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Coupling constant and quark-loop expansion for corrections to the valence approximation
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For full QCD vacuum expectation values we construct an expansion in quark-loop count and in powers of
a coupling constant. The leading term in this expansion is the val@nenchey approximation vacuum
expectation value. Higher terms give corrections to the valence approximation. A test of the expansion is
presented for moderately heavy quarks on a small lattice. We consider briefly an application of the expansion
to quarkonium-glueball mixing.S0556-282199)07209-4

PACS numbegps): 12.38.Gc, 11.15.Ha

I. INTRODUCTION gives the exact value of the valence approximation error for
any choice ofA 8. In particular, the expansion remains cor-
The infinite volume, continuum limit of lattice QCD had- rect independent of the accuracy of the second order pertur-
ron massefl—3] and meson decay constafs3] calculated  bative expression foA 8. For a bad choice of 8, however,
in the valence(quenchedl approximation lie not far from valence approximation vacuum expectations will be far from
experiment. Calculations using the valence approximationtheir full QCD values and the error expansion will predict an
however, require significantly less computer time than thos&Tor correspondingly large.
using full QCD. Thus, in at least some cases, the valence We have tested our method so far only for vacuum polar-

approximation can serve as a cheap, approximate substituftion arising from quarks with about 1.8 times the strange
for full QCD. For this purpose it would be useful to have duark mass and only for a collection of Wilson loop expec-

some way to determine quantitatively an estimate of the errgtion values. F_or these cases, our method of estimating the
arising from the valence approximation short of a direc,[valence approximation error is significantly faster than direct
comparison of the valence approximation with full QCD comparison between the valence approximation and full
Appossible method for fir?g)ing the valence approxir.na-QCD' We hope to return elsewhere to a test of the efficiency
tion's error is given in Ref[5]. In the present article, we of our method for lighter quark masses and other vacuum

. . : ; expectation values.
descnpe an allternatlve form of t.he proposal in FE@I'Wh'Ch In addition to its use as an algorithm for finding valence
we believe will generally require less computer time. The

expansion we describe can be applied to any choice of quar proximation errors, the expansion we describe provides a
P M pp! y q stematic way to keep track of the quantities which need to
action but is given here only for Wilson quarks.

In full QCD, virtual quark-antiquark pairs produced by a be evaluated, by any method, to determine quark loop cor-

chromoelectric field reduce the field’s intensity by a factorreCtions fo valence approximation vacuum expectation val-
which depends both on the field's momentu?/n gnd on itSues. Toward the end of the present article, we present a brief,
P gualitative discussion of the valence approximation and cor-

to a dielectric constant, is approximated by its zero-field-?ections o the valence approximation for mixing between
hstant, 1S app y . the lightest scalar glueball and scalar quarkonium states. We
momentum zero-field-intensity lim[i6]. Our expression for

will show that a recent attempg®] to determine glueball-

the error in valence approximation vacuum expectation Val'quarkonium mixing misses two of the terms required for this

ues consists qf an expansion in quarktloop count and in POWalculation. As a consequence, we believe the calculation of
ers of a coupling constant. The coupling constant expansio

reli nid drawn from mean-field-improved perturbati n&ef' [9] is not correct.
elies on iaeas dra 0 ean-iie proved perturbation -, Sec. Il we introduce definitions. In Sec. Ill, we con-

theory[7]. Each term in the expansion requires as input the . L
quantity A3 given by (672/g?)— (6lg%), whereg is the struct an expansion for the valence approximation error. In

gauge coupling constant of full QCD angis the dielectric Sec. IV we discuss the weak coupling calculation of the shift

