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High-accuracy calculations of the critical exponents of Dyson’s hierarchical model
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We calculate the critical exponent of Dyson’s hierarchical model by direct fits of the zero-momentum
two-point function calculated with an Ising and a Landau-Ginzburg measure, and by linearization about the
Koch-Wittwer fixed point. We findy=1.299140730159 10 12 We extract three types of subleading correc-
tions (in other words, a parametrization of the way the two-point function depends on the) ¢raoffthe fits
and check the value of the first subleading exponent from the linearized procedure. We suggest that all the
non-universal quantities entering the subleading corrections can be calculated systematically from the non-
linear contributions about the fixed point and that this procedure would provide an alternative way to introduce
the bare parameters in a field theory mod&0556-282(99)05009-2

PACS numbgs): 11.10.Hi, 05.50+q, 11.15.Ha, 75.40.Cx

I. INTRODUCTION be determined accurately. In particular, one universal quan-
tity entering in the scaling law associated with the two point
Scalar field theory has many important applications infunction (the critical exponeny) can be calculated with two
condensed matter and particle physics. Unfortunately, therendependent methods with an agreement to the 12th decimal
exists no approximate treatment of this theory which couldpoint. These two methods were sketched in R4f. In the
pretend to compete in accuracy with perturbative methods imeantime, these methods were improved in order to get a
guantum electrodynamics at low energy. Accurate calculasignificantly better accuracy. A detailed description of these
tions of subtle effects at accessible energies provide a wiriwo methods is the main technical content of the present
dow on hypothetical high energy degrees of freedom whictpaper.
are not accessible by production experiments. If we imagine All the calculations reported in this paper were made with
for a moment that the kaons were the heaviest particles tha specific example selected for its simplicity. However, there
we could produce, a precise determination of their weak mais nothing essential in the choice of this example and accu-
trix elements would become a unique way to obtain quantitate calculations can be performed with the same tools in a
tative information about the charmed quark. Rescaled vermuch broader range of models and parameters. For the sake
sions of this imaginary situation may become relevant in theof definiteness we now describe the example chosen hereaf-
future. ter. We have limited the discussion to a calculation of the
The main goal of this article is to demonstrate that the us@ero-momentum two point function of Dyson’s hierarchical
of hierarchical approximations allows determinations of themodel with a one-component scalar field and with a choice
renormalized quantities, with an accuracy which can comof the free parameteidenotedc) which approximates ®
pete with perturbative QED, and for a wide range of UV =3 theory. We considered a wide range of UV cut(if#
cutoff and bare parameters. The use of hierarchical approxirders of magnitudeand two different sets of bare param-
mations simplifies the renormalization groURG) transfor-  eters. The choice of the hierarchical model is not essential
mation while preserving the gqualitative features of scalareither. Wilson’s approximate recursion formula is closely re-
field theory. Well-known examples are the approximate related to the recursion formula appearing in Dyson’s hierar-
cursion formula derived by Wilsofil] or the related recur- chical model[2]. It is possible to continuously interpolate
sion formula which holds for Dyson’s hierarchical mof2]. ~ between the critical exponents of the two cadgs The nu-
If used for quantitative purposes, hierarchical approximaimerical treatment of the two cases is completely identical.
tions need to be improved. This is a difficult task under in-We have specialized the discussion to the case of Dyson’s
vestigation and is not discussed here. If the hierarchical apnodel because this model has been stu@i@elQ in great
proximation could be improved in a way which maintaineddetail in the past and because a fixed point of this model at
the advantages of the approximation, one could obtain resuf8 =3 is known with great precisiofi7]. For the sake of
with an accuracy which would outperform any Monte Carlocompleteness the main features of Dyson’s model are re-
method and defy the patience of any experimentalist. viewed in Sec. Il A. The choice of the two-point function is
In the following, we use the scaling laW8] to express not essential. The methods can be extended to other renor-
the renormalized quantities as function of the bare quantitiemalized quantities as explained in REL0].
and a UV cutoff. This parametrizatidisee, e.g., Eq91.4) The goal of a typical field theory calculation is to obtain
and (1.6)] is motivated below. We show with an example the renormalized quantities corresponding to the bare param-
that the unknown parameters entering in the scaling laws caeters entering in an action and a given UV cutaff In the
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following calculations, the bare parameters will appear in a ALzzL/DAR_ 1.3
local measure of the Landau-Ginzbuigs) form
For B close enough t@. (i.e., for A large enough one can
approximate the susceptibility with an expression which,
: (1) whenD<4, takes the fornf3]

=1 — 7 — A .
The UV cutoff corresponds to the scale where the theory X=(Be=B) Aot AUBe=B)7H -], (1.4

under consideration stops being an accurate description an%erer A, ... arefunctions of the bare parameters only.

more complete or more fundamental theory is requiredg,om the above equations and the expressioly gfven in
Given a set of bare parameters and a UV cutoffone can Eq. (2.17), which implies

try to integrate{ 1] the degrees of freedom betweAnand a
lower energy scale of referenckg in order to obtain an AY=22D (1.5
effective theory describing phenomena at scales belgw
As an example, if we are interested in low energy processe@ne obtains
involving pions, A could be chosen arounth, and Ag 2
aroundm_. This gives a ratio of about 6 between the two m2 = Arp
scales. Similar ratios may be applicable for an effective de- RO AG+HA LA (ARIAD)PA Y+
scription of the Higgs boson in the hypothetical case that it
results from an underlying strongly interacting theory. If we  The main technical endeavor pursued in this article is to
are interested in the effects of the charmed quarks in nordetermine numerically the unknown quantities in Et.4)
leptonic decays of kaons, the ratio of the two scales would@nd to determine the nature of the next corrections. We have
approximately be 3. Larger ratios appear if, for instance, walsed two independent methods. The first one consists in fit-
are interested in the effects of the top quark in systems inting the susceptibility at various values gfusing Eq.(1.4).
volving only the five other quarks or the effects of Mand ~ The second method consists in calculating the eigenvalues of
Z gauge bosons on the propagation of an an electron in #e linearized renormalization group transformation in order
constant magnetic field. From these examples it is clear thdf determine the critical exponents. The present article con-
one would like to be able to cover a wide range of values ofains the details of the results announced in R&F. In the
AR/A. meantime we have refined some of the procedures used pre-
In the scalar theory under consideration here, the cutoff igiously and improved significantly the accuracy of our re-
lowered by discrete steps which reduce the initial cutoff by asults (e.g., at least four more significant digits ). These
factor 2P for a “D-dimensional” theory(the notion of refinements are reported in the present article.
dimensionality is explained at length in Sec. ). The limit The first estimation of the unknown quantities is based on
of a large UV cutoffA can be reached by fine-tunig) the @ method of calculation presented in REIO] where it is
inverse temperature in Dyson’s formulation of the md@l  shown that the use of polynomial approximations in the Fou-
We use here statistical mechanics language: the magnetiter transform of the recursion relation allows efficient and
susceptibility y is studied by varyingd, keeping the bare highly accurate calculations of the zero-momentum Green’s
parameters fixed. We could have, in a completely equivalenfunctions in the symmetric phase. The method is reviewed in
way, called the susceptibility the zero momentum two pointSec. Il where we also justify the introduction of a dimension-
function, setﬁ — the Kkinetic term Coup"ng constant — allty parameter and review the linearization procedure. In
equal to 1 and fine-tuned the bare mass. Sec. lll, we analyze the errors associated with the method.
We now follow Ref.[1] and consider a sequende We first explain how to get.rid of the volume effects for the
=1,2,... ofmodels withB=(B,—\j"x) where), is the ~range of temperature considered later. We then analyze the

