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Within the standard models of particle physics and cosmology we have calculated the big-bang prediction
for the primordial abundance dfHe to a theoretical uncertainty of less than 0.198Y < =0.0002), im-
proving the current theoretical precision by a factor of 10. At this accuracy the uncertainty in the abundance is
dominated by the experimental uncertainty in the neutron mean lifetiy3e885.4+2.0 sec. The following
physical effects were included in the calculation: the zero and finite-temperature radiative, Coulomb and
finite-nucleon-mass corrections to the weak rates; oadguantum-electrodynamic correction to the plasma
density, electron mass, and neutrino temperature; and incomplete neutrino decoupling. New results for the
finite-temperature radiative correction and the QED plasma correction were used. In addition, we wrote a new
and independent nucleosynthesis code designed to control numerical errors to be less than 0.1% . Our predic-
tions for the*He abundance are presented in the form of an accurate fitting formula. Summarizing our work in
one number,Yp(7=5%10 1%=0.2462+0.0004 (expt)+<0.0002 (theory). Further, the baryon density
inferred from the Burles-Tytler determination of the primordial D abundafiggh?=0.019+0.001, leads to
the predictionYp=0.2464+0.0005 (D/H)=*<0.0002 (theory)=0.0005 (expt). This “prediction” and an
accurate measurement of the primefale abundance will allow an important consistency test of primordial
nucleosynthesi4.50556-282(99)05106-]

PACS numbes): 98.80.Ft, 11.10.Wx, 12.20.Ds, 26.3%

I. INTRODUCTION Coulomb and radiative corrections to the weak rdtb$—
19], BBN code numerical errorgl7], nuclear reaction rate
Big-bang nucleosynthesidBBN) is one of the observa- uncertaintie$20,21], finite-temperature QED plasma correc-
tional pillars of the standard cosmology. Further, it has thdions [14,22, the effect of finite-nucleon mag&3,24, and
potential to be a precision probe of the early universe andhcomplete neutrino decouplind4,25. However, the cor-
fundamental physic§1-3]. Observations of light-element rections have been incorporated in a patchwork fashion and a
abundances have improved dramatically over the past fewecent informal poll of BBN codes indicated a spread of
years, and the current and planned precision measurement, in the predicted value of théHe abundance for fixed
of D, “He,*He andLi, should allow a precis¢10%or bet-  anqdr. .
ter) determination of the baryon density and consistency The goal of this work was a calculation of the primordial

check of BBN, but only if the theoretical predictions of the 51, ndance of'He, within the standard models of particle
light-element abundances are as good as the observatmns.dﬂysics and cosmology, accurate enough so that its uncer-

particular, a measurement of the primeval D abundance PMRinty is dominated by the experimental uncertainty in the

down the baryon density, and in turn makes predictions for . _ _ _
the other three abundances. Because the subsequent evo'?t?—u”on mean lifetimé, r,=885.4:2.0 sec[26-29. Be

tion of the “He abundance is simple—stars makée—and causer, is so accurately knowndr,/7,=0.23%), it is
measurements have the potential of determiifpgo three used to normalize all of the weak rates that interconvert neu-
significant figure§4—9], “He can provide an important con- trons and protonsep—vn,e"n—vp and n—pev. The
sistency check of BBN. Furthermore, an independent detefaryon-number fraction ofHe produced €Yp) depends
mination of the baryon density from cosmic microwave Sensitively on the weak rates because they determine the
background anisotropies will soon test the consistency of th@eutron-to-proton ratia/p before nucleosynthesis, and es-
standard model of cosmology. Finally, the combination ofsentially all of the neutrons around at the onset of nucleosyn-
accurate observations and theory can be used to test physics

beyond the standard model of particle phy$it4.0], e.g., by

imposing a strict limit on the number of light neutrino spe- iThe particle Data Group currently recommends=_887
cies[11-13. Cosmology is entering a high precision age, +2 sec[26]. A recent measurement using ultracold neutrons indi-
and this motivates high-precision BBN predictions. cates a slighty lower value, 7,=885.4£0.9 (stat)

Over the years, theoretical study 6He synthesis has +0.4 (sys) sed27]. For our central value we use 885.4 sec and
been intense, with the following effects being consideredfor the uncertainty we use:2 sec.
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thesis go into forming*He. We have determined the effect (k=wp). Finally, while we have tried to be exhaustive and

on Yp by perturbing the weak rates in the standard d@$s,  very careful in our analysis, we cannot rule out systematic
theoretical error: that is, the possibility that we have ne-

oYp ol glected some microphysical effect as important as those we
Yo —08¢ . (1) have included.

Since the weak rates scale as], this estimate implies that Il. NUMERICS

67, introduces an uncertainty Wy of 0.18% . We use this

uncertainty to set our goal for all theoretical uncertainty. A. BBN code

To meet our goal we need to calculate the weak rates to \we have written a new nucleosynthesis code that is inde-
precision of better than 0.23%. Another source of errors irhendent of the standar@awand code[29]. The heart of
Yp come from thermodynamics, i.e., the energy density any nucleosynthesis code is the set of ordinary differential
the pressuré® and the neutrino temperatufie,. To deter-  equations that govern the evolution of the abundances of the
mine how accurately we need to know thermodynamic quaniight elementssee, e.g., Ref$31,32)). Our code tracks pro-
tities, we can estimate the changeYip due to a change in a tons, neutrons, D, TSHe,*He °Li, ’Li and "Be. The baryon-

thermodynamic quantity, e.go. Again, using the standard number fraction of elemeritis given by
code, we find