tant entering th | ‘mation. We determi between the coupling constant in full QCD and in the va-
Zons an Ietr'] e:llngf € valence fgpﬁ@xma |o(;1. et T)etr_mln nce approximation. In Sec. V we describe a trial calcula-
thﬂ antay Ica yd ro(rjn r_ne;ln- 1€ -|?1prove tpetr lX allotn ion using our expansion and error estimates. In Sec. VI we
eory 10 second order In the coupiing constant. A Telaleq,qgiqer the valence approximation and its corrections for
calculation of AB without mean-field improvement is de- | - o
: ) o . glueball-quarkonium mixing.
scribed in Ref[8]. The remaining work of evaluating each
term in the error expansion is done by a Monte Carlo algo-
rithm. . o II. DEFINITIONS
The sum of all terms in the error expansion, in principle,
For Euclidean QCD on some finite lattice, lgtx,y) be a
gauge link with periodic boundary conditions, and Ntbe
*Present address: Group T-8, Los Alamos National Laboratorythe coupling matrix for a single quark flavor, with antiperi-
Los Alamos, NM 87545. odic boundary conditions, defined by
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IlI. ERROR EXPANSION

M(X,y)=6,,— K Oyy— o (1— u(x, ] )
(XY) =8y % wy-i(177,)u0Y) A coupling constant and quark loop expansion can now

be constructed for the difference between the full QCD
-k Syr L+, )U(X,Y). (2.1)  vacuum expectationG) and its valence approximation
Iz (G), .
) It is convenien{5] to expresgG) of Eg. (2.2) as
The vectoru is a unit lattice vector in the- x direction and

the y, are 4<4 Hermitian Euclidean gamma matrices. 1 By
For n; degenerate flavors of quarks and any integrable (G)=z f dv G ex EP“LQ '
function of the gauge fieldS, the vacuum expectation value
found after integrating out quark fields becomes B
5 Z=J dveX[{EUP-FQ),
(G>=Z’lf dv Gde(M)" exp{EP),
AB
Q=n; trIog(M)—TP. (3.1

Z=f dv de(M)"t exp(éP),
Introducing a parameter multiplying Q, we expand G) in
powers of\, replacen by 1, and get

p:( > Trlu(Xy,X2)U(Xz,X3)

G)Y=(G),+ 2, 6,(G), 3.2
XU(X3,X4)U(Xgq,X1)]. (2.2 (G)=(G), En: n(G) (3.2
Here B is 6/g° for bare gauge coupling constagt v is the _ _ _
product of one copy o65U(3) Haar measure for each link (G ={(G(C))(Q=(Qu))o @3
variable on the lattice, and the sum in the definitiorPois B 2
over all nearest neighbor squares (. . . X4) with squares 92(G)=((G=(G),)(Q—=(Q))%)v. 34
differing by a cyclic permutation identified. The extension of 3
Eq. (2.2) to vacuum expectations of products of quark and 85(G)=((G—(G),)(Q—(Q),)°),
antiquark fields and to QCD with quarks having several dif- _ _ _
ferent masses is not needed for the present discussion and H(C=(C))(Q=(Q)))
will be omitted for simplicity. In the present discussian, X{(Q—(Q),)?),, (3.5
can be either even or odd.
The valence approximation fdiG) is
<G>v=zy_lj dvG ex;{éP), Ina co_upIing constant perturbation expansion of @qZ)
6 for the difference betweefG) and (G),, the quantityQ

carries a single quark loop. As a consequefiges) can be

By associated with diagrams containingnternal quark loops.

Zv:f d’”eXp(EP None of thes,(G), however, are simply sums ofquark-
loop diagrams. Each includes also, throu@ghcounterterms

Here 3, is 6/g> with valence approximation bare gauge cou-arising from the shift betweerg of full QCD and the

pling g, . It is convenient to name the shift betwegp and screeneg, of the valence approximation. We will return to
B: this observation in Sec. VI.

