PHYSICAL REVIEW D, VOLUME 59, 095010

Fixed points and fermion mass structure from large extra dimensions
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We examine the fixed point behavior of Yukawa couplings in supersymmetric theories with varying num-
bers of dimensions. We show that Pendleton-Ross fixed point behavior is greatly amplified in the MSSM with
no extra dimensions and 4 extra-5 multiplets or the MSSM with one extra large dimension and 3 exi&5
multiplets. We also show that power law running in models with large extra dimensions can give a hierarchical
set of quasi-fixed points for the Yukawa couplings in a manner which is similar to the Froggatt-Nielsen
mechanism. However, we also point out the limited perturbative domain in models with power law running.
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[. INTRODUCTION cause, in any scenario of Yukawa “unificatiort,"at least
some of the Yukawa couplings must have common Landau
Holes and hence, by definition, will be close to QFP’s. First,
the following section, we revisit theffective RGE’s for

e gauge and Yukawa couplings for cases where different
enerations “feel” different numbers of large compact extra
imensions via Kaluza-KleirfKK) modes. At first sight, it
f_ioes indeed appear that some rather subtle features of the
L . . renormalization group in the minimal supersymmetric stan-
ization group. For example, in RdR] it was recently noted dard modelMSSM) (such as fixed point behaviocould be

that consistent unification can occur at much lower scales . .
made dominant by power law running.

because, by changing the classical dimension of the gauge In Sec. lll we make a general examination of the expected

;f;g;%sn’ Iarrgj eztrzui;:?nesnfcl)o?usnc::sae( sztrlvgv\r/evr\]lﬁﬁ en fixed point behavior(both Pendleton-Ross and quasi-fixed
erav scale group €q P when we extend the MSSM by allowing different particles to
gy scale. . . . feel different numbers of extra dimensions.
In this paper we follow up a different point which was

) ) ) . . For the Pendleton-Ross fixed points we find that when
emphasized in Ref$4, 2]; that power law running may lie both gauge and Yukawa couplings run as a power (&ven
behind the extraordinary hierarchies observed in the fermio gaug Ping b

mass matrices. Referenf#] presented some interesting pro- i the powers are differejtattraction to these fixed points is

posals in which large extra dimensions may provide an exgenerally neither more nor less marked than in the MSSM
because the lower unification scale exactly compensates for

planation for these hierarchies and hence an alternative to ti{ e enhanced running. In fact the parameters describing the
Froggatt-NieIser_l mechanism. It was n.Ote(_j' for example, thafroperties of the Pendleton-Ross fixed pdithe domain of
when the effectivelone loop renormalization group equa- auraction for examplecan be expressed in terms of the run-
tions (RGE’s) are run upwards to the unification scale, thening gauge couplings and so ultimately depend only on the
Yukawa couplings appear to have a common Landau pol&rength of these couplings at the unification scale. More-
Hence it was suggested that the Landau pole could be indicgyer, perturbativity limits place strong constraints on the
tive of “Yukawa unification.” gauge couplings, so that the allowed fixed point behavior
Here we shall carry out a more detailed analysis of thesgncreases as the number of extra dimensions gioes In
suggestions concentrating in particular on their domain ofec. Il we also highlight a case where the fixed point be-
(perturbative validity. Generally we shall find that, if the havior is stronger than usual; when the beta function for the
Yukawa hierarchies are generated from scratch by the renostrong coupling id;=1 the domain of attraction and focus-
malization group, then perturbation theory breaks down weling to fixed points is greatly increased. This corresponds to
below the unification scale. However we shall present a case
in which there is a hierarchical set of fixed points whaznm
be calculated within perturbation theory. We use this term loosely to mean a scenario in which the

Our approach is to consider the existence of quasi-fixedykawa hierarchy is generated by the renormalization group run-
points (QFP’s and their domain of attraction. This is be- ning alone.

