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Equal-arm interferometric detectors of gravitational radiation allow phase measurements many orders of
magnitude below the intrinsic phase stability of the laser injecting light into their arms. This is because the
noise in the laser light is common to both arms, experiencing exactly the same delay, and thus cancels when
it is differenced at the photo detector. In this situation, much lower level secondary noises then set overall
performance. If, however, the two arms have different len@abawill necessarily be the case with space-borne
interferometerk the laser noise experiences different delays in the two arms and will hence not directly cancel
at the detector. In this paper we present a method for exactly canceling the laser noise in a one-bounce
unequal-arm Michelson interferometer. The method requires separate measurements of the phase difference in
each arm, made by interfering the returning laser light in each arm with the outgoing light. Let these two time
series of phase difference k@, i=1,2. By forming the quantityz,;(t—2L,/c)—2z;,(t)]—-[z(t—2L,/c)

—2,(t)], whereL; are the arm lengths, gravitational wave signals remain while the laser noise is canceled.
Unlike other proposed methods, this procedure accurately cancels the laser noise if the arm lengths are known.
This method is direct in time and allows for time-varying arm-lengths. In this paper we demonstrate that this
method precisely cancels the laser noise, present the transfer function of gravitational waves after forming this
linear combination, and discuss system requiremé&sh as required knowledge of the arm lenytivge

verify the technique with numerical simulation of periodic gravitational wave signals embedded in laser and
shot noise having spectra expected for a space-borne interferometer, and compare our time-domain approach
with approximate correction methods based on Fourier transforms & fhrecesses.
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[. INTRODUCTION few parts in 1013, it is essential to be able to remove these
fluctuations when searching for gravitational waves of di-
Interferometric, non-resonant, detectors of gravitationamensionless amplitudes less than~30in the millihertz
radiation(with frequency content €f<fy) use a coherent band[3].
train of electromagnetic wave®f nominal frequencyv, In present single-spacecraft Doppler tracking observations
>fy) folded into several beams and, at one or more pointsnany of the noise sources can be either reduced or calibrated
where these intersect, monitor relative fluctuations of fre-by implementing appropriate microwave frequency links and
quency or phaséhomodyne detection The observed low by using specialized electronics; so a fundamental limitation
frequency signals are due to frequency variations of thds imposed by the frequendyime-keeping fluctuations in-
source of the electromagnetic signal abagt to relative  herent to the reference clock that controls the microwave
motions of the source and the mirrofgr amplifying tran-  system. Hydrogen maser clocks, currently used in Doppler
spondersthat do the folding, to temporal variations of the tracking experiments, achieve their best performance at
index of refraction along the beams, and, according to genabout 1000 sec integration time, with a fractional frequency
eral relativity, to any time-variable gravitational fields stability of a few parts in 10'. This is the reason why these
present, such as the transverse traceless metric curvature obae-arm interferometers in spa¢ghich have one detector
passing plane gravitational wave train. To observe gravitaand a “3-pulse” response to gravitational wavgs) are
tional waves in this way, it is thus necessary to control, ormost sensitive to millihertz gravitational waves. This integra-
monitor, the other sources of relative frequency fluctuationsion time is also comparable to the microwave propagation
and, in the data analysis, to use optimal algorithms based ofr “storage”) time 2L/c to spacecraft en route to the outer
the different characteristic interferometer responses to gravisolar system(for example L=5-8 AU for the Cassini
tational waves(the signal and to the other source@he  spacecrajt
noise [1]. By comparing phases of split beams propagated Next-generation low-frequency gravitational wave detec-
along non-parallel equal-length arms, frequency fluctuationsors, Michelson optical interferometers in Earth or solar or-
of the frequency reference can be removed and gravitationdlits 3], have been proposed to achieve greater sensitivity to
wave signals at levels many orders of magnitude lower camillihertz gravitational waves. Since the arm lengths of these
be detected. Especially for space-based interferometerspace-based interferometers can be different by several per-
which may use lasers with a frequency stability at best of aent, the direct recombination of the two beams at a photo
detector will not however effectively remove the laser noise.
This is because the frequency fluctuations of the laser will be
*Electronic address: Massimo.Tinto@jpl.nasa.gov delayed by a different amount of time inside the two
Electronic address: John.W.Armstrong@jpl.nasa.gov different-length arms. In order to solve this problem, a tech-
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nigue involving heterodyne interferometry with unequal arm ¢
lengths and independent phase-difference readouts in each O
arm was proposelb], which yielded data from which source 2

frequency fluctuations were removed by several orders of

magnitude. The technique discussed5h relied on the ob- \
servation that the laser frequency fluctuations enter in the O
Fourier transforms of the Doppler time series, taken over an L, b
infinitely long integration time, with well-defined transfer
functions. It was argued therefore that knowledge of these P
transfer functions would allow one to remove the frequency L
fluctuations of the laser by linearly combining suitably nor- O L L,

malized Fourier transforms of the two Doppler time series. If
the Fourier transform is performed, however, over a finite
time interval, the analytic forms of the transfer functions of
the laser fluctuations into the Fourier transforms of the Dop- FIG. 1. Typical configuration of a space-based, unequal-arm
pler responses are different from their idealized expressiongterferometer detector of gravitational waves. The corner space-
valid for infinitely long integration time. Since the algorithm craftatransmits coherent laser light to the other spacedandc.
introduced in[5] can only be implemented for finite-length They coherently retransmit back to s_pacecnaaﬁwhere coherent
Fourier transforms of the Doppler data, only partial cancel{Wo-way phaseor frequency changes in each arm are then mea-
lation of the laser fluctuations can be achieved in a real ex§ured- The two arm lengths are denotediyandL,.
periment. The cancellation of the laser noise of course im-
proves by increasing the integration time, and indeedoard spacecratt (Fig. 1). When a gravitational wave cross-
becomes exact as the integration time goes to infinity. Ang the solar system propagates through these electromag-
detailed analysis of this issue is discussed in the Appendixnetic links, it causes small perturbations in frequerioy

