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Cancellation of laser noise in an unequal-arm interferometer detector of gravitational radiation

Massimo Tinto* and J. W. Armstrong†

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109
~Received 13 October 1998; published 22 April 1999!

Equal-arm interferometric detectors of gravitational radiation allow phase measurements many orders of
magnitude below the intrinsic phase stability of the laser injecting light into their arms. This is because the
noise in the laser light is common to both arms, experiencing exactly the same delay, and thus cancels when
it is differenced at the photo detector. In this situation, much lower level secondary noises then set overall
performance. If, however, the two arms have different lengths~as will necessarily be the case with space-borne
interferometers!, the laser noise experiences different delays in the two arms and will hence not directly cancel
at the detector. In this paper we present a method for exactly canceling the laser noise in a one-bounce
unequal-arm Michelson interferometer. The method requires separate measurements of the phase difference in
each arm, made by interfering the returning laser light in each arm with the outgoing light. Let these two time
series of phase difference bezi , i 51,2. By forming the quantity@z1(t22L2 /c)2z1(t)#2@z2(t22L1 /c)
2z2(t)#, whereLi are the arm lengths, gravitational wave signals remain while the laser noise is canceled.
Unlike other proposed methods, this procedure accurately cancels the laser noise if the arm lengths are known.
This method is direct in time and allows for time-varying arm-lengths. In this paper we demonstrate that this
method precisely cancels the laser noise, present the transfer function of gravitational waves after forming this
linear combination, and discuss system requirements~such as required knowledge of the arm lengths!. We
verify the technique with numerical simulation of periodic gravitational wave signals embedded in laser and
shot noise having spectra expected for a space-borne interferometer, and compare our time-domain approach
with approximate correction methods based on Fourier transforms of thezi processes.
@S0556-2821~99!00710-9#

PACS number~s!: 04.80.Nn, 07.60.Ly, 95.55.Ym
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I. INTRODUCTION

Interferometric, non-resonant, detectors of gravitatio
radiation~with frequency content 0, f , f H) use a coheren
train of electromagnetic waves~of nominal frequencyn0
@ f H) folded into several beams and, at one or more po
where these intersect, monitor relative fluctuations of f
quency or phase~homodyne detection!. The observed low
frequency signals are due to frequency variations of
source of the electromagnetic signal aboutn0, to relative
motions of the source and the mirrors~or amplifying tran-
sponders! that do the folding, to temporal variations of th
index of refraction along the beams, and, according to g
eral relativity, to any time-variable gravitational field
present, such as the transverse traceless metric curvatur
passing plane gravitational wave train. To observe grav
tional waves in this way, it is thus necessary to control,
monitor, the other sources of relative frequency fluctuatio
and, in the data analysis, to use optimal algorithms base
the different characteristic interferometer responses to gr
tational waves~the signal! and to the other sources~the
noise! @1#. By comparing phases of split beams propaga
along non-parallel equal-length arms, frequency fluctuati
of the frequency reference can be removed and gravitati
wave signals at levels many orders of magnitude lower
be detected. Especially for space-based interferome
which may use lasers with a frequency stability at best o
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few parts in 10213, it is essential to be able to remove the
fluctuations when searching for gravitational waves of
mensionless amplitudes less than 10220 in the millihertz
band@3#.

In present single-spacecraft Doppler tracking observati
many of the noise sources can be either reduced or calibr
by implementing appropriate microwave frequency links a
by using specialized electronics; so a fundamental limitat
is imposed by the frequency~time-keeping! fluctuations in-
herent to the reference clock that controls the microwa
system. Hydrogen maser clocks, currently used in Dopp
tracking experiments, achieve their best performance
about 1000 sec integration time, with a fractional frequen
stability of a few parts in 10216. This is the reason why thes
one-arm interferometers in space~which have one detecto
and a ‘‘3-pulse’’ response to gravitational waves@2#! are
most sensitive to millihertz gravitational waves. This integ
tion time is also comparable to the microwave propagat
~or ‘‘storage’’! time 2L/c to spacecraft en route to the out
solar system~for example L.5 –8 AU for the Cassini
spacecraft!.

Next-generation low-frequency gravitational wave dete
tors, Michelson optical interferometers in Earth or solar
bits @3#, have been proposed to achieve greater sensitivit
millihertz gravitational waves. Since the arm lengths of the
space-based interferometers can be different by several
cent, the direct recombination of the two beams at a ph
detector will not however effectively remove the laser noi
This is because the frequency fluctuations of the laser wil
delayed by a different amount of time inside the tw
different-length arms. In order to solve this problem, a te
©1999 The American Physical Society03-1
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MASSIMO TINTO AND J. W. ARMSTRONG PHYSICAL REVIEW D59 102003
nique involving heterodyne interferometry with unequal a
lengths and independent phase-difference readouts in
arm was proposed@5#, which yielded data from which sourc
frequency fluctuations were removed by several orders
magnitude. The technique discussed in@5# relied on the ob-
servation that the laser frequency fluctuations enter in
Fourier transforms of the Doppler time series, taken over
infinitely long integration time, with well-defined transfe
functions. It was argued therefore that knowledge of th
transfer functions would allow one to remove the frequen
fluctuations of the laser by linearly combining suitably no
malized Fourier transforms of the two Doppler time series
the Fourier transform is performed, however, over a fin
time interval, the analytic forms of the transfer functions
the laser fluctuations into the Fourier transforms of the D
pler responses are different from their idealized express
valid for infinitely long integration time. Since the algorithm
introduced in@5# can only be implemented for finite-lengt
Fourier transforms of the Doppler data, only partial canc
lation of the laser fluctuations can be achieved in a real
periment. The cancellation of the laser noise of course
proves by increasing the integration time, and inde
becomes exact as the integration time goes to infinity
detailed analysis of this issue is discussed in the Append

In this paper we will show that it is possible to remo
completely the frequency fluctuations of the laser by takin
suitable linear combination of the two Doppler time ser
after having time shifted them properly. This direct meth
achieves the exact cancellation of the laser frequency fl
tuations, and does not require any Fourier transform of
data. An outline of the paper is presented below.

