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High-accuracy calculations of the critical exponents of Dyson’s hierarchical model
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We calculate the critical exponentg of Dyson’s hierarchical model by direct fits of the zero-momentum
two-point function calculated with an Ising and a Landau-Ginzburg measure, and by linearization about the
Koch-Wittwer fixed point. We findg51.299140730159610212. We extract three types of subleading correc-
tions ~in other words, a parametrization of the way the two-point function depends on the cutoff! from the fits
and check the value of the first subleading exponent from the linearized procedure. We suggest that all the
non-universal quantities entering the subleading corrections can be calculated systematically from the non-
linear contributions about the fixed point and that this procedure would provide an alternative way to introduce
the bare parameters in a field theory model.@S0556-2821~99!05009-2#

PACS number~s!: 11.10.Hi, 05.50.1q, 11.15.Ha, 75.40.Cx
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I. INTRODUCTION

Scalar field theory has many important applications
condensed matter and particle physics. Unfortunately, th
exists no approximate treatment of this theory which co
pretend to compete in accuracy with perturbative method
quantum electrodynamics at low energy. Accurate calcu
tions of subtle effects at accessible energies provide a w
dow on hypothetical high energy degrees of freedom wh
are not accessible by production experiments. If we imag
for a moment that the kaons were the heaviest particles
we could produce, a precise determination of their weak m
trix elements would become a unique way to obtain qua
tative information about the charmed quark. Rescaled v
sions of this imaginary situation may become relevant in
future.

The main goal of this article is to demonstrate that the
of hierarchical approximations allows determinations of
renormalized quantities, with an accuracy which can co
pete with perturbative QED, and for a wide range of U
cutoff and bare parameters. The use of hierarchical appr
mations simplifies the renormalization group~RG! transfor-
mation while preserving the qualitative features of sca
field theory. Well-known examples are the approximate
cursion formula derived by Wilson@1# or the related recur-
sion formula which holds for Dyson’s hierarchical model@2#.
If used for quantitative purposes, hierarchical approxim
tions need to be improved. This is a difficult task under
vestigation and is not discussed here. If the hierarchical
proximation could be improved in a way which maintain
the advantages of the approximation, one could obtain res
with an accuracy which would outperform any Monte Ca
method and defy the patience of any experimentalist.

In the following, we use the scaling laws@3# to express
the renormalized quantities as function of the bare quant
and a UV cutoff. This parametrization@see, e.g., Eqs.~1.4!
and ~1.6!# is motivated below. We show with an examp
that the unknown parameters entering in the scaling laws
0556-2821/99/59~9!/096002~13!/$15.00 59 0960
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be determined accurately. In particular, one universal qu
tity entering in the scaling law associated with the two po
function ~the critical exponentg) can be calculated with two
independent methods with an agreement to the 12th dec
point. These two methods were sketched in Ref.@4#. In the
meantime, these methods were improved in order to g
significantly better accuracy. A detailed description of the
two methods is the main technical content of the pres
paper.

All the calculations reported in this paper were made w
a specific example selected for its simplicity. However, th
is nothing essential in the choice of this example and ac
rate calculations can be performed with the same tools
much broader range of models and parameters. For the
of definiteness we now describe the example chosen he
ter. We have limited the discussion to a calculation of t
zero-momentum two point function of Dyson’s hierarchic
model with a one-component scalar field and with a cho
of the free parameter~denotedc) which approximates aD
53 theory. We considered a wide range of UV cutoff~14
orders of magnitude! and two different sets of bare param
eters. The choice of the hierarchical model is not essen
either. Wilson’s approximate recursion formula is closely
lated to the recursion formula appearing in Dyson’s hier
chical model@2#. It is possible to continuously interpolat
between the critical exponents of the two cases@5#. The nu-
merical treatment of the two cases is completely identic
We have specialized the discussion to the case of Dys
model because this model has been studied@6–10# in great
detail in the past and because a fixed point of this mode
D53 is known with great precision@7#. For the sake of
completeness the main features of Dyson’s model are
viewed in Sec. II A. The choice of the two-point function
not essential. The methods can be extended to other re
malized quantities as explained in Ref.@10#.

The goal of a typical field theory calculation is to obta
the renormalized quantities corresponding to the bare par
eters entering in an action and a given UV cutoffL. In the
©1999 The American Physical Society02-1
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following calculations, the bare parameters will appear i
local measure of the Landau-Ginzburg~LG! form

W0~f!}expF2S 1

2
m2f21gf2pD G . ~1.1!

The UV cutoff corresponds to the scale where the the
under consideration stops being an accurate description a
more complete or more fundamental theory is requir
Given a set of bare parameters and a UV cutoffL, one can
try to integrate@1# the degrees of freedom betweenL and a
lower energy scale of referenceLR in order to obtain an
effective theory describing phenomena at scales belowLR .
As an example, if we are interested in low energy proces
involving pions, L could be chosen aroundmr and LR
aroundmp . This gives a ratio of about 6 between the tw
scales. Similar ratios may be applicable for an effective
scription of the Higgs boson in the hypothetical case tha
results from an underlying strongly interacting theory. If w
are interested in the effects of the charmed quarks in n
leptonic decays of kaons, the ratio of the two scales wo
approximately be 3. Larger ratios appear if, for instance,
are interested in the effects of the top quark in systems
volving only the five other quarks or the effects of theW and
Z gauge bosons on the propagation of an an electron
constant magnetic field. From these examples it is clear
one would like to be able to cover a wide range of values
LR/L.

In the scalar theory under consideration here, the cuto
lowered by discrete steps which reduce the initial cutoff b
factor 221/D for a ‘‘D-dimensional’’ theory~the notion of
dimensionality is explained at length in Sec. II C!. The limit
of a large UV cutoffL can be reached by fine-tuningb, the
inverse temperature in Dyson’s formulation of the model@2#.
We use here statistical mechanics language: the mag
susceptibilityx is studied by varyingb, keeping the bare
parameters fixed. We could have, in a completely equiva
way, called the susceptibility the zero momentum two po
function, setb — the kinetic term coupling constant —
equal to 1 and fine-tuned the bare mass.

We now follow Ref. @1# and consider a sequenceL
51,2, . . . ofmodels withb5(bc2l1

2Lm) wherel1 is the
largest eigenvalue of the linearized renormalization gro
transformation andm an arbitrary positive parameter. If w
consider a fixed value ofL and if m is of order 1, it takes
aboutL iterations of the renormalization group transform
tion to get an effective theory with a mass of order 1 inLR
units. This comes from the fact that in the linearized appro
mation~see Sec. II D!, bc2b measures how far we are awa
from the stable manifold@3# and this quantity is multiplyed
by l1 at each iteration until it reaches a value of order 1 a
the linearization does not hold anymore. This suggests
definition of the renormalized massmR

2 :

mR
25

LL
2

x~bc2l1
2Lm!

, ~1.2!

whereLL is the UV cutoff defined as
09600
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LL52L/DLR . ~1.3!

