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Coupling constant and quark-loop expansion for corrections to the valence approximation
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For full QCD vacuum expectation values we construct an expansion in quark-loop count and in powers of
a coupling constant. The leading term in this expansion is the valence~quenched! approximation vacuum
expectation value. Higher terms give corrections to the valence approximation. A test of the expansion is
presented for moderately heavy quarks on a small lattice. We consider briefly an application of the expansion
to quarkonium-glueball mixing.@S0556-2821~99!07209-4#

PACS number~s!: 12.38.Gc, 11.15.Ha
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I. INTRODUCTION

The infinite volume, continuum limit of lattice QCD had
ron masses@1–3# and meson decay constants@4,3# calculated
in the valence~quenched! approximation lie not far from
experiment. Calculations using the valence approximat
however, require significantly less computer time than th
using full QCD. Thus, in at least some cases, the vale
approximation can serve as a cheap, approximate subs
for full QCD. For this purpose it would be useful to hav
some way to determine quantitatively an estimate of the e
arising from the valence approximation short of a dire
comparison of the valence approximation with full QCD.

A possible method for finding the valence approxim
tion’s error is given in Ref.@5#. In the present article, we
describe an alternative form of the proposal in Ref.@5# which
we believe will generally require less computer time. T
expansion we describe can be applied to any choice of q
action but is given here only for Wilson quarks.

In full QCD, virtual quark-antiquark pairs produced by
chromoelectric field reduce the field’s intensity by a fac
which depends both on the field’s momentum and on
intensity. In the valence approximation this factor, analog
to a dielectric constant, is approximated by its zero-fie
momentum zero-field-intensity limit@6#. Our expression for
the error in valence approximation vacuum expectation v
ues consists of an expansion in quark-loop count and in p
ers of a coupling constant. The coupling constant expan
relies on ideas drawn from mean-field-improved perturbat
theory @7#. Each term in the expansion requires as input
quantity Db given by (6h2/g2)2(6/g2), where g is the
gauge coupling constant of full QCD andh is the dielectric
constant entering the valence approximation. We determ
Db analytically from mean-field-improved perturbatio
theory to second order in the coupling constant. A rela
calculation ofDb without mean-field improvement is de
scribed in Ref.@8#. The remaining work of evaluating eac
term in the error expansion is done by a Monte Carlo al
rithm.

The sum of all terms in the error expansion, in princip
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gives the exact value of the valence approximation error
any choice ofDb. In particular, the expansion remains co
rect independent of the accuracy of the second order pe
bative expression forDb. For a bad choice ofDb, however,
valence approximation vacuum expectations will be far fro
their full QCD values and the error expansion will predict
error correspondingly large.

We have tested our method so far only for vacuum po
ization arising from quarks with about 1.8 times the stran
quark mass and only for a collection of Wilson loop expe
tation values. For these cases, our method of estimating
valence approximation error is significantly faster than dir
comparison between the valence approximation and
QCD. We hope to return elsewhere to a test of the efficie
of our method for lighter quark masses and other vacu
expectation values.

In addition to its use as an algorithm for finding valen
approximation errors, the expansion we describe provide
systematic way to keep track of the quantities which need
be evaluated, by any method, to determine quark loop c
rections to valence approximation vacuum expectation v
ues. Toward the end of the present article, we present a b
qualitative discussion of the valence approximation and c
rections to the valence approximation for mixing betwe
the lightest scalar glueball and scalar quarkonium states.
will show that a recent attempt@9# to determine glueball-
quarkonium mixing misses two of the terms required for t
calculation. As a consequence, we believe the calculatio
Ref. @9# is not correct.

In Sec. II we introduce definitions. In Sec. III, we con
struct an expansion for the valence approximation error
Sec. IV we discuss the weak coupling calculation of the s
between the coupling constant in full QCD and in the v
lence approximation. In Sec. V we describe a trial calcu
tion using our expansion and error estimates. In Sec. VI
consider the valence approximation and its corrections
glueball-quarkonium mixing.

II. DEFINITIONS

For Euclidean QCD on some finite lattice, letu(x,y) be a
gauge link with periodic boundary conditions, and letM be
the coupling matrix for a single quark flavor, with antiper
odic boundary conditions, defined by

y,
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M ~x,y!5dxy2k(
m

dxy2m̂~12gm!u~x,y!

