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We consider the possibility that higher-curvature corrections could drive inflation after the compactification
to four dimensions. Assuming that the low-energy limit of the fundamental theory is eleven-dimensional
supergravity to the lowest order, including curvature corrections and taking the descent from eleven dimen-
sions to four via an intermediate five-dimensional theory, as favored by recent considerations of unification at
some scale aroung 10'® GeV, we may obtain a simple model of inflation in four dimensions. The effective
degrees of freedom are two scalar fields and the metric. The scalars arise as the large five-dimensional modulus
and the self-interacting conformal mode of the metric. The effective potential has a local maximum in addition
to the more usual minimum. However, the potential is quite flat at the top, and admits topological inflation. We
show that the model can resolve cosmological problems and provide a mechanism for structure formation with
very little fine tuning.[S0556-282199)02808-9

PACS numbes): 98.80.Cq, 04.65-¢e, 11.25.Mj

[. INTRODUCTION is the reconciliation of the bottom-up calculation Mgt
~10' GeV with the string unification scale, which is close
One of the central problems confronting inflatifh] is  to the four-dimensional Planck mass schg~ 10 GeV.
the identity of the inflaton, the field responsible for driving This is achieved by postulating a large fifth dimensigg
inflation, and the manner in which it fits in with unified field >M5L11T: which is not felt by the gauge interactions, but

theories and/or string theory, notal¥y theory. The birth of  4yses the gravitational interactions to rise with energy much
the inflaton came with the demise of the notion that inflationsssier than in the conventional four dimensions. In this type

is driven by an adjoint Higgs field in some grand unified ot qcenario, one could expect that inflation should be consid-
theory (GUT) such as S(b). While the production from ered within a five-dimensional framework.
guantum fluctuations of the cosmological perturbations nec- It is now known that ten-dimensional strongly coupled

essary to generate structure in th? universe is one of the greﬁ‘éterotic string theory is related through dualities to weakly
successes of inflatiof2], the required smallness of the am- . .
coupled type | string theories, as well as to eleven-

plitude of these fluctuations undermined the possibility that a(\j_ onalM th gl | h th di
field with couplings of gauge strength could drive inflation. dimensionalM theory [8]. In each case, the corresponding

Rather, it is often assumed that the inflaton couples to mattdPresholds imply the presence of one large scale dimension
only through gravitational interactiorf&]. In this context, Pelow the unification poinf8,9]. Within this general five-
options such as inflation via higher-dimensional curvaturélimensional framework, two favored ranges for the magni-
terms, including as th&? inflation model proposed by Star- tude of R5 can be distinguished. One is relatively close to
obinsky[4], a hybrid inflationary model combining curvature Mgyr:R 5 '~10" to 10" GeV, and the other could be as
and inflaton effects, as discussed by Kofman, Linde and Statew asR§1~1 TeV[10]. The latter is motivated in particu-
obinsky[5], or string theory, which possesses many gaugelar by Scherk-Schwarz models of supersymmetry breaking,
singlet fields such as the dilatd®,7], may become quite in which the gravitino masM3,2~R§1. In this latter case,
interesting. the large dimension is not necessarily the conventional fifth
The most stringent constraints on inflation arise from thedimension ofM theory. Indeed, in models studied[ib0] the
observations of the cosmic microwave background. The nalarge dimension may be related to what is normally consid-
ive interpretation of the Cosmic Background Explorerered as one of the six “small” dimensions that is conven-
(COBE) and other data on fluctuations in the microwavetionally compactified in the manner of Calabi and Yau.
background radiation is that the density of vacuum energy It has been known for quite some time that it is very
during inflation isV~ (10* GeV)*, so that inflation is as- difficult to incorporate conventional inflationary scenarios
sociated with an energy scalé’*~10' GeV. One of the into the low-energy limit of string theory. The principal ob-
key points in the application d¥l theory to phenomenology stacle in this course has been the fact that the low-energy
dynamics contains massless scalar fields with non-minimal
couplings to gravity. Their coupling constants are precisely

*Email address: john.ellis@cern.ch given by conformal symmetry and/or the dualities of string
TEmail address: kaloper@epic.stanford.edu theory. In an expanding universe, these fields typically roll
*Email address: olive@mnhep.hep.umn.edu during the course of the expansion, consuming the available
$Email address: yokoyama@yukawa.kyoto-u.ac.jp energy and hence decreasing the rate of expansion. One typi-
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cally finds solutions where the scale factor of the universe 1

grows as a power of time, with the power determined by the S= ﬁf d*x\/g(R+R?/6M?) 1)
scalar coupling constants. Once the numerical values of these

constants dictated by string theory are taken into account, iyhere k?=87Gy. It is well known that this theory is con-
has been found that the resulting power laws are too slow t@ormally equivalent to a theory of Einstein gravity plus a
give an inflationary universgll]. Alternatively, if the sca- scalar field[17]. By a field redefinition

lars are endowed with masses which arise from some kind of
non-perturbative supersymmetry breaking, the resulting ~ 1 , \F 1
models suffer from the graceful exit problem, as we discuss 9ur=| 1+ W¢ Quvs &'= Eln 1+ W¢)'
below. In string theory, higher-dimensional curvature terms 2
are present in the action, appearing in the expansion in pow- ) o
ers of the string tension. One might think that the inclusionth® action can be simplified to
of higher-derivative terms, which are low-energy signatures 1 3
of the massive excitations of string theory, could produce g— _ZJ d4x\/§<R_0’;ﬂ¢’(gﬂ¢’_ ~M%(1-e" \?7%’))_
several possibilities for curvature-driven inflation. 2K 2