For b close enough tobc ~i.e., for L large enough!, one can
approximate the susceptibility with an expression whic
whenD,4, takes the form@3#

x.~bc2b!2g@A01A1~bc2b!D1•••#, ~1.4!

whereA0 ,A1 , . . . arefunctions of the bare parameters onl
From the above equations and the expression ofg given in
Eq. ~2.17!, which implies

lg522/D, ~1.5!

one obtains

mR
25

LR
2mg

A01A1mD~LR /LL!2D/g1•••

. ~1.6!

The main technical endeavor pursued in this article is
determine numerically the unknown quantities in Eq.~1.4!
and to determine the nature of the next corrections. We h
used two independent methods. The first one consists in
ting the susceptibility at various values ofb using Eq.~1.4!.
The second method consists in calculating the eigenvalue
the linearized renormalization group transformation in ord
to determine the critical exponents. The present article c
tains the details of the results announced in Ref.@4#. In the
meantime we have refined some of the procedures used
viously and improved significantly the accuracy of our r
sults ~e.g., at least four more significant digits ing). These
refinements are reported in the present article.

The first estimation of the unknown quantities is based
a method of calculation presented in Ref.@10# where it is
shown that the use of polynomial approximations in the F
rier transform of the recursion relation allows efficient a
highly accurate calculations of the zero-momentum Gree
functions in the symmetric phase. The method is reviewed
Sec. II where we also justify the introduction of a dimensio
ality parameter and review the linearization procedure.
Sec. III, we analyze the errors associated with the meth
We first explain how to get rid of the volume effects for th
range of temperature considered later. We then analyze
round-off errors in arithmetic operations and show how
reduce them to an acceptable level by the use of higher
cision arithmetic, when necessary. We then discuss the
fects of the polynomial truncations and of the numerical
rors in the calculation of the Fourier transform of th
measure given by Eq.~1.1! and show that they can be re
duced to a level where they will play no role in the discu
sion which follows. We conclude the section with an exp
nation of why a great numerical accuracy can only
achieved in the symmetric phase.

In Sec. IV, we fit the susceptibility with the four param
eters appearing in Eq.~1.4!, neglecting the next subleadin
corrections indicated by the1•••. After four successive re-
finements, all based on reproducible linear fits, we obt
values ofg with a numerical stability up to the 13th decim
point. In Sec. V we analyze the next subleading correcti
and show that neglecting them affects slightly the 12th de
2-2
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HIGH-ACCURACY CALCULATIONS OF THE CRITICAL . . . PHYSICAL REVIEW D59 096002
mal point in g. All the calculations in these two section
have been done with two different measures and gave c
patible results for the universal quantities (g andD).

The most efficient way to calculate the critical exponeng
andD consists in using the linearized renormalization gro
transformation@3# near a fixed point. This is done explicitl
in Sec. VI. In Ref.@4#, we gave convincing arguments ind
cating the uniqueness of the non-trivial fixed point for a lar
class of theories. In this article, we take this uniqueness
granted and we use the very accurate expression of this fi
point obtained from the work of Koch and Wittwer@7# rather
than the less accurate fixed points used in Ref.@4#. This
allows us to obtain values ofg with estimated errors of les
than 1 to the 13th significant digit, the actual value agree
with the previous estimate within the expected uncertaint

If there is only one non-trivial fixed point~universality!
and if we can calculate accurately the exponents, the tas
calculating the renormalized quantities for a particular se
bare parameters reduces to the determination of quan
like A0 ,A1 , . . . . This task can be achieved by repeated s
tractions as shown in Secs. IV and V. We are convinced
such calculations could be performed more efficiently by
ing the fixed point and a calculation of the nonlinear effec
We have checked@12# that such a calculation can be sat
factorily performed in simplified versions of the basic recu
sion relation. If this task can be successfully completed
the model considered here, this would mean that the pre
knowledge of the fixed point provided by Ref.@7# is equiva-
lent to a solution of the model.

An accurate determination of the universal exponents p
vides a new approach of the renormalization procedure:
could try to treat as much as possible of theA0 ,A1 , . . . and
the corresponding quantities for the higher point functions
input parameters. This of course supposes that we have
tailed knowledge of their relative dependences. This ques
is under investigation with various methods.

II. MODEL AND THE CALCULATION
OF THE SUSCEPTIBILITY

In this section, we describe the method used to calcu
the magnetic susceptibility and introduce some definitio
which will be used later. For the sake of being se
contained, we first recall basic facts about Dyson’s hierarc
cal model@2#.

A. Dyson’s model

The model has 2nmax sites. We label the sites withnmax
indicesxnmax

, . . . ,x1, each index being 0 or 1. In order t

understand this notation, one can divide the 2nmax sites into
two blocks, each containing 2nmax21 sites. If xnmax

50, the

site is in the first box; ifxnmax
51, the site is in the secon

box. Repeating this proceduren times ~for the two boxes,
their respective two sub-boxes, etc.!, we obtain an unam-
biguous labeling for each of the sites.

The non-local part of the action of Dyson’s hierarchic
model reads
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H52
b

2 (
n51

nmax S c

4D n

(
xnmax

, . . . ,xn11
S (

xn , . . . ,x1

f~xnmax
, . . .x1!D 2

.

~2.1!

The indexn, referred to as the ‘‘level of interaction’’ here
after, corresponds to the interaction of the total field
blocks of size 2n. The constantc is a free parameter which
control the decay of the iterations with the size of the box
and can be adjusted in order to mimic aD-dimensional
model. This point is discussed in more detail below.

The fieldf (xnmax
, . . . ,x1) is integrated over a local measu

which needs to be specified. In the following, we will wo
with the Ising measureW0(f)5d(f221) and the Landau-
Ginsburg measure of the form given in Eq.~1.1!. The hier-
archical structure of Eq.~2.1! allows us to integrate the field
while keeping their sums in boxes with 2 sites. This can
expressed through the recursion relation

Wn11~f!5
Cn11

2
e~b/2!~c/4!n11f2E df8WnS ~f2f8!

2 D
3WnS ~f1f8!

2 D , ~2.2!

whereCn11 is a normalization factor which can be fixed
our convenience.

B. Polynomial truncations

Introducing the Fourier representation

Wn~f!5E dk

2p
eikfWn̂~k!, ~2.3!

and a rescaling of the source by a factor 1/s at each iteration,
through the redefinition

Rn~k!5Wn̂S k

snD , ~2.4!

the recursion relation becomes

Rn11~k!5Cn11expF2
1

2
bS c

4
s2D n11 ]2

]k2GFRnS k

sD G
2

.

~2.5!

The rescaling operation commutes with iterative integratio
and the rescaling factors can be fixed at our convenience.

We will fix the normalization constantCn is such way
that Rn(0)51. Then,Rn(k) has a direct probabilistic inter
pretation. If we callMn the total field(fx inside blocks of
side 2n and^•••&n the average calculated without taking in
account the interactions of level strictly larger thann, we can
write

Rn~k!5 (
q50

`
~2 ik !2q

2q!