Ain Ai(n;/ny)
5Yp Sp Xi=——= , ()
Y—P204? (2) B 1+E Ai(ni/nH)
1

This indicates that we should calculate thermodynamic quan- ) , ) )
tities to better than 0.45% . whereA,; is the element’s atomic numbar;, its number den-

sity, andng is the baryon-number densit§Note, by conven-
must be considered: tion Yp is used to denot&,.) Nuclear reaction rates govern
(1) Weak rate and thermodynamics numerics: most quant—he evolution of the elemental abundances. Conservation of

tities to be calculated involve integrations that must be don&@7yon number provides the constraint:
numerically.
(2) Ordinary differential equatiofODE) integration nu- S X,=1.000 4)
merics: nucleosynthesis codes contain finite step size errors. T '
(3) Nuclear reaction rates: errors originate from experi-
mental uncertainties in the nuclear reaction data, as well as e take for our initial temperatur&; =10 MeV, and for
from neglecting nuclear reactions important to BBN. our initial abundances, the nuclear statistical equilibrium
(4) Weak-rate physics: there are several small physicalNSE) values:
effects that must be calculated, including Coulomb, zero and
finite-temperature radiative corrections, and the effect of Xp=ga[ £(3)A~ Ll AI2p(3A-5)12)
finite-nucleon mass.

When calculatingYp to this precision, several factors

(5) Thermodynamics physics: for temperatures much ><A5’2( l) 3(A 1)/27]A71XZXA*ZEBA/T ®
greater than the electron mass, there are osdeuantum My pn
electrodynamic corrections to the equation of state of the
plasma.
(6) Incomplete neutrino decoupling: neutrinos share par-
tially in the entropy release whesr pairs annihilate. 2Baryon-number fraction and baryon-mass fraction differ by order
ltems (1), (2) and (3) are addressed in the next section; 1%due to nuclear binding energy. Because nuclear reactions
item (4) is addressed in Sec. IIl. Iten{S) and (6) are taken change the total mass in baryons, the mass fraction of spécies

up in Sec. IV, and a summary of our results is given in the(=X" ) can change even if the number of specisdoes not.
final section. The mass fraction of specids is

We mention that we have not considered @*?) col- qmess MM _ o m 1
lective plasma effects due to the presence of the copious ' Ny My '
numbers ofe™ pairs at the time of BBN, because they are Z i 1+JZ (") (my/my)
safely below our theoretical error budget of 0.1% ¥¥.  wherem, is the mass of species e.g., m,=4.002602 amu and
These effects, all of relative size 0.1% and calculated imm,=1.00783 amu. Folp=0.25 and the primordial mix of ele-
Ref.[30], are: the enhancement of nuclear reaction rates dugents X7'35%=0.24866. Similarly, the relationship between the
to Debye screening of nuclear charge; the contribution obaryon mass density angl depends on elemental composition. For
longitudinal plasmon modeskf{ w,~4mne=/T) to the en-  the primordial mix withYp=0.25,
ergy density and pressure; tfreegative contribution to the Qgh?=3.66x 10" 7,
energy density and pressure of the electromagnetic interagiith T =2.7277 K. Assuming a mass of 1 amu per nucleon, the
tion of e™ pairs; and the reduction of the energy and pressur@refactor is 3.63% 107, and for solar abundance, the prefactor is
of photons due to plasma effects on low-frequency photons.66043< 10"
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TABLE I. Reactions used in our code.
3t
(1) p+n—D+vy or
2 D+n—=T+7y %mg‘ E
3 3He+n—“*He+y : .
4 SLi+n—"Li+y X .
(5 SHe+n—T+p .
(6) Betn—'Li+p L
@) "Li+ne3He+ *He -t
®) "Be+ ne4He+ *He Q”T -
9 D+ p—S3Het+ y \d:
(10 T+ p—“*He+y i -
(11 8Li+p—"Be+ y
(12 Li+p—*He+*He
(13 D+*He—5Li+y -
(14) T+%HewLi+y gF =
(15 SHe+“*He—"Be+ y E‘ ° L
(16) D+ D« 3He+n g TE 7
17 D+DoT+p - ]
(18 D+Te"Hetp 10710 2x10~10 sx10® 107
(19 D+3He—*He+n K
(20 *He+3He—*He+p+p FIG. 1. Baseline predictions: element abundances predicted by
(21 D+7Li<*He+“He+n our BBN code.
(22 D+ ’Be—*He+*He+p

standard code, we have verified that the effectYon of
neglecting these additional reactions is less than*1@The
light-element abundances predicted by our code are shown in
Fig. 1.

whereA is the atomic numbemy=940 MeV is the nuclear
mass,7 is the baryon-to-photon rati®, is the binding en-
ergy of speciesA, and {(3)=1.20206. At temperatures
greater than about 1 MeV, the nuclear rates are sufficiently

high to cause the abundances to rapidly assume their NSE B. Numerical accuracy of the BBN codes
values.(As discussed in Ref53], the final abundances are
very insensitive to the assumed initial abundancéswe
make the well justified assumption that the elements are

Because the differential equations governing the light-
Flement abundances are stiff, an implicit integrator was used
al- o 9
Oto evolve them. Instead of specifying explicit time steps, as
in the standard code, the desired final accuracies are specified

only on » andT. This implies the important and well known as parameters of our code’s integrator. The temperature steps
conclusion that the predictions of nucleosynthesis are a func= P 9 : P X

tion of only one parametery, which is equivalent tan,  ie 2R F0 A BSR Y T e entors
sinceT,=2.72770.002 K is so well known. 9 P

were much smaller than the allowed error¥ip.

