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Complete eigenvalue spectra of the staggered Dirac operator in quenched 4D compact QED are studied on
8%x 4 and §x 6 lattices. We investigate the behavior of the nearest-neighbor spacing distriB{spms a
measure of the fluctuation properties of the eigenvalues in the strong coupling and the Coulomb phase. In both
phases we find agreement with the Wigner surmise of the unitary ensemble of random-matrix theory indicating
guantum chaos. Combining this with previous results on QCD, we conjecture that quite generally the non-
linear couplings of quantum field theories lead to a chaotic behavior of the eigenvalues of the Dirac operator.
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I. MOTIVATION continuum limit whereas non-Abelian gauge theories are
chaotic in the continuum, although the exact scaling relation
The fluctuation properties of the eigenvalues of the Eudis still an open problem. Chaos to order transitions were
clidean lattice QCD Dirac operator have attracted much atebserved in a spatially homogeneous (UYang-Mills-
tention in the past few years. In Réfl] it was first shown Higgs system and in a spatially homogeneoug2$\Yang-
for SU(2) lattice gauge theory that certain features of theMills Chern-Simons Higgs systef8,9]. In Ref.[8] a chaos
spectrum of the Dirac operator are described by randomto order transition was also seen on the quantum level, i.e. a
matrix theory (RMT). In particular the so-called nearest- smooth transition from a Wigner to a Poisson distribution
neighbor spacing distributioR(s), i.e. the distribution of the was found. A transition inP(s) from Wigner to Poisson
spacingss of adjacent eigenvalues on the “unfolded” scale behavior was further observed at the metal-insulator transi-
(see belowy, agrees with the Wigner surmise of RMT. Ac- tion of the Anderson moddll0]. Recently, the suppression
cording to the Bohigas-Giannoni-Schmit conjectur2], of the characteristic manifestations of dynamical chaos by
guantum systems whose classical counterparts are chaotjuantum fluctuations was analyzed in the context of spatially
have aP(s) given by RMT whereas systems whose classicahomogeneous scalar electrodynami¢§l] and for a
counterparts are integrable obey a Poisson distributio®+ 1-dimensional space-tims-componenip? theory in the
P(s)=e"®. Therefore, the specific form dP(s) is often  presence of an external figld2]. These chaos to order tran-
taken as a criterion for “quantum chaos.” However, there issitions were seen in spatially homogeneous models and not
no accepted proof of the Bohigas-Giannoni-Schmit conjecfor the full classical field theory. The relationship to proper-
ture yet. The field of quantum chaos is still developing andies of the quantum field theory is an interesting issue.
there are many open conceptual probld®is Applying this Here we focus on the Dirac operator for quenched 4D
conjecture it was recently demonstrated that QCD is chaoticGompact QED to search for the possible existence of a tran-
both in the confinement and the quark gluon plasma phasstion from chaotic to regular behavior in Abelian lattice
[4]. gauge theories. In particular, we are interested in the nearest-
A number of interesting results have been established foneighbor spacing distribution of the eigenvalues of the Dirac
chaotic dynamics in classical gauge theories. Lattice gaugeperator across the phase transition from the strong coupling
theories are chaotic as classical Hamiltonian dynamical syde the Coulomb phase. In the strong coupling region Abelian
tems [5]. Furthermore, it was found that the leading as well as non-Abelian lattice gauge theories are in a con-
Lyapunov exponent of S@@) Yang-Mills field configura- fined phas¢13]. For compact QED this means that for cou-
tions indicates that configurations corresponding to the deplings 8< 8.~ 1.01 the electron is confined. However, when
confinement phase are chaotic although they are less chaoticossing the phase transition the conventional Coulomb
than in the strong coupling phase at finite temperaféle  phase is observed. There are some interesting properties of
The scaling of the maximal Lyapunov exponent in the clasthe two phases which can be studied in lattice QED. In the
sical continuum limit was studied in Reff7]: It was sug- confinement phase the photons form massive bound states
gested that Abelian gauge theories behave regularly in thsimilar as the gluons bind to glue-balls in lattice QCD. When
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crossing the phase transition a massless photon is fidi#d 1600
whereas in lattice QCD the gluon is a massive particle in the 1400 |
deconfinement region. (@) lattice gauge theory contains
Dirac magnetic monopoles in addition to phot¢as] and it 1200 |
was demonstrated via numerical simulations that the vacuum
. ; ; 1000
in the confined phase is populated by monopole currents I /
which become rare in the Coulomb ph#4é]. It is an inter- ”Zi 800 r
esting question if the difference between the Coulomb phase 600 |
in QED and the quark-gluon plasma phase in QCD has an
influence on the level repulsion of the corresponding Dirac 400 +
spectra. 200 | .
Il. ANALYSIS 0 -
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We generated gauge field configurations using the stan- E