largest eigenvalue of the linearized renormalization groug@und-off errors in arithmetic operations and show how to
transformation angk an arbitrary positive parameter. If we réduce them to an acceptable level by the use of higher pre-
consider a fixed value df and if » is of order 1, it takes CISION arithmetic, when necessary. We then discuss the ef-
aboutL iterations of the renormalization group transforma-f€cts of the polynomial truncations and of the numerical er-
tion to get an effective theory with a mass of order Aip ~ '0rS I the calculation of the Fourier transform of the
units. This comes from the fact that in the linearized approximeasure given by Eq1.1) and show that they can be re-
mation(see Sec. Il D, B.— 8 measures how far we are away dyced to a level where they will play no rple in the discus-
from the stable manifoldi3] and this quantity is multiplyed  SION which follows. We conclud_e the section with an expla-
by \; at each iteration until it reaches a value of order 1 and'@tion of why a great numerical accuracy can only be

the linearization does not hold anymore. This suggests th@chieved in the symmetric phase.
definition of the renormalized massﬁ: In Sec. IV, we fit the susceptibility with the four param-

eters appearing in Ed1.4), neglecting the next subleading
corrections indicated by the - - -. After four successive re-

Wo(qﬁ)ocexr{ - %m2¢2+9¢2”)

(1.6

2
éz%, (1.2) finements, all based on reproducible linear fits, we obtain
X(Be—=Ny ) values ofy with a numerical stability up to the 13th decimal
point. In Sec. V we analyze the next subleading corrections
whereA | is the UV cutoff defined as and show that neglecting them affects slightly the 12th deci-
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mal point in y. All the calculations in these two sections B "max (\n 2
have been done with two different measures and gave comH = — > > (Z) > ( > bix, . ..xp)
patible results for the universal quantitieg éndA). n=1 Ky Xkl A Xno o X e

The most efficient way to calculate the critical expongnt 2.9

andA consists in using the linearized renormalization group, . B . -
transformatior{3] near a fixed point. This is done explicitly 1he indexn, referred to as the “level of interaction” here-
in Sec. VI. In Ref[4], we gave convincing arguments indi- after, corre_sponds to the |nter-act|on of the total flelld in
cating the uniqueness of the non-trivial fixed point for a largeP!0cks Of size 2. The constant is a free parameter which
class of theories. In this article, we take this uniqueness fofontrol the decay of the iterations with the size of the boxes
granted and we use the very accurate expression of this fixéd'd can be adjusted in order to mimic xdimensional
point obtained from the work of Koch and Wittwg#] rather ~ M0del. This point is discussed in more detail below.

than the less accurate fixed points used in R&f. This The field ¢, . x,) is integrated over a local measure
allows us to obtain values of with estimated errors of less which needs to be specified. In the following, we will work
than 1 to the 13th significant digit, the actual value agreeingvith the Ising measur&Vy(¢)= 6(42—1) and the Landau-
with the previous estimate within the expected uncertaintiesGinsburg measure of the form given in §d.1). The hier-

If there is only one non-trivial fixed poinfuniversality  archical structure of Eq2.1) allows us to integrate the fields
and if we can calculate accurately the exponents, the task afhile keeping their sums in boxes with 2 sites. This can be
calculating the renormalized quantities for a particular set okxpressed through the recursion relation
bare parameters reduces to the determination of quantities
like Ag,Aq, . ...This task can be achieved by repeated sub- C N+l .2 (p— ")
tractions as shown in Secs. IV and V. We are convinced that Wn+1(¢)= ”2"'16([3/2)(0/4) ¢ j dd)’Wn(%)
such calculations could be performed more efficiently by us-
ing the fixed point and a calculation of the nonlinear effects. (p+ ')
We have checkefl12] that such a calculation can be satis- Y
factorily performed in simplified versions of the basic recur-

Sion relation. If '[hIS taSk can be SUCCGSSfu”y Completed fORNhereCnJrl is a normalization factor which can be fixed at
the model considered here, this would mean that the precisgyr convenience.

knowledge of the fixed point provided by R¢T] is equiva-
lent to a solution of the model.

An accurate determination of the universal exponents pro-
vides a new approach of the renormalization procedure: we Introducing the Fourier representation
could try to treat as much as possible of the A, ... and
the corresponding quantities for the higher point functions as _ f % iK AT
. : Wi(¢)= e ?W, (k), 2.3
input parameters. This of course supposes that we have de- 2w
tailed knowledge of their relative dependences. This question
is under investigation with various methods. and a rescaling of the source by a factas af each iteration,

through the redefinition

.....
X

X W, 2.2

B. Polynomial truncations

Il. MODEL AND THE CALCULATION [k
OF THE SUSCEPTIBILITY Rn(k)=Wn(§ : (2.9

In this section, we describe the method used to calculate
the magnetic susceptibility and introduce some definitionghe recursion relation becomes
which will be used later. For the sake of being self-
contained, we first recall basic facts about Dyson’s hierarchi-

1 c n+1 (92 k 2
_ _ - — 2 - -
cal model[2]. Rn+1(k)—Cn+1exp[ Zﬁ( 4s) aKZHRn( S)