^~Mn!2q&n

s2qn
. ~2.6!
2-3
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We see that the Fourier transform of the local measure a
n iterations generates the zero-momentum Green’s funct
calculated with 2n sites and can thus be used to calculate
renormalized mass and coupling constant at zero momen

In the following, we use finite dimensional approxim
tions of degreel max of the form
-
lly
R
d
a

oi
th

th
e
ry
m
s

io

r

.

-

09600
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Rn~k!511an,1k
21an,2k

41•••1an,l max
k2l max. ~2.7!

After each iteration, non-zero coefficients of higher ord
(an11,l max11

etc.! are obtained, but not taken into account
the next iteration. More explicitly, the recursion formula f
the an,m reads
an11,m5

(
l 5m

l max S (
p1q5 l

an,pan,qD @~2l !!/ ~ l 2m!! ~2m!! #~c/4! l@2~1/2!b# l 2m

(
l 50

l max S (
p1q5 l

an,pan,qD @~2l !!/ l ! #~c/4! l@2~1/2!b# l

. ~2.8!
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As one can see, once an initialR0(k) is given, the proce-
dure is purelyalgebraic. The initial conditions for the Ising
measure isR0(k)5cos(k). For the LG measure, the coeffi
cients in thek-expansion need to be evaluated numerica
This method has been discussed and tested at length in
@10#. The dimensionl max of the polynomial spaces require
to make reasonably accurate calculation is remarkably sm
less than 50 for a typical calculation~see Ref.@10# for de-
tails!.

As far as numerical calculations are concerned, the ch
of s is a matter of convenience. For the calculations in
high temperature phase~symmetric phase! not too close to
the critical points or for high temperature expansions
choices5A2 works well@8,9#. On the other hand, the choic
of rescaling factors52c21/2 prevents the appearance of ve
large numbers when we are very close to the critical te
perature. In the following, the finite volume magnetic su
ceptibility is defined as

xn~b!5
^~Mn!2&n

2n . ~2.9!

From Eq.~2.6!, we obtain

xn522an,1S s2

2 D n

. ~2.10!

C. Introducing the dimensionality

From a conceptual point of view, the choices52c21/2 is
of particular significance because the infinite volume act
given in Eq. ~2.1! is invariant under the removal of thel
51 terms~first level interactions! followed by the rescaling
of the fields. In other words, the kinetic term is not reno
malized andh50. From this, we can derive the wayc
should be tuned in order to mimic aD-dimensional system
Given that the dimension of a scalar field inD dimensions is
@f#5@L#2(D22)/2 whereL is a length, we obtain, in the con
tinuum,
.
ef.

ll:

ce
e

e

-
-

n

-

F S E dDxf~x! D 2G5LD12. ~2.11!

On the lattice this becomes

@^~Mn!2&n#5LD12. ~2.12!

If we use the rescaling factors52c21/2, the non-local part of
the action given in Eq.~2.1! is invariant under a renormal
ization group transformation. If in addition the local measu
is also left invariant, the average values of the even pow
of the rescaledfield stay constant. Returning to the origin
field variables, we found that at~or sufficiently close to! a
fixed point,

^~Mn!2&n}S 4

cD n

. ~2.13!

The only relevant scale is the size of the box over which
have integrated all the field variables except for their su
The volume of the box is proportional to the number of si
inside the box:

LD}2n. ~2.14!

Using this together with Eqs.~2.12! and ~2.13! we obtain

4

c
52~D12!/D ~2.15!

or, in other words,c52122/D.
All the calculations done hereafter have been done

D53.

D. Review of the linearization procedure

We now briefly review the linearization procedure. W
denote the eigenvalues of the linearized RG transforma
by ln with the conventionl1.1.l2.l3.•••. The close-
ness to the fixed point is essentially monitored by the mot
along the unstable direction. Until the number of iterationn

reaches a valuen! such thatl1
n!

(bc2b);1, Rn is ‘‘close’’
to the fixed point andan,1 stays close to its fixed point valu
2-4



n

t

n
b

s

d
ilit
ct
o

ul
he
ne

l
ie

ti
t
g
q.
n

e
r b
e
-

r
e

n

of
r-

se
ion.

d

rror

oxi-

a

ted

us-

lly
-

ing

rors

i-

-

s
t
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~assuming that we use the scaling factors52/Ac). Whenn
gets larger thann!, x starts stabilizing. Using the relatio
betweenan,1 andxn given by Eq.~2.10!, we obtain the order
of magnitude estimate

x;S 2

cD n!

5~bc2b!2[ ln~2/c!]/[ ln ~l1!] . ~2.16!

Reexpressing in terms of (bc2b), we find that the exponen
for the leading singularity is

g5 lnS 2

cD Y ln~l1!. ~2.17!

According to the same linear argument, the order of mag
tude of the components in the stable directions should

proportional tol l
n!

with l>2. Using the estimate forn! and
reexpressing in terms of (bc2b), we obtain the subleading
exponentsD l52 ln(ll)/ln(l1) for l>2. In the following we
simply use the notationD for D2 and the higher exponent
will play no significant roles.

III. ERROR ANALYSIS

There are three important sources of errors which nee
be considered when we calculate the magnetic susceptib
the finite volume effects, the round-off errors and the effe
of the finite dimensional truncation. A general discussion
these questions is given in Ref.@10#. In the following, we
discuss them in the particular cases required for the calc
tions of Sec. IV. In addition, we discuss the effects of t
errors on the initial coefficients. All the calculations do
hereafter have been made in the symmetric phase. In the
subsection, we explain why the present methods do not y
accurate results in the broken symmetry phase.

A. Volume effects

As explained in Sec. II D, when calculating the suscep
bility at values ofb close to and belowbc , we spend abou
2 ln(bc2b)/ln(l1) iterations near the fixed point. Durin
these iterations, we have the ‘‘conformal’’ scaling of E
~2.13! and the round-off errors are amplified along the u
stable direction~see the next subsection!. After that, assum-
ing we are in the symmetric phase, the order of magnitud
the susceptibility stabilizes and the corrections get smalle
a factor of c/2 at each iterations. At some point, all th
recorded digits stabilize~irrespectively of the numerical er
rors which occurred in the first stage described above!. This
gives the estimate@10# for the number of iterationsn(b,P)
to stablizeP digits ~in decimal notations!:

n~b,P!5S D ln~10!

2 ln~2! D @P2g log10~bc2b!#. ~3.1!

For P516, g.1.3 andbc2b51029, we obtainn.140 and
we need to add about 7 iterations each time we get close
bc by a factor of 1021. It is thus quite easy to get rid of th
09600
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volume effects. In the following, we will perform calculatio
b,bc210214 andnmax5180 will be enough to avoid finite
volume effects.