The quantity trlogi1) in Q of Eq. (3.1) we now express
AB=B,—B. (2.4  as a coupling constant power series. This series is also, for-
mally, an expansion in powers of a gauge potential. Thus, as
The determination ofA 8 will be discussed in Sec. IV. As usual in gauge field theories, we use the theory’s gauge in-
mentioned in Sec. iy, andg may also be viewed as related variance to transform to a gauge which will tend to make the

. 2.3

by a dielectric constan: gauge potential small. For this purpose, we transform the
gauge fieldu(x,y) to a Euclidean lattice version of Landau
9 gauge. The fieldi(x,y) has been transformed to lattice Lan-
gv_;' 2.9 dau gauge if for every lattice sitg the target function

2y trfu(x,y)] is a local maximum with respect to further
The calculation ofAB in Sec. IV is, in effect, also a calcu- gauge transformations. Generally there are many Gribov
lation of 5. Although 7 is useful in describing the intuitive copies of transformations taking a particular gauge field to
content of the valence approximation, it will not appear di-Euclidean lattice Landau gauge. The vacuum expectation
rectly in the remainder of this paper. value of any integrable function of the gauge field trans-
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formed to Landau gauge is then a weighted average over the
Gribov copies of each field. The weights depend on the par-

PHYSICAL REVIEW [39 094508

<¢>,¢'>=§C BEX) DL X) (3.10

ticular choice of algorithm for obtaining Landau gauge. The

gauge fixing algorithm used in our trial calculation in Sec. llI

is discussed in Ref5]. Our expansion does not depend ex-
plicitly on the choice of gauge fixing algorithm and, there-
fore, on the choice of Gribov copy weighting. We have not
examined to what degree this choice might be optimized t
further minimize the gauge potential and therefore speed th

convergence of the coupling constant expansion.

For each fixed gauge configuration, we construct a free

quark coupling matrixM, which approximates the interact-
ing coupling matrixM of Eqg. (2.1). For each configuration,
let z be the average over all lattice links ofux,y)]/3. Let
Mg be a free coupling matrix with hopping constadt cho-
sen to give a quark mass which agrees with the mean-fiel
improved[7] estimate

1
20

1 1
27k 2zk.’

(3.6)

wherex and k. are, respectively, the hopping constanivbf

and the valence approximation to the critical value of this

hopping constant. The critical hopping constant is the smal
est value for which the pion mass becomes zero. On the rig
side of Eq.(3.6), the parametez varies with gauge configu-
ration butx and k. do not.

Mean-field improved perturbation theory suggedt4, as
an approximation td1. We therefore express trlad( in the
form

trlog(M)=trlog{zMo[1— Mgy }(My—z *M)]}, (3.7
and expand to obtain the
trlog(M)=trlog(zMg) — >, %tr{[Mgl(Mo—z‘lM)]“}.
" (3.8

For small values of the chromoelectric potentimgl(MO
—z~ M) is linear in the potential. Thus E¢g.8) is approxi-

mately an expansion in power of the chromoelectric potentia

or, equivalently, in powers of a coupling constant.

To evaluate the trace in the second term of E38) we
use an ensemble of complex-valued quark fiebdd$-or each
site x and each of the 12 combinations of spin indeand
color indexc, the correspondingbs(x) we take to be an
independent complex random variable with absolute value
and probability distribution uniform on the unit circle. For an
R element ensemble of such fields, 1<r<R, we then
have

trlog(M) =trlog(zMy)
1
“RTY (Mo (Mo—2 M) ]"%).
(3.9

Here( ..., ...) is the inner product

on the space of complex-valued quark fields. In 89) the
quantity trloggM,) and the inversel,\/lg1 can both be found
easily in momentum space sinbf,, in momentum space, is
é)lock diagonal. To multiply vectors specified in position
ace by\/lgl, we transform in and out of momentum space
by fast Fourier transforms.
If the right side of Eq(3.9) is substituted for trlod{) in
the expression fo in Eqg. (3.1, Eq. (3.2) becomes a cou-
pling constant and quark-loop expansion for corrections to
valence approximation vacuum expectation values. The only
guantity in this expansion not yet specified is the shiff.

0I§quations(3.2) and(3.9) are formally correct for any choice

of AB. The rate at which these series converge, however,
will be affected by this choice.