In Sec. II we state the problem, and derive the two Do
pler responses of the two unequal arms. This implies that
frequency fluctuations of the laser cannot be removed
direct differencing of the two data sets. In Sec. III we pres
our technique forsynthesizingan unequal-arm interferom
eter. Our method is implemented in the time domain, a
relies on a properly chosen linear combination of the t
Doppler data. Since our technique requires knowledge of
distances between the proof masses, estimates of the
length accuracies required to cancel the laser noise to a
below secondary noises are then derived. A comparison
the method introduced in Ref.@5# is discussed in the Appen
dix. Our comments and conclusions are finally outlined
Sec. IV.

II. STATEMENT OF THE PROBLEM

Let us consider three spacecraft flying in an equilate
triangle-like formation, each acting as a free falling test p
ticle, and continuously tracking each other via coherent la
light. One spacecraft, which we will refer to as spacecrafa,
transmits a laser beam of nominal frequencyn0 to the other
spacecraft~spacecraftsb and c at distancesL1 and L2, re-
spectively!. The phase of the light received at spacecraftb
and c is used by lasers on board spacecraftsb and c for
coherent transmission back to spacecrafta. The relative two
two-way frequency~or phase! changes as functions of tim
are then independently measured at two photo detector
10200
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board spacecrafta ~Fig. 1!. When a gravitational wave cross
ing the solar system propagates through these electrom
netic links, it causes small perturbations in frequency~or
phase!, which are replicated 3 times in each arm’s data@2#.

To determine the response of an unequal arm interfer
eter to a gravitational wave pulse, let us introduce a se
Cartesian orthogonal coordinates (X,Y,Z) centered on
spacecrafta ~see Fig. 2!. The X axis is assumed to be ori

FIG. 1. Typical configuration of a space-based, unequal-a
interferometer detector of gravitational waves. The corner spa
craft a transmits coherent laser light to the other spacecraft,b andc.
They coherently retransmit back to spacecrafta, where coherent
two-way phase~or frequency! changes in each arm are then me
sured. The two arm lengths are denoted byL1 andL2.

FIG. 2. Coherent laser light is transmitted simultaneously fr
spacecraftsa to spacecraftb and c, and coherently transponde
back toa. The X axis is along the bisector of the angle enclos
between the two arms of the interferometer. TheY axis is orthogo-
nal to theX axis in the plane of the interferometer, and theZ axis is
chosen in such a way to form together with (X,Y) a right-handed

set of axes. The gravitational wave train propagates along thkW

direction, while the unit vectorsrW 1 , rW 2 are along the direction of
propagation of the two laser beams from spacecrafta to spacecraft
b andc respectively. See text for a complete description.
3-2
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CANCELLATION OF LASER NOISE IN AN UNEQUAL- . . . PHYSICAL REVIEW D59 102003
ented along the bisector of the angle enclosed between
two arms,Y is orthogonal to it in the plane containing th
three spacecraft, and theZ axis is chosen in such a way t
form with (X,Y) a right-handed, orthogonal triad of axes.
this coordinate system we can write the two two-way Do
pler responses, measured by spacecrafta at timet, as follows
@6,7# ~units in which the speed of lightc51):

S Dn~ t !

n0
D

1

[y1~ t !

5F2
~12kW•rW 1!

2
C1~ t !2kW•rW 1

3C1@ t2~11kW•rW 1!L1~ t !#1
~11kW•rW 1!

2

3C1@ t22L1~ t !#G1C@ t22L1~ t !#2C~ t !

1n1~ t !, ~2.1!

S Dn~ t !

n0
D

2

[y2~ t !

5F2
~12kW•rW 2!

2
C2~ t !2kW•rW 2

3C2@ t2~11kW•rW 2!L2~ t !#

1
~11kW•rW 2!

2
C2@ t22L2~ t !#G

1C@ t22L2~ t !#2C~ t !1n2~ t !, ~2.2!

wherekW is the unit vector in the direction of propagation
the planar gravitational wave pulse. In Eqs.~2.1!, ~2.2! we
have denoted byrW 1 , rW 2, the unit vectors from spacecrafta to
spacecraftsb andc respectively;C (1,2)(t) are the following
two scalar functions:

C~1,2!~ t !5F r~1,2!
i r~1,2!

j

12~kW•rW ~1,2!!
2Ghi j ~ t !, ~2.3!

with hi j (t) being the rank-2 tensor associated with the gra
tational wave pulse in the (X,Y,Z) coordinate system@8#,
and the sum over the repeated space-like indices has
assumed. We have denoted byC(t) the random process as
sociated with the frequency fluctuations of the master la
on board spacecrafta, and n1(t), n2(t) are the remaining
noise sources affecting the Doppler responsesy1(t), y2(t)
respectively.

From Eqs.~2.1!, ~2.2! it is important to note the charac
teristic time signature of the random processC(t) in the
Doppler responsesy1 , y2. The time signature of the nois
C(t) in y1(t), for instance, can be understood by observ
that the frequency of the signal received at timet contains
laser frequency fluctuations transmitted 2L1 seconds earlier
10200
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By subtracting from the frequency of the received signal
frequency of the signal transmitted at timet, we also subtract
the frequency fluctuationsC(t) with the net result shown in
Eq. ~2.1!.

Among all the noise sources included in Eq.~2.1!, the
frequency fluctuations due to the laser are expected to b
far the largest. A space-qualified single-mode laser, such
diode-pumped Nd:YAG ring laser of frequencyn053.0
31014 Hz and phase-locked to a Fabry-Pe´rot optical cavity,
is expected to have a spectral level of frequency fluctuati
equal to about 1.0310213/AHz in the millihertz band@3#. A
single point frequency stability measurement performed
such a laser by McNamaraet al. @9# indicates that a stability
of about 1.0310214/AHz might be achievable in the sam
frequency band. In this paper however we will assume
laser frequency stability mentioned in@3#. Laser noise is to
be compared with, e.g., the expected secondary noises w
will be 107 or more times smaller.

If the arm lengths are unequal by an amountDL5L2
2L1[eL1 ~with e.331022 for a space based interferom
eter@3#!, a simple subtraction of the two Doppler datay1(t),
y2(t) gives a new data set that is still affected by the la
fluctuations by an amount equal to

C~ t22L1!2C~ t22L2!.2Ċ~ t22L1!eL1 . ~2.4!