B. Numerical errors

From Eq. ~2.8!, we see that the calculation of each
an11,l involves a number of arithmetical operations propo
tional to l max. When we are close to the fixed point, the
errors generate small contributions in the unstable direct
These errors are then amplified by a factor ofl1 at each
iteration until we move sufficiently far away from the fixe
point. Consequently, the closerb is to bc , the more time is
spent near the fixed point and the larger the numerical e
becomes. A simple calculation@10# corresponding to this
reasoning shows that the relative errors obey the appr
mate law

Udx

x U; d

bc2b
, ~3.2!

whered is a typical round-off error.
A simple way to probe the numerical errors is to make

small change in the rescaling factors. As explained in the
previous section, we can in principle use any value ofs to
calculate the susceptibility. This arbitrariness is compensa
at the end by an appropriate rescaling given in Eq.~2.10!. If
we could perform the arithmetic operations exactly, the s
ceptibility would be completely independent ofs. However,
as a result of the round-off errors, the susceptibility actua
depends ons. This is illustrated in Fig. 1 where we calcu
lated the distribution ofx for values ofs varying between
2/Ac20.0001 and 2/Ac10.0001 by steps of 1027.

This calculation has been performed inFORTRAN with
double precision variables. We have used an initial Is
measure withb5bc21029. This distribution has a mean
value m51.04192690431012 and a variances54.93105.
From these quantities, we estimate that the relative er
udx/xu due to numerical errors should be of orders/m
54.731027. This is in agreement with the order of magn
tude estimate of Eq.~3.2!: using 10216 as a typical round-off
error in a double-precision calculation, we obtainudx/xu
;1027 for bc2b51029. A more accurate calculation per
formed with methods described below gives the resultx
51.04192662631012. We have checked that this result wa
invariant under slight changes ins. From this, we see tha

FIG. 1. Distribution of the magnetic susceptibilityx with re-
spect to the scaling factors.
2-5
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m2x52.83105 which is approximately 0.57s. Another
piece of information concerning the spread of the value
the difference between the largest and the smallest value
the distribution which is 6.4s in the present case.

There are several detailed features of this distribut
which are not well understood. The first one is that the d
tribution is not symmetric abouts52/Ac. The values ofx
spread more aboves52/Ac. In addition, a more detailed
study shows that the distribution is not well centered and
of values about the mean value departs more from a Ga
ian distribution than expected, given the number of ‘‘ind
pendent trials’’~2000 in Fig. 1! made. In addition, increasin
the statistics does not decreasem2x or increase significantly
the difference between the largest and the smallest va
These questions are now being investigated with lowl max
examples.

In conclusion, we have good control of the maximal e
rors made as a consequence of the round-off errors. T
seem not to exceed 10 times the order of magnitude give
Eq. ~3.2!. On the other hand, we have an incomplete und
standing of their distribution within these bounds. These p
clude the use of statistical methods to obtain more accu
results and other methods need to be used.

The most efficient way to improve the accuracy ofx con-
sists in using higher precision arithmetic. This can be do
easily, for instance, using theMATHEMATICA environment
where one use the instructionSETPRECISION@ # to introduce
numbers with a desired number of significant digits and
instructionPRECISION@ # to monitor the numerical errors. Th
initial precision can then be adjusted empirically in order
obtain a desired accuracy forx. This accuracy is then
checked by making changes ins as explained above. A typi
cal calculation withl max550, nmax5200 and a required ac
curacy of 16 digits in the final result takes of the order
103 sec on a common workstation. The same type of ca
lation in double-precisionFORTRAN takes about 0.1 sec
While the high-precision program runs, we could thus r
the double-precision 104 times. If a proper understanding o
the statistical distribution of the errors was at hand~as ex-
plained above, this is not the case!, we could hope to use th
104 values to reduceudxu by a factor of 1022. In the example
discussed above, we would get hope to get errors to the
significant digit instead of the 7th. However, with the hig
precision method we obtained 16 correct significant digits
the example discussed above we obtain the accurate v
x51.0419266255 . . .31012. The difference between thi
more accurate value and the mean calculated above
2000 data points is 0.57s and stays at the same large val
when the statistics is increased. In the following, the hig
precision method will exclusively be used.

C. Determination of l max

As shown in Ref.@10#, the effect of the finite truncation
decays faster than exponentially withl max in the symmetric
phase. In general, the determination ofl max depends on how
far we are from criticality and the required accuracy on
value calculated. In the following, we will require 13 signifi
cant digits onx and (bc2b) with b,bc210214. Whenb
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5bc210214, all the significant digits up to the 13th decim
point of the quantity (bc2b) are lost since they cance
Consequently, in order to get 13 significant digits in (bc
2b) in the range considered, we will determinebc with an
accuracy of 10227. This will be the most stringent require
ment to determinel max. As explained in the previous sub
section, we can easily perform calculations with hig
precision arithmetic and follow the bifurcations@10# in the
ratios of successivean,1 in order to determinebc . Figure 4,
below, shows the effect of adding or subtracting 10227 to
bc51.179030170446269732511874097 in the case of
initial Ising measure. This calculation has been perform
with l max550. If we use larger values ofl max, bc remains at
the quoted value. This is just a particular example.

In general, the minimal value ofl max for which bc stabi-
lizes can be obtained from extrapolation from the change
low l max where calculations take little time. We use the n
tation dbc for bc( l max)2bc . The quantity log10udbc /bcu
versusl max is shown in Fig. 2 for the Ising model and the L
measure of Eq.~1.1! with m251, p52, andg50.1.

The logarithm of the relative errors falls faster than li
early. To a good approximation@10#, log10(Dbc).a
1b@ l max ln(lmax)#. So if we want, saydb/b;10227, the
choices ofl max548 for the Ising case andl max560, the LG
cases appear to be a safe. In order to check the stabilit
these values, we increased the value ofl max to 55 in the Ising
case and to 64 in the~LG! case, and we obtained the samebc
value in both cases. We have also checked that these va
of l max were sufficient to obtain 13 significant digits forx in
the range ofb specified above.

D. Effects of the errors on the initial coefficients

In the Ising case,R0(k)5cos(k), the initial coefficients
are known analytically:a0,l5(21)l /(2l )!. However, this is
not the case in general. We want to study the effect o
change inda0,l in the initial coefficients onbc . The results
are shown in Fig. 3.

The results can be read as follows. If we are intereste
determiningbc with, say, 10 significant digits,a0,10 has to be
determined with 2 significant digits,a0,9 with 3 significants
digits, a0,8 with 4 significant digits, etc. In the following, we
are interested in universal properties~features which are in-
dependent of the measure! rather than in properties of par
ticular measures. Consequently we have only used a dou

FIG. 2. log10udbc /bcu versusl max for the Ising case~circles!
and the LG case~stars!. The solid line is a fit with a
1b@ l max ln(lmax)#.
2-6



G
ns

l-

fi

ify
th
-
e

w

ic

n
e

w
c

th
te
r
ch
t.

e
es

io

ric
to

-
pa

e
rt
q.

xpo-

nts
the
ed

ly
of

e-

tic

c-

ion
sti-

of
cuss
ex-

e a
ata
ad-
sis
ata
le of

is
the
ing

ith
rm

e-

s

s

HIGH-ACCURACY CALCULATIONS OF THE CRITICAL . . . PHYSICAL REVIEW D59 096002
precision calculation of the Fourier transform for the L
model. The reproducibility of the details of the calculatio
then requires having the samea0,l . On the other hand, in the
Ising case, the analytical form of the initial coefficients a
lows a completely reproducible procedure.