dard Wilson plaquette action for(W) gauge theory, FIG. 1. Staircase functioN(E) representing the number of
positive eigenvalues<sE for a typical configuration of compact

_ U(1) theory on an 8x6 lattice in the strong coupling phage

Se(U)) —ﬁ; (1—cosOp), (2.1) =0.90(solid ling) and in the Coulomb phage=1.10(dotted ling.

This procedure is a local rescaling of the energy scale so that

the mean level spacingis equal to unity on the unfolded
scale] 20]: One first defines the staircase funct(E) to be

where U;=U, ,=exp(0,,), with 0,,e[—m,m), are the
field variables defined on the links=(x,u). The plaguette
angles are®@p=0, ,+0,,,,-0,,; ,—0,,. We simu- ; _ i .
lated $x4 and §x 6 lattices at various values of the in- theé number of eigenvalues with<E. This staircase func-
verse gauge coupling=1/e? both in the strong coupling tion is decomposed into an average part and a fluqtuatlng
and the Coulomb phase. Typically we discarded the firsPatN(E)=Na(E)+Ny(E). The smooth average part is ex-
10000 sweeps for reaching equilibrium and produced 20 intracted by fittingN(E) to a smooth curve, e.g. to a low-order
dependent configurations separated by 1000 sweeps for ea@_,hebyshev polynomial. One then defines the unfolded ener-
j. Because of the spectral ergodicity property of RMT onedies 0 bex,=Na(E,). As a consequence the sequefreg

can replace ensemble averages by spectral avefagps has mean level spacing qual to unity. Ensem_ble an(_j spectral
one is only interested in the bulk properties. Thus a fewdverages are only meaningful after unfolding. Figure 1
independent configurations are sufficient to comggs). shows a typical staircase function f@r=0.90 (strong cou-

On the lattice the Dirac operat@r=§+ieA for staggered  Pling phasg¢and 3=1.10(Coulomb phaseon an gx6 lat-
fermions tice. It exhibits a decrease of small eigenvalues due to the

restoration of chiral symmetry across the transition.

N| =

4
M, = 21 TSt o Urew— S jx UL ) (22 Ill. RESULTS AND DISCUSSION
=

In RMT one has to distinguish between different univer-

is anti-Hermitian so that all eigenvalues are imaginary. FoSality classes which are determined by the symmetries of the
convenience we denote them by, and refer to the\, as system. So far the classification _for the QED D|.rac operator
the eigenvalues in the following. Because{, ys! =0 the has not been done. Our calculatlons show _that in the case of
A\ occur in pairs of opposite sign. All spectra were checkedn® Staggefed 4D compact QED Dirac matrix the appropriate
against the analytical sum rules ensemble is the unitary ens_emble. _AIthough from a math-
ematical point of view this is the simplest one, the RMT
result for the nearest-neighbor spacing distribution is still
2 Ap=0 and 2 )\ﬁzv, (2.3 rather complicated. It can be expressed in terms of so-called
n Ap>0 prolate spheroidal functions, see REZ1] where P(s) has
also been tabulated. A good approximationRs) is pro-
whereV is the lattice volum¢g18]. We further checked our vided by the Wigner surmise for the unitary ensemble
spectra by calculating the chiral condensate

:2 2\~ (4lm)s?
<Yx>=V‘1<E (i>\n+m)‘1> (2.4 Pls)=—s’e : (3.2)