As a numerical example of Eq.~2.4! we find that, at a fre-
quency of 1023 Hz and by using a laser of frequency st
bility equal to about 10213/AHz, the residual laser frequenc
fluctuations are equal to about 10216/AHz. Since the goal of
proposed space-based interferometers@3# is to observe gravi-
tational radiation at levels of 10220/AHz or lower, it is cru-
cial for the success of these missions to cancel laser
quency fluctuations by many more orders of magnitude.

III. ALGORITHM FOR UNEQUAL-ARM
INTERFEROMETERS

In what follows we will show that there exists an alg
rithm in the time domain for removing the frequency flu
tuations of the laser from the two Doppler datay1(t), y2(t)
at any timet. This approach does not require Fourier tran
forms on the Doppler data. As will be shown below, th
method relies only on a properly chosen linear combinat
of the two Doppler data in the time domain. In order
derive this technique, we will assume, for the moment,
two arm lengthsL1 , L2 to be constant and known exactly
We will remove these assumptions later, and estimate
corresponding accuracy needed in order for our techniqu
be still effective.

From Eqs.~2.1!, ~2.2! we may notice that, by taking the
difference of the two Doppler datay1(t), y2(t), the fre-
quency fluctuations of the laser now enter into this new d
set in the following way:

L1~ t ![y1~ t !2y2~ t !

5h1~ t !2h2~ t !1C~ t22L1!2C~ t22L2!

1n1~ t !2n2~ t !, ~3.1!
3-3
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MASSIMO TINTO AND J. W. ARMSTRONG PHYSICAL REVIEW D59 102003
where for simplicity of notation we have definedh1(t) and
h2(t) to be the functions

h1~ t !5F2
~12kW•rW 1!

2
C1~ t !2kW•rW 1C1@ t2~11kW•rW 1!L1#

1
~11kW•rW 1!

2
C1~ t22L1!G , ~3.2!

h2~ t !5F2
~12kW•rW 2!

2
C2~ t !2kW•rW 2C2@ t2~11kW•rW 2!L2#

1
~11kW•rW 2!

2
C2~ t22L2!G . ~3.3!

If we now compare how the laser frequency fluctuations
ter into Eq.~3.1! against how they appear in Eqs.~2.1!, ~2.2!,
we can further make the following observation. If we tim
shift the datay1(t) by the round trip light time in arm 2
y1(t22L2), and subtract from it the datay2(t) after it has
been time-shifted by the round trip light time in arm
y2(t22L1), we obtain the following data set:

L2~ t ![y1~ t22L2!2y2~ t22L1!

5h1~ t22L2!2h2~ t22L1!1C~ t22L1!

2C~ t22L2!1n1~ t22L2!2n2~ t22L1!.

~3.4!
10200
-

In other words, the laser frequency fluctuations enter i
L1(t), andL2(t) with the same time structure. This implie
that, by subtracting Eq.~3.1! from Eq.~3.4!, we can generate
a new data set that does not contain the laser frequency
tuationsC(t):

S~ t ![L2~ t !2L1~ t !

5h1~ t22L2!2h1~ t !2h2~ t22L1!1h2~ t !

1n1~ t22L2!2n1~ t !2n2~ t22L1!1n2~ t !.

~3.5!

From the expression ofL2(t) given in Eq.~3.4!, it is easy to
see that the new data setS(t) should be set to zero for th
initial MAX @2L1 ,2L2# seconds. This is because some of t
data fromy1 andy2 entering intoL2(t) ‘‘do not yet exist’’
during this time interval. Since the typical round trip ligh
time for proposed space-based laser interferometer dete
of gravitational waves will never be greater than about 33
@3#, we conclude that the amount of data lost in the imp
mentation of our method is negligible. Note that our proc
dure is different from stabilization techniques used
ground based interferometers@4#.

The unequal-arm interferometer response,S(t), derived
in Eq. ~3.5!, can be rewritten explicitly, in terms of the grav
tational wave functionsC1 , C2, as follows:
at

given by
Fourier

and
r detectors
S~ t !5F S 12kW•rW 1

2
DC1~ t !2S 12kW•rW 2

2
DC2~ t !G1F S 11kW•rW 2

2
DC2~ t22L2!2S 12kW•rW 1

2
DC1~ t22L2!G

1F S 12kW•rW 2

2
DC2~ t22L1!2S 11kW•rW 1

2
DC1~ t22L1!G1F S 11kW•rW 1

2
DC1~ t22L122L2!2S 11kW•rW 2

2
D

3C2~ t22L122L2!G1kW•rW 1C1~ t2~11kW•rW 1!L1!2kW•rW 2C2~ t2~11kW•rW 2!L2!1kW•rW 2C2~ t22L12~11kW•rW 2!L2!

2kW•rW 1C1~ t22L22~11kW•rW 1!L1!1n1~ t22L2!2n1~ t !2n2~ t22L1!1n2~ t !. ~3.6!

Equation~3.6! shows that the gravitational wave signal enters into the response of an unequal-arm interferometereight
distinct times. In analogy with the terminology used for the Doppler tracking response to a gravitational wave pulse@2#, we
will refer to Eq. ~3.6! as theeight-pulseresponse function.

It is important to point out that, as a consequence of the analytic form of the unequal-arm interferometer response
Eq. ~3.5!, both the signal and the secondary noise sources will show a modulation of their power spectra. If we take the
transform of Eq.~3.5!, it is easy to derive the following expression for the one-sided power spectral density ofS(t):

SS~ f ![4uh̃1~ f !u2 sin2~2p f L2!14uh̃2~ f !u2 sin2~2p f L1!24 sin~2p f L1!sin~2p f L2!@ h̃1~ f !h̃2* ~ f !e2p i f ~L22L1!

1h̃1* ~ f !h̃2~ f !e22p i f ~L22L1!#14Sn1
~ f !sin2~2p f L2!14Sn2

~ f !sin2~2p f L1!, ~3.7!

where the asterisk denotes complex conjugation, the two random processesn1 , n2 have been assumed to be uncorrelated,
Sn1

( f ), Sn2
( f ) are their respective one-sided power spectral densities. Since the proposed space-based interferomete
3-4
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CANCELLATION OF LASER NOISE IN AN UNEQUAL- . . . PHYSICAL REVIEW D59 102003
will have arm lengths that will differ by up to a few perce
@3#, in the frequency band of interest Eq.~3.7! can be further
simplified by neglecting terms of the orderf (L22L1) and
higher:

SS~ f !.4uh̃1~ f !2h̃2~ f !u2 sin2~2p f L1!