In this paper we will show that it is possible to remove phasg, which are replicated 3 times in each arm’s dath
completely the frequency fluctuations of the laser by taking a To determine the response of an unequal arm interferom-
suitable linear combination of the two Doppler time serieseter to a gravitational wave pulse, let us introduce a set of
after having time shifted them properly. This direct methodCartesian orthogonal coordinatesX,¥,Z) centered on
achieves the exact cancellation of the laser frequency flucspacecrafla (see Fig. 2 The X axis is assumed to be ori-
tuations, and does not require any Fourier transform of the
data. An outline of the paper is presented below. y

In Sec. Il we state the problem, and derive the two Dop-
pler responses of the two unequal arms. This implies that the
frequency fluctuations of the laser cannot be removed by
direct differencing of the two data sets. In Sec. Il we present
our technique forsynthesizingan unequal-arm interferom-
eter. Our method is implemented in the time domain, and
relies on a properly chosen linear combination of the two
Doppler data. Since our technique requires knowledge of the
distances between the proof masses, estimates of the arn
length accuracies required to cancel the laser noise to a leve
below secondary noises are then derived. A comparison witl
the method introduced in Rgf] is discussed in the Appen- N L,_
dix. Our comments and conclusions are finally outlined in P ; Y
Sec. IV. @ '

' Z

~

v

Il. STATEMENT OF THE PROBLEM

X

Let us consider three spacecraft flying in an equilateral
triangle-like formation, each acting as a free falling test par- FIG. 2. Coherent laser light is transmitted simultaneously from
ticle, and Continuously tracking each other via coherent |a5&5pacecraftsa to spacecrafto and ¢, and coherently transponded
light. One spacecraft, which we will refer to as spacecaaft back toa. The X axis is along the bisector of the angle enclosed
transmits a laser beam of nominal frequengyto the other  between the two arms of the interferometer. Thaxis is orthogo-
spacecraftspacecraftd and c at distanced ; andL,, re- nal to theX axis in the plane of the interferometer, and #haxis is
spectively. The phase of the light received at spacecrhfts chosen in such a way to form together witk,¥) a right-handed
and c is used by lasers on board spacecrdftand c for  set of axes. The gravitational wave train propagates alongkthe
coherent transmission back to spacecaafThe relative two  direction, while the unit vectorg,, p, are along the direction of
two-way frequency(or phasg changes as functions of time propagation of the two laser beams from spacearaft spacecraft
are then independently measured at two photo detectors dnandc respectively. See text for a complete description.
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ented along the bisector of the angle enclosed between thHgy subtracting from the frequency of the received signal the

two arms,Y is orthogonal to it in the plane containing the frequency of the signal transmitted at timyeve also subtract

three spacecraft, and thaxis is chosen in such a way to the frequency fluctuation§(t) with the net result shown in

form with (X,Y) a right-handed, orthogonal triad of axes. In Eq. (2.1).

this coordinate system we can write the two two-way Dop- Among all the noise sources included in EG.1), the

pler responses, measured by spaceerafttimet, as follows  frequency fluctuations due to the laser are expected to be by

[6,7] (units in which the speed of light=1): far the largest. A space-qualified single-mode laser, such as a
diode-pumped Nd:YAG ring laser of frequenay,=3.0

(AV('E)> —y.(1) X 10'* Hz and phase-locked to a FabryeBeoptical cavity,
Vo 1—y1 is expected to have a spectral level of frequency fluctuations
equal to about 1.8 10" ¥ \Hz in the millihertz band3]. A
(1-K-py) . single point frequency stability measurement performed on
= - > v, (t)—k-pq such a laser by McNamakt al.[9] indicates that a stability
of about 1.0< 10~ *¥\/Hz might be achievable in the same
. (1+|2,51) frequency band. In this paper however we will assume the
Xy [t—(1+ k'P1)L1(t)]+T laser frequency stability mentioned [i8]. Laser noise is to
be compared with, e.g., the expected secondary noises which
will be 107 or more times smaller.
XW[t—2L,(t)]|+C[t—2L,(t)]—C(t) If the arm lengths are unequal by an amouit=L,
—L;=el, (with e=3%x10 ? for a space based interferom-
+ny(t), (2.2 eter[3]), a simple subtraction of the two Doppler datgt),
y,(t) gives a new data set that is still affected by the laser
(Av(t)) © fluctuations by an amount equal to
=Yz
Yo /2 C(t—2L,)—C(t—2L,)=2C(t—2L,)eL,. (2.9
(1-K-p2) - As a numerical example of E¢2.4) we find that, at a fre-
- 5 Ya)—k-py quency of 10 Hz and by using a laser of frequency sta-
. bility equal to about 10*¥/Hz, the residual laser frequency
XWo[t—(1+K:pa)La(t)] fluctuations are equal to about 1%/ \/Hz. Since the goal of
SN proposed space-based interferomef8iss to observe gravi-
(1+k-p2) W[ t—2L,(1)] tational radiation at levels of 1% \/Hz or lower, it is cru-
2 2 2 cial for the success of these missions to cancel laser fre-
- Clt=2L,(t)] = C(t)+ny(t), 2.2 quency fluctuations by many more orders of magnitude.
wherek is the unit vector in the direction of propagation of lll. ALGORITHM FOR UNEQUAL-ARM
the planar gravitational wave pulse. In E@2.1), (2.2) we INTERFEROMETERS
have denoted by, , 52, the unit vectors from spacecrafto In what follows we will show that there exists an algo-
spacecraftd andc respectively;¥ ; 5 (t) are the following rithm in the time domain for removing the frequency fluc-
two scalar functions: tuations of the laser from the two Doppler datgt), y,(t)

i J. at any timet. This approach does not require Fourier trans-
P1,2P (1,2 forms on the Doppler data. As will be shown below, this
ﬁ}hii(t)’ (23 method relies only on a properly ch li binati
1—(K-p(r2) y properly chosen linear combination

of the two Doppler data in the time domain. In order to
with h;;(t) being the rank-2 tensor associated with the gravi-derive this technique, we will assume, for the moment, the
tational wave pulse in theX,Y,Z) coordinate systemi8], two arm lengthd ,, L, to be constant and known exactly.
and the sum over the repeated space-like indices has be¥¥e will remove these assumptions later, and estimate the
assumed. We have denoted Byt) the random process as- corresponding accuracy needed in order for our technique to
sociated with the frequency fluctuations of the master lasepe still effective.

