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Topological R4 inflation

John Ellis,1,* Nemanja Kaloper,2,† Keith A. Olive,3,‡ and Jun’ichi Yokoyama2,4,§

1Theory Division, CERN, CH 1211 Geneva 23, Switzerland
2Department of Physics, Stanford University, Stanford, California 94305-4060

3School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455
4Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan

~Received 24 July 1998; published 19 April 1999!

We consider the possibility that higher-curvature corrections could drive inflation after the compactification
to four dimensions. Assuming that the low-energy limit of the fundamental theory is eleven-dimensional
supergravity to the lowest order, including curvature corrections and taking the descent from eleven dimen-
sions to four via an intermediate five-dimensional theory, as favored by recent considerations of unification at
some scale around;1016 GeV, we may obtain a simple model of inflation in four dimensions. The effective
degrees of freedom are two scalar fields and the metric. The scalars arise as the large five-dimensional modulus
and the self-interacting conformal mode of the metric. The effective potential has a local maximum in addition
to the more usual minimum. However, the potential is quite flat at the top, and admits topological inflation. We
show that the model can resolve cosmological problems and provide a mechanism for structure formation with
very little fine tuning.@S0556-2821~99!02808-8#
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I. INTRODUCTION

One of the central problems confronting inflation@1# is
the identity of the inflaton, the field responsible for drivin
inflation, and the manner in which it fits in with unified fiel
theories and/or string theory, notablyM theory. The birth of
the inflaton came with the demise of the notion that inflat
is driven by an adjoint Higgs field in some grand unifi
theory ~GUT! such as SU~5!. While the production from
quantum fluctuations of the cosmological perturbations n
essary to generate structure in the universe is one of the g
successes of inflation@2#, the required smallness of the am
plitude of these fluctuations undermined the possibility tha
field with couplings of gauge strength could drive inflatio
Rather, it is often assumed that the inflaton couples to ma
only through gravitational interactions@3#. In this context,
options such as inflation via higher-dimensional curvat
terms, including as theR2 inflation model proposed by Star
obinsky@4#, a hybrid inflationary model combining curvatur
and inflaton effects, as discussed by Kofman, Linde and S
obinsky @5#, or string theory, which possesses many gau
singlet fields such as the dilaton@6,7#, may become quite
interesting.

The most stringent constraints on inflation arise from
observations of the cosmic microwave background. The
ive interpretation of the Cosmic Background Explor
~COBE! and other data on fluctuations in the microwa
background radiation is that the density of vacuum ene
during inflation isV;(1016 GeV)4, so that inflation is as-
sociated with an energy scaleV1/4;1016 GeV. One of the
key points in the application ofM theory to phenomenology
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is the reconciliation of the bottom-up calculation ofMGUT

;1016 GeV with the string unification scale, which is clos
to the four-dimensional Planck mass scaleM4;1019 GeV.
This is achieved by postulating a large fifth dimensionR5

@MGUT
21 , which is not felt by the gauge interactions, b

causes the gravitational interactions to rise with energy m
faster than in the conventional four dimensions. In this ty
of scenario, one could expect that inflation should be con
ered within a five-dimensional framework.

It is now known that ten-dimensional strongly couple
heterotic string theory is related through dualities to wea
coupled type I string theories, as well as to eleve
dimensionalM theory @8#. In each case, the correspondin
thresholds imply the presence of one large scale dimen
below the unification point@8,9#. Within this general five-
dimensional framework, two favored ranges for the mag
tude ofR5 can be distinguished. One is relatively close
MGUT

21 :R 5
21;1012 to 1015 GeV, and the other could be a

low asR 5
21;1 TeV @10#. The latter is motivated in particu

lar by Scherk-Schwarz models of supersymmetry break
in which the gravitino massM3/2;R 5

21 . In this latter case,
the large dimension is not necessarily the conventional fi
dimension ofM theory. Indeed, in models studied in@10# the
large dimension may be related to what is normally cons
ered as one of the six ‘‘small’’ dimensions that is conve
tionally compactified in the manner of Calabi and Yau.

It has been known for quite some time that it is ve
difficult to incorporate conventional inflationary scenari
into the low-energy limit of string theory. The principal ob
stacle in this course has been the fact that the low-ene
dynamics contains massless scalar fields with non-mini
couplings to gravity. Their coupling constants are precis
given by conformal symmetry and/or the dualities of stri
theory. In an expanding universe, these fields typically r
during the course of the expansion, consuming the availa
energy and hence decreasing the rate of expansion. One
©1999 The American Physical Society03-1
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cally finds solutions where the scale factor of the unive
grows as a power of time, with the power determined by
scalar coupling constants. Once the numerical values of th
constants dictated by string theory are taken into accoun
has been found that the resulting power laws are too slow
give an inflationary universe@11#. Alternatively, if the sca-
lars are endowed with masses which arise from some kin
non-perturbative supersymmetry breaking, the result
models suffer from the graceful exit problem, as we disc
below. In string theory, higher-dimensional curvature ter
are present in the action, appearing in the expansion in p
ers of the string tension. One might think that the inclus
of higher-derivative terms, which are low-energy signatu
of the massive excitations of string theory, could produ
several possibilities for curvature-driven inflation.

In this work, we consider a variant of the Starobins
model based onR4 curvature terms, as curvature-squar
terms are not known to be present in the action of the
five- or eleven-dimensional theory. We assume through
that the remaining six dimensions are fixed.1 In a four-
dimensional context, Maeda@14# derived the potentials for a
generalR1Rn theory. FornÞ2, the potential is not flat, bu
rather shows a peak and a well-defined minimum. We ar
that it possible for this potential to inflate in a so-called
pological manner@15#. As we discuss, a fully successful in
flationary model of this sort would still require a potential f
the dilaton. Whilst this model results in an inflationary sta
with a guaranteed exit, the magnitude and spectral inde
the resulting density fluctuations force us to consider so
possible additional ingredients. Either curvature-squa
terms that might appear at the level of the five-dimensio
theory or quantum corrections toTmn

2 would be sufficient to
provide a self-consistent inflationary model.