E. What happens in the broken symmetry phase

Figure 4 shows the existence of two phases. There are
parts of the graph we would like to discuss here.

For the rest of the discussion, it is important to spec
that an,l has been calculated with the canonical value of
rescaling parameters52/Ac. The first part is before the bi
furcation. This is shown as region ‘‘1’’ in Fig. 4 where th
ratios of an11,1/an,1 are close to 1. The second part~‘‘2’’ !
shows the bifurcation in the high-temperature phase. If
are belowbc , the ratioan11,1/an,1 will go down to the value
c/2, which guarantees the existence of a thermodynam
limit for x @since we need to multiplyan,1 by (2/c)n in order
to getx; see Eq.~2.10!#. On the other hand, the bifurcatio
toward the low temperature phase is characterized by a p
shown by ‘‘3’’ in Fig. 4. Part 4 of the graph is a narro
‘‘shoulder.’’ In the low-temperature phase, we expe
^Mn

2&n}22n, which meansan11,1/an,1.c.1.26. We studied
the l max dependence of this shoulder and observed that
number of points on the shoulder increases by approxima
1 when we increasel max by 10. Unfortunately, the shoulde
is not infinite, and after a few iterations, the ratios will rea
1 again ~part ‘‘5’’ !. This signals an attractive fixed poin
However, this is not a fixed point of the exact~not truncated!
recursion relation. This can be seen by looking at the co
ficientsal

! of these attractive fixed points for different valu
of l max. When l max increases, the values ofal

! increase like
( l max)

l , showing that their existence is due to the truncat
process.

The fact that the truncation procedure generates nume
instabilities in the low-temperature phase can be unders
from the basic formula, Eq.~2.5!. In the low temperature
phase, the measureW(f) has two peaks symmetrically lo
cated with respect to the origin. At each iteration, the se
ration between the peaks increases by a factor of 2~in un-
rescaled units!. By taking simple examples and going to th
Fourier transform, one sees that at some point the pa
sums~truncated atl max) representing the exponential in E

FIG. 3. The shift inbc , Dbc as a function of the relative error
in the l th coefficient.da0,l /a0,l51022 ~open circles!, 1024 ~solid
boxes!, 1026 ~open triangles! and so on untilda0,l /a0,l510214.
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~2.5! become inaccurate because the argument of the e
nential is too large.

IV. CRITICAL EXPONENTS FROM FITS

In this section, we explain how to calculate the expone
g andD using a sequence of increasingly accurate fits of
susceptibility. The general method has been briefly outlin
in Ref. @4#. Here, we give all the details of a significant
more accurate calculation which leads to a determination
g with 12 decimal points. The main ingredient of the proc
dure is that forb close enough tobc ~i.e., for a cutoffL
large enough!, one can approximate very well the magne
susceptibility~zero-momentum two point function! with an
expression taking into account only the first irrelevant dire
tion, namely

x.~bc2b!2g@A01A1~bc2b!D#. ~4.1!

The estimation of the unknown quantities in this equat
proceeds in four steps. In the first step, we get a rough e
mate forg by using a linear fit in a range ofb where we
minimize the combined effects of the numerical errors and
the subleading corrections. In the second step, we dis
how to improve this result by estimating the sub-leading
ponentD and the coefficientA1 /A0. Using these preliminary
estimates, we will, as the third step of the procedure, us
‘‘bootstrap’’ technique between a set of high-precision d
close to criticality and another set of data where the suble
ing corrections are important. Finally, we do a linear analy
of the difference between the fit and the high-precision d
in order to get results which are as independent as possib
the slightly arbitrary choices~how to divide the data into
‘‘bins,’’ etc.! made during the first three steps. After th
fourth step, we analyze the difference between the fit and
data away from criticality and discuss the next sublead
corrections.

All the calculations of these sections have been done w
either an Ising initial measure or a LG measure of the fo
given in Eq.~1.1! with m251, p52, andg50.1. We refer
to these choices as the ‘‘Ising case’’ or the ‘‘LG case’’ her
after.

A. Localized linear fits

In the first step, we calculatex at various temperature
and display log10(x) versus2 log10(bc2b). We will use the
notation

FIG. 4. an11,1/an,1 versusn for b5bc710227.
2-7
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x[2 log10~bc2b!. ~4.2!

If we display log10(x) versusx, we see a linear behavior wit
a slopeg.1.30. The deviations from the linear behavior a
not visible to the naked eye. We need to study these de
tions locally inb. In order to understand the corrections, w
have divided the data into 14 bins of 100 points. The first
contains the datax51.00,1.01, . . . ,1.99 and so on. In eac
bin, indexedi, we make a linear fit of log10(x) versusx. In
the i th bin we will call the slopeg ( i ) and (s ( i ))2 denoted the
sum of the squares of difference between the data and
linear fit divided by the number of points in a bin minus
which is ~for the i th bin!

~s~ i !!25

(
j 51

100

@ log10~x i , j
data!2 log10~x i , j

f i t !#2

98
, ~4.3!

wherej indexes the data points in thei th bin. The values of
log10(s

( i )) are plotted in Fig. 5.
It is easy to interpret this graph. There are two ma

sources of deviations from linear behavior. The first one
the existence of subleading corrections to the scaling l
which decrease whenb gets closer tobc . As a first guess,
we uses ( j )}102D j so that log10s

( j ).2D j 1const. By cal-
culating the slopes between bin 1 and bin 9, we obtainD
.0.42 andD.0.45 for the Ising and the LG cases, respe
tively. Thus, we already obtained a numerical value for
subleading exponent which is roughly the same for the
models considered here. The other source of deviation f
linear behavior comes from the numerical errors discusse
the previous section and which increase whenb gets closer
to bc according to Eq.~3.2!: s;d/(bc2b). The slopes be-
tween bin 9 and bin 14 are20.95 and20.96 for the Ising
and the LG cases, respectively, in good agreement with
(bc2b)21 dependence of the numerical errors predicted
Eq. ~3.2!.

In bin 9, these two deviations from linear behavior a
minimized and we can considerg (9) as a first estimate ofg.
Its numerical values is 1.29917 for the Ising case a
1.29914 for the LG case. By using this simple procedure,
reach a better accuracy than Refs.@6,9#, where the answe

FIG. 5. The deviations from the linear fits log10s
( i ) defined in

the text as function of the bin indexi, for the Ising model~circles!
and the Landau-Ginsburg model~stars!.
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g51.300 was obtained with errors of order 1 in the last dig
or than Wilson’s value@11# g51.2991 quoted by Baker in
Ref. @2#.