Y 1p(t)=

on board spacecraft, and n,(t), n,(t) are the remaining ~ From Egs.(2.1), (2.2 we may notice that, by taking the
noise sources affecting the Doppler responggs), y,(t)  difference of the two Doppler datg,(t), y,(t), the fre-
respectively. quency fluctuations of the laser now enter into this new data

From Egs.(2.1), (2.2) it is important to note the charac- set in the following way:
teristic time signature of the random procesét) in the

Doppler responsey;, y,. The time signature of the noise Ag(t)=y1(t) —ya(t)

C(t) in y4(t), for instance, can be understood by observing —ha(t) = ha(t)+ C(t— 2L ) — C(t— 2L

that the frequency of the signal received at titlneontains ()~ ha(t) +C( 1)~ C( 2

laser frequency fluctuations transmitted 2seconds earlier. +ny(t) —ny(t), 3.1
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where for simplicity of notation we have definéd(t) and In other words, the laser frequency fluctuations enter into
h,(t) to be the functions A4(t), andA,(t) with the same time structure. This implies
that, by subtracting Eq3.1) from Eq.(3.4), we can generate

(1—K-py) . . a new data set that does not contain the laser frequency fluc-
1+k-p

+%\Pl(t—2Ll) , (3.2

() =A,(t)—Aq(t)
{ (1—|2-;;2) . . =hy(t—2L,) —hy(t) —hy(t—2L) +hy(t)
h2(t)= - 2 ‘PZ(t)_kPZWZ[t_(l—’_kpZ)LZ] +n1(t_2|_2)_nl(t)_nz(t_2L1)+n2(t).

1+K-p 3.9

+ %wz(t—zg) . (3.3

_ From the expression aof,(t) given in Eq.(3.4), it is easy to
If we now compare how the laser frequency fluctuations ensee that the new data sE{t) should be set to zero for the
ter into Eq.(3.1) against how they appear in Ed&.1), (2.2,  initial MAX[2L1,2L,] seconds. This is because some of the
we can further make the following observation. If we time- yat5 fromy, andy, entering intoA ,(t) “do not yet exist”
shift the datay,(t) by the round trip light time in arm 2, qying this time interval. Since the typical round trip light
y1(t—2L5), and subtract from it the daig(t) after it has  ime for proposed space-based laser interferometer detectors
been time-shifted by the round trip light time in arm 1, o¢ g avitational waves will never be greater than about 33 sec
ya(t=2L,), we obtain the following data set: [3], we conclude that the amount of data lost in the imple-
Ap(t)=y1(t=2Lo) —y,(t=2L4) mentation of our method is negligible. Note that our proce-
dure is different from stabilization techniques used for
=hy(t—2L,) —hy(t—2L,)+C(t—2L,) ground based interferometei].
e B o The unequal-arm interferometer responsét), derived
Clt=2L2) +ny(t=2L2) =ny(t=2Ly). in Eq. (3.5, can be rewritten explicitly, in terms of the gravi-
(3.4 tational wave functiong;, V¥,, as follows:

1-k-p 1-Kk-p +k-p 1-k-p
2(t>={ . pl)%(t)—( 5 pz)%(t) = pz)ﬂfz(t—sz)—( - pl)ﬂfl(t—sz)
1-k-p 1+k-p +Kk-p 1+k-p
+ 5 Z)qu(t—le)—( 5 L (t—2L,) |+ 5 L (t—2L,—2L,) - 5 2

XW,(t=2L1=2L,) [ +K-pyWi(t— (14K py)Ly) =K pW5(t— (1+K- po)Ly) + K- poWo(t—2L 1 — (1+K- p,)L,)

—K-p1 ¥y (t—2L,— (1+K-pp)Ly) +ny(t—2L5) — ny(t) — ny(t—2L1) +ny(t). (3.6)

Equation(3.6) shows that the gravitational wave signal enters into the response of an unequal-arm interferomigtar at
distinct times. In analogy with the terminology used for the Doppler tracking response to a gravitational waJ&puise
will refer to Eqg. (3.6) as theeight-pulseresponse function.

It is important to point out that, as a consequence of the analytic form of the unequal-arm interferometer response given by
Eq. (3.5), both the signal and the secondary noise sources will show a modulation of their power spectra. If we take the Fourier
transform of Eq.(3.5), it is easy to derive the following expression for the one-sided power spectral den3ift)of

Ss(f)=4[hy(f)|?sirP(2mfL,) +4|hy(F)[2 sik(27fLy) — 4 sin 27 fLy)sin( 27 fL,) [y (f)hye (f)e?7T b2ty

+hx (Fhy(f)e 27if (b~ Lo ] 48, (f)sif(2mfLy) +4S,,(f)sif(2mfLy), (3.7

where the asterisk denotes complex conjugation, the two random proogsseshave been assumed to be uncorrelated, and
Snl(f), Snz(f) are their respective one-sided power spectral densities. Since the proposed space-based interferometer detectors
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-2 - ' - By further expanding Eq(3.8) in the long wavelength
limit (27fL;<1, i.e., f<10 2 Hz for a 5x10° km arm
-2 \ 8 length, and taking into account the expressions figr h,

0 given by Egs.(3.2), (3.3, (2.3, we obtain the following
gl T o expression for the low-frequency response of the interferom-
eter:

N

logyo(Y(Hz") i
N

Ss(f)=4l(phph— phph) By ()27 TLy)"
Wl | smaes o | +A[S, (1) + Sy, (F)](27fLy)?, (3.9

time—domain cancelled

which is the response of an equal-arm, one-bounce, Michel-

son interferometer detector of gravitational radiation multi-

- plied by the factor 16(zfL,)? [6,8,10. In other words the

-4 -3 -2 - 0 signal-to-noise ratio is the same as that of an equal-arm in-
(09;qFourier frequency, Hz) terferometer. Fof=10"3 Hz, most of the band to which

FIG. 3. Simulation of the time-domain laser noise cancellationthe Laser Interferometric Space AnterhiSA) will be sen-

procedure for unequal-arm interferometers described in the textitve 3], the_8-_pu|_se structure will be visible. .