Although such a solution is not directly derived fro
string or M theory, it captures several elements that we
pect to be present in the low-energy theory. As such, it r
resents a novel and motivated possible solution to the p
lem of inflation in string theory, which may hold som
promise.

II. CURVATURE-DRIVEN INFLATION

Among the first utilizations of higher-derivative curvatu
terms is the Starobinsky model@4#, which is based on ob
taining a self-consistent solution of Einstein’s equatio
when they are modified to include one-loop quantum corr
tions to the stress-energy tensorTmn . In its simplest form,
the model is equivalent to a theory of gravity with anR2

correction. When one considers the contributions of
back-reaction to the stress-energy, one finds a term whic
equivalent to starting with an action of the form@16#

1For recent discussions of fully eleven-dimensional cosmolog
solutions, see@12,13#.

2The former can also be derived as a quantum correction to
energy momentum tensor.
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S5
1

2k2E d4xAg~R1R2/6M2! ~1!

wherek258pGN . It is well known that this theory is con
formally equivalent to a theory of Einstein gravity plus
scalar field@17#. By a field redefinition

g̃mn5S 11
1

3M2 f Dgmn , f85A3

2
lnS 11

1

3M2 f D ,

~2!

the action can be simplified to

S5
1

2k2E d4xAg̃S R2]mf8]mf82
3

2
M2~12e2A2/3f8! D .

~3!

The potential is extremely flat forf8@M4 and has a mini-
mum atf850 with V(f850)50. For large initial values of
f8, one can recognize this as an excellent model for cha
inflation @18#.

More generally, quantum corrections to the right-ha
side of Einstein’s equation in the absence of matter can
written as@19#

^Tmn&5S k2

2880p2D S Rm
r Rnr2

2

3
RRmn2

1

2
gmnRrsRrs

1
1

4
gmnR2D1

1

6S k3

2880p2D S 2R;m;n22gmnR;r
;r

22RRmn1
1

2
gmnR2D ~4!

wherek2 andk3 are constants that appear in the process
regularization. We recall thatk2 is related to the number o
light spin states, which can be very large in variants of str
theories based onM theory, as we will discuss below. On th
other hand, the coefficientk3 is independent of the numbe
of light states. This term is none other but the variation of
R2 term in the effective action. The theory admits a de Sit
solution which can be found from the 00 component
gravitational equation of motion@20#. Defining H8
52880p2/k2 and M252880p2/k3 , and setting the spatia
curvaturek50, one finds@21#

H2~H22H82!5~H82/M2!~2ḦH12H2Ḣ2Ḣ2! ~5!

whereH5ȧ/a is the Hubble parameter. The de Sitter so
tion corresponds toH5H8 and of courseḢ5Ḧ50.

In order to avoid the overproduction of gravitons there
a lower limit on the parametersk2,3 @22,21#: k2*1010 imply-
ing the need for billions of spin degrees of freedom to
present. While this seems like an inordinately large numb
it is possible to generate very large numbers of degree
freedom in theories with extra dimensions, as we will no
argue. Although this may not necessarily be the framew
for M phenomenology that is eventually adopted, we use
general form of the effective low-energy theory derived fro
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TOPOLOGICAL R4 INFLATION PHYSICAL REVIEW D 59 103503
M-theory compactification on a Calabi-Yau manifold to
lustrate the discussion of the possibly large magnitude ofk2 .
The effective low-energy field theory has the form of a fiv
dimensional supergravity theory: as such, it contains a gr
ton supermultiplet, vector supermultiplets and scalar hyp
multiplets. We recall that the graviton supermultipl
contains five graviton states, three graviphoton states
eight gravitino states. Each vector supermultiplet conta
three vector states, one real scalar and four fermion sta
and each scalar hypermultiplet contains four real scalars
four fermion states. The numbers of vector hypermultipl
nV and scalar hypermultipletsnH are related to the topologi
cal properties of the Calabi-Yau manifold:

nV5n1121, nH5n2111. ~6!

Some of these states have even parity when the fifth dim
sion is compactified onS1 /Z2 , and some are odd, but this
not essential for our purpose. We are interested in the n
ber of excited supermultiplets that appear below the effec
inflationary scale, which we identify approximately wit
1016 GeV ;MGUT . The number of such Kaluza-Klein ex
citations is given asymptotically bynKK;MGUTR5 . Hence
we estimate

k2;nKK3„1618~n111n21!…. ~7!

In realistic models, we expect thatn1153 and n215n11
12x, where the Euler characteristicx53. In this case,k2
;88nKK , which exceeds 1010 if nKK;MGUTR 5*108.3

Although large, such a value ofnKK is perhaps not impos
sible as we shall see. In the Starobinsky model, the bound
k3 is k3*109, corresponding toM&1014 GeV. This can be
seen as follows. In order to produce sufficient expansion
solve cosmological problems, the effective cosmologi
constant, which by Eq.~1! is ;M2M4

2 , would have to be
M2M4

2&1064(GeV)4. From this, we would findM&1013

GeV. Alternatively, this is just the requirement that the St
obinsky model embodies chaotic inflation, and simul
neously satisfies the observational constraints. In our c
however, this requirement can be relaxed since the en
for inflation will not be supplied by the quadratic curvatu
term. As we will see below, our inflation mass scale will s
satisfy a similar inequality, but without overconstrainingk3 .