In this work, we consider a variant of the Starobinsky €
model based orR* curvature terms,. as curve?ture-squared-l-he potential is extremely flat fop'>M, and has a mini-
tferms are not kn_own t(_) be present in the action of the fuIImum at¢’ =0 with V(' =0)=0. For large initial values of
five- or eleven-dimensional theory. We assume throughouly’ - one can recognize this as an excellent model for chaotic
that the remaining six dimensions are fixedn a four-  inflation [18].
dimensional context, I\/Iaeda4] derived the potentials for a More genera”y, guantum corrections to the right_hand
generalR+ R" theory. Fom+2, the potential is not flat, but side of Einstein’s equation in the absence of matter can be
rather shows a peak and a well-defined minimum. We argueyritten as[19]
that it possible for this potential to inflate in a so-called to-
pological mannef15]. As we discuss, a fully successful in- _
flationary model of this sort would still require a potential for (T =
the dilaton. Whilst this model results in an inflationary stage
with a guaranteed exit, the magnitude and spectral index of n Eg RZ) + E
the resulting density fluctuations force us to consider some 4=#v 6
possible additional ingredients. Either curvature-squared
terms that might appear at the level of the five-dimensional —2RR + Eg R2
theory or quantum corrections ,,” would be sufficient to mYo 25K
provide a self-consistent inflationary model. )

Although such a solution is not directly derived from Wherek; andk; are constants that appear in the process of
string orM theory, it captures several elements that we ex/egularization. We recall thdt; is related to the number of
pect to be present in the low-energy theory. As such, it repI_|ght spin states, which can be very large in variants of string

resents a novel and motivated possible solution to the progheories based ol theory, as we will discuss below. On the
lem of inflation in string theory, which may hold some Other hand, the coefficieri; is independent of the number

promise. of light states. This term is none other but the variation of the
R? term in the effective action. The theory admits a de Sitter
solution which can be found from the 00 component of
gravitational equation of motion[20]. Defining H’
=2880m?/k, and M?=2880r%/k;, and setting the spatial
Among the first utilizations of higher-derivative curvature curvaturek=0, one findq21]
terms is the Starobinsky modpt], which is based on ob- o
taining a self-consistent solution of Einstein’s equations H2(H?—H'?)=(H'2/M?)(2HH+2H?H—H?) (5
when they are modified to include one-loop quantum correc-
tions to the stress-energy tensby, . In its simplest form, whereH=a/a is the Hubble parameter. The de Sitter solu-
the model is equivalent to a theory of gravity with &3 tion corresponds téi=H’ and of coursé4=H=0.
correction. When one considers the contributions of the | order to avoid the overproduction of gravitons there is
back-reaction to the stress-energy, one finds a term which ig|q\ver limit on the parameterk; [22,21]: k=10 imply-
equivalent to starting with an action of the fofrb6] ing the need for billions of spin degrees of freedom to be
present. While this seems like an inordinately large number,
it is possible to generate very large numbers of degrees of
For recent discussions of fully eleven-dimensional cosmologicafreedom in theories with extra dimensions, as we will now

ke V[, 2 1
288072 | iR 3RRuw ™ 30 RT Ry

ks .
— P
2880777) ( 2Riuin = 20uRp

4

Il. CURVATURE-DRIVEN INFLATION

solutions, se¢12,13. argue. Although this may not necessarily be the framework
The former can also be derived as a quantum correction to théor M phenomenology that is eventually adopted, we use the
energy momentum tensor. general form of the effective low-energy theory derived from
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M-theory compactification on a Calabi-Yau manifold to il- ing that the effective action reproduces at two loops ghe
lustrate the discussion of the possibly large magnitude,of ~ functions of the string world-sheet loop expansif8].

The effective low-energy field theory has the form of a five-However there arise divergences, and they must be renormal-
dimensional supergravity theory: as such, it contains a gravized. The results thus depend on the particular subtraction
ton supermultiplet, vector supermultiplets and scalar hyperscheme adopted in theo-model formulation. The
multiplets. We recall that the graviton supermultiplet renormalization-group transformations relate different
contains five graviton states, three graviphoton states amsthemes, which changes the form of the background
eight gravitino states. Each vector supermultiplet containgr--model couplings, while leaving the physics invariant.
three vector states, one real scalar and four fermion stateShese renormalization group transformations viewed as
and each scalar hypermultiplet contains four real scalars anshaps of the target-space fields are called string field redefi-
four fermion states. The numbers of vector hypermultipletsitions. They change the form of the effective action while
ny and scalar hypermultiplets, are related to the topologi- leaving the physics unaffect¢@4.

cal properties of the Calabi-Yau manifold: If we return to the issue of the dilaton evolution, we see
that in general its equation of motion will be of the form
ny=ny;—1, ng=ny+1. (6)  V2¢—(V¢)?>+RI4~a'd, wherel is the contribution of the

higher derivative terms. It may contain higher derivatives of
Some of these states have even parity when the fifth dimeny, such asV*¢ in addition to curvature termf23—25.
sion is compactified 08,/Z,, and some are odd, but this is These terms could make the dilaton equation fourth-order in
not essential for our purpose. We are interested in the numime derivatives. However, if we take the limit — 0 in the
ber of excited supermultiplets that appear below the effectivejilaton equation, for anything fror to survive, it must di-
inflationary scale, which we identify approximately with verge to cancek’. Solutions of this type cannot be pertur-
10'® GeV ~Mgyr. The number of such Kaluza-Klein ex- patively matched to the vacuum sector of the low-energy
citations is given asymptotically by ~MgyutRs. Hence  theory. Because of this one cannot be certain that they will
we estimate remain unaltered by higher-order corrections. Also, the solu-
tions are not uniquely determined at the given order of trun-
ko~ N X (16+8(N11+Nyy)). (7)  cation because of the string field redefinitions discussed
above. In terms of the dilaton field, this suggests that the
In realistic models, we expect that;;=3 and nu=n;;  only physically meaningful effect of the sourckat any
+2x, where the Euler characteristic=3. In this casek,  gjven order of truncation is a perturbative correctionih
~88nk , which exceeds 1§ if n~MgyrRs=10%° This could be enforced at the level of the effective theory by
Although large, such a value ok is perhaps not impos- ysing field redefinitions to go to a unitary scheme, where
sible as we shall see. In the Starobinsky model, the bound fafigher than second derivatives of fields are automatically
ks is k3=10°, corresponding to <10'* GeV. This can be apsent.
seen as follows. In order to produce sufficient expansion to An examp|e of such a unitary scheme is given by a four-
solve cosmological problems, the effective cosmologicalimensional string gravitational actidi26] in the Einstein
constant, which by Eq(1) is ~M2M32, would have to be frame:
M2M3<10f4GeV)*. From this, we would findV<10"
: e . _ 1
GeV. Alternatively, this is just the requirement that the Star o ﬂfj d4x\/§[

!