Fractional frequency fluctuation spect@,(f), are plotted versus The real limitations on the _procedu_re described abo‘_’e’
Fourier frequency fofupper curviraw laser noise having spectral Nowever, come from the remaining noise sources affecting
density 102%(f/1 Hz) 2%+6.3x10 3(f/1 Hz) 34 Hz"! and the two Doppler data and the accuracy in the determination

(lower curve residual noise after time-domain cancellation proce-Of the distances between the two pairs of spacecraft. We will
dure. The dashed curve shows the level of shot noise added to eagstimate below how these errors affect the tolerance of the
arm [spectral density 5:810 3%f/1 Hz)?> Hz !, independent in method. In what follows we will assume the two secondary
each arnhand dot-dashed curve showing the predicted modulatiomoise random processes(t), n,(t) to be uncorrelated and
of the shot noise spectrum due to our laser noise cancellation is algbe two arm lengthd ;, L, to be constant. The following
plotted. Other parameters werd. 2=32 sec, 2,=31 sec, and analysis will identify the time scale during which the latter
transform length % sec. In addition to shot noise, a simulated assumption is correct.
sinusoidal gravitational wave with amplitude,=10"?° and f, The derivation of our method for synthesizing an unequal-
=0.1 Hz incident normal to the plane of the interferometer wasgrm interferometer relied on the assumption of knowing the
added. The time-domain procedure, using the known arm length$wo arm lengthsl;, L, exactly. If we assume instead that
cgr_lcels the laser noise exactly, making t_he simulated signal clearlbhe two arm lengths are known within the accurachés,
visible above the¢now modulateyishot noise spectrum. 5L, respectively, the cancellation of the laser frequency fluc-
. o tuations from the dat& (t) is no longer exact. In order to
will have arm lengths that will differ by up to a few percent estimate the magnitude of the laser fluctuations remaining in
[3], in the frequency band of interest H§.7) can be further the data seB (t), let us define;, L, to be the estimated

f".mﬁ“f!ed by neglecting terms of the ordé(L,—L,) and arm lengths of the interferometer. They are related tdrine
'gher: arm lengthd_,, L, and the accuraciedl ;, éL, through the
following expressions:

Ss(f)=4[hy(f)—h,(f)|2sirP(2mfL,)
+4[Sn1(f)+Snz(f)]sinz(ZTrle). (3.8

Ly=L,+6L,. (3.10
Equation(3.8) shows that the one-sided power spectral den-
sities of the signal and the noise display the same modulatioli we now substitute Eq(3.10 into Egs.(3.4), (3.5, and
in the Fourier domain. This result implies that the signal-to-expand Eq.(3.9) to first order inéL,, dL,, we find the
noise ratio in an interferometer with arms that are differentfollowing approximate expression fa&(t):
by a few percent is in principle equal to the signal-to-noise

ratio achievable with an equal-arm detedi6}. 2(t)=hy(t—2L,) —hy(t) —hy(t—2L ;) +hy(t)
We have simulated the proceduigg. (3.5)] using realis- . .
tic laser and shot noise specff@, known arm lengthgdif- +2[C(1=2L; = 2L5) (8L, — 6Ly) + C(t—2L,) (4L )

fering by about 3% and a simulated monochromatic gravi- s _ _

tational wave incident normal to the plane of the C(t=2Ly) (o) ]+ ny(t=2Lp) =ny(1)

interferometer. The results of the simulation are shown in —ny(t—2L,)+ny(t). (3.11

Fig. 3. Plotted are spectral densities of the raw laser noise,

the raw shot noise, and the canceled time seli€s) [Eq.  Our technique for synthesizing an unequal-arm interferom-
(3.5)]. This illustrates the cancellation of the laser noise andeter can be considered effective if the magnitude of the re-
modulation of the residual secondary noises in excellenmaining fluctuations from the laser are smaller than the fluc-
agreement with Eq(3.7). tuations due to the other noise sources entering(ir). This
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(3.21

requirement implies an upper limit in the accuracies of the 1 (S,(f) 1/2(|_§+ L§)1/2
: . < .
measured arm lengths. In order to estimate the magnitude of | oL yper: (Sc(f)) e

the required accuracied;, SL,, let us focus our attention
on the two terms entering into E(3.11), associated W'th the |t we specialize t0S,(f) equal to the spectral density of the
frequency fluctuation€(t) and the noise sourceg , ny: shot noise as given i8], Sc(f) to be the spectral density of
s . a phase-stabilized diode-pumped Nd:YAG ring laser as also
AC()=2[C(t—2L,—2L)(8L,— L)+ C(t—2L5)(dLo) discussed in Ref(3], and the two arm lengths;~L,=5
: x10° km, the equation can be rewritten in the followin
—~C(t=2Ly)(3Ly)], (312 oo a ?