(2.5

The rescaling operation commutes with iterative integrations
The model has 2nax sites. We label the sites with,,,, ~ and the rescaling facta can be fixed at our convenience.
indicesx, , ... X, each index being 0 or 1. In order to ~ We will fix the normalization constant, is such way
max . o . .
understand this notation, one can divide tHea2 sites into  thatRn(0)=1. Then,R,(k) has a direct probabilistic inter-
two blocks, each containing"@ax ! sites. Ifx, =0, the Pretation. If we callM, the total fieldX ¢, inside blocks of
max side 2' and(- - - ),, the average calculated without taking into

site is in the first box; ifx, =1, the site is in the second : ) .
. . max account the interactions of level strictly larger thrarwe can
box. Repeating this proceduretimes (for the two boxes, \yrite

their respective two sub-boxes, efcwe obtain an unam-

A. Dyson’s model

biguous labeling for each of the sites. © (—ik)2a (M )2q>
The non-local part of the action of Dyson’s hierarchical Ry(K)= > n’ /n 2.6
model reads g=0 2q! g2an
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We see that the Fourier transform of the local measure after Ro(K)=1+a, k>+a, k*+---+a,, k?'max  (2.7)

n iterations generates the zero-momentum Green’s functions ' ' s max

calculated with 2 sites and can thus be used to calculate théAfter each iteration, non-zero coefficients of higher order

renormalized mass and coupling constant at zero momentur(k’;\nH,,maX+1 etc) are obtained, but not taken into account in
In the following, we use finite dimensional approxima- the next iteration. More explicitly, the recursion formula for

tions of degreé . of the form thea, , reads

|ma><
> ( > @npang [V (1-m)1(2m)!](c/4)[—(1/2)B] ™
p+q=

I=m

An+im=— Tmax (2.9
> anpang|[(2DV11](c/4)[ - (1/2) 8]
I1=0 \ p+qg=I
|
As one can see, once an initlj(k) is given, the proce- 5 2 D2
dure is purelyalgebraic The initial conditions for the Ising (J d X¢(X)) =L""% (211

measure iRy(k) =cosk). For the LG measure, the coeffi-
cients in thek-expansion need to be evaluated numerically.On the lattice this becomes

This method has been discussed and tested at length in Ref.

[10]. The dimensior ,,,, Of the polynomial spaces required [((Mp)?)p]=L""2. (2.12
to make reasonably accurate calculation is remarkably smal
less than 50 for a typical calculatiqsee Ref[10] for de-
tails).

If we use the rescaling factse=2c~ 2 the non-local part of

the action given in Eq(2.1) is invariant under a renormal-
As far as numerical calculations are concerned, the choicgat'on group tra_nsformanon. If in addition the local measure

of sis a matter of convenience. For the calculations in the> also left invariant, the average values of the even powers

- : of the rescaledfield stay constant. Returning to the original
thrllgh tgmperatgre phas(eym_metrlc phasenot too cIo;e 0 field variables, we found that dbr sufficiently close tpa
e critical points or for high temperature expansions theT. 4 point
choices= /2 works well[8,9]. On the other hand, the choice Ixed point,
of rescaling factos= 2c~ 2 prevents the appearance of very n
large numbers when we are very close to the critical tem- <(Mn)2>n“(g) . (2.13

perature. In the following, the finite volume magnetic sus-

ceptibility is defined as The only relevant scale is the size of the box over which we
have integrated all the field variables except for their sum.
(Mp)?), The volume of the box is proportional to the number of sites

Xn(B)=——2r— (2.9  inside the box:

LPoc2n. (2.19

From Eq.(2.6), we obtain Using this together with Eq$2.12 and(2.13 we obtain

Xn=™ — 2an,l

2\ n 4

or, in other wordsg=21-2P,
All the calculations done hereafter have been done for

C. Introducing the dimensionality D—3

From a conceptual point of view, the choise:2¢c™ 2 is

of particular significance because the infinite volume action
given in Eq.(2.1) is invariant under the removal of the ) _ ] o
=1 terms(first level interactionsfollowed by the rescaling ~ We now briefly review the linearization procedure. We
of the fields. In other words, the kinetic term is not renor-denote the eigenvalues of the linearized RG transformation
malized and5=0. From this, we can derive the way DY An With the conventior\;>1>A,>X3>---. The close-
should be tuned in order to mimic-dimensional system. ness to the fixed point is essentially monitored by the motion
Given that the dimension of a scalar fieldbndimensions is  &long the unstable direction. Until the number of iterations
[¢]=[L] (P~22whereL is a length, we obtain, in the con- reaches a value* such that] (8.~ 8)~1, R, is “close”
tinuum, to the fixed point ane,, ; stays close to its fixed point value

D. Review of the linearization procedure
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(assuming that we use the scaling facter2/\/c). Whenn ' T
gets larger tham*, y starts stabilizing. Using the relation &
betweera,, ; and y, given by Eq.(2.10, we obtain the order E
of magnitude estimate 2
2\ [In(2/e)}/TIn(X )] §
~| = — _ —lIn(2/c n(\q . 21 JRORA
X (C) (Be=B) (2.16 .

Reexpressing in terms of3¢— B), we find that the exponent (s-2/"}x10°
for the leading singularity is

FIG. 1. Distribution of the magnetic susceptibilify with re-

2 spect to the scaling factar
y=|n(6) In(\q). (2.1

volume effects. In the following, we will perform calculation

. : B<B.—10 1 = i id fini
According to the same linear argument, the order of magmégolu'?ﬁe égectsandnmax 180 will be enough to avoid finite
tude of the components in the stable directions should be ’

proportional to)\,”* with [=2. Using the estimate far* and

o . ) B. Numerical errors
reexpressing in terms of8;— B), we obtain the subleading

exponentsA, = —In(\,)/In(\,) for I=2. In the following we From Eq.(2.8), we see that the calculation of each of
simply use the notations for A, and the higher exponents @n+1} involves a number of arithmetical operations propor-
will play no significant roles. tional tol,,x. When we are close to the fixed point, these

errors generate small contributions in the unstable direction.
These errors are then amplified by a factor\gf at each
iteration until we move sufficiently far away from the fixed

There are three important sources of errors which need t8oint. Consequently, the closgris to ., the more time is
be considered when we calculate the magnetic susceptibilitgPent near the fixed point and the larger the numerical error
the finite volume effects, the round-off errors and the effectd?ecomes. A simple calculatiofi0] corresponding to this
of the finite dimensional truncation. A general discussion off€asoning shows that the relative errors obey the approxi-
these questions is given in R4fl0]. In the following, we Mate law
discuss them in the particular cases required for the calcula- s s
tions of Sec. IV. In addition, we discuss the effects of the oxXf__°
errors on the initial coefficients. All the calculations done X| Be=B’
hereafter have been made in the symmetric phase. In the last ) )
subsection, we explain why the present methods do not yiel@hered is a typical round-off error.