III. ELEVEN-DIMENSIONAL SUPERGRAVITY AND
HIGHER DERIVATIVE CURVATURE TERMS

As we have indicated above, the presence of the dila
field and its universal coupling to other terms in the lo
energy effective action hamper the embedding of stand
inflationary models in string theory. One must remember t
the derivative corrections to the string effective action
not uniquely defined. Their general form is fixed by requ

3There is also the possibility of additional matter and gauge fie
associated withD branes in the bulk, but we do not discuss the
further here.
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ing that the effective action reproduces at two loops theb
functions of the string world-sheet loop expansion@23#.
However there arise divergences, and they must be renor
ized. The results thus depend on the particular subtrac
scheme adopted in thes-model formulation. The
renormalization-group transformations relate differe
schemes, which changes the form of the backgrou
s-model couplings, while leaving the physics invarian
These renormalization group transformations viewed
maps of the target-space fields are called string field red
nitions. They change the form of the effective action wh
leaving the physics unaffected@24#.

If we return to the issue of the dilaton evolution, we s
that in general its equation of motion will be of the for
¹2f2(¹f)21R/4;a8J, whereJ is the contribution of the
higher derivative terms. It may contain higher derivatives
f, such as¹4f in addition to curvature terms@23–25#.
These terms could make the dilaton equation fourth-orde
time derivatives. However, if we take the limita8→0 in the
dilaton equation, for anything fromJ to survive, it must di-
verge to cancela8. Solutions of this type cannot be pertu
batively matched to the vacuum sector of the low-ene
theory. Because of this one cannot be certain that they
remain unaltered by higher-order corrections. Also, the so
tions are not uniquely determined at the given order of tr
cation because of the string field redefinitions discus
above. In terms of the dilaton field, this suggests that
only physically meaningful effect of the sourceJ at any
given order of truncation is a perturbative correction ina8.
This could be enforced at the level of the effective theory
using field redefinitions to go to a unitary scheme, whe
higher than second derivatives of fields are automatic
absent.

An example of such a unitary scheme is given by a fo
dimensional string gravitational action@26# in the Einstein
frame:

S5
1

2k2E d4xAgH R22]mf]mf1
a8

8
e22fR̃2J ~8!

whereR̃25RabcdR
abcd24RabR

ab1R2 is the Gauss-Bonne
combination, and we have kept only the dilaton- and met
dependent terms. In the absence of a potential for the dila
it has been shown that the combined dilaton and gravitatio
equations of motion do not admit de Sitter solutions@27,28#.
In fact, this result remains true when terms of higher orde
a8 are considered@29#. As we show below, this result als
does not depend on the fact that it is the Gauss-Bonnet c
bination. The coefficients ofRabR

ab andR2 are arbitrary up
to a field redefinition of the metric and dilaton@24#. For any
choice of these coefficients, the only solution with a const
dilaton is Minkowski space.

When a potential for the dilaton due to, e.g., gaugino c
densation@30# is included along with a cosmological term
due to, e.g., a central charge deficit, it is possible to gene
an approximate de Sitter solution at theO(a80) level @28,31#
when a8 terms are kept. However, in this case there is
exit from the inflationary period, and the dilaton is alrea
sitting at its minimum and is constant. We are led theref

s
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to a particular difficulty with field-theoretic inflation in th
gravitational sector of string theory.4

One can also choose to work in a non-unitary sche
since all of the schemes are physically equivalent. The s
rious degrees of freedom can be kept under control by
panding the source and solving the equations iteratively
such situations, the dilaton would acquireO(a8) corrections
as a response to the source. While this rolling would app
to be adverse for inflation, it is tempting to ask if it mig
only represent a disguise. For example, it might happen t
by a field redefinition, an apparently non-inflationary so
tion with a rolling dilaton toO(a8) is mapped onto an in
flationary solution with a constant dilaton. This would r
quire retaining some of the spurious degrees of freed
because the constant dilaton ansatz would demand canc
tions betweenO(1) andO(a8) terms. While perhaps unre
liable, such solutions are still of interest. They might be
starting point for further study via more stringy methods.

Rather curiously, it turns out that imposing a consta
dilaton in anarbitrary subtraction scheme requires that t
space-time is exactly flat, and hence given by the Minkow
metric. To see this, let us consider the effective action
O(a8). In four dimensions, it can be written as

S5S01S1 ~9!

where

S05E d4xAge22f$R14~¹f!2% ~10!

and

S15a8l0E d4xAge22fH Rmnls
2

12„R14¹2f24~¹f!2
…df

1S Rmn12¹m¹n2
1

2
gmn

„R14¹2f24~¹f!2
…D dgmnJ

~11!

where we have chosen to work in the string frame, signifi
by the presence of exp(22f). The parameterl varies be-
tween different string theories, being 1/4 in bosonic, 1/8
heterotic and 0 in superstring theories. ToO(a8), only the
square of the Riemann tensor is unambiguous. The co
cients of all other terms are ambiguous, and can be se
zero by redefining the fields inS0 by terms to ordera8. This
is signified by the termsdgmn anddf, which are

df5c1R1c2~¹f!21c3¹2f ~12!

4We note in passing a model which attempts to use runn
moduli to solve cosmological problems: for the details of t
model, see@32#, and for the discussion of its viability, see@33#.
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1gmn„b3R1b4~¹f!21b5¹2f…

and are the most general expressions for the counterte
consistent with dimensional analysis and target-space g
eral covariance. The coefficientsbk and ck are completely
arbitrary.

Let us now consider the case when the coefficientsbk and
ck are chosen such that the source for the dilaton vanishe
a cosmological Friedmann-Robertson-Walker~FRW! back-
ground. Because of the dilaton equation of motion, t
would place a constraint on the curvature, which would
lect only those general metric solutions of the dilaton-le
theory that are a consistent truncation of theO(a8) string
effective action. First, we see that if the dilaton is a consta
all contributions to the action proportional to (¹f)2 would
produce terms at least;¹f in the equations of motion, and
so would vanish. Inserting Eq.~12! into Eq.~11!, we see that
theO(a8) action of interest to us is

S1
e f f5a8lE d4xAge22f

3$Rmnlr
2 1b1Rmn

2 1b1R21b2¹2fR

12b1Rmn¹m¹nf% ~13!

where, in terms of the original coefficients in Eq.~12!, we
have b152c12b32b1/2 and b258c112c32b526b3
22b1 .