N(t)Enl(t—ZLz)—nl(t)—nz(t—2L1)+n2(t). (3 13) |5L|$04f1/3[1+63>< 10—9f—8.2/3]—1/2 km. (322
~ - ) The most stringent condition on arm-length knowledge oc-
If we denote byAC(f), N(f) the Fourier transforms of the curs, for the expected spectra given[8], when correcting
random processed C(t), N(t) respectively, from Eds. gata neaf=10"3 Hz down to the secondary noise source
(3.12, (3.13 we find that they are equal to spectral density. Af=10"2 Hz, Eq.(3.22 implies that the
accuracy in the arm lengths must be less than about 30 m if

AC(f)=4mifC(f)em Mt to[(8L,—6Ly)+e *mMdL, e require a reduction of the frequency fluctuations of the

—e 4miflag) ] (3.14 laser to the noise level identified by the photon counting
1 ' statistics. Since, for the expected spe¢8h S,(f) increases
Ry i PRI quadratically with the frequency whil&:(f) decreases as
N(f)=2iny(T)e"" "2 sin(2mfL,) f~23 we conclude that at higher frequencies the required
—2iﬁz(f)e2””'-lsin(27rfL1). (3.15 accuracy is less stringerisee Egs.(3.16, (3.17)]. At f

=1 Hz, for instance, we find that the required accuracy
Equations(3.14), (3.15 imply the following expressions for grows to about 800 m.

the one-sided power spectral densities of the nals8s N: In relation to the accuracies derived above, it is interesting
to calculate the time scales during which the arm lengths will
Sac(f)=6472F2S(f) (L2 sir?(27fL,) change by an amount equal to the accuracies themselves.

5 . ) This identifies the minimum time required before updating
+6L5sir(2mfLy) — 6L, SLo{si(27fLy) the round-trip light times during the implementation of the
; i _ unequal-arm algorithm.
+ .
si(2mfLy) —sirf[ 27t (Lo~ Ly)]}). (3.10 It has been calculated by Folknet al.[13] that the rela-
Sy(f) =4S, (f)[siR(2mfL,)+sir(27fL,)], tive longitudinal speeds between the three pairs of space-
N n(Disim(2mfLy) (2miLo)] (3.17 craft, during approximately the first year of the LISA mis-
sion[3], can be written in the following approximate form:
where we have assumed the two random processes, to
be uncorrelated, and their one-sided power spectral densitie
to be equal td5,(f). If the characteristic wavelength of the

2t

?/i,j(t>=V§%>sin<T“), (i.h)=(ab), (ac), (be),
]

gravitational radiation is significantly longer than the arm (3.23
lengths of the interferometer (&L,,27fL,<1), Egs.
(3.16), (3.17) can be approximated as follows: where we have denoted bg,p),(a,c),(b,c) the three pos-
sible spacecraft pairS(i(ﬂ) is a constant velocity, and, ; is
dea , 6La Oy 2 the period for the pairi(j). In Ref.[13] it has also been
Sac(f)=256m""Sc(f)(L4L2) |__2_ L_1 ' shown that the LISA trajectory can be selected in such a way

(3.18 that two of the three arms’ rates of change are essentially
equal during the first year of the mission. Following Ref.
Su(f)=16722S,(f)[L2+L3]. (319 [13], we will assume V)=vQ=v{ with Vv
=1 m/sec, fog=13 m/sec, T, =T, ~4 months, and
Since the unequal-arm algorithm presented above can bﬁb,c”1 y. From Eq.(3.23 it is easy to derive the variation
considered effective ifSyc(f)<Sy(f), from Egs.(3.18,  of each arm length, for exampliL;(t), as a function of the

(3.19 we derive the following constraint on the accuraciestime t and the time scalét during which it takes place:
L4, Ly

[ 2t
SL, SL112 S,(f) [LI+L3] SLy(t) =V sin T—) . (3.24
— | =< —>. (3.20 ab
Ly Li| Sc(f) 167%f2L5L5
Equation(3.24) implies that a variation in arm lengthlL ;
As an example application of E€B.20), let us assumeéL ~30 m can take place during different time scales, depend-
=—J0L,=46L. Itis easy then to derive the following inequal- ing on when during the mission this change takes place. For
ity for |SL|: instance, ift<T,,, we find that the arm length; changes
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by more than its accuracy30 m) after a time st=6.7 ACKNOWLEDGMENTS
X 10° sec. If howevet=T, /4, the arm length will change ¢ js a pleasure to thank Frank B. Estabrook for many
by the same amount after on§t=30 sec instead. useful discussions and his encouragement during this work.

As a final note, it is worth mentioning that, since the Thjs research was performed at the Jet Propulsion Labora-
anticipated gravitational wave amplitude will be about sevenory, California Institute of Technology, under contract with
or more orders of magnitude smaller than the relative frethe National Aeronautics and Space Administration.
qguency fluctuations of the laser, the Doppler measurements
fro_m faaph arm must be'digitized with an adquatg resolution. AppeNDIX: FREQUENCY-DOMAIN CANCELLATION
T.hIS is in order to av0|d'the loss of the grgwtguonal wave OF LASER NOISE
signal once the subtraction of the laser noise is performed. IN UNEQUAL-ARM INTERFEROMETERS
Although this is an important point that will need to be re-
membered in the design of the onboard data acquisition sys- In the main text, we gave a time-domain procedure for
tem, it does not represent a fundamental technology chafxactly canceling laser noise fluctuations in an unequal arm
lenge [3]. Furthermore, in order to have perfect Michelson interferometer while preserving the gravitational
synchronization of the two data streams and effectively rewave (GW) signal. A procedure for cancellation of laser
move the laser fluctuations, a common clock should be use@ioise involving operations on the Fourier transforms of the
during the acquisition, digitization, and recording of the twodata from each arm was previously presentedSh This
Doppler data. frequency-domain{FD) method cancels the laser noise ex-

actly in the limit where the duration of the data set goes to

infinity. For a finite data set, however, the FD cancellation
IV. CONCLUSIONS method is not exact. For the very precise cancellation re-

quired for a gravitational wave detector in spa@40—200

We presented a time-domain procedure for accuratelyiB, depending on Fourier frequencyhe FD procedure re-
canceling laser noise fluctuations in an unequal-arm oneguires impractically long data sets. In this appendix we
bounce Michelson interferometer relevant to space-borneriefly restate the FD cancellation argument, derive an ana-
gravitational wave detectors. The method involves separatelytical expression for the degree of cancellation of the FD
measuring the phase of the returning light relative to themethod as a function of arm lengths, duration of the data set,
phase of the transmitted light in each arm. By suitable off-and Fourier frequencjEqg. (A24)], compare this analytical
setting and differencing of these two time series, the comresult with computer simulations, and discuss practical im-
mon laser noise is canceled exadiBg. (3.5]. This is tem-  plications for space-borne laser interferometer GW experi-
porally local and contrasts with approximate cancellationments.
techniques based on operations on Fourier transforms of long
but finite durations data sets.