B. Subleading corrections

The second step consists in correcting the previous e
mate by taking into account the subleading corrections.
will use the bins 6 and 7 where the next subleading corr
tions are reasonably small and the numerical errors are
too large. We have divided these two bins into 10 sub-bins
100 points. We will use two digit indices for these sub-bin
For instance, sub-bin 6.5 is the fifth sub-bin of bin 6 a
contains the values ofx of 6.5, 6.501,. . . , 6.599. Using the
notation x̄ for the middle of the sub-bin and Eq.~4.1! we
obtain

log10@x~ x̄!#5g x̄1 log10~A01A1102D x̄!. ~4.4!

For a small changedx with respect tox̄, we obtain that, at
first order in this change,

log10@x~ x̄1dx!#2 log10@x~ x̄!#

5S g2
A1

A0
D102D x̄D dx1q~dx2!. ~4.5!

The coefficient ofdx can be interpreted as the local slop
nearx̄. Indexing each sub-bin byj ~e.g. j :6,6.1,6.2, . . . ) and
its middle by j 10.0495 ~e.g. 6.1495 is the middle of the
sub-bin 6.1), the the slopeg ( j ) in the sub-binj reads

g~ j !.g2DS A1

A0
D102D~ j 10.0495!. ~4.6!

The unknown quantitiesA1 /A0 and D can be obtained
from linear fits of log10(ug ( j 10.1)2g ( j )u) versusj. From Fig.
6, one can see that, to a good approximation, there exist
approximate relationship between these two quantities in
two cases considered. In addition, the slope appears to
identical for the two cases.

The slope and the intercept can be calculated from
~4.6! which implies that

FIG. 6. The linear fits of log10(ug ( j 10.1)2g ( j )u), for the Ising
case~circles! and for the LG case~stars!.
2-8
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log10~ ug~ j 10.1!2g~ j !u!.2D~ j 10.0495!1 log10S DUA1

A0
U D

1 log10~121020.1D!. ~4.7!

The subleading exponentD is the absolute value of the slop
Having determinedD and knowing the intercept we can the
determine log10(uA1 /A0u). Using this procedure, we obtaine
A1 /A0520.57 andD50.428 for the Ising case andA1 /A0
50.14 andD50.427 for the LG case.

If we now repeat the first step — a linear fit in bin 9 —
but with x divided by @11(A1 /A0)(bc2b)D#, we obtain
g51.29914171026 for the two models considered abov
Given that for a calculation using double precision in bin
we have values ofx with between 6 and 7 significant digits
this estimate seems to be the best result we can obtain
this procedure~see the discussion of the numerical errors
Sec. III B!.

C. Bootstrap procedure involving higher precision data

Up to now, our desire to minimize the subleading corre
tions which decay like 102Dx has been contradicted by th
appearance of numerical errors growing like 10(2161x).
However, we have explained in Sec. III B that it is possib
to circumvent this difficulty by using an arithmetic having
better precision than the usual double precision. In this s
section, we will use data having at least 13 correct signific
digits in bins 11, 12 and 13. We call these data ‘‘high pre
sion data.’’ As we explained before, we choosel max550 and
l max558 for the Ising and LG cases, respectively.

Since the calculations are more lengthy, we used only
points in each bin. We also determinedbc with 27 significant
digit so that in bin 13 the subtracted quantity (bc2b) is also
know at least with 13 significant digit. We foundbc
51.179030170446269732511874097 for the Ising case
bc51.14352915687979895500964720 for the LG case.
then use bin 13~where the subleading corrections are sm
and the errors are not very important! to calculatex divided
by the subleading correction as explained in the previ
subsection to estimateg. Then with the new value ofg ob-
tained we go back to bin 7 to calculate the subleading c
rections. This procedure can be iterated and this ‘‘bootstra
of linear fits converges rapidly. We obtaing
51.299140732,D50.4262 andA1 /A0520.564 for the
Ising model andg51.299140730,D50.4258 andA1 /A0
50.135 for the LG case. These numbers change typically
1 in the last digit quoted above if one replaces bin 7 by bi
to evaluateD. In order to remove this arbitrariness, we w
now use these numbers as the initial values for a more a
rate procedure.

D. Linear analysis of the discrepancies

We have now reduced the errors made in the estimat
the unknown quantities appearing in Eq.~4.1! to a suffi-
ciently low level to allow us to treat these errors in a line
approximation. We start with an initial fit of the data, fo
instance as obtained in step 3, with errors in the unkno
quantities parametrized in the following way:
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@ log10x# f i t5 log10A01d~ log10A0!1~g1dg!x

1 log10@11~c11dc1!102~D1dD!x#, ~4.8!

wherec1[A1 /A0 and g, D stand for the exact values. O
the other hand, we assume that the data can be fitted acc
ing to Eq.~4.1!:

@ log10x#data5@ log10A01gx1 log10~11c1102Dx!#.
~4.9!

Combining the two above equations we obtain, at first ord

@ log10x# f i t2@ log10x#data.d~ log10A0!1dgx

1
dc1102Dx

ln~10!
2c1102DxxdD.

~4.10!

Interestingly, thex-dependences of the four terms are all d
tinct and we can fitd(log10A0), dg, dc1 and dD using a
standard least squares procedure where the function t
fitted dependslinearly on the fitted parameters. This proc
dure can be repeated until some numerical stability
achieved. The final results are insensitive to small change
the initial values coming from the uncertainties associa
with the previous step. Using bin 13, we obtaing
51.2991407301599 andD50.4259492 for the Ising mode
and g51.2991407301582 andD50.4259478 for the LG
case. The small numerical fluctuations which persist a
many iterations produce changes of less than 2 in the
quoted digit. The origin of these small fluctuations can
inferred by plotting@ log10x# f i t2@ log10x#data for the final fit
~see Figs. 7 and 8 in the next section!. The non-smoothnes
of these differences in bin 13 indicates that they are due
the numerical errors inx. The amplitude of these difference
is smaller than 10213, consistent with the fact that we pe
formed the calculation ofx in a way that guaranteed at lea
13 accurate significant digits. These fluctuations are ind
tive of the limitation in the numerical precision of our pro
cedure. The accuracy of the value of the exponents, i.e.
close they are to the ‘‘true’’ values, is further limited by th
fact that there exist corrections to our main assumption,
~4.1!. If we assume universality, the discrepancy between
values of the exponents for the two cases considered sh
give us an indication concerning the accuracy of the resu
For instance, the discrepancy between the two estimatesg
is of the order of 10212 which is about 10 times larger tha
the fluctuations of numerical origin. The estimation of t
next sub-leading corrections is the main topic of the n
section.