Several important quantities enter into the evolution equa- To calculate the weak rates and thermodynamic quantities
tions: weak rates, thermodynamic quantities and nuclear re’ccurately, we proceed as followsee, e.g., Ref33)). Let

action rates. For the weak rates, we define the total conver-"~, : .
sion rates(per neutron or proton = [af(x)dx for some functionf(x). Expressed as a first

order ordinary differential equation=J(b) wheredJ/dx

Fop=Tern_mptTun_ept Tnpers =f(x),J(a)=0. We solve this differential equation using a
fourth order Runge-Kutta routine. Figure 2 demonstrates for
Tpn=Lep.int T erntLpern- (6) a specific example that the actual numerical errors are as

small as requested. All of the weak rates and thermodynamic
Simple expressions for these rates may be obtained assumiggantities were calculated so that their numerical error con-
no radiative corrections and infinite nucleon mass. The thertributions to the uncertainty iiYp were acceptably small.
modynamic quantities that must be calculated are We compared the results of our code to the standard code,
p(T),T,(T),ps(T) and the differential time-temperature re- which dates back to the original version written in 1986,
lation dt/dT. was updated by Wagoner in 19732,34], and modernized
Our BBN code is independent from the standard codeand made user friendly by Kawano in 19885]. Nuclear
with one exception: It uses the same nuclear-rate Qith reaction rates were updated in 192®]. One must be care-
the exception of the weak rajesThe nuclear-reaction net- ful when making comparisons. First one must consider the
work corresponds to the smallest one offered by the standamumerical accuracy of the standard code. In 1992 Kawano
code, which contains the reactions listed in Table I. AlthougH 29] estimated the accuracy &% to be 6% . In 1993, Ker-
this network is much smaller than the largest offered in thenan addressed this issue in more detail and reported finding a
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FIG. 3. Comparison between the standard code and our code for
“He (lower curve$ and D(upper curves For the solid curves, our
very accurate weak rates were inserted into the standard code. For
the dashed curves, the standard code’s weak rate routines were
used.(Note: 5,0=5/1071)

FIG. 2. Actual numerical error in calculatinge, ., for error
parameter set afl'/T'=10"%. The error is smaller than the speci-
fied accuracy (10% for all temperatures. Similar results were ob-
tained for the other weak rates and thermodynamic quantities.

systematic numerical error in the standard cddé&,36,
8Yp=0.0017, large enough to be very significant at our level
of accuracy. Second, the standard code implements certain The primordial *He abundance is sensitive to nuclear re-
physics corrections, namely a correction put in by Wagoneactions other than the weak rates. Several studies of the un-
to approximate the Coulomb correction by scaling all of thecertainties in theoretical abundances due to nuclear rate un-
weak rates a factor, 0.98, independent of temperature. certainties have been performgd20,36—3% Here we will

The systematic numerical error discovered by Kernan wasise the results and techniques of the recent work of Fioren-
measured by comparing the predictions of the standard codéi et al. [21]. They use linear error propagation theory to
at some(unspecified integration step size to the predictions quantify the effect of experimental uncertainties in the
as the step size became very small; note, however, that thwiclear-reaction rates on the light element abundance uncer-
error using the default step sizim Ref. [29]) is four times tainties and their correlations,
larger. The “Kernan correction” is now routinely added to )
the results of the standard code. Needless to say, a simple (%) =3 )\2<@
additive numerical correction is not adequate because other Yp KRy
codes exist; not all users of the standard code use the same
step size; and the numerical error can be machine dependemthere the sunk is over nuclear reaction$R, is the experi-

For our comparisons we took out the Kernan and Cousmental uncertainty in the rafe,, and\, is the logarithmic
lomb corrections and then made the stepsizes small enougterivative
so that integration errors were negligible. The integration
error for the standard stepsizésith the two standard step- dlog Yp
size parameters equal to 0.3 and 0.6, respeciiveds found M= dlog Ry’ ®
to be §Yp=0.0073.With the standard code configured this
way, we comparedr andn,/ny as a function ofp in two  Fiorentiniet al.[21] calculate the logarithmic derivatives nu-
scenarios. For the first, we used the standard weak-rate rowmerically, using the standard code, and take the experimental
tines to calculate the weak rates. For the second we used otate uncertainties from Smitt al.[20]. Contributions to the
high-precision weak-rate routines to calculate the weak ratesncertainty in the*He abundance arise almost entirely from
in the standard code. The results are shown in Fig. 3. Théour rates. Table Il lists these rates and their relative experi-
agreement is excellent: fofp the codes differ by less than mental uncertainties. Figure 4 shows the resulting uncer-
0.15%with our weak-rate routines and by less thanainty inYp. For <2x10"1° the reactiorp(n,y)d domi-
0.2% with the standard weak-rate routines. For D the codesates the error budget. Finally, a recent new analysis of the
agree to better than 0.75%. experimental uncertainti¢40], indicates the uncertainties in

This agreement gave us confidence that our code calcuhe reactionsl(d,n)p andd(d,p) T have been overestimated
latesY accurately for the baseline ca@eithout the physics by about a factor of two, and that the precision of the reac-
correctiong. Of course, the convergence of two independention p(n,y)d could be improved significantly. Thus it may
codes is not proof that they converge on the correct valuewell be the case that the uncertaintysindominates the error
We will assume that the two codes do indeed converge obudget for all.
the the correct answer, and because our code was designed,
engineered and tested for an error budget, we will use its IIl. WEAK RATES
results and internal error budget as the baseline for further
comparison. The internal error budget for our code was no The primordial *He abundance is very sensitive to the
greater than 0.1%. weak rates that maintain the balance between neutrons and

C. Nuclear rate uncertainties

2

, )
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TABLE II. 1-0 experimental uncertainties and their effect on
Yp. All nuclear rates whose uncertainties significantly impégt
are shown. The weak-rate uncertainty of 0.23% is due to uncertainty € v

in measurements of the neutron mean lifetime, and assumes that | 11,74

e ) . 1
Coulomb, radiative and thermodynamic corrections to the weak
rates are known to better accuracy than this. Note thatyfe5.0 p n
X 10719 the neutron mean lifetime dominates the error budget. The
bottom row indicates the rms total uncertainty¥Yp for these two

values ofz. FIG. 5. Tree level diagram for the procesp— vn.