The effect of this procedure is to introduce a characteristic ] . ) . )
signature of a gravitational wave incident on the interferom- The FD method is described in detail [if]. Briefly, the
eter. In the general case, the wave is replicated 8 times in thidifference between the phager frequency of the transmit-
output time series, depending on the arm lengths and thé€d laser signal at time t and the laser phase at a “two-way
angle of arrival of the wave. We showed that our linear comJight time” earlier is recorded separately for each arm of the
bination precisely cancels the laser noise, and modulates tHterferometer. This is done over some observing inteflal,
gravitational wave signal and the secondary noise sources #Sing the same notation as in the main text, these two time
the same way if the lengths of the two arms are different bys€res are
only a few percenf3]. Thus the signal-to-noise ratio after _
applying our procedure is the same as would be expected for yut)=hy(t) +C(t=2L1) —C(1) +ny(1), (AD)
an equal-arm interferometer.

To cancel the laser noise to the levels of the secondary Ya(t)=hy(t) + C(t—2L,) — C(t) +ny(1),
noise sources with this procedure, the arm lengths must be
known with adequate accuracy. To demonstrate practicality ) )
of the method, we presented a general analysis of the rdvhereL, andL are the arm lengths of the interferometier
quired accuracyEgs. (3.16), (3.17), (3.20] and used the units of tlm'e,c=1), hl(t)3 h,(t) are the GW signal ampli-
noise spectra expected for proposed space interferometitdes.C(t) is the laser noise process, amdt), n(t) are all
mission to estimate required accuracy as a function of Fou@ther noises entering the dat(t) totally dominatesn, and
rier content of the signal. N, (.~107 or more times larger in amplitugteso the objec.-

Since a gravitational wave signal enters into the responstVe is to cancelC(t) to a level smaller than the other noise
of an unequal-arm interferometer in general at eight distincources while preserving the GW signal.
times[Eq. (3.6)], the probability of detection of signal with _ The FD approach is first to Fourier transfogmandy; .
low signal-to-noise ratios should improve. Furthermore, suctonceptually this is a true Fourier transforie., infinite
a distinct time structure should enhance the angular resoldimits of integration; in practice it is a transform over a finite
tion of LISA [3] for signals where the 8 pulses are resolved.interval set by practical considerations. Lg{(f) be the
These issues will be addressed in a forthcoming paper.  sample Fourier transform of the serig$t). Using the shift

1. Frequency-domain method

(A2)
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theorem for Fourier transfornj42] one can use the datain,  To minimize spectral leakadd 1], it is necessary to pre-

e.g., arm 2 to solve foE(f), the Fourier transform of(t): ~ Multiply the time-domain data sets by a window function,
W(t), before taking Fourier transforms. IfY(t)

yaf) =y, (1)W(t), andY,(t)=y,(t) W(t), the finite-duration win-

C(f)= m. (A3)  dowed Fourier transform of, e.gr,y(t), is equal to

Given this estimate o€(f) oone can correct the data in the vl(f):p'l(f”f [C(t—2L,)—C(t)]W(t)e? i tdt
other arm for laser fluctuations. The Fourier transform of the —r
corrected data is then ~

_ + Ny (f), (A9)
[e477|f|_1_ 1]

[e477ifL2_1] ' (A4)

f)—ya(f ~ ~
Ya(h)=¥2() where Hq(f), Ny(f) are the Fourier transforms of
_ o hy()W(t), ng(t)W(t) respectively. SinceC(t), W(t) can
The ensemble average of the square of this quantity is thge \yritten in terms of their inverse Fourier transforms, after
power spectrum of the FD corrected data; as showbjiit  gome simple algebra we can rewrite E49) as
goes to zergexcept at the poles in E¢A4), i.e. f=0 and
the time-travel resonances of arnp i2 there is laser noise s (e [(fe
only and if the data set is infinitely long. This FD approach '\?l(f)zﬁl(f)+f f f é(ff)[e4vif’L1_1]
preserves a GW signal. Equatiohd) is the essential result —rJ—fc ) —f¢
of the FD-correction approach. e 2mi(f— 1 — )t R

XW(f")e dtdf'df”"+Ny(f).
2. Performance of the frequency domain approach (A10)
for finite data sets

In a finite-duration experiment, the FD cancellation is not!f We interchange the integration symbols, and integrate with
exact. The degree to which the FD method cancels the las&fSPect to time, EqA10) becomes
noise depends on the duration of the Fourier transforms used, o
how the data are “windowed(11] in the time domain be- < ~ c [Te ~ i ~
fore estimating the Fourier tra&sfg)rm, the interferometer arm ~ Y1()=Ha()+ JfCJfCC(f’)[e“”'f F—1IW(F")
lengths, and the Fourier frequency considered.
Definey,(f) as the “forward” Fourier transform of the
Doppler datay,(t) calculated over the interval=2r:

sia(f—f —f")T]
X

df’df’+N,(f). (A1l
P 1(f). (A1D)

ya(f)= f_ yi(t)e*™dt. (A5) By further integrating Eq(A11) with respect td” we obtain

From the Fourier theorem, the inverse Fourier transform,

~ ~ fo o et ~
y1(t), is given by Yl(f):Hl(f)Jff C(f)[e*™ " ha—11W(f—f")df’

c

+feo )
yi(t)= j_f yi(fe ?2m"df, (A6) + Ny (). (A12)

f W(t) is the Parzertriangulay window [11], its Fourier

wheref. is the Nyquist frequency cutoff. For a space-base ransform is

interferometer, for instancé, might be 0.5 Hz. Note that if
we substitute Eq(A6) into Eq. (A5) we get