One interesting prospect for physics beyond the standarI
model is that at high energies, beyond the reach of curreqﬂ
experiment, hidden extra dimensions open up, revealin
themselves through, for example, the appearance of Kaluz%
Klein modes[1-3]. Above the first Kaluza-Klein threshold
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the MSSM with one extra large dimension and 3 extra 5 , 3, ;
+5 multiplets, or the MSSM with no extra dimensions and 4 N =|5092% 7591) —hehe
extra 5+5 multiplets. In both these cases the fixed point

behavior can be very strong even for quite modest gauge ) .

couplings at the GUT scale. However we find that, if pertur- Ne=|591|—2hehe. 2
bativity limits are satisfied, the maximum hierarchy which

could be generated by Pendleton-Ross fixed points38.  |n these equations the parameters run logarithmically with

We also examine the running to QFP’s. This is the type ofscale:
behavior which was indicated in R¢2] where an emphasis
was placed on the existence of Landau poles. For the case 1 A
where we just extend the MSSM by allowing extra dimen- t= E|09;- 3
sions, we find that running to fixed points cannot generate a

significant hierarchy within the perturbative regime. How- 1o N factors come from the wave function renormaliza-

ever we also present a model with additional singlets, injon of the F superfield corresponding to one-loop diagrams
which the results are more promising. This model does havgiy, either matter, or matter-plus-gauge particles in the loop.
standard-model-like hierarchies in the QFP’s which can be ", e rest of this paper we shall closely follow the models
calculated within perturbation theory. We add, however, thedescribed in Ref[2]. We shall assume that the massless
caveat that although the hierarchical QFP’s lie within thegq g appear only adl=1 supermultiplets. If they have a
perturbative regime they should be thought of as boundaryy o\er of N=2 states this is because half of the states
conditions to the perturbative theory. It {surrently) not lack a zero mode as they are odd undé,aorbifolding. If

pogsible to calculate the domain of attraction of these fixe hey do not have a KK tower of states this is because they
points. live, for example, at the fixed points of the orbifold or at the
intersection of two brang$or more details see Rdf2]). The

Il. RGE'S WITH EXTRA DIMENSIONS N=2 hypermultiplets contain the usuil=1 part plus mir-
ror partners with the opposite chargess that, for example,
we can write mass terms for thenThe N=2 vectormultip-
lets consists of théN=1 vectormultiplet plus an additional
N=1 chiral multiplet which corresponds to the longitudinal

We first write down the MSSM RGE'’s in a useful matrix
form which we will shortly generalize:

47rdh—U=—h ‘Ny—Nog -hy— (Ny)h degree of freedom of the massive gauge bosons. Yukawa
dt Ut TRITU AU couplings involving the hypermultiplets are restrictedNn
=2 models in order to preserve ti=2 supersymmetry.
dh However we will for the moment assume that a combination
477_'3: —hp -Np—Ng -hp—(Ny.)hp of trilinear N=2 couplings and higher order interactions be-
dt Q ! tweenN=2 hypermultiplets generates a set of Yukawa cou-
plings at the GUT scale.
dh Now let us consider the contribution to beta functions
Aq—E= _ he -Ng— N, -hg—(Ny )he ) coming from extra sets dfl =2 hypermultiplets appearing in
dt ' towers of KK modes. This is meaningful if the fu(but
non-renormalizablehigher dimensional theory is well ap-
where proximated by a truncated model RE2]. (One should bear

in mind that the “RGE’s” we will derive do not have the
3, ) . . same physical interpretation as in renormalizable models, in

Nu, =| 592+ 7591 —3 Tr(hphp) — Tr(hghe) that they express the dependence of the physical parameters
on the cutoff) For example one has to assume that higher
dimensional operators do not play a significant role in the

3, 3, N evolution of the gauge and Yukawa couplirfgs.

N, = §g2+ Egl —3 Tr(hghy) First the diagrams with matter only. These diagrams can
have either one or two internal KK modes. If there is only
one, then, each time we pass a KK threshold, the diagram

N § 2,220 2 2| onf _popt contributes the same as the equivalent MSSM diagram re-

Q 393 292 30gl utu D'D gardless of whether the external state has, or does not have,
KK modes, and independently of the KK number of the in-
ternal mode. This is because the modes which live at orbifold