small change in the rescaling factar As explained in the

previous section, we can in principle use any values ¢
calculate the susceptibility. This arbitrariness is compensated
As explained in Sec. Il D, when calculating the suscepti-at the end by an appropriate rescaling given in @qL0. If
bility at values of3 close to and belovB., we spend about we could perform the arithmetic operations exactly, the sus-
—In(B.—B)/In(\,) iterations near the fixed point. During ceptibility would be completely independent @fHowever,
these iterations, we have the “conformal” scaling of Eq. as a result of the round-off errors, the susceptibility actually
(2.13 and the round-off errors are amplified along the un-depends ors. This is illustrated in Fig. 1 where we calcu-
stable directionsee the next subsectiprifter that, assum- lated the distribution ofy for values ofs varying between
ing we are in the symmetric phase, the order of magnitude 0#/\/c—0.0001 and 2/c+0.0001 by steps of 10.
the susceptibility stabilizes and the corrections get smaller by This calculation has been performed MORTRAN with
a factor of c/2 at each iterations. At some point, all the double precision variables. We have used an initial Ising
recorded digits stabilizéirrespectively of the numerical er- measure with3=3.—10"°. This distribution has a mean
rors which occurred in the first stage described apoVkis  value u=1.04192690% 10'? and a variancer=4.9x 10°.
gives the estimatgl0] for the number of iterationa(B,P) From these quantities, we estimate that the relative errors
to stablizeP digits (in decimal notations |8x/ x| due to numerical errors should be of ordefu
D In(10 =4.7<10"7. This is in agreementl\évith the order of magni-
_ _ _ tude estimate of E(3.2): using 10 *° as a typical round-off
n(A.P) ( 21n(2) )[P vIogd Be=B)]. - (3.1 error in a double-precision calculation, we obtaify/ x|
~10 7 for B.—B=10"°. A more accurate calculation per-
ForP=16, y=1.3 andB,— 8=10"°, we obtainn=140 and formed with methods described below gives the regult
we need to add about 7 iterations each time we get closer te 1.041926626& 10'2. We have checked that this result was
B by a factor of 102, It is thus quite easy to get rid of the invariant under slight changes m From this, we see that

Ill. ERROR ANALYSIS

(3.2

A. Volume effects
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u—x=2.8<10° which is approximately 0.57. Another
piece of information concerning the spread of the values is
the difference between the largest and the smallest values of
the distribution which is 6.4 in the present case.

There are several detailed features of this distribution
which are not well understood. The first one is that the dis-
tribution is not symmetric about=2/\/c. The values ofy
spread more above=2/\/c. In addition, a more detailed
study shows that the distribution is not well centered and that 20 30 20 50 80
of values about the mean value departs more from a Gauss- Y
ian distribution than expected, given the number of “inde-
penden_t tr_lals (2000 in Fig. 3 made. I_n addltlon,_lnc_:r_easmg and the LG case(starg. The solid line is a fit with a
the statistics does not decrease y or increase significantly B[l ()]
the difference between the largest and the smallest value, - ™ m&~

These questions are now being investigated with Igw, =g 10714 all the significant digits up to the 13th decimal
examples. ) ) point of the quantity B.—8) are lost since they cancel.
In conclusion, we have good control of the maximal er-consequently, in order to get 13 significant digits i, (

rors made as a consequence of the round-off errors. Thesegy in the range considered, we will determipe with an
seem not to exceed 10 times the order of magnitude given byccyracy of 1027, This will be the most stringent require-

Eq. (3.2). On the other hand, we have an incomplete underment to determing,,,. As explained in the previous sub-
standing of their distribution within these bounds. These preggction. we can easily perform calculations with high-
clude the use of statistical methods to obtain more accuratgrecision arithmetic and follow the bifurcatiof0] in the
results and other methods need to be used. ratios of successiva,, ; in order to determingd, . Figure 4,

_ The most efficient way to improve the accuracyxofon-  pejow, shows the effect of adding or subtracting 10to
sists in using higher precision arithmetic. This can be do”%cz1.179030170446269732511874097 in the case of an
easily, for instance, using th@ATHEMATICA environment jnitia| |sing measure. This calculation has been performed
where one use the instructi@ETPRECISION ] to introduce yith | max="50. If we use larger values of,., 3. remains at
numbers with a desired number of significant digits and thgy,, quoted value. This is just a particular example.
instructionPRECISION ] to monitor the numerical errors. The | general, the minimal value of, ., for which 3, stabi-

’ ax Cc

initial precision can then be adjusted empirically in order t0},e5 can be obtained from extrapolation from the changes at
obtain a desired accuracy foy. This accuracy is then o | \vhere calculations take little time. We use the no-
checked by making changessras explained above. A typi- 4401 8Be for Bullma) — Be. The quantity logd 58, /8]

cal calculation withi y5,=50, Nyay=200 and a required ac- \qrq,q is shown in Fig. 2 for the Ising model and the LG
curacy of 16 digits in the final result takes of the order Ofmeasure of Eq(1.1) with m?*=1, p=2, andg=0.1.

él(t)igoseicn Ogoiglzrgr;%?sg?li'és;?gin ;ﬂissaargiﬁ’poe 1ofsceaclcu— The logarithm of the relative errors falls faster than lin-
While the high-precision program runs, we could thus runiaélﬁ' T|cr)](|a X)g]].o%c(i) ;pvﬁ),;oxvlvrgi?OrS[;%ﬁ/IE%Ol(g—’g?) thae

the double-precision fQimes. If a proper understanding of .y, i o2 o ™ g T Ising case ang, .= 60 the LG

the statistical distribution of the errors was at haad ex-  cas appg];rx to be a safe. In order to chaéck the stability of
plained above, this is not the casee could hope to use the these values, we increased the valué,gf, to 55 in the Ising

10* values to reducksy| by a factor of 10°2. In the example ase and to é4 in thé.G) case, and we obtained the safe

d_iscg:cfssed g_bqv_e, we (\;vmfjldhge; EoEe to get er_r(;]rshto Lhehgr\/ lue in both cases. We have also checked that these values
significant digit instead of the 7th. However, with the hig " of | ,ax Were sufficient to obtain 13 significant digits fgrin
precision method we obtained 16 correct significant digits. In[he range of3 specified above

the example discussed above we obtain the accurate value
x=1.041926625...x10'% The difference between this
more accurate value and the mean calculated above with
2000 data points is 0.57and stays at the same large value In the Ising caseRy(k) =cosk), the initial coefficients
when the statistics is increased. In the following, the high-are known analyticallya0,|=(—1)'/(2I)!. However, this is
precision method will exclusively be used. not the case in general. We want to study the effect of a
change inday, in the initial coefficients ornB.;. The results
are shown in Fig. 3.
The results can be read as follows. If we are interested in
As shown in Ref[10], the effect of the finite truncation determiningB, with, say, 10 significant digits, ;ohas to be
decays faster than exponentially with,, in the symmetric  determined with 2 significant digits, ¢ with 3 significants
phase. In general, the determination gf, depends on how digits, a, g with 4 significant digits, etc. In the following, we
far we are from criticality and the required accuracy on theare interested in universal propertigeatures which are in-
value calculated. In the following, we will require 13 signifi- dependent of the measumather than in properties of par-
cant digits ony and (8.— 8) with 8<B.—10 ** WhenB ticular measures. Consequently we have only used a double-

-10

Logsdl~B(ey, )/ Bleel
—-20

-30

-
o

FIG. 2. logg 6B8./8.| versusl,.y, for the Ising casecircles

D. Effects of the errors on the initial coefficients

C. Determination of |,y
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FIG. 3. The shiftinB;, AB. as a function of the relative errors
in the Ith coefficient. say, /a0,|=10‘2 (open circley 10 * (solid
boxes, 10°° (open trianglesand so on untilda, /ag, =10 (2.5 become inaccurate because the argument of the expo-

nential is too large.
precision calculation of the Fourier transform for the LG
model. The reproducibility of the details of the calculations IV. CRITICAL EXPONENTS FROM FITS
then requires having the sarag, . On the other hand, in the
Ising case, the analytical form of the initial coefficients al-
lows a completely reproducible procedure.