Reaction k  OR/Rc  oYp/Yp(710=50) OYe/Ye(710=18)  gnified to a five-dimensional integral involving the

nep 0.23% 0.17% 0.18% matrix-element squared\1|? [24]
p(n,y)d 7% 0.04% 0.17% .
d(d,n)®He  10% 0.06% 0.07% _
dEd,p;T 10% 0.05% 0.06% Fe"*‘””_Zngnpf dp. dp,d costyd cosd, de,
Total Uncertainty 0.19% 0.27% 2 2
x&pE”lWFf fo(1—f,)(1—f), (9
EeEpEn J e'p v n/»

protons. To calculat&’p to a precision of 0.12% the weak

rates must be known to a precision of 0.15% . In addition to ,
numerical issues discussed earlier, several physical effects ‘7:1+E_
are important at this level: zero-temperature radiative and "

Coulomb corrections, finite-nucleon mass correction, anq/vhereE E E  andE. denote the energies of the respec-
finite-temperature radiative correction. R n 9 P

The expressions for the weak rates are derived startinglle particles and7 is the Jacobian_introduceg _in integrating
with the tree-levelBorn diagram shown in Fig. 5. For pur- e energy part of the delta function, apti|® is summed

poses of illustration, we will consider the process+p over initial and final state spins. The integration limits cor-

v+ n. Without making any approximations the phaserespond to the kinematically allowed region in the five-

. . iable phase space. An expressionEge= P, in terms of
space integral for the conversion r r protop can be Varabié phe pe P L
P 9 dgeer proton the integration variablepe,p,,0,,0,, and¢, is given by

1 (10

(pe+ pp) Py
e )

3 : ) _A’B+ 2EA*—m?(4E%-B?)
~efl v 2_R2 '
®3E 4E>-B
> o | 2 2 2 2 2
Sok AT=2EE,+m;,—mi—mg—my
5
e : —2pepp COSH,,
of B=2[p, cosf,+ p,(cosb, cosd,
8 - +sinf,sing, cose,)], 11
§ o whereE=E.+E,. For more details, see RdR4].
© This rate expression is challenging to evaluate for two
° reasons. First, the kinematically allowed region in the five-

1 2 ' ' 5 — '10 dimensional phase space is not simple. Second, the full ma-
trix element is complex. Only if the nucleons are assumed to
be infinitely massive, does the expression simplify|?

FIG. 4. The top panel shows the uncertainty¥ip due to ex- —2°GE(1+3092)EEE,E,. In that limit, the sole kine-
perimental uncertainties in nuclear rates, as a functiom.ofhe =~ matical constraint is E,;=E,+Q (Q=m,—m,=1.293,
solid line shows the total uncertainty, while the other lines showMeV), and the rate expression becomes a one variable inte-
each nuclear reaction separately. The dashed line iafop, the  gration. Normalizing the rates to the zero-temperature free
dashed-dotted line is fqu(n, y)d, and the two dotted lines are for neutron decay rate,
d(d,n)3He andd(d,p)T. The bottom panel shows the uncertainty
in » that would result from the above uncertaintiesyin, when» 1 G,2:(1+Sgi) mg
is derived from a perfect measurement of tliée abundance. The _Ernﬂpev(Tzo):T 0r (12

o o . . Th T
dashed line is for the weak rate uncertainties alone, while the solid
line is for the total nuclear rate uncertainty. The factor of ten dif- q
ference in the scales between the two panels is indicative of the fact No= f de e(e— q)2(62_ 1)1/2: 1.6333, (13
thatYp depends logarithmically upon. 1

M10
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FIG. 6. Weak rates as a function of temperat{Bern diagram,
infinite-nucleon-mass limit (1) ep—wvn, (2) vp—en, (3) en

—vp, (4) vn—ep, (5) n—per, (6) pev—n. Note, freeze-out of
the n/p ratio occurs aff=0.8 MeV and“He synthesis begins at

—20

log(T' sec)

-25

T=0.1 MeV.
leads to the well known formula for the procesg— vn:
- 1 (= e(e2—q?) 12
e s NoJg [L+expez) ][ 1+exp(g—e)z,)]’
(14
whereT is the photon temperatur&,, is the neutrino tem- FIG. 7. Zero-temperature corrections to the proceps-vn.
perature,e=E./m,,q=Q/mg,z=m,/T, and z,=m,/T,,. The center blob is the charged-current, weak-interaction vertex.

Summing then—p and p—n rates yields the standard

weak-rate expressiorigd1] where

3
N e(e—q)?Ve-1 C(B.y) =40+ 4(R-1)| 2~ = +in2y
Fop=—| — + de , 3e 2
Tn (1+e %) (1+e99%) ,
y
R[2(1+ 8%+ = —4BR|—4(2+1
(Jf) (e T (/3)662/3)(1/3
(1+e?)(1+ele¥m) + 25432+ 2583+ 308%+ 2085+ 85°)/(1+ B)°,
(15 17
;Il'Jr;Z ?rI]XFIPdI\éIdua| rates are plotted as a function of temperaﬂ is the electron’s velocity an®=tanh~Y3. Next apply
9 the Coulomb correction by multiplying the integrand of the
rates forn— pev and ep~ vn by the nonrelativistic Fermi
A. Zero-temperature Coulomb and radiative corrections factor,
To order «, the weak rates with zero-temperature Cou-
lomb and radiative corrections are given by the sum of the F(,B)— 2malB i)
interference between the Born diagrdfig. 5 and the dia- @ 2malp’
grams in Fig. 7.

