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Quantum chaos in compact lattice QED
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Complete eigenvalue spectra of the staggered Dirac operator in quenched 4D compact QED are studied on
8334 and 8336 lattices. We investigate the behavior of the nearest-neighbor spacing distributionP(s) as a
measure of the fluctuation properties of the eigenvalues in the strong coupling and the Coulomb phase. In both
phases we find agreement with the Wigner surmise of the unitary ensemble of random-matrix theory indicating
quantum chaos. Combining this with previous results on QCD, we conjecture that quite generally the non-
linear couplings of quantum field theories lead to a chaotic behavior of the eigenvalues of the Dirac operator.
@S0556-2821~99!05409-0#

PACS number~s!: 11.15.Ha, 05.45.Mt, 12.38.Gc
u
a

he
om
t-

le
-

ao
ca
tio

is
ec
n

ti
a

f
u
sy
g

d
ao

as

t

are
ion
ere

e. a
on

nsi-
n
by

ally

-
not
r-

4D
ran-
e
rest-
rac
ling
ian
on-
u-
n

mb
s of

the
tates
en
I. MOTIVATION

The fluctuation properties of the eigenvalues of the E
clidean lattice QCD Dirac operator have attracted much
tention in the past few years. In Ref.@1# it was first shown
for SU~2! lattice gauge theory that certain features of t
spectrum of the Dirac operator are described by rand
matrix theory ~RMT!. In particular the so-called neares
neighbor spacing distributionP(s), i.e. the distribution of the
spacingss of adjacent eigenvalues on the ‘‘unfolded’’ sca
~see below!, agrees with the Wigner surmise of RMT. Ac
cording to the Bohigas-Giannoni-Schmit conjecture@2#,
quantum systems whose classical counterparts are ch
have aP(s) given by RMT whereas systems whose classi
counterparts are integrable obey a Poisson distribu
P(s)5e2s. Therefore, the specific form ofP(s) is often
taken as a criterion for ‘‘quantum chaos.’’ However, there
no accepted proof of the Bohigas-Giannoni-Schmit conj
ture yet. The field of quantum chaos is still developing a
there are many open conceptual problems@3#. Applying this
conjecture it was recently demonstrated that QCD is chao
both in the confinement and the quark gluon plasma ph
@4#.

A number of interesting results have been established
chaotic dynamics in classical gauge theories. Lattice ga
theories are chaotic as classical Hamiltonian dynamical
tems @5#. Furthermore, it was found that the leadin
Lyapunov exponent of SU~2! Yang-Mills field configura-
tions indicates that configurations corresponding to the
confinement phase are chaotic although they are less ch
than in the strong coupling phase at finite temperature@6#.
The scaling of the maximal Lyapunov exponent in the cl
sical continuum limit was studied in Ref.@7#: It was sug-
gested that Abelian gauge theories behave regularly in
0556-2821/99/59~9!/097504~4!/$15.00 59 0975
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continuum limit whereas non-Abelian gauge theories
chaotic in the continuum, although the exact scaling relat
is still an open problem. Chaos to order transitions w
observed in a spatially homogeneous SU~2! Yang-Mills-
Higgs system and in a spatially homogeneous SU~2! Yang-
Mills Chern-Simons Higgs system@8,9#. In Ref. @8# a chaos
to order transition was also seen on the quantum level, i.
smooth transition from a Wigner to a Poisson distributi
was found. A transition inP(s) from Wigner to Poisson
behavior was further observed at the metal-insulator tra
tion of the Anderson model@10#. Recently, the suppressio
of the characteristic manifestations of dynamical chaos
quantum fluctuations was analyzed in the context of spati
homogeneous scalar electrodynamics@11# and for a
011-dimensional space-timeN-componentf4 theory in the
presence of an external field@12#. These chaos to order tran
sitions were seen in spatially homogeneous models and
for the full classical field theory. The relationship to prope
ties of the quantum field theory is an interesting issue.