_ (e . ) , (A13)
yl(f)=f f y,(f)e2m (=g s dt, (A7)
-7J —f.

and we can rewrite EqA12) as follows:
which, after integration with respect to time, becomes

~ ~ fo o e
~ +fe , Slr{ﬂ(f—f’)T] , Y (f):H (f)+TJ C(f/)[e477'lf Ll—l]
= | Gurn| = ar. (g (D=
—fe m(f—f") ,
) L i sifmw(f—f")7] ~
Since the function inside the squared brackets is one of the X| ——— df'+Ny(f). (A1)
approximations to the Dirac delta function, we conclude that m(f—f")r

Eqg. (A8) becomes an identity, in agreement with the defini-
tions of forward and backward Fourier transforms given inlf we now make the change of variabtg(f—f') 7= 7, Eq.
Egs.(A5), (A6). (A14) becomes
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- - 1 [wr(f+fo) 7 i however, for any finite time of integration the transfer func-

Yi(H)=Hy(H)+— C(f— ;_)[647”( “77mN—1]  tion of the frequency fluctuations of the laser into the Dop-
mrift=to) pler observables will not have the ideal analytic forms

2 .

dy+Ny(f). (A15) e*mtaa—1. (A18)

If we implement the FD technique proposed[B] for re-
Since the integrand in EGA15) decays as; 2, the major moving the laser noise, we get
contribution to the integral will come from a few cycles

sin( n)

X

AmiflL
around zero. This implies that the integrand in B&l5) can < R [e 1-1]
be written in the following approximate form: Ya(h) YZ(f)[e“”' L2—1]
~ ~ 1 (wr(f+fo) i Amifl
(4 _n . oo et
R =[P +Ro(H 1= [Fal) + No( D a1
. 4|L17] S|n(7]) 2 ~ 4i e477ifL1_1
X e‘“”le(l— )—1 dy+Ny(f). AL il ]
. 7+ Ny(f) +—|Lee i zm
(A16) L pttaL [ \[sir(n)
After some further algebra, E§A16) can be rewritten as —L et J Clf—— dx.
follows: mr(f—f) T n
- ~ 1 [mr(f+fe) 7 (A19)
Yi(f)=Hy(f)+— Clf—— . .
T J mr(f—fe) mT The last term on the right-hand-side of E@\19) can be
sin( )12 rewritten as
X n } dn[e47rile_1]
kv, - 2mif(2Ly+Llo)r)
: . Yel(h) 777'Sin(277fL2))e [Lo=by
4Ly , mr(f+fe) 7 \[sirf(7)
— et Llj Clf—-— d77 wr(f1)
mT ar(f—1f¢) wT n +L e—47rifL2_L e—477ifL1] ¢ 'é f— l
~ ! 2 ar(f—1fg) mT
+N4(f), (A17)
sin’( 7)
and similarly we can write the corresponding equation for X - d». (A20)

the Fourier transform of the windowed Doppler data mea-
sured with arm 2. We point out that in EGA17) the second  If we take the modulus squared and the ensemble average
integral goes to zero as the integration time goes to infinity((- - - }) of the left- and right-hand sides of EGA20), we get

- 2 2
<|Yc<f>|2>z(m) {(La=Ly?+Li+L5-2L,L, coddmf(Ly—Ly) ]+ 2(Lp—Ly)Ly cogdmfLy)

ar(f+fy) (mr(f+fo) [ _ 7\~ 77’
_2(L2_L1)L2C0347Tf|_1)} f C f_;_ C* f——

ar(f—fo) Jar(f—1) mT

sirt(n)
n

n .

S|n2(,77 )}dnd ,
(A21)

AssumingC(t) is a stationary random process with power spectral de&giy), we can rewrite Eq(A21) as follows:

- 2 2
<|Yc<f>|2>z(m) {(La=Ly)?+Li+ L3520 L, cog4mf(L,—Ly)]+2(Lo— L)Ly coddmfly)

Siré( )
7

sirt(n')
77,’7 }dndn',

(A22)

ar(f+fy) [(mr(f+fo) n ,
—2(L,—Ly)L,cog4mfLy)} f Sc| f——|d(n—7n")
ar(f—fo) Jwr(f—1¢) m™T

which then becomes

102003-9



MASSIMO TINTO AND J. W. ARMSTRONG PHYSICAL REVIEW D59 102003

- 4 2
<|Yc<f>|2>z(m) {(La=Ly)2+Li+ L3520 L, cof 4mf(L,—Ly)]+2(Lo— L)Ly coddmfly)

ar(f+1fe) n Sin4( 7])
—Z(LZ—Ll)L2C05(47Tﬂ_1)} SC f—; —nr d77, (A23)
ar(f—1f¢)

where the identityT=27 has been used. Since the power =16.71875 se(i.e., they differed by 1/32 of a secondnd
spectral density of the frequency fluctuations of a stabilizedvere assumed to be known exactly. Thus the observable time
laser is a smooth function of the frequency, the major conseries of the two arms were
tribution to the integral will come from a few cycles around
zero. This implies that we can treat the power spectral den- zy()=sy() +p(t—2L1) —p(t) + Ay (1),  (A26)
sity Sc(f) essentially as a constant in doing this integration,
and rewrite Eq(A23) as
Zy(1) =s,(1) + p(t—2L2) — p(t) + A5(1),

- 16Sc(f)F(Ly,Lp,f) [mr(t+to)[sint(7) A27
<|Yc(f)|2>: 71_2-|—21 2 Tﬂ}dn, (A27)
mr(f—fg) n
(h24) where
whereF(Lq,L,,f) is
1 1 [3x10% H
F(Ll,Lz,f)Im{(Lz—L1)2+L§+|—§ sl(t)=Eho(xf—z>{cos[27rfo(t—2L1)]
0