If we now vary the actionS5S01S1
e f f with respect tof,

and demand thatf50 is a solution, we obtain the following
constraint on the curvature:

2R1a8l$2Rmnlr
2 12b1Rmn

2 12b1R22~b11b2!¹2R%50.
~14!

So when we consider the actionS01S1
e f f , we can setf

50 and impose the constraint~14! at the end. Further, al
FRW solutions are conformally flat. This means that the R
mann curvature is given completely in terms of the Ric
tensor and Ricci scalar. Simple algebra then shows that

Rmnlr
2 52Rmn

2 2
1

3
R2. ~15!

The contributions of the Weyl tensor vanish becauseCm
nml

50, which is true for any geometry, and because on FR
backgrounds Cmnlr50. Thus, even variations of th
C-dependent terms would vanish on FRW backgroun
Since in four dimensions the Gauss-Bonnet term is pur
topological, i.e., is equal to a total divergence, we can a
write

Rmnlr
2 54Rmn

2 2R21¹mJm ~16!

for some vector fieldJm which is irrelevant for our consid-
eration. Combining the identities~15! and ~16!, we find that
on FRW backgrounds

g
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Rmn
2 5

1

3
R21

1

2
¹mJm. ~17!

Since we are looking for solutions withf50, we can drop
the boundary term, as its variation would always be prop
tional to ¹f.

Using Eqs.~15! and~17!, we find that the effective action
on FRW backgrounds with a constant dilaton is precisely
action of the Starobinsky’s model:

Se f f5E d4xAgH R1a8lS b1

3
1b11

1

3DR2J ~18!

which must, however, be supplemented with the constr
~14!. If we vary this action with respect to the metric, an
trace the result, we get

R5a8l~6b112b112!¹2R ~19!

which is the equation of motion for the conformal mode
the metric, that has become massive because of the de
tive corrections. In order for this equation to be consist
with the constraint arising from requiringf50, we must
ensure that the terms in the dilaton constrain proportiona
Rmn

2 andR2 cancel identically. Using Eq.~15!, we find that
this requires settingb151/3 andb1522. This requirement
is dictated by general covariance, and cannot be relaxe
ordera8 if we wish to have a constant dilaton. But when w
insert this in the trace equation~19!, we find that the deriva-
tive term drops out, and we get

R50 ~20!

as a result. Worse yet, we see that the coefficient of theR2

term in the action is zero, and so the vanishing of the dila
requires that the metric is a solution of the flat space eq
tions to ordera8 and not only to order 1. Hence we see th
the only solution of theO(a8) action in any string theory
with a constant dilaton is Minkowski space, regardless of
subtraction scheme.

However, while some ways of compactifying the eleve
dimensional theory to five dimensions are known@8#, it is
not yet clear if the compactification procedure is complet
unique. Discussion so far has centered on Calabi-Yau c
pactification, whose features may depend on the mutua
tios of sizes of the intervalS1/Z2 and 1-cycles on the Calab
Yau spaces, as has already been pointed out in, for exam
@10#. We recall that there are alternative compactifications
the weakly-coupled ten-dimensional heterotic string, a
they may turn out to have elevations to the eleve
dimensional theory. In this article, we therefore conside
general approach in which we assume the internal mani
to be decoupled, with its size a massive field from the po
of view of the five-dimensional theory. There have been s
eral calculations of higher-orderRn terms in ten and eleven
dimensions@34#. Those in eleven dimensions are not know
to yield R2 terms, but may yieldR4 terms. On the other
hand, the calculations by Horˇava and Witten on the ten
dimensional boundary in their formulation ofM theory do
yield R2 terms, but only in the boundary effective action
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We will not discuss their precise form, which in five dime
sions may depend on the details of compactification of
eleven-dimensional theory. If we dimensionally reduce
five-dimensional theory to four dimensions, we will obta
an even more complicated-looking expression involving c
tractions of the four-dimensional Riemann tensor and te
with up to two derivatives of the size of the internal dime
sion, in addition to the four-dimensional version of the fiv
dimensional expression. Now, as long as the fo
dimensional space-time is conformally flat, its Riema
tensor can be expressed completely in terms of the R
tensor and scalar, and thus any quartic curvature term c
be written as a linear combination of terms likeR4,Rmn

2 and
RmnRlsRmlRns. Moreover, in four dimensions, the Gaus
Bonnet identity allows us to replace the square of the R
tensor by a square of the Ricci scalar, indicating that
scalar curvature modes play the most important role in c
mological dynamics. Here we repeat that the scalar mo
must be endowed with mass in order that they decouple. T
means that the terms proportional to its derivatives would
drop out, and hence we will ignore the scalar-tensor c
plings which must depend on the derivatives of the sca
fields.

To model the possibility of curvature-driven inflation, w
assume that the five-dimensional action contains a scalaR4

contribution, and perform a dimensional reduction to fo
dimensions, ignoring the boundaries. In the context of
theory with walls, this merely means that we assume that
bulk can be foliated by identical and mutually no
interacting copies of the wall. Alternatively, it is clear th
this dimensional reduction is identical to the standa
Kaluza-Klein reduction on a circle. This approach produce
four-dimensional theory with two scalar fields, an inflato
and a dilaton. The inflaton potential has a maximum, wh
we will show to be sufficiently flat to support inflation, in
manner resembling the topological inflationary scenario
problem with the scenario based only on theR4 term, with-
out the mass term for the compacton, is that it wants
decompactify the space time. This is obvious if we consi
theR4 term from the point of view of five dimensions. Sinc
it behaves as an effective cosmological constant, accord
to the cosmological no-hair theorem, it forces the fiv
dimensional space to isotropize. Thus we must includ
mass term for the compacton, which from the fiv
dimensional point of view will break the rotation symmetr
and allow the four-dimensional space to inflate while kee
ing the compacton fixed.