14@Sn1
~ f !1Sn2

~ f !#sin2~2p f L1!. ~3.8!

Equation~3.8! shows that the one-sided power spectral d
sities of the signal and the noise display the same modula
in the Fourier domain. This result implies that the signal-
noise ratio in an interferometer with arms that are differ
by a few percent is in principle equal to the signal-to-no
ratio achievable with an equal-arm detector@6#.

We have simulated the procedure@Eq. ~3.5!# using realis-
tic laser and shot noise spectra@3#, known arm lengths~dif-
fering by about 3%!, and a simulated monochromatic grav
tational wave incident normal to the plane of th
interferometer. The results of the simulation are shown
Fig. 3. Plotted are spectral densities of the raw laser no
the raw shot noise, and the canceled time series,S(t) @Eq.
~3.5!#. This illustrates the cancellation of the laser noise a
modulation of the residual secondary noises in excel
agreement with Eq.~3.7!.

FIG. 3. Simulation of the time-domain laser noise cancellat
procedure for unequal-arm interferometers described in the
Fractional frequency fluctuation spectra,Sy( f ), are plotted versus
Fourier frequency for~upper curve! raw laser noise having spectra
density 10228( f /1 Hz)22/316.3310237( f /1 Hz)23.4 Hz21 and
~lower curve! residual noise after time-domain cancellation proc
dure. The dashed curve shows the level of shot noise added to
arm @spectral density 5.3310238( f /1 Hz)2 Hz21, independent in
each arm# and dot-dashed curve showing the predicted modula
of the shot noise spectrum due to our laser noise cancellation is
plotted. Other parameters were 2L1532 sec, 2L2531 sec, and
transform length 215 sec. In addition to shot noise, a simulate
sinusoidal gravitational wave with amplitudeh0510220 and f 0

50.1 Hz incident normal to the plane of the interferometer w
added. The time-domain procedure, using the known arm leng
cancels the laser noise exactly, making the simulated signal cle
visible above the~now modulated! shot noise spectrum.
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By further expanding Eq.~3.8! in the long wavelength
limit (2p f L1!1, i.e., f !1022 Hz for a 53106 km arm
length!, and taking into account the expressions forh1 , h2
given by Eqs.~3.2!, ~3.3!, ~2.3!, we obtain the following
expression for the low-frequency response of the interfero
eter:

SS~ f !.4u~r1
i r1

j 2r2
i r2

j !h̃i j ~ f !u2~2p f L1!4

14@Sn1
~ f !1Sn2

~ f !#~2p f L1!2, ~3.9!

which is the response of an equal-arm, one-bounce, Mic
son interferometer detector of gravitational radiation mu
plied by the factor 16(2p f L1)2 @6,8,10#. In other words the
signal-to-noise ratio is the same as that of an equal-arm
terferometer. Forf >1023 Hz, most of the band to which
the Laser Interferometric Space Antenna~LISA! will be sen-
sitive @3#, the 8-pulse structure will be visible.

The real limitations on the procedure described abo
however, come from the remaining noise sources affec
the two Doppler data and the accuracy in the determina
of the distances between the two pairs of spacecraft. We
estimate below how these errors affect the tolerance of
method. In what follows we will assume the two seconda
noise random processesn1(t), n2(t) to be uncorrelated and
the two arm lengthsL1 , L2 to be constant. The following
analysis will identify the time scale during which the latt
assumption is correct.

The derivation of our method for synthesizing an unequ
arm interferometer relied on the assumption of knowing
two arm lengthsL1 , L2 exactly. If we assume instead tha
the two arm lengths are known within the accuraciesdL1 ,
dL2 respectively, the cancellation of the laser frequency fl
tuations from the dataS(t) is no longer exact. In order to
estimate the magnitude of the laser fluctuations remainin
the data setS(t), let us defineL̂1 , L̂2, to be the estimated
arm lengths of the interferometer. They are related to thetrue
arm lengthsL1 , L2 and the accuraciesdL1 , dL2 through the
following expressions:

L̂15L11dL1 ,

L̂15L21dL2 . ~3.10!

If we now substitute Eq.~3.10! into Eqs. ~3.4!, ~3.5!, and
expand Eq.~3.5! to first order in dL1 , dL2, we find the
following approximate expression forS(t):

S~ t !.h1~ t22L2!2h1~ t !2h2~ t22L1!1h2~ t !

12@Ċ~ t22L122L2!~dL12dL2!1Ċ~ t22L2!~dL2!

2Ċ~ t22L1!~dL1!#1n1~ t22L2!2n1~ t !

2n2~ t22L1!1n2~ t !. ~3.11!

Our technique for synthesizing an unequal-arm interfero
eter can be considered effective if the magnitude of the
maining fluctuations from the laser are smaller than the fl
tuations due to the other noise sources entering inS(t). This
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MASSIMO TINTO AND J. W. ARMSTRONG PHYSICAL REVIEW D59 102003
requirement implies an upper limit in the accuracies of
measured arm lengths. In order to estimate the magnitud
the required accuraciesdL1 , dL2, let us focus our attention
on the two terms entering into Eq.~3.11!, associated with the
frequency fluctuationsC(t) and the noise sourcesn1 , n2:

DC~ t ![2@Ċ~ t22L122L2!~dL12dL2!1Ċ~ t22L2!~dL2!

2Ċ~ t22L1!~dL1!#, ~3.12!

N~ t ![n1~ t22L2!2n1~ t !2n2~ t22L1!1n2~ t !.
~3.13!

If we denote byDC̃( f ), Ñ( f ) the Fourier transforms of the
random processesDC(t), N(t) respectively, from Eqs
~3.12!, ~3.13! we find that they are equal to

DC̃~ f !54p i f C̃~ f !e4p i f ~L11L2!@~dL12dL2!1e24p i f L 1dL2

2e24p i f L 2dL1#, ~3.14!

Ñ~ f !52i ñ1~ f !e2p i f L 2 sin~2p f L2!

22i ñ2~ f !e2p i f L 1 sin~2p f L1!. ~3.15!

Equations~3.14!, ~3.15! imply the following expressions fo
the one-sided power spectral densities of the noisesDC, N:

SDC~ f !564p2f 2SC~ f !„dL1
2 sin2~2p f L2!