—2L,L,cod4mf(L—Ly)] —cog27fot)}, (A28)
2Ly L)L CORAmILy}.  (AZ5) e

white phase laser noise

Equation(A24) is the main result of this appendix. For a §4 L
finite-duration experiment, it expresses the degree of FD can

cellation of the laser noise as a function of the two arm ¢*?
lengths, the spectrum of the laser noise, the experiment du? , |
ration, and Fourier frequency. s

FD—cancelled data

N

3. Simulation

«— simulated signal

We verified this formula via simulated time series of vari-
ous durations, various arm lengths, and various arm Iengtr__8 i
differences. To make a more direct comparison with the FD shot noise
method in[5], these simulations were done in terms of phase -
rather than fractional frequency difference. Figure 4 shows
one of these simulations, the parameters of which closely
follow those used if5]. We simulated white laser phase  FIG. 4. Phase spectra of simulated laser noise illustrating the
noise with two-sided spectral densityS,(f)=2.5 performance of the frequency-domain cancellation procedure for
% 10" rack/Hz (i.e., rms phase of 5000 radiamsd 1 Hz unequal arm interferometers, as discussed in the Appe_ndlx. Upper
band and white “other” noise(independent in each arm and curve: spectrum7of raw laser phase ngassumed white with spec-
with spectral density much smaller than the laser nfige tral Ieyel 2.5<10 radz_/Hz). Lower curve: spectrum of frequency-
From the simulated time series of laser noise we formed thgfOmaln canceled noise for pararr;stersl%1§.6875 SEc, 2,
time series of laser phase noise differencpét—2L,) =16.71875 sec, duration of data 2™ sec. Thirty realizations of

o) f h A simulated si idal itati Ieach spectrum were averaged to reduce estimation error and more
p(1), . or eac (_:Ir_m. Simulate SIﬂUS_OI a gr_aVI ationa clearly illustrate spectral shapes. Also plotted as a dot-dashed line is
wave signal was injected dt=0.1 Hz, with amplitudeh,

© 50 e X the model predictioEq. (A24)]. Dashed line: spectral density of
=10"“". The gravitational wave was assumed incident nOryite “shot” noise added to each arm. The spectral line is a FD-

mally onto the plane of the interferometer so that the phasgancellation response of interferometer to gravitational wave inci-
data in each arm has two “pulses” separated by the two-wayjent normal to the plane of the interferometer wiigh=0.1 Hz. For
light travel time in that arn{2]. As in [5] the signal was these arm lengths, the FD-cancellation method would require long
added to one arm and subtracted from the other. The twaransform lengthgabout 6 monthsto suppress the laser noise by
way light times used were 12 =16.6875 sec and |2, 140 dB in the band 10°— 10°* Hz.

.

oqw(phasle specltral d
ES

I I I I I 1 1 I 1 I 1 1 I
0 001 0.02 003 0.04 005 0.06 007 0.08 009 0.1 0.11 0.12 0.13 0.14 015

Fourier frequency (Hz)
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1 [3xX10" Hz of the “other” noise processe$l140 dB below the laser
Sy(t)=— Eho f—>{005{277fo(t—2|-2)] phase noiseis indicated as a dashed line. The spectrum of
0 the monochromatic signal withy=10 2%, passed through
—cog2mfot)}. (A29)  the interferometer response and with frequency resolution

appropriate foiT=21° sec, is also indicated. Our analytical
The minus sign on the right-hand side of the equatiorsfor result[Eq. (A24)] is overplotted as a dot-dashed line on the
reflects the quadrupolar nature of the gravitational wave sigFD-canceled spectruitalthough the model curve is difficult
nal [8], the optical carrier frequencyrf=3x10* Hz) is o see because of the excellent agreeméiutr these param-
appropriate for a _‘kLm |aser[3]’ and the frequency fluctua- eters, the FD methOd fails to cancel the laser noise to desired
tion y(t)=Av/v, has been integrated to get the associatedeVels over essentially all of the band.
phase fluctuatiorz(t). The “other” phase noisesy{, A\, in
Egs. (A26) and (A27) were taken to be white phase noise,
independent in each arm, and with spectral density 14 orders
of magnitude smaller than that of the laser phase nid@ge FD cancellation presents conflicting requirements: the
[The crucial difference between our simulation and that donelata duration;T, must be long enough to get 140-200 dB
in [5] is that the laser phase noise time serig§), was suppression of the laser noigdepending on Fourier fre-
required in[5] to be periodic with the same period as that of quency, but simultaneouslyat least in the FD approach as
the finite Fourier transform. This periodicity condition— formulated to dateshort enough so that the arm lengths are
which would not be satisfied in a real observation—forcessensibly constant. Using as an example the published param-
the phase difference series in each apift,—2L,) —p(t), to  eters of the proposed LISA missi¢8], the arms can be up
have the idealized analytic form of E¢A18), even for a to 3% different and the peak rate of change of an arm will be
finite duration rectangular windowed Fourier transform. Thusabout 13 m/sec. Taking the arm lengths to be 1% percent
the simulation in[5] erroneously appeared to achieve exactdifferent with 2.,=33 sec and R,=33.3 sec and requir-
laser-noise cancellation even for a finite duration datd set. ing at least 140 dB suppression in the Fourier band

A simulated duration of =2%° sec was used to compute 10 #-10 2 Hz, requires|Eq. (A24)] a data duration off

Fourier transforms. All time series were multiplied by a tri- ~6 months. On this time scale the arms will change by
angle window function prior to being discrete-Fourier trans-much more than the tolerance derived for the FD metl&dd
formed. Figure 4 shows spectra averaged over 30 realizatiorssd in the main text of this paper. Restricting the time dura-
of the simulated processedo reduce estimation errpr tion of the FD method to a value where the arm lengths do
Shown in the figure are the raw laser noise spectrum and thaot change significantly13,14] results in insufficient sup-
spectrum of the FD-canceled noise process. The noise levpression of the laser noise.

4. Implications for space-borne gravitational
wave interferometers
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