FIG. 4. a,,11/a,4 versusn for B=B.+10 %,

In this section, we explain how to calculate the exponents
v andA using a sequence of increasingly accurate fits of the
susceptibility. The general method has been briefly outlined
in Ref. [4]. Here, we give all the details of a significantly
E. What happens in the broken symmetry phase more accurate calculation which leads to a determination of

Figure 4 shows the existence of two phases. There are fiv With 12 decimal points. The main ingredient of the proce-
parts of the graph we would like to discuss here. dure is that forg close enough te, (i.e., for a cutoffA

For the rest of the discussion, it is important to s;pecifyIarge enougf one can approximate very well the magnetic

thata, ; has been calculated with the canonical value of thesusceptlb|||ty(zero-momentum two point functigrwith an

rescaling parametes=2//G. The first part is before the bi- ﬁ;(grensas,:ggl;ak|ng into account only the first irrelevant direc-
furcation. This is shown as region “1” in Fig. 4 where the '

ratios ofa, 1 ,/an are close to 1. The second pare” ) x=(Bc—B) TAc+AL (B~ B)A]. 4.9
shows the bifurcation in the high-temperature phase. If we

are belowg,, the ratioa, , ; 1/a, ; Will go down to the value The estim_ation of the unknow_n guantities in this equation_
c/2, which guarantees the existence of a thermodynamicairoceeds in four steps. In the first step, we get a rough esti-
limit for x [since we need to multiplg, ; by (2/c)" in order ~ mate fory by using a linear fit in a range g8 where we

to gety; see Eq(2.10]. On the other hand, the bifurcation minimize the combined effects of the numerical errors and of
toward the low temperature phase is characterized by a pedRe subleading corrections. In the second step, we discuss
shown by “3” in Fig. 4. Part 4 of the graph is a narrow how to improve this result by estimating the sub-leading ex-
“shoulder.” In the low-temperature phase, we expectponentA and the coefficiend;/A,. Using these preliminary
<M§>no<22”, which means,,, ; ;/a, ;=c=1.26. We studied estimates, we will, as the third step of the procedure, use a
the | ,ax dependence of this shoulder and observed that thePootstrap” technique between a set of high-precision data
number of points on the shoulder increases by approximatel§lose to criticality and another set of data where the sublead-
1 when we increask, ., by 10. Unfortunately, the shoulder iNg corrections are important. Finally, we do a linear analysis
is not infinite, and after a few iterations, the ratios will reachOf the difference between the fit and the high-precision data
1 again(part “5”). This signals an attractive fixed point. inorder to get results which are as independent as possible of
However, this is not a fixed point of the exdobt truncateyi  the slightly arbitrary choiceshow to divide the data into
recursion relation. This can be seen by looking at the coef-Pins,” etc.) made during the first three steps. After this
ficientsa* of these attractive fixed points for different values fourth step, we analyze the difference between the fit and the

of I hax. Whenl . increases, the values af increase like gg:?egt\i,ﬁi from criticality and discuss the next subleading

| !, showing that their existence is due to the truncation . . .
(Imax) 9 All the calculations of these sections have been done with

process. gfther an Ising initial measure or a LG measure of the form
The fact that the truncation procedure generates numeric | X
b 9 ogiven in Eq.(1.D) with m =1, p=2, andg=0.1. We refer

instabilities in the low-temperature phase can be understo i hoi the “Isi » or the “LG " h
from the basic formula, Eq(2.5. In the low temperature ac:‘terese choices as the ising case™ or the case” here-

phase, the measul®(¢) has two peaks symmetrically lo-
cated with respect to the origin. At each iteration, the sepa-
ration between the peaks increases by a factor 6h2in-
rescaled units By taking simple examples and going to the In the first step, we calculatg at various temperatures
Fourier transform, one sees that at some point the partiagind display logy(x) versus—log,;o(B.— B). We will use the
sums(truncated at,,,,) representing the exponential in Eq. notation

A. Localized linear fits
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FIG. 5. The deviations from the linear fits lgg" defined in
the text as function of the bin indexfor the Ising modelcircles
and the Landau-Ginsburg modatars.

FIG. 6. The linear fits of logy(|y+%Y— (1)), for the Ising
case(circles and for the LG caséstars.

v=1.300 was obtained with errors of order 1 in the last digit,
or than Wilson’s valud11] y=1.2991 quoted by Baker in
Ref.[2].
If we display log(x) versusx, we see a linear behavior with
a slopey=1.30. The deviations from the linear behavior are
not visible to the naked eye. We need to study these devia- o ] ) )
tions locally in 3. In order to understand the corrections, we 1 he Sécond step consists in correcting the previous esti-
have divided the data into 14 bins of 100 points. The first bifaté by taking into account the subleading corrections. We
contains the data=1.00,1.01. ..,1.99 and so on. In each WI|| use the bins 6 and 7 where the next s_ubleadmg correc-
bin, indexedi, we make a linear fit of log(x) versusx. In tions are reasonably_ ;mall and the nu_mencal errors are not
theith bin we will call the slopey® and (V)2 denoted the 109 large. We have divided these two bins into 10 sub-bins of
sum of the squares of difference between the data and t 0 points. We wil use two digit |pd|ces for}hese ;ub-bms.
linear fit divided by the number of points in a bin minus 2 or mstance, sub-bin 6.5 is the fifth sub-bin of t,’m 6 and
which is (for theith bin) contalns_the values ofof 6.5, 6.501,. . ., 6.599. Using the
notationx for the middle of the sub-bin and E4.1) we
100 obtain

data fit — — —

J_Zl [logio(Xi ] —|0910(Xi,j)]2 s logyd x(X)]= X+ 10g;o Ag+ A, 10 2%). (4.9

=—10g1o(Bc— B)- (4.2

B. Subleading corrections

(i12—

For a small changéx with respect tox, we obtain that, at

first order in this change,
wherej indexes the data points in theh bin. The values of ! n g

log;o(c") are plotted in Fig. 5.