V. NEXT SUB-LEADING CORRECTIONS

In the previous section, we have used the parametriza
of Eq. ~4.1! for the susceptibility near criticality. This param
etrization is by no means exact and corrections become m
sizable as we move away from criticality. The correctio
come from effects which can be calculated by a linearizat
procedure~the next irrelevant directions; see Sec. II D! or
2-9
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effects which are intrinsically non-linear. Anticipating th
results which will be presented in the next section, we obt
the approximate valuesD2.0.43 ~we recall that since we
only took into account one irrelevant direction, we used
notationD for D2 before! andD3.2.1. In other words, if we
consider the first irrelevant direction as ‘‘first order,’’ th
next irrelevant directions produce effects which are sma
than the fourth order. In bin 13, these effects are comple
unnoticeable in our analysis. The non-linear effects are
cussed in the Sec. V A. The main result obtained there is
all the corrections can be parametrized in the following w

x.~bc2b!2g@A01A1~bc2b!D1A2~bc2b!2D

1Aa~bc2b!1•••#. ~5.1!

In the next subsection, we analyze the data in terms of
new parametrization and extrapolate our results in orde
estimate the errors made in the calculations ofg andD in the
previous section.

A. Nonlinear corrections

The previous analysis describes the linearized flows n
the fixed point. The closer to criticality we are, the mo
iterations are spent close to the fixed point and the m
accurate the linear description is. Nevertheless, when we
proach or leave the fixed point, non-linear effects are
avoidable. These non-linear effects can be studied more
ily in low-dimensional maps. Without entering into the det
of this analysis@12#, we can envision three types of corre
tions which we now proceed to discuss.

As already noticed in@9#, the ‘‘constants’’ A0 and A1
should be replaced by functionsAi„(bc2b)… such that
Ai„l1(bc2b)…5Ai(bc2b). This invariance implies an ex
pansion in integral powers of (bc2b) iv ~Fourier modes!
with v52p/ ln(l1).17.8. We argue here that the coef
cients of the non-zero powers are suppressed by 14 orde
magnitude. The rationale for this suppression is that the n
zero modes contribute to the extrapolated slope~an
asymptotic estimator forg21 used with the high-
temperature expansion! with about the same strength as t
zero mode@9#. However, this is the result of a double amp

FIG. 7. log10@ ux10(2gx)2A02A110(2Dx)u# versus x5
2 log10(bc2b) for the Ising measure.
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fication for the non-zero modes. This results from E
~3.7!–~3.10! of Ref. @9#. First, when calculating the coeffi
cients of high temperature expansion one gets an amplifi
tion factor of the order ofuG(g1 iv)u.531010. In addition,
while calculating the extrapolated slope, one gets ano
amplification by a factor ofv3.53103. Putting these two
factors together, we obtain the claimed 14 orders of mag
tude. Such a small effect is smaller than our numerical re
lution.

Second, the singularity (bc2b)2g should be replaced by
@(bc2b)1d2(bc2b)21•••#2g with coefficientsdl calcu-
lable in low dimensional maps. These corrections gene
analytical corrections to the scaling law in contrast to th
subleading corrections which are in general not integer p
ers

Third, the nonlinear corrections associated with the irr
evant directions generate corrections which are presum
of the form (bc2b) lD with l 52,3, . . . .Later we call these
corrections the quadratic corrections or the second orde
fects.

In summary, the corrections associated with nonlin
contributions obey the parametrization of Eq.~5.1! for a se-
quence of exponents 0.43,0.86,1,1.29,1.72,2, . . . . Note that
these exponents are very close to each other and it ma
difficult to disentangle their effects.

B. Empirical determination of the corrections

We are now ready to use the data to determine som
the unknown quantities in Eq.~5.1!. In the following, we will
study these corrections for the Ising and the LG cases s
rately. The reason for doing this is that in the Ising case,
ratio A1 /A0520.56, while in the LG case,A1 /A050.14.
The relative size of the quadratic corrections is presuma
of order (A1 /A0)2 and these corrections will be more sizab
in the Ising case. We start with the assumption that ther
one next subleading correction which dominates when
move from bin 13 to smaller values ofx. In other words,

x102gx2A02A110~2Dx!.A102f, ~5.2!

in an intermediatex region. In this equation, the four param
etersg, D, A0 andA1 are understood as their best estima

FIG. 8. log10@ ux10(2gx)2A02A110(2Dx)u# versus x5
2 log10(bc2b) for the LG measure.
2-10
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near criticality obtained in the previous section. Anticipati
the results obtained below, the exponentf is roughly of
order 1. The corrections in bin 8 are thus of order 1028

which is precisely of the same order as the numerical er
if we use double-precision calculations. Consequently
had to use theMATHEMATICA -based method described in th
Sec. III B in order to get at least 4 significant digits for th
corrections. For time considerations, we have limited
calculations to 10 points per bin.

If Eq. ~5.2! is approximately correct, the logarithm of th
left-hand side should be approximately linear in some reg
of x. This quantity is displayed in Fig. 7 for the Ising mod
and in Fig. 8 for the LG model.

One sees that in both cases the graph is approxima
linear over a large region ofx. Using a linear fit in each of
the bins of these regions we obtainf50.82 andA50.4 with
s5931024 in bin 6 for the Ising model andf51.01 and
A50.4 with s5631024 in bin 4 for the LG model. Other
bins have larger values ofs and values off which change
by a few percent while moving from bin to bin.

In the Ising case, we haveuA/A0u'(A1 /A0)2 and f
.2D and we interpret this as a second order~or quadratic!
effect associated with the first irrelevant corrections. In ot
words,A.A2 if we follow the notation of Eq.~5.1!. In the
LG case (A1 /A0)2.0.02 is very small and the dominan
effect in the linear region is the analytic correction (f51)
behavior. In other words,A.Aa is used if we follow again
the notation of Eq.~5.1! .

The departure from linearity occurs in its most extrem
way as dips located nearx52 in the Ising case andx510 in
the LG case. These dips signal the existence of effect
opposite signs. A plausible interpretation of the location
these dips is that they occur at values ofx where the 1022Dx

prevail over the 102x analytical corrections. A detailed
analysis confirms this view for the Ising model, which allow
us to neglect the analytical corrections in bin 13. For the
model, two effects compete in bin 10 which is dangerou
close to bin 13 where the parameters are fined-tuned~see
below! and we were unable to get a clear linear behav
after one more subtraction. Our most plausible explanatio
the following for the LG model. Nearx510, we have
Aa102x.2A21022Dx which implies A2.0.016. With this
rough estimatesuA2 /A0u'(A1 /A0)2 which is consistent with
a second order effect. So if this interpretation is correct,
quadratic effects are about twice the size of the analytic c
rections in bin 13 for the LG model.

In summary, we will use the assumption that in bin 13 t
corrections are mostly second order effects and we will
glect the analytical corrections. This assumption is we
obeyed in the Ising case but is just an order magnitude e
mate in the LG case.