It is conventional to separate the corrections into a CouThe error from using the non-relativistic Fermi function is of
lomb part proportional to nuclear charge and a radiative order 2% of the Coulomb effect itseffi2], and so the ap-
part proportional toe. SinceZ=1 here, this separation is proximation is fine. Finally\, must be corrected for Cou-
arbitrary. Dicuset al. calculated the Coulomb and zero- lomb and zero-temperature radiative effects by multiplying
temperature radiative corrections to the weak rates in 198Rs integrand by[ 1+ (a/27)C(8,y)]F(B). Doing this in-
[14]. Summarizing their results we obtain the following pre- creases\, by 7.15%, to 1.7501.
scription for correcting the rates. First, perform the zero- Figure 8 shows the combined zero-temperature correc-
temperature radiative corrections by multiplying the inte-tions. Note that the corrections are less than or equal to zero
grands of all of the rates by the factor, for both rates for all temperatures: decreased weak rates im-
ply earliern/p freeze-out and an increase Y. Our code
calculates the zero-temperature corrections to the weak rates

(16 by modifying the integrands of the rate expressions as de-

o
1+5-C(B.Y)|.
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FIG. 8. Zero-temperature radiative and Coulomb corrections tc% FIG. gi tF'n'te'nLt'CIZ_OTnSZSSMC(i;re.C“PZ.tO tth(? ptrr]ates. :.hel
the n—p rates. The horizontal line is Wagoner’'s approximation to reeze-out temperature g =0. €V, IS Incicated with a vertica

the Coulomb correction. The vertical line is at freeze-out. line.

_ . five-dimensional rate integral, E¢®), using the Monte Carlo
scribed above, and by using the correcteg The zero-  method[24]. Figure 9 shows the finite-mass corrections to
temperature corrections yield a chang®p/Yp=1.28%  the n—p rates. Using the individual rate corrections we

which is insensitive to the value of over the range 10'°  found the corrections to the summee- p rates,
<7=10"°. This result is in agreement with RéflL4].

Wagoner approximated the Coulomb correction by reduc- ) rnﬁp—r;:p

ing both then—n and p—n rates by 2%. This correction, T > (19
shown by the horizontal line, is close to the high temperature n—p Fop

asymptotic Coulomb correction of 2.16% . Howevern/p "

continues to decrease slowly for temperatures lower than Oy n_Tpon—lpon (20)
freeze-out, where Wagoner’'s approximation breaks down. Foon B r;_)n '

The fact that the real corrections are less negative in this
regime means that the change¥p from the Coulomb cor- whereI’* is the rate in the infinite-mass approximation, and
rection will be less positive than one would estimate fromI" is the unapproximated rate. Our corrections are accurate to
Wagoner's approximation. Adding in the zero-temperaturewithin a few percen{24]. We incorporated the finite-mass
radiative corrections brings the total zero-temperature changeorrections into our code by modifying the—p rates at

in Yp closer to what would be found using Wagoner’s ap-each temperature by the correction shown in Fig. 9. The
proximation to the Coulomb correction. Table Il shows resulting correction toYp, was found to bedYp/Yp
8YplYp for the Coulomb and zero-temperature radiatively=0.50% , valid for 10 %< »<10"°.

separate and summed, comparedd¥:/Yp from Wagon-

er's approximation. Note in particular that the difference be- C. Finite-temperature radiative correction

tween Wagoner’'s approximation and the zero-temperature

S SN Finite-temperature modifications to the weak rates arise
correction is 0.28% , which is significant at the 0.1% level. b

from several sources:

(1) the (1=f) quantum statistical factors in the integra-
B. Finite-nucleon mass correction tion over phase space

(2) a shift in the electron mass
K (3) a change in the neutrino-to-photon temperature ratio
(4) a correction to the photon and fermion propagators
(5) the square of the sum of diagrams for processes that
involve photons from the plasmabsorption and stimulated
emission; see Fig. 10

(6) finite-temperature wave-function renormalization.

Item (1) is included in our definition of the Coulomb cor-

Recall that the standard rate expressions,([E4), assume
infinitely massive nucleons. We have calculated the wea
rates without this assumption by numerically integrating the

TABLE lll. Zero-temperature corrections ¥, compared with
change inY, from Wagoner’'s approximation of the Coulomb cor-
rection. These corrections are insensitive 4o for 10 <y

—9

=10 rection. We shall define item@) and (3) to be part of the

Correction SYolYp t_he_rmodynamics effe_cts_, consider_ed later. Therefore, Fhe
finite-temperature radiative correction to the weak rates in-

Coulomb 1.04% volves items(4), (5) and (6).

T=0 Radiative 0.24% Dicus et al. [14], and Cambier, Primack and Shgt3]

Combined 1.28% calculated the finite-temperature radiative corrections to the

Wagoner’s approximation 1.56% weak rates. Neither of these papers correctly handle the

finite-temperature wave-function renormalization. In fact,

103502-7



ROBERT E. LOPEZ AND MICHAEL S. TURNER PHYSICAL REVIEW [39 103502

for some processeblowever, for the case of the weak rates,
the three different finite-temperature wave-function renor-
malization results give the same contribution to the weak
rates. For convenience, we used the formalism of Sawyer.
The correction to then— vp is given as

e’T4 o (o
o =gr5GR(1+303) [ [ “auakpN,
0 Jx

XIN-(k,)W,(u,k,) + N ()W, (u,k,)],  (21)

where  x=m/T,p,=u?—x?v=k5+x%N. (u)=1/(e"