_ & 242
obinsky model embodies chaotic inflation, and simulta- R=20,¢0" b+ g © R ®

neously satisfies the observational constraints. In our case,
however, this requirement can be relaxed since the energyhere R?= R,;,.jR**°9- 4R,,R*+ R? is the Gauss-Bonnet
for inflation will not be supplied by the quadratic curvature combination, and we have kept only the dilaton- and metric-
term. As we will see below, our inflation mass scale will still dependent terms. In the absence of a potentia| for the dilaton,
satisfy a similar inequality, but without overconstrainkg it has been shown that the combined dilaton and gravitational
equations of motion do not admit de Sitter soluti$g,29.
IIl. ELEVEN-DIMENSIONAL SUPERGRAVITY AND In fact, this result remains true when terms of higher order in
HIGHER DERIVATIVE CURVATURE TERMS o’ are considerefi29]. As we show below, this result also
o ~ does not depend on the fact that it is the Gauss-Bonnet com-
~ As we have !nd|cated abqve, the presence o_f the dilatoRination. The coefficients dR.,R?® andR? are arbitrary up
field and its universal coupling to other terms in the low- 4 5 field redefinition of the metric and dilat§24]. For any
energy effective action hamper the embedding of standarghgijce of these coefficients, the only solution with a constant
inflationary models in string theory. One must remember thagjjlaton is Minkowski space.
the derivative corrections to the string effective action are \when a potential for the dilaton due to, e.g., gaugino con-
not uniquely defined. Their general form is fixed by reqUir'densatior[SO] is included along with a cosmological term,
due to, e.g., a central charge deficit, it is possible to generate
an approximate de Sitter solution at tB¢a’°) level[28,31]
3There is also the possibility of additional matter and gauge fieldvhen «’ terms are kept. However, in this case there is no
associated wittD branes in the bulk, but we do not discuss them exit from the inflationary period, and the dilaton is already
further here. sitting at its minimum and is constant. We are led therefore
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to a particular difficulty with field-theoretic inflation in the 89,,=b1R,,+byV, 4V ¢
gravitational sector of string theofy. ) )
One can also choose to work in a non-unitary scheme, 0, (03R+ Dby (V) +bsVeh)

since all of the schemes are physically equivalent. The spu- .
rious degrees of freedom can be kept under control by ex@nd are the most general expressions for the counterterms

panding the source and solving the equations iteratively. IfOnsistent with dimensional analysis and target-space gen-

such situations, the dilaton would acqui«’) corrections ~ €ral covariance. The coefficienty and ¢, are completely

as a response to the source. While this rolling would appeafPitrary. _ o

to be adverse for inflation, it is tempting to ask if it might L€t us now consider the case when the coefficieptand

only represent a disguise. For example, it might happen thafk are chosen such that the source for the dilaton vanishes in

by a field redefinition, an apparently non-inflationary solu-2 cosmological Friedmann-Robertson-WalkERW) back-

tion with a rolling dilaton toO(a’) is mapped onto an in- ground. Because of 'ghe dilaton equation of. motion, this

flationary solution with a constant dilaton. This would re- Would place a constraint on the curvature, which would se-

quire retaining some of the spurious degrees of freedonf€ct only those general metric solutions of the dilaton-less

because the constant dilaton ansatz would demand cancell@eory that are a consistent truncation of ¢a’) string

tions betweerO(1) andO(a’') terms. While perhaps unre- effectlve. act.lon. First, we see that if the dilaton |sza constant,

liable, such solutions are still of interest. They might be a2l contributions to the action proportional t& ¢)“ would

starting point for further study via more stringy methods. ~Produce terms at leastV ¢ in the equations of motion, and
Rather curiously, it turns out that imposing a constantSO would vanish. Inserting E¢12) into Eqg.(11), we see that

dilaton in anarbitrary subtraction scheme requires that thethe O(a") action of interest to us is

space-time is exactly flat, and hence given by the Minkowski

metric. To see t-his, Ie_t us .consider thg effective action t(siff:ar)\f d*x\ge 2¢

O(a'). In four dimensions, it can be written as

X{RZ,\,+biR% + B1R?+ B,V2¢R

S=S+S, ) Hne
+2b,R,, VAV ¢} (13
where . - . .
where, in terms of the original coefficients in Ed.2), we
haVe ,81:2C1_b3_b1/2 and ﬁ2:8cl+ 2C3_b5_6b3
sozf d*x\ge 24{R+4(V¢)?} (10  —2b;.
If we now vary the actiors= S+ S‘j” with respect top,
and demand thap=0 is a solution, we obtain the following
and constraint on the curvature:
, - 2R+a’'N2R%,, +2b,R? +2B,R*—(b;+ 8,)V?R}=0.
Si=a )\of d*x\ge 2¢[ Riv)\a e g (19
+2(R+4V2¢p—4A(V $)?) 8¢ So when we consider the actid®,+St'', we can setg
1 =0 and impose the constraift4) at the end. Further, all
+| RV + 2V RV — —g’“(R+4V2¢—4(V¢)2)) 89 ] FRW solutions are conformally flat. This means that the Rie-
2 my mann curvature is given completely in terms of the Ricci
(11) tensor and Ricci scalar. Simple algebra then shows that
where we have chosen to work in the string frame, signified Rimp: ZR;ZW_ %RZ. (15)