IV. AB

For valence approximation calculations of the light had-
ron spectrum, the up and down quark masses are usually
I:[aken to be equal and the correspondings chosen by re-
rﬂuiring the pion mass to have its physical value. The valence
approximationg, is then determined by setting the rho mass
to its physical value. Thus, in effeck 8 is found by requir-
ing the valence approximation error in the rho mass to van-
ish. Since the rho mass is expected to be determined mainly
by the low-momentum behavior of the chromoelectric field,
this choice may be viewed as a quantitative implementation
of the qualitative picture of the valence approximation men-
tioned briefly in Sec. I. A class of possible alternatives con-
sists of choices oA 8 which make the error, or some ap-
proximation to the error, equal to zero for other quantities
beside the rho mass which are determined mainly by the
low-momentum behavior of the chromoelectric field. A con-
venient version of this idea for the present discussion is to fix
A B by requiring zero valence approximation error for the
Landau gauge gluon propagator at minimal honzero momen-
tum to first order in quark loops and to second order in the

oupling constant expansion. As an additional simplification,
he expectation values needed to determdigiewe find using
(analytio mean-field-improved perturbation theory rather
than by Monte Carlo. For the test case considered in Sec. Il
we obtain the same value &f3 by this method as produced
by the non-perturbative method of REB].
The requirement foA 8 becomes thad;(G) of Eq. (3.3

\1/anish:
((G—=(G),)(Q—(Q),)),=0, 4.1
where
G=2 Acu(P)Ac(—p), 4.2
Cu
Q=—tr(V)— %tr(vz)—%ﬂp,
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V=M (Mo=2"*M). PE‘KU‘E‘K@TATU\

The quantity'ACM(p) is the Fourier transformed gauge poten-
tial (a)

Z\C,xp):g exp —ip-X)Ag,(X) (4.3

for momentum vectop with a single nonzero componept

of 27r/L, wherelL is the lattice period. To second order in
mean-field-improved perturbation theory, the link field
u(x,y), in M, and the plaquette actioR can be approxi-

mated by
- . 1.
U(X,X+u)=2zy1-iAc, x+§ Te (b)
1 1 2 FIG. 1. Feynman diagrams which contributeAg.
_E AC# X+E,LL)T} ], L
S(q)= :
BRI o PP PR A ? ! U(2k0)—1D, ¥, sin(q,)— >, cogq,)
3 v 2| emv 2 2 ’ 3 3
1. 1. I',(gq)=sin(q,)—iy,cogq,). (4.9
Feun(X)=Ac,| X+ P —ACM(X— EV)
The limiting value ofA g for large L without mean-field
1. 1. i h i in RE3].
N . 5/‘) A xr2a), @4 improvement has been derived in RES]

. . V. EXAMPLE
where theT, are an orthnormal basis for the Lie algebra of

SU(3), As a test of our method we compared valence approxima-
tion expectations(G),, Eq. (2.3), their one-loop errors
(T, Ty) = 1 ((G—{(G),)(Q—(Q),)),, Eq. (3.2, and the corresponding
(TeTa Ocd full QCD expectationgG), Eq. (3.1), for a lattice 16 with
B, of 5.679, k of 0.16 andn; of 2. For a 16x 32 lattice at
and(trU), is the valence approximation plaquette expecta3, of 5.70, Ref.[1] gives a criticalx, of 0.1694@5) and
tion value. strange quark massga in lattice units of 0.0973). Thus «
The vacuum expectation values in E@¢4$.5) we evaluate of 0.16 corresponds to a quark mass about 1.8 timgs
by lattice weak coupling perturbation theory to second ordeAccording to Eq.(4.5), A8 is 0.243, giving a full QCDgB of
in the valence approximation coupling constant. This calcu5.436. For this casd 8 found by the method of Ref5] is
lation reduces to finding the two vacuum polarization Feyn-0.2446).
man diagrams in Fig. 1. These diagrams for QCD are pro- We used 224 independent equilibrium gauge configura-
portional to the corresponding diagrams folJ41) lattice  tions in the valence approximation ensemble, generated by
gauge theory and thus satisfy t1) theory’'s Ward iden-  an over-relaxed pseudo heat bath algorithm, 600 random fer-
tities. The calculation of the tadpole diagram, Figh)lcan  mion fields R to evaluate the trace in Eq3.9) and 176