2k(
m

dxy1m̂~11gm!u~x,y!. ~2.1!

The vectorm̂ is a unit lattice vector in the1m direction and
the gm are 434 Hermitian Euclidean gamma matrices.

For nf degenerate flavors of quarks and any integra
function of the gauge fieldsG, the vacuum expectation valu
found after integrating out quark fields becomes

^G&5Z21E dn Gdet~M !nf expS b

6
PD ,

Z5E dn det~M !nf expS b

6
PD ,

P5 (
~x1 , . . . ,x4!

Tr@u~x1 ,x2!u~x2 ,x3!

3u~x3 ,x4!u~x4 ,x1!#. ~2.2!

Hereb is 6/g2 for bare gauge coupling constantg, n is the
product of one copy ofSU(3) Haar measure for each lin
variable on the lattice, and the sum in the definition ofP is
over all nearest neighbor squares (x1 , . . . ,x4) with squares
differing by a cyclic permutation identified. The extension
Eq. ~2.2! to vacuum expectations of products of quark a
antiquark fields and to QCD with quarks having several d
ferent masses is not needed for the present discussion
will be omitted for simplicity. In the present discussion,nf
can be either even or odd.

The valence approximation for^G& is

^G&v5Zv
21E dnG expS bv

6
PD ,

Zv5E dn expS bv

6
PD . ~2.3!

Herebv is 6/gv
2 with valence approximation bare gauge co

pling gv . It is convenient to name the shift betweenbv and
b:

Db5bv2b. ~2.4!

The determination ofDb will be discussed in Sec. IV. As
mentioned in Sec. I,gv andg may also be viewed as relate
by a dielectric constanth:

gv5
g

h
. ~2.5!

The calculation ofDb in Sec. IV is, in effect, also a calcu
lation of h. Although h is useful in describing the intuitive
content of the valence approximation, it will not appear
rectly in the remainder of this paper.
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III. ERROR EXPANSION

A coupling constant and quark loop expansion can n
be constructed for the difference between the full QC
vacuum expectation̂ G& and its valence approximatio
^G&v .

It is convenient@5# to expresŝ G& of Eq. ~2.2! as

^G&5Z21E dn G expS bv

6
P1QD ,

Z5E dn expS bv

6
P1QD ,

Q5nf tr log~M !2
Db

6
P. ~3.1!

Introducing a parameterl multiplying Q, we expand̂ G& in
powers ofl, replacel by 1, and get

^G&5^G&v1(
n

dn~G!, ~3.2!

d1~G!5^~G2^G&v!~Q2^Q&v!&v , ~3.3!

d2~G!5^~G2^G&v!~Q2^Q&v!2&v , ~3.4!

d3~G!5^~G2^G&v!~Q2^Q&v!3&v

23^~G2^G&v!~Q2^Q&v!&v

3^~Q2^Q&v!2&v , ~3.5!

A

In a coupling constant perturbation expansion of Eq.~3.2!
for the difference between̂G& and ^G&v , the quantityQ
carries a single quark loop. As a consequencedn(G) can be
associated with diagrams containingn internal quark loops.
None of thedn(G), however, are simply sums ofn-quark-
loop diagrams. Each includes also, throughQ, counterterms
arising from the shift betweenb of full QCD and the
screenedbv of the valence approximation. We will return t
this observation in Sec. VI.

The quantity tr log(M) in Q of Eq. ~3.1! we now express
as a coupling constant power series. This series is also,
mally, an expansion in powers of a gauge potential. Thus
usual in gauge field theories, we use the theory’s gauge
variance to transform to a gauge which will tend to make
gauge potential small. For this purpose, we transform
gauge fieldu(x,y) to a Euclidean lattice version of Landa
gauge. The fieldu(x,y) has been transformed to lattice La
dau gauge if for every lattice sitex the target function
(y tr@u(x,y)# is a local maximum with respect to furthe
gauge transformations. Generally there are many Gri
copies of transformations taking a particular gauge field
Euclidean lattice Landau gauge. The vacuum expecta
value of any integrable function of the gauge field tran
8-2
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COUPLING CONSTANT AND QUARK-LOOP EXPANSION . . . PHYSICAL REVIEW D59 094508
formed to Landau gauge is then a weighted average ove
Gribov copies of each field. The weights depend on the p
ticular choice of algorithm for obtaining Landau gauge. T
gauge fixing algorithm used in our trial calculation in Sec.
is discussed in Ref.@5#. Our expansion does not depend e
plicitly on the choice of gauge fixing algorithm and, ther
fore, on the choice of Gribov copy weighting. We have n
examined to what degree this choice might be optimized
further minimize the gauge potential and therefore speed
convergence of the coupling constant expansion.