+1),
WUk v, u? I u-+py 2u)
y(u' U) Zpu kvpu nu_ Pu kv
FIG. 10. Finite-temperature corrections to the weak rates, i.e., X[H(u+k,)+H(u—k,)—2H(u)]
corrections involving photons from the plasma. The bottom two
diagrams represent stimulated emission. + i|nu+p“ —2[[H(u+k,)—H(u—k,)]
Pu U—py v Y
finite-temperature wave-function renormalization is still an (22)
open issue. The difficulty lies in the fact that finite tempera-
ture spoils Lorentz covariance through the existence of a k,H(u) put+k,
preferred, thermal framén this frame the phase-space dis- W (u,k,) = 4p—v n py—K
tributions are the Bose-Einstein or Fermi-Dirac distribu- ! b
tions). The usual methods for obtaining the wave-function m*—(uv—pyk,) 4k,pyu
renormalization rely on Lorentz covariance, so that the ap- +uln (G pk)  pP—K2 (23
propriate generalization to the finite-temperature case is not w Pu™%
clear. Donoghue and Holste[i5,16 start by assuming a gng
finite-temperature spinor field—with creation and annihila-
tion operators obeying the standard anti-commutation H(w)=1?N(— )0 (v), (24)
relations—that satisfies the nonlinear Dirac equation. They
write the propagator in terms of these finite-temperature sca- v=(W+q) (25

lars, obtaining a finite-temperature wave-function renormal-

ization that is a multiplicative factor. Sawygt8], and Es- with g=Q/T. The term proportional tW, is due to finite-
posito et al. [44], start by identifying particle states with temperature wave function renormalization. To find the cor-
poles of the propagator, without reference to the finiterection to the other weak rates, make the substitutions shown
temperature field. They assume that the poles are only peir Table IV.

turbatively shifted from their zero-temperature values. They We calculated the finite-temperature radiative corrections
then identify the finite-temperature wave-function remormal-to each of the weak rates. The correction to the summed
ization with the residue of the propagator at the new polen« p rates, which match Sawyer’s results, are shown in Fig.
The result is a finite-temperature wave-function renormalizadl. The correction formulas are complicated enough to pre-
tion that contains additional, non multiplicative terms, so thatclude direct incorporation into our BBN code. Therefore we
the results of the two alternative approaches are diffg@sit implemented these corrections as temperature-dependent fits
pointed out by Chapmafl9]). Furthermore, the results of within the BBN code. The resulting change Y ,5Yp/Yp

the Sawyer differ from Espositet al.[44], even though they =0.12%, was found to be insensitive tp in the range
follow similar approaches. The differences change the rate$0 °< »<10°. Sawyer claims a change 0f0.02%,

TABLE |V. Substitutions in Eqs(21)—(25) for computing finite-temperature radiative corrections.

Process lower u-limit upper u-limit  eFermi 1 e-Fermi 2 v N(=*v)
en—vp X 0 N(u) N(v) w+q —v
ep—vn q 0 N(u) N(v) w—( —v
vh—ep q 0 N(—u) N(—v) w—( +v
vp—en X o N(—u) N(—v) w+(q +v
n—pev X q N(—u) N(—v) —w+(q —v
per—n X q N(u) N(v) —w+(q +v
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o‘ :IIIIII T T IIIIIII T T IIIIIII T T E
ot ]
a L J
oo
ok <
< — F ]
“© r ]
To 1110 1 ) 1 1 IIIIIII 1 1 IIIIIII 1 1
—10 1 0.1 0.01
T (MeV) r (M)
e

FIG. 11. Finite-temperature radiative corrections to the p
rates. This plot is to be compared to Fig. 4 in Réf2]. FIG. 12. Temperature evolution of the estimated change in neu-
tron fractionX,, due to finite-temperature radiative corrections. The
while Chapman claims a change #0.01% . Both Sawyer solid line shows the results of integrating the perturbation equa-
and Chapman compute the change in the neutron fraction fiipns; the low-temperature asymptotic solution gives the correction
estimate 5Yp/Yp. To first order in the perturbation, the t0 Yp.,8Yp/Yp=0X,/X,. The arrow indicates the final result of
equations governing the evolution of the neutron frackign ~ Substituting the radiative corrections into our full code. The two

and its perturbatio®X,,, can be written methods agree very well.
by Heckler[22] and applied to cosmology and solar physics.
%: E[—X T+ (1=X)Ty 0] We will follow his approach, correcting a few small errors.
dT dT nn—p e b The “He abundance is sensitive to thermodynamic quan-
tities in several ways. The energy density determines the
déX, dt expansion rate; changes in the expansion rate affect the
a7 d_-l—{rnﬂp(ﬁxn_k ¥YnXn) freeze-out temperature, the abundance of free neutrons, and
finally Yp. The next two effects follow from corrections to
+T [ vp(1=Xq) — X, 1, (26)  the electron mass. A change in the electron mass affects the

weak rates directly, and indirectly, by changing the entropy
where y,= 8T, /T, and y,= 8T, /T, Then the of the electron-positron plasma at the time neutrinos de-

change inYp is estimated as couple. Since this entropy is transferred to the photons when
the e* pairs disappear, this changes the neutrino-to-photon
Np X, 85X, temperature ratio, and affects the weak rates, which are very
vo T X =X . (270 sensitive to the neutrino temperature.
P N lonset of BBN "N lT=0 The finite-temperature QED correction to the equation of

] ) ) state can be expressed as a modification to the pressure of the
In order to have a direct comparison with the results of Sawpressure-weighted, effective number of effective degrees of
yer and Chapman, we fourilY 5 /Y using this method. The freedom,

evolution of §X,, is shown in Fig. 12. Our results obtained
from this approximation method confirm those using the P(T)=Po(T)+ oP(T), (28
BBN code, and differ from Sawyer and Chapman. However

) where 6P(T) is th rrection he pr r T
all agree the change ¥ip is small. ere oP(T) is the correction to the pressure aRy(T)

=(m?/90)gpT* is the standard expression for the pressure.
The change in pressure can be equated to a change in
IV. THERMODYNAMICS 9,.89p=90/(m?T*) 8P. The correctionsP(T) can be ex-

epressed as an expansion in electron chaméP(T)

Thermodynamic corrections refer to corrections to th .

density, pressure and neutrino-to-photon temperature ratiozziﬁpi(-r)' The Eeyn_man d|agram§ fqr thez-ter_m and