8 fixed points(or at the intersection of two branedo not

8
Ny= (§g§+ 1_595) —2h{}hy

8 2 2 . : :
Ne=|-a2+ —a2|=2htnh We would like to thank R. Rattazzi for conversations on these
D (393 15g1) pTb points.
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conserve KK number since translational invariance in theand Yukawa couplings feel different numbers of dimensions,
extra dimensions is broken. These states, since they are lare shall taket; to be the number of dimensions felt by the
cated at fixed points, are eigenstates of position and therefogaugecouplings) The infinitesimal solutions to the RGE's at
couple with the same coefficient to all the momentum eigena scaleA are then given by
states(Momentum is not really broken in these interactions

but is absorbed by the unknown dynamics which maintains 1 JA AN°
the brane or orbifold configurationif there are two internal A4 % = A Txﬁ o XibijXj
KK modes and the external mode is the zero mode of a tower

of KK states, then the diagram also contributes the same as 1 8A (82 A\?° g
the equivalent MSSM diagram since now KK number must a7 A (200 | g P
be conserved at the vertex. If, however, there are two internal
KK modes and the external state lives at a fixed point, then _ 512 .
every time we pass a KK threshold we must sum over all =5t,;( Xibinj+47T5Wt5Xibinj)
combinations of the two internal KK modes corresponding to ' @
that threshold.
Now the diagrams with matter-plus-gauge in the loop.yhere we have defined
When we cross a KK threshold, they give the same contri-
bution as the equivalent MSSM diagram if the matter mul- s
tiplet appearing in the loop has no KK tower of states. This is ¢ :ﬁ(ﬁ) ®)
because of a cancellation between diagrams involving only 4w\ po) -

N=2 multiplets(the same cancellation that gives vanishing

wave function renormalization for hypermultiplets in unbro- Note that whern5=0, t ; assumes the usual logarithmic form.

kenN=2 theories. In the limit that uo<<A we can approximate the evolution
In general therefore one expects two types of contributiowith a power law running set of RGE's.

to the beta functions at a given threshold: those which in- Gathering together all of these results, we can now write

volve a single summation and and those which involve adown the combined effect of the KK thresholds. We shall

double summation over KK modes below that threshold. Weassume that the higgs fields have towers of KK states. In

shall denote these with a single and double tilde respectiveladdition, to treat models with different numbers of genera-

and shall, for the moment, neglect the usual MSSM contritions having KK towers, we define

butions. It is necessary to separate these two contributions

because as we shall see they give different scale dependence a, 0 O
in the RGE’s. In an effective theory with truncated KK
modes the general form of the RGE’s can be expressed as Q=0 a 0/, 9
0 0 a;
dx;
AT~ XiBiX, @ wherea;=0(1) when generatioi is (is not the zero mode

of a tower of KK states. The contributions to the field renor-
wherex; contains the whole set df or g. (Actually they  malization from the single summation diagrams are
can only be written like this when the Yukawa couplings are
diagonal, but the discussion is the same for non-diagonal _ s + s
Yukawas. The beta functions are now rapidly changing with ~ Nw, = =3[ Tr(hphp) = Tr(hpQhpQ)]—[Tr(hehg)
scale and to estimate this we count the number of KK mode

+
contributions below a cut-off\. If each KK mode is sepa- ~Tr(heQheQ)]
rated by a scaleuy and each addﬁij or 6” to the beta
functions, then the beta function for a givénis approxi- Ny, = —3[Tr(hghl) = Tr(hyQhi Q)]
mately 2
AN (817 [ A2 8, 3, 1
.. = _— .. 2— _— ~.. I _ 2 2 2 t 1
Aiy(A) st(m b+ X5 251 (MO) b ® Noij—ﬂu(ggfr 792t %91)_huhu_hDhD
where § is the number of large extra dimensionx; is vol- +0hy(1-0)hiQ+0hy(1-Q)hi0
ume of the unit sphere i@ dimensions,
Xy 6 Ry =0y | S g2+ —g2| — 2hbhy+ 2001 (1- 0)hy0
T+ o) © Nu, = €hy| 305+ 7501) ~2Nuhu + 220 (1=D)hy
and where we neglect the contribution from the usual MSSM 8 )
states.(We are, for the moment, assuming that all particles & _ [C.2. < 42| _ont T
feel the same number of extra dimensions. When the gauge No, Q,](3g3+ 1591> Zhoho +20h5(1=2)hp (2
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- 3 3 specting these diagrams shows that these operators and only
NLij=Qij<§9§+ 1—095) —hghl+Qhg(1-Q)hiQ these appear at higher order. In particulat this level we
never need to know about the Yukawa couplings of the mir-
B 6 ror partners of the usual MSSM fields which appear in the
NEvv:Qij(_g%) —2hthg+20hl(1-Q)heQ, hypermultiplets. We stress that “running the RGE’s” has a
! > different physical interpretation to the usual procedure in
(10 renormalizable field theory although the mathematical proce-
dure is the same. Here the RGE’s represent a summation of
diagrams which givdinite corrections corresponding to KK
ﬁQ..z_Qhu(l_ﬂ)hLQ_QhD(l_Q)hEQ contributions below the cut-ofA. _ . _
g We are also assuming that the perturbation theory is still
valid over the region of integration; this point will be dis-