For each fixed gauge configuration, we construct a f
quark coupling matrixM0 which approximates the interac
ing coupling matrixM of Eq. ~2.1!. For each configuration
let z be the average over all lattice links of tr@u(x,y)#/3. Let
M0 be a free coupling matrix with hopping constantk0 cho-
sen to give a quark mass which agrees with the mean-fi
improved@7# estimate

1

2k0
245

1

2zk
2

1

2zkc
, ~3.6!

wherek andkc are, respectively, the hopping constant ofM
and the valence approximation to the critical value of t
hopping constant. The critical hopping constant is the sm
est value for which the pion mass becomes zero. On the r
side of Eq.~3.6!, the parameterz varies with gauge configu
ration butk andkc do not.

Mean-field improved perturbation theory suggestszM0 as
an approximation toM. We therefore express tr log(M) in the
form

tr log~M !5tr log$zM0@12M0
21~M02z21M !#%, ~3.7!

and expand to obtain the

tr log~M !5tr log~zM0!2(
n

1

n
tr$@M0

21~M02z21M !#n%.

~3.8!

For small values of the chromoelectric potential,M0
21(M0

2z21M ) is linear in the potential. Thus Eq.~3.8! is approxi-
mately an expansion in power of the chromoelectric poten
or, equivalently, in powers of a coupling constant.

To evaluate the trace in the second term of Eq.~3.8! we
use an ensemble of complex-valued quark fieldsf. For each
site x and each of the 12 combinations of spin indexs and
color index c, the correspondingfsc(x) we take to be an
independent complex random variable with absolute valu
and probability distribution uniform on the unit circle. For a
R element ensemble of such fieldsf r , 1<r<R, we then
have

tr log~M !5tr log~zM0!

2R21(
nr

1

n
^f r ,@M0

21~M02z21M !#nf r&.

~3.9!

Here ^ . . . , . . .& is the inner product
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^f,f8&5(
xsc

fsc* ~x!fsc8 ~x! ~3.10!

on the space of complex-valued quark fields. In Eq.~3.9! the
quantity tr log(zM0) and the inverseM0

21 can both be found
easily in momentum space sinceM0, in momentum space, is
block diagonal. To multiply vectors specified in positio
space byM0

21, we transform in and out of momentum spa
by fast Fourier transforms.

If the right side of Eq.~3.9! is substituted for tr log(M) in
the expression forQ in Eq. ~3.1!, Eq. ~3.2! becomes a cou-
pling constant and quark-loop expansion for corrections
valence approximation vacuum expectation values. The o
quantity in this expansion not yet specified is the shiftDb.
Equations.~3.2! and~3.9! are formally correct for any choice
of Db. The rate at which these series converge, howe
will be affected by this choice.

IV. Db

For valence approximation calculations of the light ha
ron spectrum, the up and down quark masses are usu
taken to be equal and the correspondingk is chosen by re-
quiring the pion mass to have its physical value. The vale
approximationbv is then determined by setting the rho ma
to its physical value. Thus, in effect,Db is found by requir-
ing the valence approximation error in the rho mass to v
ish. Since the rho mass is expected to be determined ma
by the low-momentum behavior of the chromoelectric fie
this choice may be viewed as a quantitative implementa
of the qualitative picture of the valence approximation me
tioned briefly in Sec. I. A class of possible alternatives co
sists of choices ofDb which make the error, or some ap
proximation to the error, equal to zero for other quantit
beside the rho mass which are determined mainly by
low-momentum behavior of the chromoelectric field. A co
venient version of this idea for the present discussion is to
Db by requiring zero valence approximation error for t
Landau gauge gluon propagator at minimal nonzero mom
tum to first order in quark loops and to second order in
coupling constant expansion. As an additional simplificati
the expectation values needed to determineDb we find using
~analytic! mean-field-improved perturbation theory rath
than by Monte Carlo. For the test case considered in Sec
we obtain the same value ofDb by this method as produce
by the non-perturbative method of Ref.@5#.