We have simulated ¥x4 lattices at S
for m=0.04 and found agreement with results in the litera-=0,0.90,0.95,1.00,1.05,1.10,1.50 andx& lattices atg
ture[19]. =0.90,1.10,1.50. All results are similar to those selected for
To construct the nearest-neighbor spacing distributionthe plots. Figure 2 shows the nearest-neighbor spacing dis-
P(s) from the eigenvalues, one has to “unfold” the spectra.tribution P(s) for 8=0.90 in the confined phase averaged
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FIG. 2. Nearest-neighbor spacing distributi®(s) of the Dirac FIG. 4. Nearest-neighbor spacing distributiBfs) of the ana-
operator for compact (1) theory in the strong coupling phase for lytically calculated eigenvalues of E¢.2) for a free Dirac opera-
B=0.90. The histogram represents the lattice data on 368 tor on a 53X 47x43x 41 lattice (histogram compared with the
lattice averaged over 20 independent configurations. The full curv@oisson distributiorP(s)=e™* (solid line).
is the Wigner distribution of Eq(3.1) for the unitary ensemble of
RMT. configurationd5,6] is responsible for the chaotic character-

istics of the spectrum of the Dirac operator. In contrast to

over 20 independent configurations on tHe® lattice com-  that: The free fermion theory is non-chaotic and the corre-
pared with the Wigner surmise for the unitary ensemble ofPonding nearest-neighbor spacing distribution obeys a Pois-
RMT of Eq. (31) Good agreement is found. According to son distribution. This is illustrated in Flg 4 WheFdS) is
the Bohigas-Giannoni-Schmit conjecture this means the sysbtained from the analytical eigenvalues of the free Dirac
tem can be regarded as chaotic in the strong coupling regio@Perator on a 58 47x43x 41 lattice:
Figure 3 shows the nearest-neighbor spacing distribution
P(s) for 8=1.10 in the Coulomb phase again averaged over
20 independent configurations and compared with the a’\?= 2 sir?
Wigner surmisg3.1). The agreement of the lattice data with ol
the RMT predictions is interpreted as a signal that quantum ) ) ) ) )
chaos survives the phase transition. We find no deviation upl€réa s the lattice constant, , is the number of lattice sites
to the maximum coupling considered=1.50. in p-direction, andn,=0,...L,—1. We used an asym-
In the strong coupling phase the result holds dowrBto metric lattice ywthLM being primes and re_strlqted the range
—0. Therefore, we tend to interpret our, as well as previoud® (L,—1)/2 instead ofL,—1 in each direction to avoid
[4,1], results in the sense that the disorder of the gauge fiell€generacies of the free spectr{id2].
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IV. CONCLUSION

We have analyzed the nearest-neighbor spacing distribu-
tion P(s) of the eigenvalues of the Dirac operator in
quenched 4D QED on%« 4 and &x6 lattices both in the
strong coupling region and in the Coulomb phase. In both
phases we found excellent agreement of the lattice data with
the Wigner surmise of the unitary ensemble of RMT. Our
results evidence that the fermions iflygauge theory show
quantum chaos in the confined as well as in the Coulomb
phase. Dynamical fermions are not expected to affect the
Wigner distribution as has been demonstrated fo(33[4].

In accordance with previous findinf4,1] we conjecture that
3 the eigenvalues of the Dirac operator of interacting quantum
field theories quite generally reveal chaos due to the disorder

FIG. 3. Nearest-neighbor spacing distributi(s) of the Dirac ~ ©f the gauge field configurations. The free Dirac operator, in
operator for compact (1) theory in the Coulomb phase g8 at_)sence (_)f_a covariant den_vatwe and minimal gauge cou-
=1.10. The histogram represents the lattice data orfare8lattice  Pling, exhibits regular behavior.
averaged over 20 independent configurations. The full curve is the It would be interesting to study the relationship between
Wigner distribution of Eq(3.1) for the unitary ensemble of RMT. chaos to order transitions in classi¢ak9,11,12 and quan-

For comparison the Poisson distributiét{s)=e"S is also indi- tum field theories. However, this faces several difficulties:
cated by the dashed line. The available investigations of classical field theories focus
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