and the double summation contributions are

G - t
NUij =—20hy(1-Q)hyQ cussed in the following section. Finally we must assume that
~ the effect of these RGE's is almost continuous or in other
Np. = —ZQhE(l—Q)hDQ words that there are many KK modes before unificatiém.

! Ref.[2] this last approximation was shown to be valid since
Ni, = —Qhe(1-0)hLo t;~20)
'\:'Eij =—-20hL(1-Q)heQ. (1D Il. FIXED POINTS WITH EXTRA DIMENSIONS;

THE PLOT THINS
The RGE’s can then be written

P LT
WdTg— U

Before considering the full running of the flavor depen-
B (812 . dent RGE'’s we first discuss general renormalization group
NU+4w5Wt5NU) behavior with large extra dimensions. In the previous section
: we saw that the parameters scale as a power law with energy
_ (SH2 scale as opposed to the familiar logarithmic running seen in
NQ+4w5(2—5)|t5NQ) -hy the MSSM. In addition, when particles feel different num-
' bers of dimensions the power is different. This naturally
) leads one to suppose that scaling effects will be very strong,

- (8?2 .
ND+47T5mt5ND

dh
47T_D: _hD .

& and that they couldy themselvebe responsible for the hi-
S

erarchies observed in the fermion mass matrjde3].
N S22 When renormalization group effects are strong, the main
NQ+4w5—t5NQ) -hp features of the running are determined, more or less, by the
(26)! ; ; ; ; ;
presence of fixed points. There are two kinds of fixed points
51)2 which are familiar from the usual MSSM; they are
~E+47-r§( 2 ta'\:hz) Pendleton-Ross fixed poin(PRFP’s and quasi-fixed points
(20)! (QFP’9 [5—8]. The PRFP is the true fixed point in the sense
(81)2 that cQupIings are attrgct_ed towards it ir_1 the infra-red. How-
“NL+47.,5;»[5,(‘|L) he ever, in the MSSM this is not the dominant feature. In the
(20)! MSSM QFP’s are the dominant featut®r the top-quark
Yukawa because the top mass is relatively close to the per-
turbativity limit, and the QFP corresponds to the value of the
Yukawa coupling when there is a Landau pole at the GUT
scale.
where[2] In this section we shall give a general discussion of what
form these two types of behavior take when there are large
extra dimensions using a simple example which will allow us
47+ 59 (LLD. (3 to deduce all the fixed point behavior in the more compli-
cated cases of interest. We shall find, rather surprisingly, that
In the above,p=3—a;—a,—az counts the number of gen- pRFP behavior is, in general, not expected to be a significant
erations with KK mOdeS_and we have allowed for the pOSSi'factor_ Of course, when Compared to the energy Sca|e’ the
bility of ns, 5 sets of 5+ 5 multiplets. running to the PRFP is indeed very strong since i &
These RGE's describe the integrated effect of the KKdimensions the Yukawa couplings have classical dimension.
thresholds. In what follows we will assume that they can beSo, however, do the gauge couplin@mless the they feel
resummed in the usual way to get a better approximatiomone of the extra dimensions or the contributions to their
than the leading log approximation used in Ré. In doing  beta functions vanigshand it is these that set the scale of
this we note that the conventional resummation of one loomnification. It is not likely therefore, that PRFP’s play a large
Yukawa RGE'’s can be understood as a series of nested amart in the generation of fermion hierarchies. We also find
one-particle-reducible field renormalization diagrams. In-that QFP’s are not expected to be significant if the only

dh
4r—==—hg-

d ~
4 P=Bugd, 12
dt,

_ (3
bA=<§,—3,—6

095010-4



FIXED POINTS AND FERMION MASS STRUCTURE . .. PHYSICAL REVIEW D 59 095010

extension we make to the MSSM is to allow some particles hy
to feel extra dimensions. A number of other scenarios can ?
have hierarchical QFP’s however, and we will examine one, .
case which involves extra singlets. |