IV. INFLATION IN FOUR DIMENSIONS

In this section, we will begin the investigation of the po
sibility of higher-curvature-driven inflation. We first give de
tails of the dimensional reduction from five dimensions
four dimensions, in order to derive the four-dimensional
fective theory. The pure gravity sector of the fiv
dimensional action, which we will consider is

S5E d5xAG5H M5
3

16p
R51aM5

23R5
4J ~21!
3-5
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whereM5 is the five-dimensional Planck mass. In the co
text of the eleven-dimensional theory, our five-dimensio
Planck mass is related to the eleven-dimensional Pla
mass byM5

35M11
9 V6 , where V6 is the six-volume of the

compactified space. We assume thatV6
21/6;M11;MGUT in

general. The scale of the fifth dimension is then given
R 5

21; (4/a) M11
3 M4

22 @10#. We note that this effective ac
tion is not exactly what one finds after dimensional reduct
of the eleven-dimensional supergravity with quartic corr
tions on an intervalS1/Z2 , which would contain couplings to
two ten-dimensional boundaries withR2 terms ~see, e.g.,
@13#!. Thus, our action~21! is not a direct descendant of
known reduction ofM theory on an interval. But such action
may nevertheless arise in some compactifications of
theory, and are simple enough to illustrate our main poin

Let us first outline the reduction procedure we will follo
here. We first conformally transform the action~21!, follow-
ing @14#, to represent it as a five-dimensional gravity with
minimally coupled self-interacting scalar field. The sca
arises because the conformal mode of the metric beco
dynamical thanks to theR4 term @17#. Then we dimension-
ally reduce this action to four dimensions and apply anoth
four-dimensional, conformal transformation, to put the
sulting four-dimensional action in the canonical form. Th
will produce another scalar field, the compacton~or dilaton!
of the four-dimensional theory, which is related to the size
the fifth dimension.

We now give the formulas appropriate for this procedu
The conformal transformation which brings Eq.~21! to the
Einstein form is

ḠAB5u1164paM5
26R5

3u2/3GAB , ~22!

and the action is@14#

S̄55E d5xAḠ5H M5
3

16p
R̄52

1

2
ḠAB]Ax̃]Bx̃2U5~ x̃ !J ,

~23!

where the ‘‘intermediate’’ scalar field and its potential are

k̃x̃[
2

A3
lnu1164paM5

26R5
3u,

U5~ x̃ !5
3M5

5

256p4/3a1/3
e2~5A3/6!k̃x̃~e~A3/2!k̃x̃21!4/3, ~24!

with k̃[A(8p)/(M5
3). The standard Kaluza-Klein compac

tification ansatz, with the simultaneous conformal transf
mation of the four-dimensional metric to the canonical for
is

ds̄5
25e2A2/3kfgmndxmdxn1

M4
4

M5
6

e2A2/3kfdz2, ~25!

where gmn is the four-dimensional Einstein-frame metri
The action ~23! then reduces to the following four
dimensional action:
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S45E d4xAg4H M4
2

16p
R42

1

2
gmn]mw]nw2

1

2
gmn]mx]nx

2U~w,x!J , ~26!

wherex5M4M5
23/2x̃. In terms of these fields, the potenti

is given by

U~w,x!5
3M4

2M5
2

256p4/3a1/3
e2A2/3kwe2~5A3/6!kx~e~A3/2!kx21!4/3

[
3M4

2M5
2

256p4/3a1/3
e2A2/3kwV~x!. ~27!

Before we undertake a detailed investigation of Eq.~26!, we
note that the effective four-dimensional potential~27! is a
product of an exponential and a function with a maximum
we ignore the variation ofx, we recall that in a universe
dominated by a scalar field with an exponential poten
V(f)}e2lkf, and foliated by flat spatial hyperplanes, th
expansion of the FRW scale factora(t) obeys a power law
a(t)}tp, with the power index given byp52/l2 @35#.

Next, we ignore the dilaton factore2A2/3kw in the potential
and consider the dynamics of thex field. Thex-dependent
factor in the potential,V(x), is depicted in Fig. 1. It has a
global minimumV50 at x50, a local maximum atx5xm

52 ln 5/(A3k)50.37M4 , and diverges as V(x)
}e2(5A3/6)kx for x→2`. This is too steep for power-law
inflation. For x→`,V(x) asymptotically approaches zer
with V(x)}e2(A3/6)kx, which may be flat enough for infla
tion but it will lead to an unphysical universe with a runaw
behavior towards the regime of extremely large curvature
terms of the original five-dimensional description.

FIG. 1. Comparison of the potentialV(x) produced by a con-
formal rescaling of theR4 term in the five-dimensional action and
simple double-well potential.
3-6
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As a result, chaotic inflation@18# with a large initial value
of x is impossible here. Nevertheless there may remain
possibility to realize inflationary expansion in this model
using the potential energy around the local maximu
V(xm), as in the topological inflation scenario of Linde an
Vilenkin @15#. In this scenario, if the scalar fieldx(x) is
randomly distributed initially with a large dispersion, som
part of the universe will roll tox50, while in other parts it
will run away to infinity. Between any two such region
there will appear domain walls, containing a large ene
density,r;V(xm). If the wall is thicker than the Hubble
radius of this energy density, there will exist a sufficien
large quasi-homogeneous region, filled with large poten
energy, where inflationary expansion naturally sets in.