It is easy to interpret this graph. There are two major
sources of deviations from linear behavior. The first one is
the existence of subleading corrections to the scaling laws
which decrease wheg gets closer tg3.. As a first guess,
we useox1074) so that loger)=—Aj+const. By cal-
culating the slopes between bin 1 and bin 9, we obtiin The coefficient oféx can be interpreted as the local slope
=0.42 andA=0.45 for the Ising and the LG cases, respec-nearx. Indexing each sub-bin hjy(e.g.j:6,6.1,6.2. . .) and
tively. Thus, we already obtained a numerical value for theits middle by j+0.0495 (e.g. 6.1495 is the middle of the

subleading exponent which is roughly the same for the twaub-bin 6.1), the the slopg’ in the sub-binj reads
models considered here. The other source of deviation from

linear behavior comes from the numerical errors discussed in

the previous section and which increase witegets closer

to B. according to Eq(3.2): o~ 8/(B:.— B). The slopes be-

tween bin 9 and bin 14 are 0.95 and—0.96 for the Ising

and the LG cases, respectively, in good agreement with the The unknown quantitie®\; /A, and A can be obtained

(B.— B) ! dependence of the numerical errors predicted byfrom linear fits of log(| yU "%V —yW)|) versusj. From Fig.

Eq. (3.2. 6, one can see that, to a good approximation, there exists an
In bin 9, these two deviations from linear behavior areapproximate relationship between these two quantities in the

minimized and we can considet®) as a first estimate of.  two cases considered. In addition, the slope appears to be

Its numerical values is 1.29917 for the Ising case anddentical for the two cases.

1.29914 for the LG case. By using this simple procedure, we The slope and the intercept can be calculated from Eg.

reach a better accuracy than Rdf8,9], where the answer (4.6) which implies that

logyd x(x+ 8%)]—logyd x(x)]

=< BN 1075) sk 9(00) 4.5
0% A . .

,y(j): Y_A(ﬁ) 10—A(j+0.0495. (46)
Ao
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[10g10x I1it=10910A0+ 8(l0g10A0) + (v + 6y)X

. . , A,
logyo( |y 0V — yV)])=—A(j+0.0495 +logyo| A|—
+logyd 1+ (cq+ 8cqy) 107 (ATOAX] 1 (4.8

Ao
—0.1A
*logif(1-10777. @D wherec,;=A; /A, and y, A stand for the exact values. On

The subleading exponentis the absolute value of the slope. the other hand, we assume that the data can be fitted accord-
Having determined and knowing the intercept we can then ing to Eq.(4.1):
determine logy(|A1/Aq|). Using this procedure, we obtained e
A;/A,=—0.57 andA =0.428 for the Ising case anil; /A, [10G10xJaata=[10G10A0 + ¥X+10gso(1+¢,107 7 ].
—0.14 andA =0.427 for the LG case. 4.9

If we now repeat the first gpe— a linear fit in bin 9 —
but with x divided by [1+ (A;/Aq)(B.— B)*], we obtain
Y= 1.29914% 10 6 for the two_ models consid_ered _abo_ve. [logioxTit— [10G10x Jgata= 8(10G10A0) + SyX
Given that for a calculation using double precision in bin 9
we have values of with between 6 and 7 significant digits, N 5cy107 4%
this estimate seems to be the best result we can obtain with In(10)
this procedurdsee the discussion of the numerical errors in 4.10
Sec. Il B). )

. o o Interestingly, thex-dependences of the four terms are all dis-

C. Bootstrap procedure involving higher precision data tinct and we can fit5(logyoA,), dy, 8¢, and SA using a

Up to now, our desire to minimize the subleading correc-Standard least squares procedure where the function to be
tions which decay like 10°* has been contradicted by the fitted dependsinearly on the fitted parameters. This proce-
appearance of numerical errors growing like(1§*»).  dure can be repeated until some numerical stability is
However, we have explained in Sec. Il B that it is possible@chieved. The final results are insensitive to small changes in
to circumvent this difficulty by using an arithmetic having a the initial values coming from the uncertainties associated
better precision than the usual double precision. In this supdith the previous step. Using bin 13, we obtaip
section, we will use data having at least 13 correct significant 1.2991407301599 and = 0.4259492 for the Ising model
digits in bins 11, 12 and 13. We call these data “high preci-and y=1.2991407301582 and =0.4259478 for the LG
sion data.” As we explained before, we chodgg,=50 and ~ case. The small numerical fluctuations which persist after
| max= 58 for the Ising and LG cases, respectively. many iterations produce changes of less than 2 in the last

Since the calculations are more lengthy, we used only 1@uoted digit. The origin of these small fluctuations can be
points in each bin. We also determinggwith 27 significant ~ inferred by plotting[10g;x J1it — [10910x Jaata for the final fit
digit so that in bin 13 the subtracted quantifg.( 8) is also  (s€e Figs. 7 and 8 in the next sectioihe non-smoothness
know at least with 13 significant digit. We foung, of these differences in bin 13 indicates that they are due to
=1.179030170446269732511874097 for the Ising case aridpe numerical errors iy. The amplitude of these differences
B.=1.14352915687979895500964720 for the LG case. Wis Smaller than 10% consistent with the fact that we per-
then use bin 13where the subleading corrections are smallformed the calculation of in a way that guaranteed at least
and the errors are not very importat calculatey divided 13 accurate significant digits. These fluctuations are indica-
by the subleading correction as explained in the previoudive of the limitation in the numerical precision of our pro-
subsection to estimatg. Then with the new value of ob- cedure. The accuracy of the value of the exponents, i.e. how
tained we go back to bin 7 to calculate the subleading cor¢lose they are to the “true” values, is further limited by the

rections. This procedure can be iterated and this “bootstrapfact that there exist corrections to our main assumption, Eq.
of linear fits converges rapidly. We obtainy (4.1-If we assume universality, the discrepancy between the

=1.299140732,A=0.4262 andA;/A,=—0.564 for the V?“Ues of the exponents for the two cases considered should
Ising model andy=1.29914073@ =0.4258 andA,/A, give us an |nd|cat|9n concerning the accuracy of the results.
=0.135 for the LG case. These numbers change typically b{/:or instance, the d|screpa_ncy_ between the_ two estimates of

1 in the last digit quoted above if one replaces bin 7 by bin @S of the order of 10*2 which is about 10 times larger than

to evaluateA. In order to remove this arbitrariness, we will the fluctuations of numerical origin. The estimation of the
now use these numbers as the initial values for a more acci€Xt sub-leading corrections is the main topic of the next
rate procedure. section.

Combining the two above equations we obtain, at first order,

—c,107 2% SA.