2

A. PRFP’s in a generic case 15

To be more specific, let us examine the renormalization of ‘
a Yukawa couplingh; (which, for the sake of argument, we /

shall call the top quark Yukawawhose RGE is given by 05 —
dh -
477d—t; = ht(ahf— CAgi). (14 75 5 >3 ) fa=ao/a3

i _3 dea=(17/30.3/2. 16/3) th his is th FIG. 1. Renormalization of the top quark Yukawa in the MSSM
we puta=3 andca=( . 3/2,16/3) then this is the ., 45 515) multiplets. The bold line show®? (). Its infra-

hUss RGE of the previous section thn-’za is dominant. red limit, Rf (=), corresponds to the Pendleton-Ross fixed point.
This equation is also of the same form as that in the usuafhe highest line corresponds to the quasi-fixed point of Hill. Two
MSSM (6=0) except in that casea=6 and ch loop effects do not change the diagram significantly. The lowest
=(13/15, 3,16/3), and so we can use the same solutionsine corresponds to (Mg 1) =0.03.

Defining

R
ra=aolan Rt:? (20)
1+A| = 1)
h2 Ro
Ri= =, (15
‘ 55 where
where we use subscript-0 to denote values at the unification _
scale, we find the solutions A(ra)= 15l (21)
rA=1—25Aa0At5 (16) defines the domain of attraction of the fixed point. In the
usual MSSMA ~r5°~0.37°~1/2.
1 1 The virtue ofRf (r3) is that it separates the minor effects
§t= FaRoIT —J of gauge renormalization from the “PRFP behavior” which

is given byA. [We emphasize that this is not a new kind of
fixed point. For example, if the gauge coupling renormaliza-
tion is as fast as that of the Yukawas then, eveRiis set to
- be RY (r3) at some scale, it will leave thf (r3) line.]
H(rA)=H rZA/bA The PRFP corresponds to taking the infra-red lithi.,
A rs—o for positive by or r;—0 in the MSSM to find
1/(r3IT)—0 to give, for example,

where

a 1
J=Z f Ildr. 17 R*(0)=—1/J(0)=7/18 (22
b3r3H '3

in the MSSM. Here we can identify some interesting new
To discuss the fixed point behavior it helps to define ancases where the domain of attraction is very large. For ex-
“instantaneous” fixed pointRf (r), which can be thought ample, we can add %(5+5) multiplets to the MSSM to
of as the value oR; which is approached when the gauge makebs=+ 1. In this case we fin®* (0)=19/18 and
couplings are renormalizing very slowly. That is t

A~y 1983, 23
1 1 3 (23
o TR Y (18 . L . I
Rt rsRill Since positiveb; means stronger coupling at unification,

can be 3 for example. This gives a very large domain of

or attraction since nowA ~ 102 thanks to the large power ap-
pearing above. In fadb;=+1 appears to be the optimum
R* = 1 (i_ 1) (19) case. The top quark Yukawa is, in this instance, rapidly fo-
t cussedfrom aboveand below to the running value given by
Rf(r3) in Eqg. (18) as shown in Fig. 1(This behavior is
Substituting intoR; gives unchanged by two loop correctiondn models with one

095010-5



S. A. ABEL AND S. F. KING PHYSICAL REVIEW D59 095010

ht From the above discussion we conclude that large extra
3 dimensions dmotgenerically lead to enhanced PRFP behav-
25 ior. The power law running to PRFP’s is accompanied by an
equally rapid running of the gauge couplings so that the net
2 result is merely that unificatiofor loss of perturbativityis
reached at a much lower energy scale. We also see that PRFP
15 behavior is a dominant feature efrong unification (larger
; rs gives stronger attractiori4,9,10. In models with extra
- dimensions the PRFP behavior is therefore ultimately limited
0.5 by perturbativity constraints. Generally we require timat
/ +1-loop diagrams contribute less thamloop diagrams,
=5 3 =5 + fa=ao/as which gives[10]
FIG. 2. Renormalization of a Yukawa coupling with double N~b3a05477, (27

power law scaling with one extra dimension ang C5+§) mul-
tiplets. We choose @,b;=1 andts(Mgy7) =2+ 1/27 (so thatr,
=3 corresponds td\ = ).