C. Accuracy of the previous estimate

We are now in position to estimate the effects of the n
subleading corrections in the calculation of the critical exp
nents reported in the previous section. First of all, we no
that by extrapolating the dominant linear behavior descri
in the previous subsection to bin 13, we obtain effe
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smaller than 10211 in the Ising case and smaller than 10213

in the LG case. This justifies treating them as small pert
bations in bin 13. When we fitted the data in bin 13 witho
taking these small effects into account, we made small
justments in the fitted parameters which allowed us to fit
data with a precision comparable to the numerical precis
In order to get a rough estimate of how much the next s
leading corrections led us to misestimate the exponents
can linearize the next subleading corrections aboutx513.
We obtain a change of the ‘‘apparent’’ slope:

udgu'U A

A0
10213ffU. ~5.3!

The order of magnitude of the corresponding errors inD can
be estimated by equating the term linear indg with the term
linear in dD in Eq. ~4.10!. This yields

udDu'UA0

A1
10213DdgU. ~5.4!

We insist that this is only an order of magnitude estima
Plugging in numerical values, we obtainudgu53310212

and udDu5231026 in the Ising case andudgu52310213

and udDu5631027 in the LG case. In the Ising case, th
estimated errors are slightly larger than the discrepancies
tween the values obtained with the two measures. In the
case, the estimated errors are slightly smaller. Howe
larger uncertainties in the error estimates appeared in the
case. If we use the largest estimates for the errors, our
result for the first method is

g51.29914073015963310212 ~5.5!

D50.42594856231026. ~5.6!

VI. EIGENVALUES OF THE LINEARIZED
RG TRANSFORMATION

As explained above, the easiest way to calculate the c
cal exponents consists in linearizing the RG transformat
near a fixed pointR!(k) specified by the coefficientsa!

l .
This can be done as follows. First we express the coefficie
after n iterations in terms of small variations about the fix
point:

an,l5al
!1dan,l . ~6.1!

At the next iteration, we obtain the linear variations

dan11,l5 (
m51

l max

M l ,mdan,m . ~6.2!

The l max3 l max matrix appearing in this equation is

Ml ,m5
]an11,l

]an,m
, ~6.3!

evaluated at the fixed point.
2-11
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Approximate fixed points can be found by approachingbc
from below and iterating until the ratioan11,1/an,1 takes a
value which is as close as possible to 1. This procedur
described in Ref.@4#. The approximated fixed points ob
tained with this procedure depend onbc . Using their explicit
form which we denoteR!(k,bc), we obtained a universa
function U(k) by absorbingb into k. More explicitly, we
found that

U~k!5R!~Abck,bc! ~6.4!

is in very good approximation independent of the model c
sidered. This function is related to a fixed pointf (s2) con-
structed in Ref.@7# by the relation

U~k!} f XS c24

2c D k2C. ~6.5!

The Taylor coefficients off can be found in the file approx.
in @7#. Normalizing Eq.~6.5! with U(0)51, we obtain

U~k!51.20.35871134988k210.0535372882k42•••.
~6.6!

It is not known if there is only one non-trivial fixed poin
for Dyson’s model. Using the parametrization of Eq.~1.1!,
we have considered@4# the 12 cases obtained by choosi
among the following possibilities:m2561 ~single- or
double-well potentials!, p52,3 or 4 ~coupling constants o
positive, zero and negative dimensions when the cutof
restored! andg510 or 0.1~moderately large and small cou
plings!. All approximate fixed points we have construct
give a functionU(k) very close to Eq.~6.6!. The closeness
can be characterized by ther-norms introduced in@7#. For
r52 andl<42 we found that the errordul on thel th coef-
ficients of the approximateU(k) with respect to the accurat
expression obtained from Ref.@7# was bounded byudul u
,(531025)/ l !2 l for calculations using double precision. I
other words, the functionU(k) seems to be independent
the general shape of the potential, the strength of the in
actions and whether or not the model is perturbatively ren
malizable.

Using these approximate fixed points, we were able
obtaing andD with 7 decimal points. In the following, we
will use directly the more precise functionU(k) constructed
by Koch and Wittwer@7#. We retained 16 significant digit
for the coefficients appearing in Eq.~6.6! and used values o
l max up to 65. We then calculated the eigenvalues of
matrix given in Eq.~6.3! with two different methods. The
first used ‘‘blindly’’ the instruction EIGENVALUES in
MATHEMATICA . The second consisted in using the eigenva
routine LAPACK @13# for which we were able to vary the
control parameters of the program. The two methods g
identical results with 14 decimal points for the first two e
genvalues. The first six eigenvalues are given below:
09600
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n ln

1 1.42717247817759
2 0.859411649182006
3 0.479637305387532
4 0.255127961414034
5 0.131035246260843
6 0.0654884931298533

In order to get an idea regarding the asymptotic behav
of the eigenvalues, a larger set of values is displayed in
9.

It is clear from the figure thatln falls faster than expo-
nentially with n. This property is important when the non
linear effects are calculated.

Using the first two eigenvalues and the relationship
tween the eigenvalues and the exponents reviewed in
previous section, we obtain the values

g51.2991407301586610213 ~6.7!

D50.4259468589881610213. ~6.8!

The ~conservative! estimation of the errors is based on erro
of order 10214 on the eigenvalues and the fact that the d
rivatives of the exponents with respect to the eigenval
yield factors less than 4.

VII. CONCLUSIONS AND PERSPECTIVES

In conclusion, we have calculated the exponentsg andD
with a accuracy significantly better than in Ref.@4#. The
three independent calculations performed here agree on
following value for the leading exponent:

g51.299140730159610212. ~7.1!

Our results show excellent agreement between the meth
developed in Ref.@10# and an expansion about the fixe
point of Ref.@7#. As far as the calculation of the exponents
concerned, the linearization procedure is much simpler
more accurate.

It is important to know if the non-universal quantitie
A0 ,A1 ,A2 ,Aa , . . . could also be calculated by a using a
expansion about the fixed point which involves non-line
terms. We have addressed this question in a simpli
model, namely the recursion relation for the susceptibility

FIG. 9. log10@ln# versusn.
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xn115xn1bS c

2D n11

xn
2 . ~7.2!

A detailed analysis@12# shows that in this model the un
known quantities appearing in the scaling law forx are com-
pletely calculable. If the procedure can be extended to
hierarchical model, then we could almost consider the mo
as solvable.

Assuming that the non-universal quantities can be ca
lated in a reasonably simple way for all the renormaliz
quantities, we would be in position to decide if the introdu
tion of the bare parameters can be replaced by a choic
non-universal quantities appearing in the scaling laws. If
knew the range of these non-universal quantities and t
mutual dependence, we could just input an ‘‘independ
set’’ and obtain directly all the scaling laws. In particular,
09600
e
el

-
d
-
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t

D54, this procedure would yield triviality bounds. This a
ternate way of using input parameters in field theory is n
being investigated.
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