by the presence of exp@¢). The parametei varies be-

tween different string theories, being 1/4 in bosonic, 1/8 in I .
g d The contributions of the Weyl tensor vanish becaGsg,,,

heterotic and 0 in superstring theories. Dfa’), only the .
square of the Riemann tensor is unambiguous. The coefftE 0, which is true for any geometry, and because on FRW

cients of all other terms are ambiguous, and can be set aé:kgrmfjnds Crimp=0. 'II';us, _e\r:en variatiogs kOf th%

zero by redefining the fields i8, by terms to order’. This S'_ epen fent égrms wou hvagls onB FRW: bac groun ]5

is signified by the termsg,, and ¢, which are ince in four dimensions the Gauss-Bonnet term is purely
topological, i.e., is equal to a total divergence, we can also

write

Sp=ciR+Cy(V)2+c3V2eh (12)

R2

MP=4wa— R*+V ,J~ (16)

“We note in passing a model which attempts to use runnindor some vector field* which is irrelevant for our consid-
moduli to solve cosmological problems: for the details of theeration. Combining the identitigd5) and(16), we find that
model, sed32], and for the discussion of its viability, s¢&3]. on FRW backgrounds
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1 1 We will not discuss their precise form, which in five dimen-
R,ZLV:§R2+ TS (17 sions may depend on the details of compactification of the
eleven-dimensional theory. If we dimensionally reduce the

Since we are looking for solutions wit#h=0, we can drop five-dimensional theory to four dimensions, we will obtain
the boundary term, as its variation would always be propor2n €ven more complicated-looking expression involving con-
tional to V ¢. tractions of the four-dimensional Riemann tensor and terms

Using Egs(15) and(17), we find that the effective action With up to two derivatives of the size of the internal dimen-

on FRW backgrounds with a constant dilaton is precisely théion, in addition to the four-dimensional version of the five-
action of the Starobinsky’s model: dimensional expression. Now, as long as the four-

dimensional space-time is conformally flat, its Riemann

o 4 (b1 1), tensor can be expressed completely in terms of the Ricci
s'f= | d'xg|R+a’) 3 thAit 3R (18 tensor and scalar, and thus any quartic curvature term could

be written as a linear combination of terms IiRé,wa and

which must, however, be supplemented with the constrainR,, R, ,R“*R"”. Moreover, in four dimensions, the Gauss-
(14). If we vary this action with respect to the metric, and Bonnet identity allows us to replace the square of the Ricci
trace the result, we get tensor by a square of the Ricci scalar, indicating that the
o, ) scalar curvature modes play the most important role in cos-
R=a'\(68,+2b,+2)V?R (19 mological dynamics. Here we repeat that the scalar modes
must be endowed with mass in order that they decouple. This

which is the equation of motion for the conformal mode of : . A
the metric. that has become massive because of the deriyi€ans that the terms proportional to its derivatives would all

tive corrections. In order for this equation to be consisten rop out, _and hence we will ignore the s_calar-tensor cou-
with the constraint arising from requiring=0, we must plings which must depend on the derivatives of the scalar

ensure that the terms in the dilaton constrain proportional t(yelds. . : : :

R andR? cancel identically. Using Eq15), we find that To model the possibility of curvature-driven inflation, we

th/ig requires settings, = 1/3 aﬁdb — 5 Thi,s requirement assume that the five-dimensional action contains a s&dlar
1= 1=~ <.

o ) contribution, and perform a dimensional reduction to four
is dictated by general covariance, and cannot be relaxed P

ordera’ if we wish to have a constant dilaton. But when we Imensions, ignoring the boundaries. In the context of the
) . . . : ; heory with walls, this merely means that wi me that th
insert this in the trace equatigt9), we find that the deriva- theory with walls, this merely means that we assume that the

tive term drops out, and we get _bulk can be _foliated by identical _and r_nu_tually non-
' interacting copies of the wall. Alternatively, it is clear that
R=0 (20) this dimensional reduction is identical to the standard
Kaluza-Klein reduction on a circle. This approach produces a
as a result. Worse yet, we see that the coefficient ofhe four-dimensional theory with two scalar fields, an inflaton
term in the action is zero, and so the vanishing of the dilatorand a dilaton. The inflaton potential has a maximum, which
requires that the metric is a solution of the flat space equawe will show to be sufficiently flat to support inflation, in a
tions to ordera’ and not only to order 1. Hence we see thatmanner resembling the topological inflationary scenario. A
the only solution of theD(a') action in any string theory Problem with the scenario based only on Réterm, with-
with a constant dilaton is Minkowski space, regardless of thé@ut the mass term for the compacton, is that it wants to
subtraction scheme. decompactify the space time. This is obvious if we consider
However, while some ways of compactifying the eleven-the R* term from the point of view of five dimensions. Since
dimensional theory to five dimensions are knof@j, it is it behaves as an effective cosmological constant, according
not yet clear if the compactification procedure is completelyto the cosmological no-hair theorem, it forces the five-
unique. Discussion so far has centered on Calabi-Yau conflimensional space to isotropize. Thus we must include a
pactification, whose features may depend on the mutual ranass term for the compacton, which from the five-
tios of sizes of the intervé$'/Z, and 1-cycles on the Calabi- dimensional point of view will break the rotation symmetry,
Yau spaces, as has already been pointed out in, for exampl@nd allow the four-dimensional space to inflate while keep-
[10]. We recall that there are alternative compactifications ofng the compacton fixed.
the weakly-coupled ten-dimensional heterotic string, and
they may turn out to have elevations to the eleven- IV. INFLATION IN FOUR DIMENSIONS
dimensional theory. In this article, we therefore consider a . ) . ) ] o
general approach in which we assume the internal manifold N this section, we will begin the investigation of the pos-
to be decoupled, with its size a massive field from the poinfiPility of higher-curvature-driven inflation. We first give de-
of view of the five-dimensional theory. There have been seylails of the dimensional reduction from five dimensions to
eral calculations of higher-orde®" terms in ten and eleven four_ dimensions, in order to derivg the four—dimensional ef-
dimensiond34]. Those in eleven dimensions are not knownfective theory. The pure gravity sector of the five-
to yield R? terms, but may yieldR* terms. On the other dimensional action, which we will consider is
hand, the calculations by Hawva and Witten on the ten-
dimensional boundary in their formulation & theory do S_f ds \/—(
. 5 . ; : = XVGs
yield R terms, but only in the boundary effective actions.