whereN is the number of degrees of freedom contributing to
the B-function. In this case

A S5

large extra dimension the equivalent would be to have one N=X5(—) . (29

generation with KK modes and 3 additional{%) multip- Ko

lets. Then, for a dominant third generation, we still have Eq-Perturbativity then requires

(23) with Rf (0)=19/9, and we conclude that in this case the

extra dimensions have not increased the running to PRFP’s. badag|Ats=<1 (29)
What about the cases where there are additional powers of

ts in the RGE’s or when, as in the RGE’s of the previousand hence

section, there are double summations over KK modes? Even

in these case@ven more counter-intuitivelythe fixed point rg=1—2bsagAts=1+2/5. (30)
behavior is not particularly enhanced. Indeed when we solve
the general equation, Sor;~3 is the perturbativity limit for6>0. On these quite

general grounds therefore, it seems unlikely that one could

dh, ) ) generate a hierarchy of greater that?’%<30 from the ef-
477@ =Ni(@(to)hi = Cag). (24 fects of PRFP’s alone.
where nowa(ts) is any function ofts, we find a solution B. QFP induced hierarchies

given by Eqgs(19), (20), (21) with J replaced by Now we turn to QFP behavior which happens in an en-

tirely different region of parameter space. Here we shall find

_ 1 ! , , that hierarchical QFP’s can exist within perturbation theory.
Ja=z r fr3a(tﬁ(r3))ndr3 @9 The QFP corresponds to taking,—« in Eg. (20) and
3'3
hence,
where .
orr_ RGO (31)

1_r3 ! 1_A(r3)

ts(ra)=ts(Mgur) + ——". (26) . .
2b3eg Now consider, simply as an example, what happens when the

gauge couplings feel none of the extra dimensions but the
Hence, onlyR{ (r3) is changed by any extra powers gf ~ Yukawa coupling does? This could occur if there were extra
and the domain of attractionA(r;), remains the same. Mmultiplets in the KK levels so that the contributions to the
Moreover it is not possible to consistently have a hierarchicajauge beta functions come from compléte-4 multiplets
set of PRFP’s within perturbation theory. and hence cancel, but the Yukawa couplings still receive
Let us demonstrate the implications for a simple examplecontributions from towers ol =2 multiplets.(Since this is
For the terms coming from double summations over KKjust an example we shall not go to the trouble of actually
modes in the previous section, there is a doubled power djuilding such a model.Here one would expect power law
ts. We plot the resulting renormalizatigwith a(t;)=6t;]  running to have a significant impact and indeed it does. In
in Fig. 2 for the MSSM with a single extra dimension and 3this case we can work with the usual logarithmic variable,

additional (5+5) multiplets. The extra power has not in- ts=t, and put
creased the fixed point behavior significanflwe stop the M s
renormalization at low scale at the mass of the lightest KK a(t(r3))~xﬁ( GUT) pl6mo(ry=1) (32)

mode (A = wo).]
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o tsa(ts)hf=4m. (37)
0.08 However the rough QFP values in E§6) satisfy this bound

if ts=4. Hence the QFP solutions should be thought of as
0.06 boundary conditions. Once the model has dropped into the

perturbative regime the Yukawa couplings will run to these
0.04 fixed points, however we cannot explain why the model
' drops into the perturbative regime in the first pléakthough
0.02‘\ we shaI_I make some additional comments about this in the

discussion

Now let us consider what models may exhibit such large

04 05 0.6 0.7 08 09 7 fe=ao/as a(ts). The RGE’s we derived in the previous section were
o ] ) for cases in which all particles feel the same number of extra
FIG. 3. Renormalization of a Yukawa coupling which feels 4 4imeansions. Here the largest terms are the double summation
extra dlmen3|0n§dﬂ=2 multiplets when the gauge couplings feel terms with a(t;)~ts. Given the values ofts(Mayr)
only one extra dimension. We choosg=1/24 and the same start- ) o nd in Ref[2], it is not possible to generate the
ing values for the Yukawa coupling as in Figs. 1 and 2. - . . .
required hierarchies unless the Yukawa couplings somehow
feel more dimensions. This seems to be an unavoidable con-
dition for generating large hierarchies from power law run-
Mgut)? ning.
) A(ra) (33 It does not seem possible to achieve this simply by having
0 the particles feel different numbers of dimensigas least
is potentially huge. Temporarily ignoring the question of per-Within perturbation theory For example, one might try hav-
turbativity, Eq.(16) tells us that ing the gauge particles feéldimensions and the matter and
Higgs particles feelé’>6 dimensions. In this case we
1=A(r3)(Rol+ 3 [Mgut 5). (30 modify' the Yukawa RGE's by multiplying all of the Yukawa
1678\ uo terms in Egs(10), (11) by

