
Pr=E&(r)e't, (34  whose energy is concentrated in a small region described by
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40T scalar field in gravitational collapse discovered by Choptuik

[17]. He showed that one parameter families of interpolating
solutions have a critical valup*, beyond which the black
] hole forms at infinitesimal mass. Since the black hole mass
1 changes continuously as the parameter changes, this transi-
tion is called a type Il transition. Interestingly the black hole
mass has a simple power-law folvh,<|p—p*|?, wherey
is the critical exponent. Near the critical value the field as-
ymptotically approaches the discretely self-similar critical
] solution. Recently a different type of transition has been dis-
- covered for the Einstein-Yang-Mills syste8] and for the
] Einstein-Klein-Gordon systenfil9]. In these systems the
black hole formation can turn on at finite masgpe | tran-
sition) as well as at infinitesimal maggype Il transitior). In
the type | transition the critical solution is the Bartnik-
McKinnon solution[20], which is a static singularity free
solution of the Einstein-Yang-Mills system, and the oscillat-
FIG. 3. The configurations of Sigenfunction of the perturbationing soliton star solution in the unstable braddB], which is
equation of the scalar field. We set={Gv=0.1,n=1 and show a periodically oscillating singularity free solution in the
the solutions forx =\/GA =600, 800, 1000. The eigenvalues for Einstein-Klein-Gordon system, respectively. The necessary
each eigenfunction are?= —0.911,—0.594, — 0.484. condition of the critical solution is that it has at least one
unstable mod§21]. Hence we expect that our solutions with
n=1 could be the critical solution of the type I transition of
the gravitational collapse in de Sitter spacetime.
From a different point of view, our solution provides an
qxample of cosmic no-hair conjecture. The scalar field may

parameters are determined by the ratio of the CosrnOIOglcaescape over the cosmological horizon and the spacetime ap-

horizon to the “Compton radius .Of the scalar field. Whenrproaches the de Sitter solution. Otherwise the scalar field
the structure becomes too large, it cannot be packed into the . .
ay collapse to a black hole solution and the spacetime may

cosmological horizon. New solutions are extendable beyon . . . '

the cosmological horizon and the scalar field oscillates evelop into the Schwarzschild—de Sitter solution. quther-

around its vacuum expectation values. The spacetime arr_mre the present sy;tem has a bl.aCk hole sollttan This

proaches the de Sitter solution asymp'.totically and has ths also an important issue, whlc_h is rglated to the fundamen-
: . fal problem of black hole no-hair conjecture.

same global structure as the de Sitter spacetime.

Linear perturbation analysis shows that new solutions are
unstable even for radial perturbations. The reason of their
instability is interpreted as follows. The scalar field is not
fixed to the vacuum expectation value at the two boundaries
(the origin and the cosmological horizobut sits on the We would like to thank Dmitri V. Gal'tsov, Akio Hosoya,
potential barrier. Hence when the scalar field is perturbed, iHideki Ishihara, and Kei-ichi Maeda for useful discussions
easily slips down. If enough friction is added in E§) by  and Christian Baraldo and Wade Naylor for their critical
considering another potential or by adopting another mattereading of our paper. This work was supported partially by
field, this kind of structure may be stabilized. the Grant-in-Aid for Scientific Research Fund of the Minis-

Although we focused only on the static solutions, theytry of Education, Science and Cultu¢g.T. and K.M) and
may affect the dynamic evolution of the scalar field in deby the Grant-in-Aid for JSP$No. 199704162(T.T.) and
Sitter spacetime, in particular, the critical behavior of the199605200K.M.)].
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its Compton radius. There are critical paramei?"égsorZcr
beyond which there are no nontrivial solutions. The critical
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