thus be eliminated. We obtain weakly correlated equilibrium gauge configurations for the
full QCD ensemble, generated by a red-black preconditioned
In;¢ hybrid Monte Carlo algorithm. The expansion in Eq.
A'8:4 sir?(w/L)(trU)U[HZZ(p)_HZZ(O)]' (3.9 was carried to ordem of 10. The calculation of

((G—(G),)(Q—(Q),)), was not tuned carefully. In par-
ticular R of 600 in Eq.(3.9 is much larger than its optimal
I,,(p :i E [T ,(q+p/2)S(q+p)T, vaule. The tir_ne requireq for the valence apprqximation .and
error calculation was still less than 5% of the time required
by the full QCD calculations.
X(q+p/2)S(q)], (4.5 For G we used Wilson loop&N,, ... W;, consisting,

. X
where each component ofin the sum over ranges from respectwely, of paths>11 2X1, all rotatlons of steps in the

7/L to 2 — /L in steps of 2r/L. The propagato®(q) and directions 12 3 1 2 3 all rotations of steps in the
vertexI" ,(q) are directions 12,3,-2,—1,—3, 3x1, 2x2, 4x1, 5x1, 3
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16— the valence approximation, it is possible that the computer
il 1 time required by the error algorithm would become compa-
‘ Oval. + correction | rable to that for full QCD. To find the uncertainty arising
12l ] from use of the valence approximation, however, the statis-
tical uncertainty in the error estimate does not need to be too
10} . much smaller than the error estimate’s central value. Used in
£ T this way, for the set of parameters of the test, our algorithm
S 08 T takes significantly less time than the shortest possible direct
06 | E | comparison of the valence approximation and full QCD.
04 §$ 7 VI. GLUEBALL-QUARKONIUM MIXING
% full QCD | . . L
02| . We now consider briefly the valence approximation to
T glueball-quarkonium mixing, corrections to the valence ap-
O = 3 458 7 8 9 10 proximation to mixing which follow from Eq(3.2) and a
order mixing calculation reported in Ref9]. The lowest lying

glueball, according to the valence approximation, is stable
and is expected to be a scalar. Evidence th#l710) is
composed mainly of this state is given in Ref40-13.

With quark-antiquark annihilation initially ignored, the light-

, est scalar quarkonium states are also stable. Their valence
X2, 4x2, and 3<3. For the 33 loop, Wy, Fig. 2 shows  annroximation masses and evidence for their identification
the predicted errof(W1o—(Wi0),)(Q—(Q).))» @s a func-  \yith observed states is discussed in Rgfg,11-13.

tion of the highest powen of coupling strength used in Eq. o — — =
Mixing among thess and uu+dd)/+/2 scalars and the
\(/i’u/ilgs);):hlioer;ow:onver%(\a/s a&zqu?teedli{g%f Z.rr'(:)cr)’fsscr;:)il\lleerr- scalar glueball then occurs through quark-antiquark annihila-
PS, Wo, - . . W, P tion. In the valence approximation, the glueball-quarkonium

gence as a function of is comparable to or faster than the . .
i , mixing energy can be extractdd2,13 from the vacuum
convergence shown in Fig. 2. Farof 7, Fig. 3 shows the expectation value

relative shift of the wvalence approximation from full

QCD, (W;)—(W;),)/{(W;), and the predicted value C,(t)={(g(t)s(0)),, (6.1

(W, — (W), )(Q—(Q),)), /[{W;). To within statistical un- .

certainties, the predicted errors agree with the true errors. whereg(x,t) is the smeared zero-momentum scalar glueball
The true errors in Fig. 3 were found from the shortest fulloperator of Ref[15], with vacuum expectation subtracted,