D. Linear analysis of the discrepancies V. NEXT SUB-LEADING CORRECTIONS

We have now reduced the errors made in the estimate of In the previous section, we have used the parametrization
the unknown quantities appearing in E@.1) to a suffi-  of Eq.(4.1) for the susceptibility near criticality. This param-
ciently low level to allow us to treat these errors in a linearetrization is by no means exact and corrections become more
approximation. We start with an initial fit of the data, for sizable as we move away from criticality. The corrections
instance as obtained in step 3, with errors in the unknowrtome from effects which can be calculated by a linearization
guantities parametrized in the following way: procedure(the next irrelevant directions; see Sec. )l br
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—log;o(B.— B) for the Ising measure. —log;o( B.— B) for the LG measure.

effects which are intrinsically non-linear. Anticipating the fication for the non-zero modes. This results from Egs.
results which will be presented in the next section, we obtaid3.7)—(3.10 of Ref. [9]. First, when calculating the coeffi-
the approximate valued,=~0.43 (we recall that since we cients of high temperature expansion one gets an amplifica-
only took into account one irrelevant direction, we used theion factor of the order of"(y+iw)|=5x 10'. In addition,
notationA for A, beford andA;=2.1. In other words, if we while calculating the extrapolated slope, one gets another
consider the first irrelevant direction as “first order,” the amplification by a factor ofs®>=5X 10°. Putting these two
next irrelevant directions produce effects which are smallefactors together, we obtain the claimed 14 orders of magni-
than the fourth order. In bin 13, these effects are completeljude. Such a small effect is smaller than our numerical reso-
unnoticeable in our analysis. The non-linear effects are disution.

cussed in the Sec. V A. The main result obtained there is that Second, the singularityd.— )~ ” should be replaced by

all the corrections can be parametrized in the following way1 (B¢~ B) +da(B.— )+ - - - 177 with coefficientsd, calcu-
lable in low dimensional maps. These corrections generate

x=(Bc—B) TAs+AL(Bc— B)A+A(B.— B analytical corrections to the scaling law in contrast to the
subleading corrections which are in general not integer pow-
+Aa(ﬁc_ﬁ)+] (51) ers

Third, the nonlinear corrections associated with the irrel-

In the next subsection, we analyze the data in terms of the N ) ;
vant directions generate corrections which are presumably

new parametrization and extrapolate our results in order t&§

oA i
estimate the errors made in the calculationy @indA in the of the f_orm Be=B) W!th ! 2’3’. ... -Later we call these

: : corrections the quadratic corrections or the second order ef-
previous section. focts

In summary, the corrections associated with nonlinear
contributions obey the parametrization of E.1) for a se-

The previous analysis describes the linearized flows neajuence of exponents 0.43,0.86,1,1.29,1.72,2. Note that
the fixed point. The closer to criticality we are, the morethese exponents are very close to each other and it may be
iterations are spent close to the fixed point and the mordifficult to disentangle their effects.
accurate the linear description is. Nevertheless, when we ap-
proach or leave the fixed point, non-linear effects are un- B. Empirical determination of the corrections
avoidable. These non-linear effects can be studied more eas-
ily in low-dimensional maps. Without entering into the detail
of this analysid12], we can envision three types of correc-
tions which we now proceed to discuss.

As already noticed ir{9], the “constants” A, and A;
should be replaced by functiond;((8.—8)) such that
Ai(N1(B:— B))=Ai(B:.— B). This invariance implies an ex-

A. Nonlinear corrections

We are now ready to use the data to determine some of
the unknown quantities in E¢5.1). In the following, we will
study these corrections for the Ising and the LG cases sepa-
rately. The reason for doing this is that in the Ising case, the
ratio A, /Ay=—0.56, while in the LG casel;/A;=0.14.

The relative siz%\ of the quadratic corrections is presumably
L e : of order (A;/A)“ and these corrections will be more sizable
pansion in integral powers of%—f) * (Fourier modes in the Ising case. We start with the assumption that there is

ggzt:)():f tzhzlwcg)r\ﬁ)z:rlgao.wvevri :rrgiﬁ hféisteh daL th1e4 ((:)(r)ggrl-s gne next subleading correction which dominates when we
P PP y Rlove from bin 13 to smaller values af In other words,

magnitude. The rationale for this suppression is that the non-
zero modes contribute to the extrapolated slof@n 107 —Ag—A;10 20 =A10"¢, (5.2
asymptotic estimator fory—1 used with the high-

temperature expansipmvith about the same strength as the in an intermediate region. In this equation, the four param-
zero modg9]. However, this is the result of a double ampli- etersy, A, Ay andA; are understood as their best estimates
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near criticality obtained in the previous section. Anticipatingsmaller than 101! in the Ising case and smaller than 1

the results obtained below, the exponefitis roughly of in the LG case. This justifies treating them as small pertur-
order 1. The corrections in bin 8 are thus of order 80 bations in bin 13. When we fitted the data in bin 13 without
which is precisely of the same order as the numerical errortaking these small effects into account, we made small ad-
if we use double-precision calculations. Consequently wgustments in the fitted parameters which allowed us to fit the
had to use th&1ATHEMATICA -based method described in the data with a precision comparable to the numerical precision.
Sec. Il B in order to get at least 4 significant digits for the In order to get a rough estimate of how much the next sub-
corrections. For time considerations, we have limited ouldeading corrections led us to misestimate the exponents, we
calculations to 10 points per bin. can linearize the next subleading corrections abostl3.

If Eq. (5.2 is approximately correct, the logarithm of the We obtain a change of the “apparent” slope:
left-hand side should be approximately linear in some region
of x. This quantity is displayed in Fig. 7 for the Ising model |57|%‘A10_13¢¢’ (5.3
and in Fig. 8 for the LG model. Ay ' '

One sees that in both cases the graph is approximately
linear over a large region of. Using a linear fit in each of The order of magnitude of the corresponding errora ioan
the bins of these regions we obtai=0.82 andA=0.4 with  be estimated by equating the term lineawip with the term
0=9%x10"%in bin 6 for the Ising model andp=1.01 and linear in 5A in Eq. (4.10. This yields
A=0.4 with c=6X10"* in bin 4 for the LG model. Other
bins have larger values ef and values of) which change
by a few percent while moving from bin to bin.