There are two effects to consider: finite-temperature QEDE ~t€'M are shown in Fig. 13. For vanishing chemical poten-
al the e term is[45],

corrections to the equation of state of the electromagnetitu,

plasma, and incomplete neutrino decoupling. e2T4 (= \/ﬂ
oPaM)=~- WJ duNeT

A. Finite-temperature QED correction

rections to the density, neutrino temperature and electron 8
mass. All of the these corrections follow from the finite-

temperature QED modification to the equation of state of the
electromagnetic plasma. These corrections were calculated

214
TP . _ e T o (o

The finite-temperature QED corrections encompass cor j f dudo p,p,N(U)N(v)
X X

x2 Uv + pup, + x>

PuPy  Uv=PpyP,+X

4+

: (29
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—
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FIG. 13. Feynman diagrams that contribute to the correction to
the equation of state of the electromagnetic plasma. The left dia-

gram produces the ordef correction, while the right diagram is < vl i

the smallere® correction. b.Ol 10 100
T (MeV

where x=m,/T,u=E,/T,p,=Ju?—x2 and N(u)=1/(1 (MeV)

+¢€"). In the high-temperature limit>m,, FIG. 14. Finite-temperature QED change in pressure-weighted

50274 (gp, solid line and density-weightedg, dashed lingrelativistic
e
SPH(T)=— - (30) degrees of freedom.

- . , . where x=m,/T,k,=Ju?>=x? and p,=p/T. Figure 15
A similar, but more involved, calculation yields the result for g5 the finite-temperature QED correction to the electron
6P3(T) in the limit T>m [45], mass as a function of temperature. Figure 16 shows the effect
of the shift in the electron’s mass on time-p rates. The

SP4(T)=— e’ _ (31) lower curves indicate the error due to not including the
36\37 momentum-dependent part of the mass correction. For our
calculations, the error is negligible and we neglect the
At high temperatures, the ratio p-dependent term in the mass correction formula.
The final effect of the thermodynamic corrections is a
SP,(T) 1 NEL: change in the neutrino-to-photon temperature ratio. This can
oP5(T) e 2 =11, (32 pe derived starting with the expression &P (T) and track-

ing the entropy density of the neutrinos and other particles.

while both thee? and thee®terms are exponentially sup- Lets, be the entropy density of neutrinos asgy be the
pressed foif <m. Therefore, to good approximation, we can combined entropy density of the electrons, positrons and
neglectsP4(T) for all T. For T>m,,dg,= — 25e?/16m2. photons:
From the standard thermodynamic relatign=—P

+T(dP/dT) we can find the thermodynamic correction to '
the energy densityp=py+ dp, where the standard density
po May be written in terms of the density-weighted effective
number of relativistic degrees of freedom,pg

= (w?130)g,T*. The change in the density can be written

0
T

log(ém/m)
-2

S 59 SPAT— 6P| — 2 o2 ¥
9= ra| TOPHTGT P T T g2 T
(33
. i ~°r ]
Figure 14 showssg, and 5gp as a function of temperature. s
The finite-temperature QED correction to the pressureis a &
change in the dispersion relation of the electrons which can _, “,’ -
be attributed to a change in the electron mass: e
af
E2=p?+m?+ sm?. (34) 2 YE
Y AETEEET| MR | 111
The formula.forcSm2 follows from the definition of the pres- 0.01 0.1 1 10
sure correctio45]. T (MeV)
272 @272 r» Kk 1 FIG. 15. The top panel shows the finite-temperature QED cor-
om?(p,T)= —+—2f du—uu— rection to the electron mass as a function of temperature. The
6 ™ Jx ue+l dashed curve neglects tipedependent term, while the solid curve
2m2T (= K assumep=3T. The bottom panel shows the relative error due to
_ _Ff n M . , (35 not including thep-dependent term. This error, which is a ten per-
2m°p Jx pu—kye"+1 cent correction to the correction, can be safely neglected.
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Y — S ——r In the limit that the neutrinos are completely decoupled, the
two entropies per comoving volume are separately con-
served:s,a®, sgya®=constant, whera is the scale factor.
The small residual coupling of the neutrinos to the electro-
magnetic plasma leads to a correction of abet1% [25],
discussed below, which can be ignored here. At high tem-
perature we have

log(|eT/T})
4

© R 1 T R W Semad®
b.ot 0.1 1 10 3 =51 21[5gp(T)+359p(T)]
s,a
T>m,
T (MeV)
N 22/  25¢?
FIG. 16. The top curves show the effect of the finite-temperature = 71 1- 88 72 (38

electron-mass correction on the weak rates. The solid curve is for m
n—p and the dashed curve is fpr—n. The bottom curves show )
the error due to not including thp-dependent term in the mass While for all temperatures,
correction formula.

P,+p, 7u? S a3 u®—

s,= =—T3 36 EM N _
T 30 T (36) - ) 517 fdu qul4u x?)
Per+pe=+P,+p 1
Sen= Y ¥ + [ 89p(T)+38g,(T)1|. (39
T 21
7T
=T3 — 75 3 f du e”+1(4u —x?) Assuming that the neutrinos decouple at a temperafigre
~2 MeV>m, and taking the ratio of entropies to be given

2

- by Eq.(398), it follows that the ratio of the neutrino-to-photon
+ %(5gp+3égp) .

(370  temperature is

4,30 f”d WX g+ 2 sgo(T)+ 300, (T
T3 117 117, YN e (AT XD 55l 90p(T)+30G,(T))]
7 - 257 | “
- 88n?
4 25e? 1004 2 41
T<mﬁ +88772_' 11/ “

The zero-temperature limit of the neutrino temperaturegive to the photons upon annihilation, and thus photons are
photon temperature relation is altere@his makes sense heated less than they would be without the correction. Figure
physically: the positive correction to the electron massl7 shows the finite-temperature QED change in neutrino
means that the electron-positron plasma has less entropy temperature versus photon temperature.