Here we focus on the Dirac operator for quenched
compact QED to search for the possible existence of a t
sition from chaotic to regular behavior in Abelian lattic
gauge theories. In particular, we are interested in the nea
neighbor spacing distribution of the eigenvalues of the Di
operator across the phase transition from the strong coup
to the Coulomb phase. In the strong coupling region Abel
as well as non-Abelian lattice gauge theories are in a c
fined phase@13#. For compact QED this means that for co
plingsb,bc'1.01 the electron is confined. However, whe
crossing the phase transition the conventional Coulo
phase is observed. There are some interesting propertie
the two phases which can be studied in lattice QED. In
confinement phase the photons form massive bound s
similar as the gluons bind to glue-balls in lattice QCD. Wh
©1999 The American Physical Society04-1
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crossing the phase transition a massless photon is found@14#
whereas in lattice QCD the gluon is a massive particle in
deconfinement region. U~1! lattice gauge theory contain
Dirac magnetic monopoles in addition to photons@15# and it
was demonstrated via numerical simulations that the vacu
in the confined phase is populated by monopole curre
which become rare in the Coulomb phase@16#. It is an inter-
esting question if the difference between the Coulomb ph
in QED and the quark-gluon plasma phase in QCD has
influence on the level repulsion of the corresponding Di
spectra.

II. ANALYSIS

We generated gauge field configurations using the s
dard Wilson plaquette action for U~1! gauge theory,

SG~Ul !5b(
P

~12cosQP!, ~2.1!

where Ul[Uxm5exp(iQxm), with QxmP@2p,p), are the
field variables defined on the linksl[(x,m). The plaquette
angles areQP5Qx,m1Qx1m̂,n2Qx1 n̂,m2Qx,n . We simu-
lated 8334 and 8336 lattices at various values of the in
verse gauge couplingb51/e2 both in the strong coupling
and the Coulomb phase. Typically we discarded the fi
10000 sweeps for reaching equilibrium and produced 20
dependent configurations separated by 1000 sweeps for
b. Because of the spectral ergodicity property of RMT o
can replace ensemble averages by spectral averages@17# if
one is only interested in the bulk properties. Thus a f
independent configurations are sufficient to computeP(s).

On the lattice the Dirac operatorD” 5]”1 ieA” for staggered
fermions

Mx,x85
1

2 (
m51

4

hxm~dx1m̂,x8Ux,m2dx2m̂,x8Ux,m
† ! ~2.2!

is anti-Hermitian so that all eigenvalues are imaginary. F
convenience we denote them byiln and refer to theln as
the eigenvalues in the following. Because of$D” ,g5%50 the
ln occur in pairs of opposite sign. All spectra were check
against the analytical sum rules

(
n

ln50 and (
ln.0

ln
25V, ~2.3!

whereV is the lattice volume@18#. We further checked ou
spectra by calculating the chiral condensate

^x̄x&5V21K (
n

~ iln1m!21L ~2.4!

for m50.04 and found agreement with results in the lite
ture @19#.

To construct the nearest-neighbor spacing distribut
P(s) from the eigenvalues, one has to ‘‘unfold’’ the spect
09750
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This procedure is a local rescaling of the energy scale so
the mean level spacings̄ is equal to unity on the unfolded
scale@20#: One first defines the staircase functionN(E) to be
the number of eigenvalues withl<E. This staircase func-
tion is decomposed into an average part and a fluctua
part,N(E)5Nav(E)1Nfl(E). The smooth average part is ex
tracted by fittingN(E) to a smooth curve, e.g. to a low-orde
Chebyshev polynomial. One then defines the unfolded e
gies to bexn5Nav(En). As a consequence the sequence$xn%
has mean level spacing equal to unity. Ensemble and spe
averages are only meaningful after unfolding. Figure
shows a typical staircase function forb50.90 ~strong cou-
pling phase! andb51.10 ~Coulomb phase! on an 8336 lat-
tice. It exhibits a decrease of small eigenvalues due to
restoration of chiral symmetry across the transition.

III. RESULTS AND DISCUSSION

In RMT one has to distinguish between different unive
sality classes which are determined by the symmetries of
system. So far the classification for the QED Dirac opera
has not been done. Our calculations show that in the cas
the staggered 4D compact QED Dirac matrix the appropr
ensemble is the unitary ensemble. Although from a ma
ematical point of view this is the simplest one, the RM
result for the nearest-neighbor spacing distribution is s
rather complicated. It can be expressed in terms of so-ca
prolate spheroidal functions, see Ref.@21# where P(s) has
also been tabulated. A good approximation toP(s) is pro-
vided by the Wigner surmise for the unitary ensemble

P~s!5
32

p2
s2e2~4/p!s2

. ~3.1!