The condition for a domain wall to inflate has been inve
tigated numerically in@36# for the case of a simple double
well potential,Vdw(f)5(l/4)(f22h2)2. There it has been
found that a domain wall will undergo inflation ifh exceeds
a critical valuehcr50.33M4 , regardless of the value ofl.
Whenh5hcr , the ratio of the thickness of the wall — cha
acterized by the curvature scale of the potential at the ori
r w[„Vdw9 (f50)…21/2, to the horizon H215„k2Vdw(f
50)/3…21/2 is given byr wH50.48, and is again independe
of l. An explicit check shows that, in our model, the di
tance between the potential minimum and the local ma
mum, xm50.37M4 , exceedshcr . Furthermore, the ratio o
the characteristic thickness of the wall to the horizon scal
given by r wH5„k2V(xm)/3V9(xm)…1/254/A15.1.0, which
is larger than the critical case of@36#. In Fig. 1 we have also
depicted a double-well potential which has the same glo
minimum and the local maximum asV(x). As is seen there
the latter is much flatter than the former around the lo
maximum.

Having seen that the potentialV(x) is flat enough around
the local maximum, we now return to the exact form of t
potential given in Eq.~27!, and take the dilaton factor into
account. This does not changexm nor r wH. However, the
rolling dilaton field hampers exponential inflation. Sincex
moves slowly nearx5xm , as compared to the dilaton, w
practically have an exponential potential

U~w,x!5
3M4

2M5
2

256p4/3a1/3
e2A2/3kwV~xm![U0e2A2/3kw.

~28!

The ensuing solution for the FRW scale factor obeys
power lawa(t)}t3 with kw(t)5kw(t i)1A6ln(t/ti), and is
an asymptotic attractor@37# for the scale factor. Since th
power is greater than unity, this solution still appears to
slowly inflating. However, when we look at the scalar fie
we find exp(A2/3kw)5t2(pU0)/(3M4

2). This evolution of
the scalar field is too rapid, as we can easily verify by s
stituting the solutions back into the five-dimension
metric ~25!. Indeed, in the original frame the solution
ā( t̄ )}exp„A(4pU0)/(3M5

3) t̄ …, and exp(A2/3kw)

}„A(4pU0)/(3M5
3) t̄ …. The physical interpretation of thi

behavior is simple. Substitutingx5xm in the potential cor-
responds to adding a positive cosmological constant in
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dimensions, and, according to Wald’s cosmological no-h
theorem@38#, the anisotropic five-dimensional spacetime w
are dealing with must approach the de Sitter space due to
effective cosmological constant.

Hence some mechanism is needed to stabilize the siz
the fifth dimension. This requires breaking the residual fiv
dimensional gauge invariance, which equates the fifth dir
tion with the other four in the case discussed above. T
problem is linked to that of fixing the vacuum expectati
value ~VEV! of the dilaton, which presumably involves ill
understood non-perturbative phenomena such as super
metry breaking and perhaps gaugino condensation@30#. Sce-
narios for these have been proposed, and it seems q
possible that these may occur at an energy-momentum s
above that of the five-dimensional Kaluza-Klein excitation
In this case, the internal radius may be regarded as fixed
our purposes here.

After the internal radius is stabilized, we can recover e
ponential inflation in three spatial dimensions in both conf
mal frames, as long asx stays near the local maximumxm .
In this limit, the potential can be approximated as

U~0,x!5
3M4

2M5
2

256p4/3a1/3
V~x!

;U~0,xm!2
1

2
m2~x2xm!2,

m2[
5

16
k2U~0,xm!, ~29!

where we have used the relationV9(xm)52 5
16 k2V(xm).

Thus the standard slow-roll solution is

a~ t !}eHmt, Hm[Ak2

3
U~0,xm!, ~30!

x~ t !5xm2~xm2x f !expS m2

3Hm
2

Hm~ t2t f !D
5xm2~xm2x f !e

~5/16!Hm~ t2t f !,

wheret,t f , and wheret f andx f stand for the time and the
field amplitude at the end of inflation.

It is important to note that the model we are presen
considering does not share the graceful exit problem of ty
cal string-dilaton inflationary models. Generally, as we ha
described above, inflationary~or de Sitter! solutions with a
dilaton coupled to gravity require that the dilaton be fixe
When the dilaton doubles as the inflaton as well, no me
have been found to cancel the vacuum energy which dr
inflation. This is different from the graceful exit problem i
the pre-big-bang scenarios for which inflation is not driv
by vacuum energy density, though these models also su
from a graceful exit problem@39#. In our present case, thes
two issues are separated. Although the dilaton still need
be fixed, inflation is driven by theR4-induced potential of
the conformal field x. Since the model we are
3-7
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considering is of the ‘‘topological’’ type, we are sitting o
the top of this potential and we areguaranteedthat inflation
will end as the fieldx rolls to its minimum.

We can now check the magnitude and spectral index
the induced density fluctuations. The amplitude of a lin
curvature fluctuation,FH , @40# on a comoving scalel
52p/k is given by

FHS l 5
2p

k D5
f Hm

2

2puẋ~ tk!u

5
3

2p

f Hm
3

m2uxm2x f u
expS m2

3Hm
2

Hm~ t f2tk!D ~31!

5
8 f Hm

5puxm2x f u
e~5/16!Hm~ t f2tk!,

where f 53/5 (2/3) in the matter-~radiation-! dominated
era, andtk is the time when thek mode left the Hubble radius
during inflation. The spectral index,ns , of density perturba-
tion is given by

ns512
2m2

3Hm
2

. ~32!

We recall that, in the model we are discussing,m2/Hm
2

515/16 so thatns53/8, which is significantly different from
the scale-invariant valuens51 and is in disagreement wit
observations. Furthermore, the large-angle~an!isotropy of
cosmic microwave background~CMB! radiation @41# re-
quiresdT/T52FH/351025 on the comoving scale leavin
the Hubble radius about 60 expansion times before the
of inflation, namely,

dT

T
5

8Hm

25puxm2x f u
e~5/16!360.1025. ~33!