M3
T6. Rs+aM Rz (22)
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whereMs is the five-dimensional Planck mass. In the con- 0.5
text of the eleven-dimensional theory, our five-dimensional '
Planck mass is related to the eleven-dimensional Plancl04 !
mass byM3=M?3,Vs, whereVg is the six-volume of the :
compactified space. We assume thgt/*~M ;~Mgyr in '
general. The scale of the fifth dimension is then given by93 [
1

\

1

1

1

]

1

]

R~ (4/a) M3,M; 2 [10]. We note that this effective ac-

tion is not exactly what one finds after dimensional reductiong »
of the eleven-dimensional supergravity with quartic correc-
tions on an interva$!/Z,, which would contain couplings to

two ten-dimensional boundaries witR? terms (see, e.g., %'T

— V(® \
-~--- double well \

[
’
[13]). Thus, our action21) is not a direct descendant of a ‘\‘ / ‘\ ,”
known reduction oM theory on an interval. But such actions g g L s L > 20
may nevertheless arise in some compactifications of the —1.0 0.0 1.0 2.0 3.0 4.0 5.0
theory, and are simple enough to illustrate our main point. KX

Let us fi_rst outline the reduction procedur.e we will follow -~ 4 Comparison of the potential(y) produced by a con-
here. We first Conformally transform the gcﬂ(ﬁﬂ.), fqllowj formal rescaling of th&* term in the five-dimensional action and a
ing [14], to represent it as a five-dimensional gravity with @simple double-well potential.
minimally coupled self-interacting scalar field. The scalar
arises because the conformal mode of the metric becomes
dynamical thanks to th&* term[17]. Then we dimension- 4 Mﬁ 1 . 1,
ally reduce this action to four dimensions and apply another, 4= f d*x\/gs o7 0 59" uede— 599, x9,x
four-dimensional, conformal transformation, to put the re-
sulting four-dimensional action in the canonical form. This
will produce another scalar field, the compacton dilaton
of the four-dimensional theory, which is related to the size of
the fifth dimension.

We now give the formulas appropriate for this procedure
The conformal transformation which brings EQJ1) to the

—U(QD,X)], (26)

where y=M4M; *?y. In terms of these fields, the potential

Einstein form is is given by
EAB:|1+64WQM§6R2|2/3GAB, (22) 3M2M2
_ 4S5~ \2Bkea—(5V316)k V3I2)kx _ 11413
and the action i$14] U(@,X)—We e~ (5310 kx(g(\3I2)kx _ 1 )4
= 5 \/: Mg_ 1 s, ~. ~ ~ 3M2M2
Ss= | d°xVG5 FRS_ EG IaxIsx—Us(x) (. — 45 e,\@ng( ) @7
m (23 256743413 X)-

where the “intermediate” scalar field and its potential are

Before we undertake a detailed investigation of E§), we
note that the effective four-dimensional potentidl’) is a

_— 2
_‘ —63 , el P .
Kx= \/§|n|1+64770‘M5 Re, product of an exponential and a function with a maximum. If

5

- 3ms
Us(x)= 256743, 13

e (5V3/6) K)(( e( V312 kx _ 1)4/3, (24)

we ignore the variation of, we recall that in a universe
dominated by a scalar field with an exponential potential
V(¢p)xe ¢ and foliated by flat spatial hyperplanes, the
expansion of the FRW scale facta(t) obeys a power law

_ a(t)otP, with the power index given bp=2/\? [35].
with KE\/(SW)/(MSE). The standard Kaluza-Klein compac-

Next, we ignore the dilaton facter *?3¢ in the potential

tification ansatz, with the simultaneous conformal transfor-and consider the dynamics of thefield. The y-dependent

IS

M4
— a2k 4 22Tk 2
dsg=e Zdg, dxtdx’+ —e> Pz,
5

where g,,,, is the four-dimensional Einstein-frame metric.
The action (23) then reduces to the following four-

dimensional action:

mation of the four-dimensional metric to the canonical form,factor in the potentialV(y), is depicted in Fig. 1. It has a

global minimumV=0 at y=0, a local maximum ay= x,
=2In5/(/3k)=0.3M,, and diverges as V(x)

(25 xe” (580X for y— —oo, This is too steep for power-law

inflation. For y—,V(x) asymptotically approaches zero
with V(x)=e~(3®xx which may be flat enough for infla-
tion but it will lead to an unphysical universe with a runaway
behavior towards the regime of extremely large curvature, in
terms of the original five-dimensional description.
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As a result, chaotic inflatiofiL8] with a large initial value  dimensions, and, according to Wald's cosmological no-hair
of x is impossible here. Nevertheless there may remain théheorem[38], the anisotropic five-dimensional spacetime we
possibility to realize inflationary expansion in this model by are dealing with must approach the de Sitter space due to the
using the potential energy around the local maximum effective cosmological constant.