QCD run sufficient to confirm equilibration of and s(x,t) is the smeared zero-momentum scalar quarko-
(Wo), . .. {Wyg). Nonetheless, the statistical uncertainties innjum operator of Ref[14]. It is convenient to define also a
the predicted errors are much larger than those in the trugill QCD C(t) by Eq.(6.1) with (- - -), replaced by(- - -). A
errors. If we were to run the error prediction algorithm long qualitative representation f,(t) is provided by Fig. 4 giv-
enough to obtain statistical uncertainties comparable to thgg a typical Feynman diagram contributing to the lattice
uncertainties found by a direct comparison of full QCD andweak coupling expansion fd,(t).

Assuming, for simplicity, only vacuum polarization aris-

FIG. 2. The predicted relative shift in Wilson lodj;, from its
valence approximation value as a function of the onden cou-
pling constant compared to the true shift of full QCD.

0.4 — T ing from u andd quarks taken to have degenerate mass, the
one-quark-loop correction t€,(t) can be found from Eqgs.
ofulQCd (3.2)—(3.3). For the present discussion, we will not apply the
03 | Oval. + correction ] expansion of Eq(3.8). The one-quark-loop error i, (t)
becomes
AB

02t 1 CH-Cy()=Ty——="Tp,

6

shift
-

Tm=([9(t)s(0)—(g(t)s(0)),]

01} _
&% Y X [2tr log(M)—(2tr log(M)), 1), ,
2=
o} w=Ra@— ] Te=([9()S(0)~(g(1)s(0)),I[P=(P),1),. (6.2
0 1 23 4I056p6 7 $ 0 Qualitative representations %, and Tp are given by typi-

cal Feynman diagrams contributing to their weak coupling
FIG. 3. The predicted relative shift in 11 Wilson loops from €xpansions shown in Figs.(& and 5b), respectively.
their valence approximation values in comparison to the true shifAmong the processes contributing 1q, in Fig. 5a) are
of full QCD. glueball-quarkonium transitions through common pi-pi,
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A cross-check on the consequences for valence approxi-
quarkonium 3& glueball mation errors of forcing 8 to zero can be obtained by mak-
ing this change in the error formula applied to low-lying
FIG. 4. Quarkonium-glueball mixing through quark-antiquark hadron masses and meson decay constants. Using the data in
annihilation. Refs.[1,4] for B, of 5.70 and 5.93, we find that with 8
forced to zero, masses and decay constants are off by as

kaon-antikaon, and eta-eta decay channels. The quantity much as 45%, rather than by less than 10% or less than 20%,

on the other hand, is the counterterm, discussed in Sec. If€SPectively, for an optimally chose;.

which arises from the shifh 3 betweeng of full QCD and Thus as a calculation of errors in the valence approxima-
the screeneg, of the valence approximation. tion to glueball-quarkonium mixing energies, Rg¥] would

In Ref. [9] a model is proposed for mixing among the be expected to predict significantly larger errors than actually
valence approximation to the lightest scalar glueball stat yccur with an optimal choice of . As we mentioned ear-

o . ier, however, also missing from the calculation of Héf|.is
and the valence approximations to the lightest scateand the leading valence approximation term which can be ob-

(uu+dd)/ 2 states. Applied to glueball-quarkonium mixing tained fromC,(t). It appears to us that Re®] gives neither
energies, this model omits the leading valence approximatiogn adequate model of the full glueball-quarkonium mixing
mixing amplitude coming fronC,(t) and represented in Fig. process nor of the corrections to the leading valence approxi-
4, The mOdel inClUdeS instead Only transitions through Commation to th|s process_ We be"eve |tS resu'ts are S|mp|y in-
mon pi-pi, kaon-antikaon and eta-eta decay channels. Thes®rrect.