Since we finduxm2x f u;0.1M4 , the isotropy of CMB sets
the scale of inflation asHm;10214M4 , which implies the
Planck mass in five dimensions must be unacceptably sm
M5;10213a1/6M4 .

These results appear disconcerting. While our mo
showed some initial promise, it seems to fail the contact w
the observations. A closer scrutiny of the dynamics sho
that these problems arise because the potential which is
erated by theR4 term is a bit too steep to produce a satisfa
tory perturbation spectrum. In the next section, we disc
possible remedies.

V. CURES FOR THE DENSITY FLUCTUATION
PROBLEM

As we have seen in the previous section, although
relatively simple model described there, which is based o
compactifiedR1R4 theory with a fixed dilaton, has all th
ingredients necessary for inflation, we cannot obtain an
ceptable magnitude for density fluctuations unless we cho
the scaleM5.10214M4 . But if on the other hand we hav
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M5;M11;MGUT, as occurs whenV6
21/6;M11 with M5

3

;M11
9 V6 , then by settingM5;MGUT;1023M4 we would

have greatly overproduced the magnitude of density fluct
tions in the model. Moreover, we would still have the pro
lem that the spectral index is equal to 3/8. We could fore
two possible solutions to this dilemma. The presence of
R2 term in the five-dimensional action would flatten the p
tential further, possibly curing the problems with dens
fluctuations. In addition, the renormalization of the stre
energy tensor, as in the original Starobinsky model, co
also lower the effective value ofm2/Hm

2 , which was at the
root of the problems above.

The general classification of higher-orderRn terms which
may appear in the curvature expansion of the effective lo
energy field-theory limit ofM theory is not available a
present. It is however known that the supersymmetry of
theory rules out terms which are quadratic and cubic in c
vature in the bulk, and that the lowest possible terms
quartic. Upon dimensional reduction of the eleve
dimensional theory on the intervalS1/Z2 in the manner of
Hořava and Witten, such terms could however produce te
which are quadratic in curvature in the effective action of t
boundary theory. Our considerations here are different, s
we do not consider theories with matter degrees of freed
confined only to the boundary. We should note that high
order formulations of higher-dimensional gravity and sup
gravity theories have been discussed in@42#. While the
known types of quadratic corrections arising fromM theory
are not explicitly of the type we need here, their form bei
restricted by supersymmetry, we recall that such constra
are relaxed in cases when supersymmetry is broken. M
over, if we consider the effect of particle production and
back-reaction on the geometrical environment, we recall t
this effect could be derived from effective counterterms
the action which are quadratic in curvature.

Therefore, we boldly consider the case where the fi
dimensional action contains both quadratic and quartic te
in R5 :

S55E d5xAG5H M5
3

16p
R51bM5R5

21cM5
23R5

4J . ~34!

As we noted above, because of the absense of boun
terms, this action is not directly related to the Horˇava-Witten
reduction of M theory. We can again carry out the reduct
to four dimensions along the same lines as discussed a
beginning of the previous section. Assumingb, c.0, we
apply the conformal transformation

ḠAB5u1132pbM5
22R5164pcM5

26R5
3u2/3GAB , ~35!

to obtain the equivalent action in the Einstein frame@14#:

S̄55E d5xAḠ5H M5
3

16p
R̄52

1

2
ḠAB]Ax̂]Bx̂2Û5~ x̂ !J ,

~36!

with
3-8
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k̃x̂[
2

A3
lnu1132pbM5

22R5164pcM5
26R5

3u. ~37!

Since we are assumingb, c.0, there is a one-to-one corre
spondence betweenx̂ and R5 for 1132pbM5

22R5

164pcM5
26R5

3.0, and from Eq.~37! we can solve forx̂ to
find the potential

Û5~ x̂ !5M5
5e2~5A3/6!k̃x̂S 2

bR5
2

2M5
4

12u~ x̂ !
R5

M5
2D ,

u~ x̂ ![
e~A3/2!k̃x̂21

128pc
, ~38!

with

R55M5
2H u~ x̂ !1Fu2~ x̂ !1S b

6cD 3G1/2J 1/3

2H 2u~ x̂ !1Fu2~ x̂ !

1S b

6cD 3G1/2J 1/3

. ~39!

We compactify to four dimensions and apply another conf
mal transformation, as before, to obtain the following fou
dimensional Einstein action:

S45E d4xAg4H M4
2

16p
R42

1

2
gmn]mw]nw2

1

2
gmn]mx]nx

2Û~w,x!J , ~40!

where the potential is given by

Û~w,x!5M4
2M5

2e2A2/3kwe2~5A3/6!kxS 2
bR5

2

2M5
4

1
e~A3/2!kx21

64pc

R5

M5
2D , ~41!

with kx5k̃x̂ now.
If we had only the curvature-squared term in the origin

action ~34!, we would find the potential

Û~w,x!5M4
2M5

2e2A2/3kwe2~5A3/6!kx~e~A3/2!kx21!2,
~42!

which has no local maxima in thex direction. It diverges as
Û(w,x)}e(A3/6)kx for x→` @43#. On the other hand, in the
presence of bothR5

2 andR5
4 terms in Eq.~34!, the latter term

eventually dominates the former, and the potential
proaches zero asymptotically as in the pure quartic mo
discussed above. Thus the curvature-squared term is
pected to increasexm and flatten the potential around th
local maximum.