All of the the solutions are “pinched” to very small values dty  ts o

where we have takeay=1/24. The prefactor means that

3
167o

Ja~

R

by the QFP solution near the grand unified the6BUT) T (38
scale. Deviation from the QFP is usually expressed with the o 9
parametep =R, /R®"". Here we find
where
1676 Mgyt °?
=17 3R, ( o ) ' (39 Xy (477&5) 15 o
" ams | X, | 39

So that, unles®&, is extremely small, the Yukawa couplings
effectively follow thequastfixed point solution. ) ) )
We can see that QFP’s will be important whenever theand by replacingsby &’ on the right-hand sideRHS) of Eq.
factor, a(t,) is large during the renormalization. For power (12, andt; by t;. However the gauge beta functions receive

law running we might hope to be able to generate hierarchiegontributions from all6” dimensions of matter and Higgs
if, for example,a(t;) =t7; by examiningJ, above we find  Particles; hence we should also multiplyby t, 6'/t;6 and
thus the gauge couplings become strong before unification.
h=gs VR~ L\t Mgyq). (36)  In this case our previous perturbativity limits on the gauge
couplings restrictt ;<1 and prevent it from generating a
In Fig. 3 we show the running for the Yukawa couplings significant hierarchy.
whens=1,t5=10, a(t5)=6t3, and with the same values of ~ There are three possible ways we can allow the beta func-
Ca as in Fig. 2. The GUT scale values for the Yukawa cou-tions of the Yukawa couplings to feel more dimensions of
plings are the same as in Figs. 1, 2, so in this case it appeakd modes; let the gauge particles interact with additional
that hierarchies of 0in the Yukawa couplings have been (vector and chiral multiplets so that they feel entitd=4
generated. Note that when the gauge couplings are runningultiplets rather tharN=2 hypermultiplets from at least
as a power law we must respect the perturbativity constraintsome of the extra dimensions; introduce additional non-
so that QFP’s are generally more important wlagris small ~ perturbative gauge couplings for some of the fermions;
and we haveveakunification. modify the Yukawa couplings themselves by adding extra
Perturbativity constraints also apply to the Yukawa cou-singlets which are fully dynamical fields above the sqaje
plings, so that it might appear that there is some contradict2]. We shall now examine the last idéalthough much of
tion in having such large coefficients for the Yukawa cou-the discussion will apply to the other tyvo
plings in the RGE’s. As for the gauge couplings we should We begin with a model in which none of the matter mul-
require that tiplets feel extra dimensionghe =0 scenario of Ref[2])
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and the Higgs and gauge multiplets feel ode=(1). We add  so that its quasi-fixed value I8y, ~1/\yn.m, and so on.

two singlets, which we calib and ®, so that the Yukawa The final form for the quasi-fixedl,, is found to be
couplings are of the form

B & &8 &2
(I) nFi CI_) nFj _ N —_ 3 2
W=hg | — —| FiFHygq. (40) huij WNnpn=| € € € (46)
Y\ Mo Mo o 2 .

We shall choose thag's and ng’s to be functions of the where

generation numbers of the multiplggsto introduce the re-

quired flavor dependence in the evolution of the couplings. e~ts(Mgyp) 32 (47)

Above the scalewy the wave function renormalization dia- ) ) )

grams are replaced by diagrams wita+ng extra loops of ~ 1he final hierarchy is

® andd partlcles._ o _ o (he e, hy)~ (1,62, €% (48)
The wave function renormalization receives contributions

which scale as 4/ u)3"FT"F*1 [2] so that the RGE’s of and the CKM matrix is of the form