We incorporated the QED corrections to the equation of

state into our code by changing the energy density, the elec-

3This expression differs somewhat from the result obtained byffon mass in the weak-rate calculations and the neutrino tem-
Heckler[22]. He now agrees with our result. perature. The resulting change ¥p,6Yp/Yp=+0.043%
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V. SUMMARY

All of the physics corrections we investigated have been
studied elsewhere. However, not all of them have been
implemented in a full code; some have been implemented
incorrectly; and there have been changes in some of the
physics corrections. Further, the issue of numerical accuracy
of the standard code has not been comprehensively and co-
herently addressed. Finally, the corrections have been imple-
mented in a patchwork fashion, so that the users of many
codes do not know which corrections are in, which are out,
and which may be double countéd.g., by adding the nu-

T (MeV) merical correction and running a small step siz&s noted
FIG. 17. Relative finite-temperature QED change in the neutrinoearller resu_lts_ of & numb_er of BBN codes gave a 1% spread
. in the prediction forYp with the same value of and 7, .
temperature, as a function of photon temperature. Note that the The goal of this work was a calculation of the primordial
zero-temperature limit is altered from the standard value by abouj . L - -
0.08% . He abundance to a precision limited by the uncertainty in
the neutron mean lifetime,57,= t2sec, or §Yp/Yp
=0.2%, with reliable estimates of the theoretical error. To
achieve this goal we created a new BBN code, designed,
b engin_eered and tested to this nur_nerical accuracy. To this
<10 : Dicuset _al. [14] attempted to calculate the thermo- pocaline code we added the microphysics necessary to
dynamic corrections, and foundYp/Yp=—0.04%, but = chieve our accuracy goal — Coulomb and zero-temperature
only included the effect of the electron mass on the weakaqiative corrections, finite-nucleon-mass corrections, finite-

rates. Hecklereostimated the effect onYp and found  temperature radiative corrections, QED thermodynamical
6Yp/Yp=+0.06% . (It should be noted that his value for cqrrections, and the slight heating of neutrinoseBy anni-

the change in neutrino temperature was incorrdet.any  hjjations. These corrections—coincidentally all positive—
event, the thermodynamic correctionYg is small. increase the predicteHe abundance byYp=0.0049 or
2% . Table V summarizes these corrections fgre=5
%1010 For each physical or numerical effect, we have
been careful to control the error ¥y introduced by approxi-
The standard code assumes that neutrinos decoupled cofations or inaccuracies to be well below 0.1% . With confi-

pletely beforee™ annihilations. It has been pointed out that dence we can state that the total theoretical uncertainty is less
this assumption is not strictly valid14]. Neutrinos are than 0.1%.

“slightly coupled” whene™* pairs are annihilated, and hence Summarizing our work in one number

share somewhat in the heat released. The first calculations

[14,46,47 of this effect were “one-zone” estimates that ,

evolved integrated quantities through the process of neutrino Yp(7=5%10"1%)=0.2462+0.0004exph
decoupling. Mo_re refined “multi-zone” calcula}tiqns tracked +<0.0002 (theory). (42)
many energy bins, assumed Boltzmann statistics and made

other approximation$25,48. The latest refinements have

included these small effects as wffl9—-51]. Fieldsetal.  Further, the precise value of the baryon density inferred
[52] incorporated the slight effect of the heating of neutrinosfrom the Burles-Tytler determination of primordial D abun-
by e* annihilations into the standard code and found a shifdance, Qgh?=0.019+-0.001 [40,54], leads to the pre-
in “He production,8Yp=+1.5x10 4, which is insensitive diction:  Yp=0.2464-0.0004 (expt)=0.0005 (D/H)=

to 5 for 107 %< »=<10"°. <0.0002(theory).

was found to be insensitive tg in the range, 10'°<y

B. Incomplete neutrino decoupling

TABLE V. Summary of results fomp=5.0x 10" 1°. By baseline we mean the results of our BBN code
without any of the physics effects listed, and with small numerical efis®s Fig. 1

Cumulative Effect Alone
Yp SYp(X10°%)  8YplYp(%) SYp(X10 Y  8Yp/Yp(%)

Baseline 0.2414

Coulomb andT =0 radiative  0.2445 +31 +1.28 +31 +1.28
finite mass 0.2457 +43 +1.78 +12 +0.50
finite T radiative 0.2460 +46 +1.90 +3 +0.12
QED plasma 0.2461 +47 +1.94 +1 +0.04
residualv-heating 0.2462 +49 +2.00 +1.5 +0.06

103502-12



PRECISION PREDICTION FOR THE BIG-BAS . ..

PHYSICAL REVIEW D 59 103502

Finally, we give two fitting formulas for our high- Ye(Z,7,N,)=Yp({,7,3)+(N,—3)
accuracy*He predictions. The first is accurate to better than ) s .
0.05%and is valid for 10*<7%=<10"°% N,=3.00 and X(CotCil+Cal®+cal"+cyl"), (45

880 see<7,<890 sec. In terms of=10+10g;o7,
Yp({,70)=Yp({,885.4 sep
+(7,—885.4 setdYp({),

where

, 5 A co=0.01276,

Yp(£,885.4 sep=(apt+a{tal+tazl"+asl’), ¢, 0.00409,
8Yp($)=(bo+b1{+by%+b3%+byl*) c,=—0.00703,

“3 c3=0.00571,

where the coefficients;, b; are given by c4=—0.00186. (46)
ag=0.22292, by=2.082<10 4,
a,=0.05547, b;=-0.535<10"4, ACKNOWLEDGMENTS
8,=—0.05639, b,=-2.856x10"%, The BBN code we described in this paper began as a
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