1dL2
2 sin2~2p f L1!2dL1dL2$sin2~2p f L1!

1sin2~2p f L2!2sin2@2p f ~L22L1!#%…, ~3.16!

SN~ f !54Sn~ f !@sin2~2p f L1!1sin2~2p f L2!#,
~3.17!

where we have assumed the two random processesn1 , n2 to
be uncorrelated, and their one-sided power spectral dens
to be equal toSn( f ). If the characteristic wavelength of th
gravitational radiation is significantly longer than the a
lengths of the interferometer (2p f L1 ,2p f L2!1), Eqs.
~3.16!, ~3.17! can be approximated as follows:

SDC~ f !.256p4f 4SC~ f !~L1L2!2FdL2

L2
2

dL1

L1
G2

,

~3.18!

SN~ f !.16p2f 2Sn~ f !@L1
21L2

2#. ~3.19!

Since the unequal-arm algorithm presented above can
considered effective ifSDC( f )<SN( f ), from Eqs. ~3.18!,
~3.19! we derive the following constraint on the accurac
dL1 , dL2:

FdL2

L2
2

dL1

L1
G2

<
Sn~ f !

SC~ f !

@L1
21L2

2#

16p2f 2L1
2L2

2 . ~3.20!

As an example application of Eq.~3.20!, let us assumedL1
52dL2[dL. It is easy then to derive the following inequa
ity for udLu:
10200
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udLu<
1

4p f S Sn~ f !

SC~ f ! D
1/2~L1

21L2
2!1/2

uL11L2u
. ~3.21!

If we specialize toSn( f ) equal to the spectral density of th
shot noise as given in@3#, SC( f ) to be the spectral density o
a phase-stabilized diode-pumped Nd:YAG ring laser as a
discussed in Ref.@3#, and the two arm lengthsL1'L255
3106 km, the equation can be rewritten in the followin
form:

udLu<0.4f 1/3@116.331029f 28.2/3#21/2 km. ~3.22!

The most stringent condition on arm-length knowledge
curs, for the expected spectra given in@3#, when correcting
data nearf 51023 Hz down to the secondary noise sour
spectral density. Atf 51023 Hz, Eq.~3.22! implies that the
accuracy in the arm lengths must be less than about 30
we require a reduction of the frequency fluctuations of
laser to the noise level identified by the photon count
statistics. Since, for the expected spectra@3#, Sn( f ) increases
quadratically with the frequency whileSC( f ) decreases as
f 22/3, we conclude that at higher frequencies the requi
accuracy is less stringent@see Eqs.~3.16!, ~3.17!#. At f
51 Hz, for instance, we find that the required accura
grows to about 800 m.

In relation to the accuracies derived above, it is interest
to calculate the time scales during which the arm lengths
change by an amount equal to the accuracies themse
This identifies the minimum time required before updati
the round-trip light times during the implementation of th
unequal-arm algorithm.

It has been calculated by Folkneret al. @13# that the rela-
tive longitudinal speeds between the three pairs of spa
craft, during approximately the first year of the LISA mi
sion @3#, can be written in the following approximate form

Vi , j~ t !5Vi , j
~0! sinS 2pt

Ti , j
D , ~ i , j !5~a,b!, ~a,c!, ~b,c!,

~3.23!

where we have denoted by (a,b),(a,c),(b,c) the three pos-
sible spacecraft pairs,Vi , j

(0) is a constant velocity, andTi , j is
the period for the pair (i , j ). In Ref. @13# it has also been
shown that the LISA trajectory can be selected in such a w
that two of the three arms’ rates of change are essent
equal during the first year of the mission. Following Re
@13#, we will assume Va,b

(0)5Va,c
(0)ÞVb,c

(0) , with Va,b
(0)

51 m/sec, Vb,c
(0)513 m/sec, Ta,b5Ta,c'4 months, and

Tb,c'1 y. From Eq.~3.23! it is easy to derive the variation
of each arm length, for exampledL1(t), as a function of the
time t and the time scaledt during which it takes place:

dL1~ t !5Va,b
~0! sinS 2pt

Ta,b
D dt. ~3.24!

Equation~3.24! implies that a variation in arm lengthdL1
'30 m can take place during different time scales, depe
ing on when during the mission this change takes place.
instance, ift!Ta,b , we find that the arm lengthL1 changes
3-6
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by more than its accuracy~30 m! after a time dt56.7
3103 sec. If howevert.Ta,b/4, the arm length will change
by the same amount after onlydt.30 sec instead.

As a final note, it is worth mentioning that, since th
anticipated gravitational wave amplitude will be about sev
or more orders of magnitude smaller than the relative
quency fluctuations of the laser, the Doppler measurem
from each arm must be digitized with an adequate resolut
This is in order to avoid the loss of the gravitational wa
signal once the subtraction of the laser noise is perform
Although this is an important point that will need to be r
membered in the design of the onboard data acquisition
tem, it does not represent a fundamental technology c
lenge @3#. Furthermore, in order to have perfe
synchronization of the two data streams and effectively
move the laser fluctuations, a common clock should be u
during the acquisition, digitization, and recording of the tw
Doppler data.

IV. CONCLUSIONS

We presented a time-domain procedure for accura
canceling laser noise fluctuations in an unequal-arm o
bounce Michelson interferometer relevant to space-bo
gravitational wave detectors. The method involves separa
measuring the phase of the returning light relative to
phase of the transmitted light in each arm. By suitable o
setting and differencing of these two time series, the co
mon laser noise is canceled exactly@Eq. ~3.5!#. This is tem-
porally local and contrasts with approximate cancellat
techniques based on operations on Fourier transforms of
but finite durations data sets.

The effect of this procedure is to introduce a characteri
signature of a gravitational wave incident on the interfero
eter. In the general case, the wave is replicated 8 times in
output time series, depending on the arm lengths and
angle of arrival of the wave. We showed that our linear co
bination precisely cancels the laser noise, and modulates
gravitational wave signal and the secondary noise source
the same way if the lengths of the two arms are different
only a few percent@3#. Thus the signal-to-noise ratio afte
applying our procedure is the same as would be expected
an equal-arm interferometer.