V(xm), as in the topological inflation scenario of Linde and Hence some mechanism is needed to stabilize the size of
Vilenkin [15]. In this scenario, if the scalar fielg(x) is  the fifth dimension. This requires breaking the residual five-
randomly distributed initially with a large dispersion, some dimensional gauge invariance, which equates the fifth direc-
part of the universe will roll togy=0, while in other parts it tion with the other four in the case discussed above. The
will run away to infinity. Between any two such regions problem is linked to that of fixing the vacuum expectation
there will appear domain walls, containing a large energyalue (VEV) of the dilaton, which presumably involves ill-
density, p~V(xm). If the wall is thicker than the Hubble understood non-perturbative phenomena such as supersym-
radius of this energy density, there will exist a sufficiently metry breaking and perhaps gaugino condens&86h Sce-

large quasi-homogeneous region, filled with large potentiaharios for these have been proposed, and it seems quite
energy, where inflationary expansion naturally sets in. possible that these may occur at an energy-momentum scale

The condition for a domain wall to inflate has been inves-above that of the five-dimensional Kaluza-Klein excitations.
tigated numerically ir{36] for the case of a simple double- In this case, the internal radius may be regarded as fixed, for
well potential,Vg,(#) = (A /4)(¢%>— 7%)?. There it has been our purposes here.
found that a domain wall will undergo inflation if exceeds After the internal radius is stabilized, we can recover ex-
a critical valuen.,=0.33M,, regardless of the value of. ponential inflation in three spatial dimensions in both confor-
When 5= 7,,, the ratio of the thickness of the wall — char- mal frames, as long ag stays near the local maximugy, .
acterized by the curvature scale of the potential at the originln this limit, the potential can be approximated as
ro=Vi(#=0))"Y2 to the horizon H 1= (k?Vy,(d

=0)/3)~ ¥2is given byr,,H=0.48, and is again independent U0 — 3MiM2 v
of X. An explicit check shows that, in our model, the dis- (0x)= 25674313 (x)

tance between the potential minimum and the local maxi-
mum, x,,=0.3™,, exceedsy,. Furthermore, the ratio of ) ’
the characteristic thickness of the wall to the horizon scale is ~U(Oxm) = 5 M (x = Xm)",
given by ry,H=(«2V(xm)/3V" (xm))*?=4/J15=1.0, which
is larger than the critical case [86]. In Fig. 1 we have also
depicted a double-well potential which has the same global m
minimum and the local maximum a4 x). As is seen there,
the I_atter is much flatter than the former around the local,hare we have used the relatioff
maximum.

Having seen that the potentidl x) is flat enough around
the local maximum, we now return to the exact form of the 2
potential given in Eq(27), and take the dilaton factor into a(t)ocem'  H =\/=UOxm), (30
account. This does not changg, nor r,H. However, the 3
rolling dilaton field hampers exponential inflation. Singe

| o1

2

x2U(0,xm), (29

=

6

(Xm): - %KZV(Xm)-
Thus the standard slow-roll solution is

H 2
moves slowly neay = x,,, as compared to the dilaton, we o B m B
practically have an exponential potential X(1)=Xm= (Xm— X1)€X 3H2mHm(t te)
3MIMs = Xm~ (Xm— xy) €010,

U= o e oV xm) =Uge™ 2.
e wheret<t;, and where; and x; stand for the time and the

field amplitude at the end of inflation.

The ensuing solution for the FRW scale factor obeys the It IS Important to note that the model we are presently
power lawa(t) =t with xe(t) = ke(t;) + VBInt), and is consujermg does.not ;hare the graceful exit problem of typi-
an asymptotic attractdi37] for the scale factor. Since the cal stnng-dllaton |r_1flat|qnary models: General_ly, as we have
power is greater than unity, this solution still appears to bed_escnbed above, mflatlpnal(yor .de Sittey squ'tlons W'th.a

slowly inflating. However, when we look at the scalar field, dilaton coupled to gravity require that the dilaton be fixed.

we find exp(/2/3ke) =t¥(mUq)/(3M2). This evolution of When the dilaton doubles as the inflaton as well, no means

the scalar field is too rapid, as we can easily verify b Sub_have been found to cancel the vacuum energy which drives
o . pid, . Iy vel y inflation. This is different from the graceful exit problem in
stituting the solutions back into the five-dimensional

metric (25). Indeed, in the original frame the solution is the pre-big-bang scenarios for which inflation is not driven
— : ’ 3 by vacuum energy density, though these models also suffer
a(t) =exp(y/(4mUo)/ (3M)1), and exp(2/3<¢)  from a graceful exit problerfd]. In our present case, these
oc(\/(47-rU0)/(3M§)t). The physical interpretation of this two issues are separated. Although the dilaton still needs to
behavior is simple. Substituting= x, in the potential cor- be fixed, inflation is driven by th&®*-induced potential of
responds to adding a positive cosmological constant in fivéhe conformal field y. Since the model we are

(28)
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considering is of the “topological” type, we are sitting on My~M ;~Mgyr, as occurs \,\,her\/gl/6~|\/|11 with Mg

the top of this potential and we agraranteedhat inflation M?2.Ve, then by settingVls~M gyr~10"3M, we would

will end as the fieldy rolls to its minimum. _ have greatly overproduced the magnitude of density fluctua-
We can now check the magnitude and spectral index ofions in the model. Moreover, we would still have the prob-

the induced density fluctuations. The amplitude of a linealiem that the spectral index is equal to 3/8. We could foresee

curvature fluctuation,®y, [40] on a comoving scald  two possible solutions to this dilemma. The presence of an