transitions do contribute td@),. Thus the model might be In partial defense of Ref[9], it might be argued that
viewed as a calculation of quark-loop corrections to the vag|though T is not explicitly present in the relation given
lence approximation to mixing if not as an evaluation of thepetween valence approximation propagators and those of full
full mixing process. The equation assumed to govern mixingQCD,TP is nonetheless present implicitly. The coupling be-
between the valence approximation glueball and quarkoniurfyeen valence approximation states and two-body decay

states through intermediate decay channels, however, ©@hannels is assumed to fall exponentially wii?, wherek
prely Ignores th_e counte_r-termp. No argument is offered is the center-of-mass system 3-momentum carried by one of
in support of this omission. Refereng@] simply assumes, the decay products. Perhaps this exponential cutoff removes
W'thQUt proof, a relation be_tween full QCD and Va!'e”"e aPfrom the equation of Ref.9] those contributions whicfp
pro\;:/l.rtr;]azlr?n prop?ga:ors V(‘;'th no éerlrzn cgrre_spont?]mg'm subtracts from our equations. For this to hold would require
inC It f IS counter- e:‘Th roplpe  E.2) g_lve?_ e error 4 surprising coincidence since no mention is made in [Réf.

in C,(t) for a version of the valence approximation wiltg of the need for a term Iikdp in the relation between full

forced to zero. Equival_ently, it is easily checked tﬁa,t_is QCD and the valence approximation and no attempt is made
the derivative ofC,(t) with respect tg3, . Thus by droppmg to tune the cutoff to absorb this term. The cutoff is intro-
the Tp term from Eq.(6.2) the one-quark-loop error estimate ,caq simply as the authors’ expectation of the behavior of

for C, (1) is altered by approximately the increment@(t) ¢y pling between unstable scalars and their pseudoscalar de-
in going fromB,—ApB to B, . For B, of 5.93, AB is known ay products.

to be greater than 0.23. Thus a lower bound on the effect o? In addition, however, it is mentioned explicitly in Ref.

settingA 3 to zero can be found by comparing valence re-[g) and supported by the tables giving proposed values of
sults atB, of 5.70 with those B, of 5.93. The data in Refs. || QcD corrections to valence approximation masses, that
[12,13 then shov_v that the on_e-quark-loop error estimate fokye model of Ref[9] predicts full QCD masses below va-
glueball-quarkonium energy is changed by an amount equgdnce approximation masses for those states which are stable
to the entire leading valence approximation to the mixingin the valence approximation but unstable in full QCD. This
energy obtained fronT,(t). is exactly the result to be expected for corrections to the

valence approximation given by Ed8.2) and(3.3) with Tp

removed. For the vacuum expectation of an arbitGr¥Eqgs.

(3.2 and(3.3) give

- gt
N (©)~(G),=Ti- £ TE.
Th=((G=(G),)[2tr log(M)—(2tr log(M)),]), .
auertontm o glucbal TE=((G—(G))(P—(P),)), ©.3
(b

The contribution to the error i6G), from the termT§, is the
FIG. 5. One-quark-loop corrections to the valence approximaincremental effect of the color charge screening due to a
tion to quarkonium-glueball mixing. single quark loop and therefore of a decrease, by some
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amount, in the QCD effective charge. As a consequence ahasseg3] show that full QCD quantities for excited states
QCD’s asymptotic freedom this term shifts quantities withare consistently larger those of the valence approximation.
mass units toward smaller values in full QCD than in theThereforeTS for propagators of excited states is consistently
valence approximation. From our discussion earlier it fol-larger in magnitude thaf$, and the model of Ref[9]

lows that the ternT S has the opposite effect. It shifts quan- predicts even the wrong sign for the relation between masses
tities with mass units toward larger values in full QCD thanin full QCD and in the valence approximation. It appears to
in the valence approximation. In fact, as might be expectedis this error is clear evidence that the model's cutoff on
from the discussion of Ref11], calculations of valence ap- decay momenta cannot have absorbed the effect of the omis-
proximation decay constanit$,3] and a recent calculation of sion of TS‘.
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