To cancel the laser noise to the levels of the second
noise sources with this procedure, the arm lengths mus
known with adequate accuracy. To demonstrate practica
of the method, we presented a general analysis of the
quired accuracy@Eqs. ~3.16!, ~3.17!, ~3.20!# and used the
noise spectra expected for proposed space interferom
mission to estimate required accuracy as a function of F
rier content of the signal.

Since a gravitational wave signal enters into the respo
of an unequal-arm interferometer in general at eight dist
times @Eq. ~3.6!#, the probability of detection of signal with
low signal-to-noise ratios should improve. Furthermore, s
a distinct time structure should enhance the angular res
tion of LISA @3# for signals where the 8 pulses are resolve
These issues will be addressed in a forthcoming paper.
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APPENDIX: FREQUENCY-DOMAIN CANCELLATION
OF LASER NOISE

IN UNEQUAL-ARM INTERFEROMETERS

In the main text, we gave a time-domain procedure
exactly canceling laser noise fluctuations in an unequal
Michelson interferometer while preserving the gravitation
wave ~GW! signal. A procedure for cancellation of lase
noise involving operations on the Fourier transforms of
data from each arm was previously presented in@5#. This
frequency-domain~FD! method cancels the laser noise e
actly in the limit where the duration of the data set goes
infinity. For a finite data set, however, the FD cancellati
method is not exact. For the very precise cancellation
quired for a gravitational wave detector in space~140–200
dB, depending on Fourier frequency!, the FD procedure re-
quires impractically long data sets. In this appendix
briefly restate the FD cancellation argument, derive an a
lytical expression for the degree of cancellation of the F
method as a function of arm lengths, duration of the data
and Fourier frequency@Eq. ~A24!#, compare this analytica
result with computer simulations, and discuss practical
plications for space-borne laser interferometer GW exp
ments.

1. Frequency-domain method

The FD method is described in detail in@5#. Briefly, the
difference between the phase~or frequency! of the transmit-
ted laser signal at time t and the laser phase at a ‘‘two-w
light time’’ earlier is recorded separately for each arm of t
interferometer. This is done over some observing intervalT.
Using the same notation as in the main text, these two t
series are

y1~ t !5h1~ t !1C~ t22L1!2C~ t !1n1~ t !, ~A1!

y2~ t !5h2~ t !1C~ t22L2!2C~ t !1n2~ t !,
~A2!

whereL1 andL2 are the arm lengths of the interferometer~in
units of time,c51), h1(t), h2(t) are the GW signal ampli-
tudes,C(t) is the laser noise process, andn1(t), n2(t) are all
other noises entering the data.C(t) totally dominatesn1 and
n2 (;107 or more times larger in amplitude!; so the objec-
tive is to cancelC(t) to a level smaller than the other nois
sources while preserving the GW signal.

The FD approach is first to Fourier transformy1 andy2 .
Conceptually this is a true Fourier transform~i.e., infinite
limits of integration!; in practice it is a transform over a finit
interval set by practical considerations. Letỹi( f ) be the
sample Fourier transform of the seriesyi(t). Using the shift
3-7
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theorem for Fourier transforms@12# one can use the data in
e.g., arm 2 to solve forC̃( f ), the Fourier transform ofC(t):

C̃~ f !5
ỹ2~ f !

@12e24p i f L 2#
. ~A3!

Given this estimate ofC̃( f ) one can correct the data in th
other arm for laser fluctuations. The Fourier transform of
corrected data is then

ỹ1~ f !2 ỹ2~ f !
@e4p i f L 121#

@e4p i f L 221#
. ~A4!

The ensemble average of the square of this quantity is
power spectrum of the FD corrected data; as shown in@5# it
goes to zero@except at the poles in Eq.~A4!, i.e. f 50 and
the time-travel resonances of arm 2# if there is laser noise
only and if the data set is infinitely long. This FD approa
preserves a GW signal. Equation~A4! is the essential resul
of the FD-correction approach.

2. Performance of the frequency domain approach
for finite data sets

In a finite-duration experiment, the FD cancellation is n
exact. The degree to which the FD method cancels the l
noise depends on the duration of the Fourier transforms u
how the data are ‘‘windowed’’@11# in the time domain be-
fore estimating the Fourier transform, the interferometer a
lengths, and the Fourier frequency considered.

Define ỹ1( f ) as the ‘‘forward’’ Fourier transform of the
Doppler datay1(t) calculated over the intervalT[2t:

ỹ1~ f ![E
2t

t

y1~ t !e2p i f tdt. ~A5!

From the Fourier theorem, the inverse Fourier transfo
y1(t), is given by

y1~ t ![E
2 f c

1 f c
ỹ1~ f !e22p i f td f , ~A6!

where f c is the Nyquist frequency cutoff. For a space-bas
interferometer, for instance,f c might be 0.5 Hz. Note that if
we substitute Eq.~A6! into Eq. ~A5! we get

ỹ1~ f !5E
2t

t E
2 f c

1 f c
ỹ1~ f 8!e2p i ~ f 2 f 8!td f8dt, ~A7!

which, after integration with respect to time, becomes

ỹ1~ f !5E
2 f c

1 f c
ỹ1~ f 8!Fsin@p~ f 2 f 8!T#

p~ f 2 f 8!
Gd f8. ~A8!

Since the function inside the squared brackets is one of
approximations to the Dirac delta function, we conclude t
Eq. ~A8! becomes an identity, in agreement with the defi
tions of forward and backward Fourier transforms given
Eqs.~A5!, ~A6!.
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To minimize spectral leakage@11#, it is necessary to pre
multiply the time-domain data sets by a window functio
W(t), before taking Fourier transforms. IfY1(t)
[y1(t)W(t), andY2(t)[y2(t)W(t), the finite-duration win-
dowed Fourier transform of, e.g.,Y1(t), is equal to

Ỹ1~ f !5H̃1~ f !1E
2t

t

@C~ t22L1!2C~ t !#W~ t !e2p i f tdt

1Ñ1~ f !, ~A9!

where H̃1( f ), Ñ1( f ) are the Fourier transforms o
h1(t)W(t), n1(t)W(t) respectively. SinceC(t), W(t) can
be written in terms of their inverse Fourier transforms, af
some simple algebra we can rewrite Eq.~A9! as

Ỹ1~ f !5H̃1~ f !1E
2t

t E
2 f c

f c E
2 f c

f c
C̃~ f 8!@e4p i f 8L121#

3W̃~ f 9!e2p i ~ f 2 f 82 f 9!tdtd f8d f91Ñ1~ f !.