=2m/k is given by R? term in the five-dimensional action would flatten the po-

tential further, possibly curing the problems with density

& ( :2_77): fHA fluctuations. In addition, the renormalization of the stress
H k 27T|5((tk)| energy tensor, as in the original Starobinsky model, could
also lower the effective value oh?/H2, which was at the
3 fH3 m? root of the problems above.
o 2. o X 7 Hml(ti—td | (31) The general classification of higher-ordet terms which
M Xm— X1l Ha

may appear in the curvature expansion of the effective low-

8fH energy field-theory limit ofM theory is not available at
=—— T o(518Hm(t—t present. It is however known that the supersymmetry of the
57| Xm— xil theory rules out terms which are quadratic and cubic in cur-

vature in the bulk, and that the lowest possible terms are
quartic. Upon dimensional reduction of the eleven-
dimensional theory on the interv&l/Z, in the manner of
Horava and Witten, such terms could however produce terms
which are quadratic in curvature in the effective action of the
5 boundary theory. Our considerations here are different, since
2m f . :
- (32 we d_o not consider theories with matter degrees of fre_zedom
3H,2n confined only to the boundary. We should note that higher-
order formulations of higher-dimensional gravity and super-
We recall that, in the model we are discussim?/HZ2 ~ gravity theories have been discussed [#2]. While the
=15/16 so thahg=3/8, which is significantly different from known types of quadratic corrections arising frémtheory
the scale-invariant valur,=1 and is in disagreement with are not explicitly of the type we need here, their form being
observations. Furthermore, the large-angie)isotropy of  restricted by supersymmetry, we recall that such constraints
cosmic microwave backgrounCMB) radiation [41] re-  are relaxed in cases when supersymmetry is broken. More-
quiresST/T=—d,/3=10° on the comoving scale leaving over, if we consider the effect of particle production and its
the Hubble radius about 60 expansion times before the enllack-reaction on the geometrical environment, we recall that
of inflation, namely, this effect could be derived from effective counterterms in
the action which are quadratic in curvature.

Therefore, we boldly consider the case where the five-
dimensional action contains both quadratic and quartic terms
in Rg:

Since we find| x,m— xi|~0.1IM,, the isotropy of CMB sets

the scale of inflation a$l,,~10 “M,, which implies the . VK ) ey
Planck mass in five dimensions must be unacceptably small: Ss:f d*x\/Gs 16, R T PMsRs+CMs"Rsy . (34)
Mg~10"3aoM,, .

These results appear disconcerting. While our modehg we noted above, because of the absense of boundary
showed some initial promise, it seems to fail the co_ntact Wm”terms, this action is not directly related to the Hea-Witten
the observations. A closer scrutiny of the dynamics show§eqyction of M theory. We can again carry out the reduction
that these problems arise because the potential which is gegs four dimensions along the same lines as discussed at the
erated by thdR* term is a bit too steep to produce a SatiSfaC'beginning of the previous section. Assumibg ¢>0, we
tory perturbation spectrum. In the next section, we discus§pp|y the conformal transformation
possible remedies.

where f=3/5 (2/3) in the matter{radiationy dominated

era, and, is the time when th& mode left the Hubble radius
during inflation. The spectral inderg, of density perturba-
tion is given by

n=1

5T 8H,

om0 M (516 x60__ —5
= e =10 ". 33
= o— 33

Gag=|1+327bM: °Rs+ 647cM: °RE|23G 5, (35
V. CURES FOR THE DENSITY FLUCTUATION as=| 5 S 5 Rel" Casr (39

PROBLEM to obtain the equivalent action in the Einstein fraiid]:

As we have seen in the previous section, although the 5
relatively simple model described there, which is basedona — [ . =/ Ms— 1. . . . .
compactifiedR+ R* theory with a fixed dilaton, has all the S5_f d*XVGs) 76 -Rs~ 56" daxdex —Us(X) [
ingredients necessary for inflation, we cannot obtain an ac- (36)
ceptable magnitude for density fluctuations unless we choose
the scaleMs=10 1*M,. But if on the other hand we have with
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2 , . s 5x107
KY= ﬁ|n|1+32ﬂ'bM5 Rs+64mcM; °R:|.  (37)  b0en
. ——- b=3,c=1/3
Since we are assumirly c¢>0, there is a one-to-one corre- %1% | T E:;O;:Z:”s |

spondence betweeny and Rs for 1+327bMg %R

+64mcMg °RE>0, and from Eq(37) we can solve foly to 3440
find the potential

2

. 3% _ PRs ~ Rs 2x10™
Us(x)=Mge 30| — —— +2u(x) — |,
° ° 2M% M2
 elBRKx_q 1x10™
u(x)= “1%8mc (38
with
311/2) 1/3
— 2l 2,2 o D 22
Rs= M5( u(x)+|u (X)+(6C ] [ uCx)+| u(x) FIG. 2. The potential from Eq41) for different values of the
parameter® andc controlling the relative strengths of tH&? and
N b )3 1/2] 13 (39 R* terms in the five-dimensional action.
6¢C

ous values ot andc. As is seen in Fig. 2, the potential
We compactify to four dimensions and apply another conforbecomes flatter as we increaseAt the same time, however,
mal transformation, as before, to obtain the following four-we find that the height of the potential at the local maximum
dimensional Einstein action: decreases. As a result we find the maximal possible value of
the spectral index to ba,=0.722 which is realized fob
=10 andc~1/3. For example, taking=3 andc=1/3, we
find xm=1.6M4,U(0,xm)=2.3X10"*M2M2, and m?/H?,
=0.42. The spectral index is given by,=0.72. From
_ U(go,x)] , (40) 8T/T=10"° on the angular scale probed by COBE, the scale
of inflation is determined aBl ,=0.04Ms=6x 10" GeV or
Ms=2x 10" GeV. This is somewhat on the small side, but
we consider such an estimate relatively encouraging, given