Assuming that the dilaton has been stabilized as bef
we have numerically analyzed the potentialÛ(0,x) for vari-
10350
-
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l

-
el
x-

e,

ous values ofb and c. As is seen in Fig. 2, the potentia
becomes flatter as we increaseb. At the same time, however
we find that the height of the potential at the local maximu
decreases. As a result we find the maximal possible valu
the spectral index to bens50.722 which is realized forb
*10 andc;1/3. For example, takingb53 andc51/3, we
find xm51.6M4 ,Û(0,xm)52.331024M4

2M5
2 , and m2/Hm

2

50.42. The spectral index is given byns50.72. From
dT/T51025 on the angular scale probed by COBE, the sc
of inflation is determined asHm.0.04M55631011 GeV or
M5.231013 GeV. This is somewhat on the small side, b
we consider such an estimate relatively encouraging, gi
the crudity of our model.

The scale problem concerning theR4 inflation could also
be alleviated if consider the possible effects of the quant
correction terms to the stress energy tensor as describe
Eq. ~4! @4#. Here we will concentrate on the term propo
tional to k2 . Recall that the coefficientk2 is proportional to
the number of degrees of freedom and has been estimat
be k2;O(100)R5M5 . If we ignore thek3 term — which is
actually just the variation of theR2 term in the action, and
has already been considered above — and include our po
tial ~27!, Eq. ~5! becomes

H2~12H2/H82!5
k2

3
U~f,x! ~43!

where nowH825360pM4
2/k2 . Near the maximum of the

potential atx5xm , the potential isV(xm).1023M4
2M5

2 . It
is convenient to definee5(12H2/H82).m2/H2 wherem2

;331023M5
2M4

2 is the curvature of the potential at it
maximum. Recall that our problem was related to the f
that m2/H2;1.

Using Eq.~43!, we can now determine a consistent val
for e andm2 and thereforeH8. We can then check whethe
or not the resulting value ofk2 makes any sense with thes

FIG. 2. The potential from Eq.~41! for different values of the
parametersb andc controlling the relative strengths of theR2 and
R4 terms in the five-dimensional action.
3-9
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choices. To obtain the correct magnitude for density fluct
tions over the last 60 e-foldings of inflation, we needH
;1025M4ee220e. But recall thatH5m/Ae, so that we re-
quire M5.231023M4e3/2e220e. We see thatM5 is maxi-
mized whene50.075. In this case, we haveM5;1026M4
;1013 GeV. As commented above, such an estimate is ra
too small, but we do not consider this too disastrous, gi
the present level of sophistication of this class of model.

We should next determine whether or not we can obta
value ofk2 which is consistent with the desired values ofe
and M5 . Substituting k2 into H8, we find H8
;3M4 /(M5R5)1/2. For our value ofe, we needH8 to be
within 10% of this value,5 and we can solve forR 5

21 . The
result isR 5

21;4310215M5 , or about 40 GeV. We note tha
some estimates ofR5 , based on a version of the Scher
Schwarz approach, could lead one to expectR 5

21

;100M5
3/M4

2;1 TeV. Therefore, we do not regard such
large value ofR5 as necessarily unmotivated. Finally, w
can trivially check that not only do we get sufficient inflatio
with an acceptable magnitude for density fluctuations,
also find the spectral index to be in agreement with the
isting data. Forns , using e53/40, we have thatns51
2(1/20)50.95, which is a relatively encouraging resu
well within the present experimental uncertainties.

VI. CONCLUSION

Many of the problems associated with inflation in stri
theory can be traced to a rolling dilaton which preclude
~quasi! de Sitter expansion. In this paper we have present
model based on higher-order curvature terms such asR4 in
the context of a five-dimensional theory. This has some f
tures in common with what may arise in general compac
cations of M theory. In this context, the universe pass
through an extended five-dimensional phase~down from its
initial eleven-dimensional formulation! before it is seen as a
four- dimensional space-time with one relatively large ex
spatial dimension. We have made use of the conformal p
erties of the theory to analyze inflation in the familiar fou
dimensional Einstein frame. This has enabled us to iden
the relevant degrees of freedom, and consider their influe
on cosmological dynamics.

We have found that a pureR1R4 theory may provide a
potential suitable for topological inflation. However, in th

5This is hardly fine tuning by any standards.
y
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theory the spectral index for density fluctuations is too sm
and the magnitude of density fluctuations is too large, unl
the unification point is taken at an absurdly low energy sca
We have considered several ways of repairing these p
lems. One approach may be to includeR2 corrections in the
action. Such corrections are not known to arise in superst
theories, but may appear if the supersymmetry breaking s
and the unification scale are close to each other. They
soften the effective inflaton potential further. Alternatively,
similar flattening of the potential may arise as a conseque
of a large number of particle degrees of freedom, expecte
the Kaluza-Klein modes associated with an extended c
pact spatial dimension, which could be produced in
course of cosmological evolution. Particle production c
likewise raise the spectral index while keeping the mag
tude of fluctuations reasonable. This result calls for a rat
low unification scale of 1013 GeV and a scaleR 5

21;1 TeV
for the fifth dimension. Given the crudity of this model, the
results must be seen as encouraging.

To conclude, we note that our arguments do not dep
strongly on the specific form of higher-order corrections
the effective action. We only need some higher-order cur
ture corrections which produce a local extremum of the
fective inflaton potential. It seems plausible that such ter
may play a significant role in some region of a highly curv
early universe. The usual fine tuning of the coefficients
these terms, which was detrimental for the Starobins
model, could be avoided here because of the dilaton VEV
turn, the quadratic corrections may be employed to flat
the potential in order to produce a satisfactory density p
turbation spectrum, while not being overconstrained tha
to the fact that inflation is driven by higher corrections. F
nally, the graceful exit problem is very easy to solve, due
the inherent instability of the solutions. The inflaton ro
down to the minimum, slowly at first but accelerating alo
the way. In light of this, we take this model to be a reaso
able candidate for standard quasi-exponential inflation
scales close to the unification scale, which might offer so
clues how to embed inflation in string theory.
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