In the Ising case, we havpA/Aq|~(A;/A)? and ¢
=2A and we interpret this as a second ordr quadratit =~ We insist that this is only an order of magnitude estimate.
effect associated with the first irrelevant corrections. In othePlugging in numerical values, we obtaj@y|=3x10 12
words, A=A, if we follow the notation of Eq(5.1). In the and|5A|=2x10° in the Ising case an{idy|=2x10"13
LG case A;/A)%=0.02 is very small and the dominant and|SA|=6Xx10"" in the LG case. In the Ising case, the
effect in the linear region is the analytic correctiop=£1)  estimated errors are slightly larger than the discrepancies be-
behavior. In other wordsA=A_ is used if we follow again tween the values obtained with the two measures. In the LG
the notation of Eq(5.1) . case, the estimated errors are slightly smaller. However,

The departure from linearity occurs in its most extremelarger uncertainties in the error estimates appeared in the LG
way as dips located near=2 in the Ising case angi=10 in  case. If we use the largest estimates for the errors, our final
the LG case. These dips signal the existence of effects gesult for the first method is
opposite signs. A plausible interpretation of the location of

A
|5A|~ A—‘l’lo- 13 57‘ : (5.4)

these dips is that they occur at valuesxafhere the 1024 y=1.2991407301593% 10 * (5.9
prevail over the 10* analytical corrections. A detailed

analysis confirms this view for the Ising model, which allows A=0.4259485-2x10"°. (5.6
us to neglect the analytical corrections in bin 13. For the LG

model, two effects compete in bin 10 which is dangerously VI. EIGENVALUES OF THE LINEARIZED

close to bin 13 where the parameters are fined-tuisee RG TRANSFORMATION

below) and we were unable to get a clear linear behavior
after one more subtraction. Our most plausible explanation is As explained above, the easiest way to calculate the criti-
the f0||owing for the LG model. Neax=10, we have cal exponents consists in IineariZing the RG transformation
A,10 %= — A,10722% which implies A,~0.016. With this near a fixed poinR*(k) specified by the coefficienta™, .
rough estimateBA, /Aq|~ (A, /Aq)2 which is consistent with This can be.doneT as follows. First we express the coefﬁqents
a second order effect. So if this interpretation is correct, théftern iterations in terms of small variations about the fixed
quadratic effects are about twice the size of the analytic corPOINt:
rections in bin 13 for the LG model. R

In summary, we will use the assumption that in bin 13 the an =aj +da, . (6.1)
corrections are mostly second order effects and we will ne- ) i , , L
glect the analytical corrections. This assumption is well-At the next iteration, we obtain the linear variations
obeyed in the Ising case but is just an order magnitude esti- e

mate in the LG case. 5an+1,I:le M| 6@ m. 6.2

C. Accuracy of the previous estimate The | yaxX | max Matrix appearing in this equation is

We are now in position to estimate the effects of the next
subleading corrections in the calculation of the critical expo-
nents reported in the previous section. First of all, we notice
that by extrapolating the dominant linear behavior described
in the previous subsection to bin 13, we obtain effectsevaluated at the fixed point.

_ aan+ 1)
dan m

M m , 6.3
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Approximate fixed points can be found by approachig i ‘ ‘
from below and iterating until the ratia,., ;/a, , takes a e .
value which is as close as possible to 1. This procedure is . hnax = 70
described in Ref[4]. The approximated fixed points ob- Z .
tained with this procedure depend Bp. Using their explicit %L ]
form which we denoteR*(k,B;), we obtained a universal .
function U(k) by absorbingB into k. More explicitly, we
found that .
TE lIO 2‘0 3'0
U(K)=R*(V/Bck, Be) (6.4 ’
FIG. 9. logd \,] versusn.
is in very good approximation independent of the model cony, \
sidered. This function is related to a fixed pofifs?) con- n
structed in Ref[7] by the relation 1 1.42717247817759
2 0.859411649182006
c—4 3 0.479637305387532
U(k)of (T) kz). 65 4 0.255127961414034
5 0.131035246260843
6 0.0654884931298533

The Taylor coefficients of can be found in the file approx.t

in [7]. Normalizing Eq.(6.5 with U(0)=1, we obtain In order to get an idea regarding the asymptotic behavior

of the eigenvalues, a larger set of values is displayed in Fig.
9.
U(k)=1.—0.35871134988 +0.0535372882"— - - - . It is clear from the figure thak , falls faster than expo-
(6.6) nentially with n. This property is important when the non-
linear effects are calculated.
Using the first two eigenvalues and the relationship be-

It is not known if there is only one nqn-triyial fixed point tween the eigenvalues and the exponents reviewed in the
for Dyson’s model. Using the parametrization of Efj.1), previous section, we obtain the values
we have consideref] the 12 cases obtained by choosing

among the foIIovv_ing possibilitiesm?= ;1 (single- or y=1.299140730158610 13 6.7)
double-well potentials p=2,3 or 4 (coupling constants of
positive, zero and negative dimensions when the cutoff is A =0.425946858988% 10~ 13 (6.9

restored andg= 10 or 0.1(moderately large and small cou-
plings). All approximate fixed points we have constructed The (conservativeestimation of the errors is based on errors
give a functionU(k) very close to Eq(6.6). The closeness ¢ order 104 on the eigenvalues and the fact that the de-

can be characterized by thenorms introduced ifi7]. For  jyatives of the exponents with respect to the eigenvalues
p=2 andl<42 we found that the errafu, on thelth coef-  yie|d factors less than 4.

ficients of the approximate (k) with respect to the accurate
expression obtained from Ref7] was bounded by éu,|
<(5%107%)/112' for calculations using double precision. In
other words, the functiot(k) seems to be independent of  In conclusion, we have calculated the exponentnd A

the general shape of the potential, the strength of the intefwith a accuracy significantly better than in Ré#]. The
actions and whether or not the model is perturbatively renorthree independent calculations performed here agree on the

VIl. CONCLUSIONS AND PERSPECTIVES

malizable. following value for the leading exponent:
Using these approximate fixed points, we were able to
obtain y andA with 7 decimal points. In the following, we y=1.29914073015910 2 (7.2

will use directly the more precise functidh(k) constructed

by Koch and Wittwer{7]. We retained 16 significant digits Our results show excellent agreement between the methods
for the coefficients appearing in E(.6) and used values of developed in Ref[10] and an expansion about the fixed
Imax Up to 65. We then calculated the eigenvalues of thepoint of Ref.[7]. As far as the calculation of the exponents is
matrix given in Eq.(6.3) with two different methods. The concerned, the linearization procedure is much simpler and
first used “blindly” the instruction EIGENVALUES in more accurate.

MATHEMATICA . The second consisted in using the eigenvalue It is important to know if the non-universal quantities
routine LAPACK [13] for which we were able to vary the A;,A;,A,,A,,... could also be calculated by a using an
control parameters of the program. The two methods gavexpansion about the fixed point which involves non-linear
identical results with 14 decimal points for the first two ei- terms. We have addressed this question in a simplified
genvalues. The first six eigenvalues are given below: model, namely the recursion relation for the susceptibility:
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C n+1
Xn+1=Xnt B 5) X3 (7.2

A detailed analysi§12] shows that in this model the un-

known quantities appearing in the scaling law foare com-

pletely calculable. If the procedure can be extended to the

PHYSICAL REVIEW D59 096002

D=4, this procedure would yield triviality bounds. This al-

ternate way of using input parameters in field theory is now

being investigated.
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