M2 1 1
S4: J d4X\/&(ER4_ EgMVﬂM(P&VQD_ Eg#VﬂMX(yVX

where the potential is given by

Rf; the crudity of our model.
U(e,x)= M?‘Mée* 2Bkpe— (5316 kx| _ — The scale problem concerning tRé inflation could also
2M5y be alleviated if consider the possible effects of the quantum

correction terms to the stress energy tensor as described in

e —1 Ry 4y EQ (4) [4]. Here we will concentrate on the term propor-

64mc M_é ’ (4D tional tok,. Recall that the coefficierk, is proportional to
the number of degrees of freedom and has been estimated to

with ky= Ky NOW. be k2~OI(1OO)R5M 5 If we ignore theks term — vyhich is

If we had only the curvature-squared term in the originalactually just the variation of th&” term in the action, and
action (34), we would find the potential has already been considered above — and include our poten-

tial (27), Eq. (5) becomes
0((P’X):M‘21M§e* \““ml«pef(5\55/6)K)((e(\’§/2)fcx_1)2, )
(42)

K
Hz(l—Hz/H'z):gu(d),X) (43
which has no local maxima in the direction. It diverges as

U (¢, x)el3O%xX for y— o0 [43]. On the other hand, in the where nowH’2=3607M2%/k,. Near the maximum of the
presence of botR2 andR? terms in Eq(34), the latter term potential aty=ym, the potential isV(x,)=10"*M32M2. It
eventually dominates the former, and the potential apis convenient to define=(1—H?/H’?)=m?/H? wherem?
proaches zero asymptotically as in the pure quartic model-3x 10 3M2Mj is the curvature of the potential at its

discussed above. Thus the curvature-squared term is eaximum. Recall that our problem was related to the fact
pected to increasg,, and flatten the potential around the that m2/H2~1.

local maximum. _ N Using Eq.(43), we can now determine a consistent value
ASSUmlng that the dilaton has been stabilized as befOl’qOr € and m2 and therefordd’. We can then check whether
we have numerically analyzed the potentig[0,y) for vari-  or not the resulting value df, makes any sense with these
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choices. To obtain the correct magnitude for density fluctuatheory the spectral index for density fluctuations is too small,
tions over the last 60 e-foldings of inflation, we neeld and the magnitude of density fluctuations is too large, unless
~10"°M ee~2%. But recall thatH =m/ Je, so that we re- the unification point is taken at an absurdly low energy scale.
quire M5=2x 10" 3M4e¥% 2%, We see thaM; is maxi- We have considered several ways of repairing these prob-
mized whene=0.075. In this case, we hawds~10 6M, lems. One approach may be to inclugé corrections in the

~ 10" GeV. As commented above, such an estimate is rathegction. Such corrections are not known to arise in superstring

too small, but we do not consider this too disastrous, giverfh€ories, but may appear if the supersymmetry breaking scale

the present level of sophistication of this class of model. @nd the unification scale are close to each other. They can
We should next determine whether or not we can obtain £0ften the effective inflaton potential further. Alternatively, a

value ofk, which is consistent with the desired valueseof similar flattening of the pptential may arise as a consequence
and Ms. Substituting k, into H’, we find H’ of a large number of particle degrees of freedom, expected as

~3M,/(MsRs)Y2 For our value ofe, we needH’ to be the Kaluza-Klein modes associated with an extended com-

within 10% of this valu€ and we can solve foR-1. The Pact spatial dimension, which could be produced in the

result isR’l~4><10‘15l\/,I or about 40 GeV Wé’ note that C°Urse of cosmological evolution. Particle production can
5 5 .

; . likewise raise the spectral index while keeping the magni-
some estimates oRs, based on a version of the Scplerk- tude of fluctuations reasonable. This result calls for a rather
Schwarz approach, could lead one to expeRis

low unification scale of 1% GeV and a scal® ; 1~1 TeV
~100M 3/ M2~ 5
100M5/M3~1 Tev. Therefor_e, we do.not rega_rd such for the fifth dimension. Given the crudity of this model, these
large value ofRs as necessarily unmotivated. Finally, we

p S .~ results must be seen as encouraging.
can trivially check that not only do we get sufficient inflation ging

th bl itude for density f : b To conclude, we note that our arguments do not depend
with an acceptable magnitude for density fluctuations, bul 41y on the specific form of higher-order corrections in

also find the spectral index to be in agreement with the eXghe effective action. We only need some higher-order curva-
isting data. Forns,_ using 623/4_0’ we have th_ans:l ture corrections which produce a local extremum of the ef-
—(1/20)=0.95, which is a relatively encouraging result, oqtive inflaton potential. It seems plausible that such terms
well within the present experimental uncertainties. may play a significant role in some region of a highly curved
early universe. The usual fine tuning of the coefficients of
these terms, which was detrimental for the Starobinsky
model, could be avoided here because of the dilaton VEV. In
Many of the problems associated with inflation in stringturn, the quadratic corrections may be employed to flatten
theory can be traced to a rolling dilaton which precludes ahe potential in order to produce a satisfactory density per-
(quas) de Sitter expansion. In this paper we have presented @rbation spectrum, while not being overconstrained thanks
model based on higher-order curvature terms sucR%®  to the fact that inflation is driven by higher corrections. Fi-
the context of a five-dimensional theory. This has some feanally, the graceful exit problem is very easy to solve, due to
tures in common with what may arise in general compactifithe inherent instability of the solutions. The inflaton rolls
cations of M theory. In this context, the universe passesdown to the minimum, slowly at first but accelerating along
through an extended five-dimensional phé&dewn from its  the way. In light of this, we take this model to be a reason-
initial eleven-dimensional formulatigrbefore it is seen as a able candidate for standard quasi-exponential inflation at
four- dimensional space-time with one relatively large extrascales close to the unification scale, which might offer some
spatial dimension. We have made use of the conformal propelues how to embed inflation in string theory.
erties of the theory to analyze inflation in the familiar four-
dimensional Einstein frame. This has enabled us to identify ACKNOWLEDGMENTS
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