Eq. (12) are modified by multiplying the Yukawa terms by

an additional factor 1 e

€
_ K~| € 1 €]|. (49
3(n,:i+n,:,)
t5 : (42) € € 1

where nowng, + N, counts the number of singlets appearing with this ansatz the QFP’s assume a structure with hierar-
in the leading diagram. For example, tet andng be sim-  chies similar to those in the standard modekif 0.1 and
! ]

ply 3—i and 3-. To modify the RGE's we define clearly, in this case, the structure with singlets is similar to
that one would have with the usual Froggatt-Nielsen mecha-
ni:tg(s—i)_ (42) nism. However this is also true for two examples we have

not considered that do not have additional singlets. Note that
In the wave function renormalization diagrams for the mattef’om the mass hierarchies we generally expect to get an es-
fields we then replace timate of the scaleg,) at which new KK states will appear;
sincee~0.1 we findts~10”°~5 and henceM gy 1~ 151,
; R for 6=1. Consulting Ref[2] we see that this implies
(hghl)ij— 87 > hu, 7(hy)ii
K wo~10" GeV. (50)

N t The perturbativity discussion of the preceding section can
(hghy)ij— 8 ”i; (hy)ikmhy,, (43 pe carried over directly to the present case and now, unfor-
tunately, we again find that t@®ow scale QFP’s are close to
the naive perturbative limit as is also the case for the two

and similar for the down and lepton fields. In addition the X . ;
: — o examples we did not consider. Perturbation theory does not
Higgs, ® and ® renormalizations are suppressed by one

: . allow us to follow the renormalization of the Yukawa cou-
power oft(_; (s.mce the matter multiplets do not have a towerpIingS very far from their low scale values.
of KK excitationg so we can safely neglect them. We now
resum the RGE’s in the usual waggain bearing in mind
that the resummation is merely a convenient way of includ-

ing finite threshold effecls ~In this study we discussed various aspects of fixed point
_ We can estimate the QFP's as follows. Assume that inihehavior in theories both with and without extra dimensions.
tially the hy Yukawa couplings are all roughly the same size\ye found that in models where the strong gauge beta func-
at the GUT scale and takg(Mgur) to be large(as it has o tjon s b=+ 1 (the MSSM with no extra dimensions and 4
be in order to generate a hierarchy ay.aliie then approxi- extra 5+5 multiplets or the MSSM with one extra large
mate the RGE'S using> 7> ;. Thehull RGE takes the dimension and 3 extra 55 multiplets the effects of

same form as Eq14) with Pendleton-Ross fixed points are greatly enhanced. However
2 we argued that the maximum hierarchies that can be gener-

a11(ts)~37}. (44) ated from Pendleton-Ross fixed points within perturbation

- _ theory are~30.

Its low-scale quasi-fixed value ts,,,~1/7,. Whenhy, is We also examined the effect of successive KK thresholds

near its quasi-fixed value, the RGE foy,  takes the same on the running of Yukawa couplings to QFP’s. We find that
form as Eq.(14) with adding extra dimensions can enhance the effects of these
fixed points appreciably; QFP’s can be a dominant feature of

a,i(ts)~37n1m;, (45  the one loop “running.” With very simple assumptions one

IV. DISCUSSION
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can generate standard-model-like hierarchies in the QFP’s afe presented, the dominant pieces of the beta functions of
the Yukawa couplings. Recent work on general questionshe Yukawa couplings appear to have signs which alternate
regarding fixed points in supersymmetric theoiii8$leads  with order in h?. This follows from the fact that, at any
us to believe that a similar fixed point structure exists for theprder, diagrams with Yukawa vertices dominate over those
soft supersymmetry breaking terms. with gauge vertices, so that the beta function involves the

However we also highlighted some difficulties with this same set of diagrams as the Wess-Zumino model. Sign alter-
picture. Most importantly, perturbation theory is only valid nation is characteristic of asymptotic series which are”Pade
when the Yukawa couplings are already near tHe®w-  Borel summable and indeed using this technique for the
scalg quasi-fixed values. Hence, the low scale QFP's arayess-zumino model shows that the domain of attraction of
close to the perturbative limit and have, for example, thethe QFP’s are substantigt]. Coupled with the properties of
same status as gauge couplings in strong unification modefse underlyingN=2 properties this may allow domains of
[9,10]. (Indeed, from this analysis, it seems likely that any attraction which are larger than the naive perturbative limit
attempt to generate significant Yukawa hierarchies througiyould imply.
the renormalization group will lead to a break down in per-
turbation theory.
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