~A10!

If we interchange the integration symbols, and integrate w
respect to time, Eq.~A10! becomes

Ỹ1~ f !5H̃1~ f !1E
2 f c

f c E
2 f c

f c
C̃~ f 8!@e4p i f 8L121#W̃~ f 9!

3Fsin@p~ f 2 f 82 f 9!T#

p~ f 2 f 82 f 9!
Gd f8d f91Ñ1~ f !. ~A11!

By further integrating Eq.~A11! with respect tof 9 we obtain

Ỹ1~ f !5H̃1~ f !1E
2 f c

f c
C̃~ f 8!@e4p i f 8L121#W̃~ f 2 f 8!d f8

1Ñ1~ f !. ~A12!

If W(t) is the Parzen~triangular! window @11#, its Fourier
transform is

W̃~ f !5tFsin~p f t!

p f t G2

, ~A13!

and we can rewrite Eq.~A12! as follows:

Ỹ1~ f !5H̃1~ f !1tE
2 f c

f c
C̃~ f 8!@e4p i f 8L121#

3Fsin@p~ f 2 f 8!t#

p~ f 2 f 8!t
G 2

d f81Ñ1~ f !. ~A14!

If we now make the change of variablep( f 2 f 8)t5h, Eq.
~A14! becomes
3-8
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Ỹ1~ f !5H̃1~ f !1
1

pEpt~ f 2 f c!

pt~ f 1 f c!

C̃S f 2
h

pt D @e4p i ~ f 2h/pt!L121#

3Fsin~h!

h G2

dh1Ñ1~ f !. ~A15!

Since the integrand in Eq.~A15! decays ash22, the major
contribution to the integral will come from a few cycle
around zero. This implies that the integrand in Eq.~A15! can
be written in the following approximate form:

Ỹ1~ f !5H̃1~ f !1
1

pEpt~ f 2 f c!

pt~ f 1 f c!

C̃S f 2
h

pt D
3Fe4p i f L 1S 12

4iL 1h

t D21GFsin~h!

h G2

dh1Ñ1~ f !.

~A16!

After some further algebra, Eq.~A16! can be rewritten as
follows:

Ỹ1~ f !5H̃1~ f !1
1

pEpt~ f 2 f c!

pt~ f 1 f c!

C̃S f 2
h

pt D
3Fsin~h!

h G2

dh@e4p i f L 121#

2
4iL 1

pt
e4p i f L 1E

pt~ f 2 f c!

pt~ f 1 f c!

C̃S f 2
h

pt D Fsin2~h!

h Gdh

1Ñ1~ f !, ~A17!

and similarly we can write the corresponding equation
the Fourier transform of the windowed Doppler data m
sured with arm 2. We point out that in Eq.~A17! the second
integral goes to zero as the integration time goes to infin
10200
r
-

;

however, for any finite time of integration the transfer fun
tion of the frequency fluctuations of the laser into the Do
pler observables will not have the ideal analytic forms

e4p i f L ~1,2!21. ~A18!

If we implement the FD technique proposed in@5# for re-
moving the laser noise, we get

Ỹ1~ f !2Ỹ2~ f !
@e4p i f L 121#

@e4p i f L 221#

5@H̃1~ f !1Ñ1~ f !#2@H̃2~ f !1Ñ2~ f !#
@e4p i f L 121#

@e4p i f L 221#

1
4i

pt FL2e4p i f L 2
@e4p i f L 121#

@e4p i f L 221#

2L1e4p i f L 1G E
pt~ f 2 f c!

pt~ f 1 f c!

C̃S f 2
h

pt D Fsin2~h!

h Gdh.

~A19!

The last term on the right-hand-side of Eq.~A19! can be
rewritten as

ỸC~ f ![S 2

pt sin~2p f L2! De2p i f ~2L11L2!@L22L1

1L1e24p i f L 22L2e24p i f L 1#E
pt~ f 2 f c!

pt~ f 1 f c!

C̃S f 2
h

pt D
3Fsin2~h!

h Gdh. ~A20!

If we take the modulus squared and the ensemble ave
(^•••&) of the left- and right-hand sides of Eq.~A20!, we get
^uỸC~ f !u2&[S 2

pt sin~2p f L2! D
2

$~L22L1!21L1
21L2

222L1L2 cos@4p f ~L22L1!#12~L22L1!L1 cos~4p f L2!

22~L22L1!L2 cos~4p f L1!%E
pt~ f 2 f c!

pt~ f 1 f c!E
pt~ f 2 f c!

pt~ f 1 f c!K C̃S f 2
h

pt D C̃* S f 2
h8

pt D L Fsin2~h!

h GFsin2~h8!

h8 Gdhdh8.

~A21!

AssumingC(t) is a stationary random process with power spectral densitySC( f ), we can rewrite Eq.~A21! as follows:

^uỸC~ f !u2&[S 2

pt sin~2p f L2! D
2

$~L22L1!21L1
21L2

222L1L2 cos@4p f ~L22L1!#12~L22L1!L1 cos~4p f L2!

22~L22L1!L2 cos~4p f L1!%E
pt~ f 2 f c!

pt~ f 1 f c!E
pt~ f 2 f c!

pt~ f 1 f c!

SCS f 2
h

pt D d~h2h8!Fsin2~h!

h GFsin2~h8!

h8 Gdhdh8,

~A22!

which then becomes
3-9
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^uỸC~ f !u2&[S 4

pT sin~2p f L2! D
2

$~L22L1!21L1
21L2

222L1L2 cos@4p f ~L22L1!#12~L22L1!L1 cos~4p f L2!

22~L22L1!L2 cos~4p f L1!%E
pt~ f 2 f c!

pt~ f 1 f c!

SCS f 2
h

pt D Fsin4~h!

h2 Gdh, ~A23!
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where the identityT52t has been used. Since the pow
spectral density of the frequency fluctuations of a stabiliz
laser is a smooth function of the frequency, the major c
tribution to the integral will come from a few cycles aroun
zero. This implies that we can treat the power spectral d
sity SC( f ) essentially as a constant in doing this integratio
and rewrite Eq.~A23! as

^uỸC~ f !u2&5
16SC~ f !F~L1 ,L2 , f !

p2T2 E
pt~ f 2 f c!

pt~ f 1 f c!Fsin4~h!

h2 Gdh,

~A24!

whereF(L1 ,L2 , f ) is

F~L1 ,L2 , f !5
1

sin2~2p f L2!
$~L22L1!21L1

21L2
2

22L1L2 cos@4p f ~L22L1!#

12~L22L1!L1 cos~4p f L2!