We have simulated 8334 lattices at b
50,0.90,0.95,1.00,1.05,1.10,1.50 and 8336 lattices at b
50.90,1.10,1.50. All results are similar to those selected
the plots. Figure 2 shows the nearest-neighbor spacing
tribution P(s) for b50.90 in the confined phase averag

FIG. 1. Staircase functionN(E) representing the number o
positive eigenvalues<E for a typical configuration of compac
U~1! theory on an 8336 lattice in the strong coupling phaseb
50.90~solid line! and in the Coulomb phaseb51.10~dotted line!.
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BRIEF REPORTS PHYSICAL REVIEW D 59 097504
over 20 independent configurations on the 8336 lattice com-
pared with the Wigner surmise for the unitary ensemble
RMT of Eq. ~3.1!. Good agreement is found. According
the Bohigas-Giannoni-Schmit conjecture this means the
tem can be regarded as chaotic in the strong coupling reg
Figure 3 shows the nearest-neighbor spacing distribu
P(s) for b51.10 in the Coulomb phase again averaged o
20 independent configurations and compared with
Wigner surmise~3.1!. The agreement of the lattice data wi
the RMT predictions is interpreted as a signal that quan
chaos survives the phase transition. We find no deviation
to the maximum coupling considered,b51.50.

In the strong coupling phase the result holds down tob
50. Therefore, we tend to interpret our, as well as previo
@4,1#, results in the sense that the disorder of the gauge fi

FIG. 2. Nearest-neighbor spacing distributionP(s) of the Dirac
operator for compact U~1! theory in the strong coupling phase fo
b50.90. The histogram represents the lattice data on an 8336
lattice averaged over 20 independent configurations. The full cu
is the Wigner distribution of Eq.~3.1! for the unitary ensemble o
RMT.

FIG. 3. Nearest-neighbor spacing distributionP(s) of the Dirac
operator for compact U~1! theory in the Coulomb phase forb
51.10. The histogram represents the lattice data on an 8336 lattice
averaged over 20 independent configurations. The full curve is
Wigner distribution of Eq.~3.1! for the unitary ensemble of RMT
For comparison the Poisson distributionP(s)5e2s is also indi-
cated by the dashed line.
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configurations@5,6# is responsible for the chaotic characte
istics of the spectrum of the Dirac operator. In contrast
that: The free fermion theory is non-chaotic and the cor
sponding nearest-neighbor spacing distribution obeys a P
son distribution. This is illustrated in Fig. 4 whereP(s) is
obtained from the analytical eigenvalues of the free Di
operator on a 53347343341 lattice:

a2l25 (
m51

4

sin2S 2pnm

Lm
D . ~3.2!

Herea is the lattice constant,Lm is the number of lattice sites
in m-direction, andnm50, . . . ,Lm21. We used an asym
metric lattice withLm being primes and restricted the rang
to (Lm21)/2 instead ofLm21 in each direction to avoid
degeneracies of the free spectrum@22#.

IV. CONCLUSION

We have analyzed the nearest-neighbor spacing distr
tion P(s) of the eigenvalues of the Dirac operator
quenched 4D QED on 8334 and 8336 lattices both in the
strong coupling region and in the Coulomb phase. In b
phases we found excellent agreement of the lattice data
the Wigner surmise of the unitary ensemble of RMT. O
results evidence that the fermions in U~1! gauge theory show
quantum chaos in the confined as well as in the Coulo
phase. Dynamical fermions are not expected to affect
Wigner distribution as has been demonstrated for SU~3! @4#.
In accordance with previous findings@4,1# we conjecture that
the eigenvalues of the Dirac operator of interacting quant
field theories quite generally reveal chaos due to the diso
of the gauge field configurations. The free Dirac operator
absence of a covariant derivative and minimal gauge c
pling, exhibits regular behavior.

It would be interesting to study the relationship betwe
chaos to order transitions in classical@5–9,11,12# and quan-
tum field theories. However, this faces several difficultie
The available investigations of classical field theories foc

e

e

FIG. 4. Nearest-neighbor spacing distributionP(s) of the ana-
lytically calculated eigenvalues of Eq.~3.2! for a free Dirac opera-
tor on a 53347343341 lattice ~histogram! compared with the
Poisson distributionP(s)5e2s ~solid line!.
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BRIEF REPORTS PHYSICAL REVIEW D 59 097504
mainly on the gauge sector, whereas the numerical meth
employed here are only efficient for the fermion sector
quantum field theory. A similar accurate determination of
eigenvalue spectrum of the gauge sector necessitates to
struct the corresponding Fock space and to diagonalize h
dimensional matrices which seems to be out of reach for
QED or QCD. On the other hand, for the classical limit fe
mion sector studies of chaos have not yet been attempte
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