22~L22L1!L2 cos~4p f L1!%. ~A25!

Equation ~A24! is the main result of this appendix. For
finite-duration experiment, it expresses the degree of FD c
cellation of the laser noise as a function of the two a
lengths, the spectrum of the laser noise, the experiment
ration, and Fourier frequency.

3. Simulation

We verified this formula via simulated time series of va
ous durations, various arm lengths, and various arm len
differences. To make a more direct comparison with the
method in@5#, these simulations were done in terms of pha
rather than fractional frequency difference. Figure 4 sho
one of these simulations, the parameters of which clos
follow those used in@5#. We simulated white laser phas
noise with two-sided spectral densitySf( f )52.5
3107 rad2/Hz ~i.e., rms phase of 5000 radians in a 1 Hz
band! and white ‘‘other’’ noise~independent in each arm an
with spectral density much smaller than the laser noise@5#!.
From the simulated time series of laser noise we formed
time series of laser phase noise differences,p(t22Li)
2p(t), for each arm. A simulated sinusoidal gravitation
wave signal was injected atf 050.1 Hz, with amplitudeh0
510220. The gravitational wave was assumed incident n
mally onto the plane of the interferometer so that the ph
data in each arm has two ‘‘pulses’’ separated by the two-w
light travel time in that arm@2#. As in @5# the signal was
added to one arm and subtracted from the other. The t
way light times used were 2L1516.6875 sec and 2L2
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516.71875 sec~i.e., they differed by 1/32 of a second! and
were assumed to be known exactly. Thus the observable
series of the two arms were

z1~ t !5s1~ t !1p~ t22L1!2p~ t !1l1~ t !, ~A26!

z2~ t !5s2~ t !1p~ t22L2!2p~ t !1l2~ t !,
~A27!

where

s1~ t !5
1

2
h0S 331014 Hz

f 0
D $cos@2p f 0~ t22L1!#

2cos~2p f 0t !%, ~A28!

FIG. 4. Phase spectra of simulated laser noise illustrating
performance of the frequency-domain cancellation procedure
unequal arm interferometers, as discussed in the Appendix. U
curve: spectrum of raw laser phase noise~assumed white with spec
tral level 2.53107 rad2/Hz). Lower curve: spectrum of frequency
domain canceled noise for parameters 2L1516.6875 sec, 2L2

516.71875 sec, duration of data5 215 sec. Thirty realizations of
each spectrum were averaged to reduce estimation error and
clearly illustrate spectral shapes. Also plotted as a dot-dashed li
the model prediction@Eq. ~A24!#. Dashed line: spectral density o
white ‘‘shot’’ noise added to each arm. The spectral line is a F
cancellation response of interferometer to gravitational wave in
dent normal to the plane of the interferometer withf 050.1 Hz. For
these arm lengths, the FD-cancellation method would require l
transform lengths~about 6 months! to suppress the laser noise b
140 dB in the band 1022– 1024 Hz.
3-10
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s2~ t !52
1

2
h0S 331014 Hz

f 0
D $cos@2p f 0~ t22L2!#

2cos~2p f 0t !%. ~A29!

The minus sign on the right-hand side of the equation fors2
reflects the quadrupolar nature of the gravitational wave
nal @8#, the optical carrier frequency (n05331014 Hz) is
appropriate for a 1mm laser@3#, and the frequency fluctua
tion y(t)5Dn/n0 has been integrated to get the associa
phase fluctuationz(t). The ‘‘other’’ phase noises,l1 , l2 in
Eqs. ~A26! and ~A27! were taken to be white phase nois
independent in each arm, and with spectral density 14 or
of magnitude smaller than that of the laser phase noise@5#.
@The crucial difference between our simulation and that d
in @5# is that the laser phase noise time series,p(t), was
required in@5# to be periodic with the same period as that
the finite Fourier transform. This periodicity condition—
which would not be satisfied in a real observation—forc
the phase difference series in each arm,p(t22Li)2p(t), to
have the idealized analytic form of Eq.~A18!, even for a
finite duration rectangular windowed Fourier transform. Th
the simulation in@5# erroneously appeared to achieve ex
laser-noise cancellation even for a finite duration data se#

A simulated duration ofT5215 sec was used to comput
Fourier transforms. All time series were multiplied by a t
angle window function prior to being discrete-Fourier tran
formed. Figure 4 shows spectra averaged over 30 realizat
of the simulated processes~to reduce estimation error!.
Shown in the figure are the raw laser noise spectrum and
spectrum of the FD-canceled noise process. The noise l
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of the ‘‘other’’ noise processes~140 dB below the laser
phase noise! is indicated as a dashed line. The spectrum
the monochromatic signal withh0510220, passed through
the interferometer response and with frequency resolu
appropriate forT5215 sec, is also indicated. Our analytic
result @Eq. ~A24!# is overplotted as a dot-dashed line on t
FD-canceled spectrum~although the model curve is difficul
to see because of the excellent agreement.! For these param-
eters, the FD method fails to cancel the laser noise to des
levels over essentially all of the band.

4. Implications for space-borne gravitational
wave interferometers

FD cancellation presents conflicting requirements:
data duration,T, must be long enough to get 140–200 d
suppression of the laser noise~depending on Fourier fre
quency!, but simultaneously~at least in the FD approach a
formulated to date! short enough so that the arm lengths a
sensibly constant. Using as an example the published pa
eters of the proposed LISA mission@3#, the arms can be up
to 3% different and the peak rate of change of an arm will
about 13 m/sec. Taking the arm lengths to be 1% perc
different with 2L1533 sec and 2L2533.3 sec and requir-
ing at least 140 dB suppression in the Fourier ba
1024–1022 Hz, requires@Eq. ~A24!# a data duration ofT
'6 months. On this time scale the arms will change
much more than the tolerance derived for the FD method@5#
and in the main text of this paper. Restricting the time du
tion of the FD method to a value where the arm lengths
not change significantly@13,14# results in insufficient sup-
pression of the laser noise.
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