The requirement forDb becomes thatd1(G) of Eq. ~3.3!
vanish:

^~G2^G&v!~Q2^Q&v!&v50, ~4.1!

where

G5(
cm

Ãcm~p!Ãcm~2p!, ~4.2!

Q52tr~V!2
1

2
tr~V2!2

Db

6
P,
8-3
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V5M0
21~M02z21M !.

The quantityÃcm(p) is the Fourier transformed gauge pote
tial

Ãcm~p!5(
x

exp~2 ip•x!Acm~x! ~4.3!

for momentum vectorp with a single nonzero componentp1
of 2p/L, whereL is the lattice period. To second order
mean-field-improved perturbation theory, the link fie
u(x,y), in M, and the plaquette actionP can be approxi-
mated by

u~x,x1m̂ !5zH 12 iAcmS x1
1

2
m̂ DTc

2
1

2 FAcmS x1
1

2
m̂ DTcG2J ,

P5
^tr U&v

3 (
xcmn

H 12
1

2 FFcmnS x1
1

2
m̂1

1

2
n̂ D G2J ,

Fcmn~x!5AcmS x1
1

2
n̂ D2AcmS x2

1

2
n̂ D

1AcnS x2
1

2
m̂ D2AcnS x1

1

2
m̂ D , ~4.4!

where theTc are an orthnormal basis for the Lie algebra
SU(3),

tr~TcTd!5
1

2
dcd ,

and ^tr U&v is the valence approximation plaquette expec
tion value.

The vacuum expectation values in Eqs.~4.5! we evaluate
by lattice weak coupling perturbation theory to second or
in the valence approximation coupling constant. This cal
lation reduces to finding the two vacuum polarization Fe
man diagrams in Fig. 1. These diagrams for QCD are p
portional to the corresponding diagrams for aU(1) lattice
gauge theory and thus satisfy theU(1) theory’s Ward iden-
tities. The calculation of the tadpole diagram, Fig. 1~b!, can
thus be eliminated. We obtain

Db5
9nf

4 sin2~p/L !^tr U&v

@P22~p!2P22~0!#,

Pmn~p!5
1

L4 (
q

tr@Gm~q1p/2!S~q1p!Gn

3~q1p/2!S~q!#, ~4.5!

where each component ofq in the sum overq ranges from
p/L to 2p2p/L in steps of 2p/L. The propagatorS(q) and
vertexGm(q) are
09450
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S~q!5
1

1/~2k0!2 i(
m

gm sin~qm!2(
m

cos~qm!

,

Gm~q!5sin~qm!2 igm cos~qm!. ~4.6!

The limiting value ofDb for largeL without mean-field
improvement has been derived in Ref.@8#.

V. EXAMPLE

As a test of our method we compared valence approxim
tion expectations^G&v , Eq. ~2.3!, their one-loop errors
^(G2^G&v)(Q2^Q&v)&v , Eq. ~3.2!, and the corresponding
full QCD expectationŝ G&, Eq. ~3.1!, for a lattice 104 with
bv of 5.679, k of 0.16 andnf of 2. For a 163332 lattice at
bv of 5.70, Ref.@1# gives a criticalkc of 0.16940~5! and
strange quark massmsa in lattice units of 0.097~3!. Thusk
of 0.16 corresponds to a quark mass about 1.8 timesmsa.
According to Eq.~4.5!, Db is 0.243, giving a full QCDb of
5.436. For this caseDb found by the method of Ref.@5# is
0.244~6!.

We used 224 independent equilibrium gauge configu
tions in the valence approximation ensemble, generated
an over-relaxed pseudo heat bath algorithm, 600 random
mion fields R to evaluate the trace in Eq.~3.9! and 176
weakly correlated equilibrium gauge configurations for t
full QCD ensemble, generated by a red-black preconditio
hybrid Monte Carlo algorithm. The expansion in E
~3.9! was carried to ordern of 10. The calculation of
^(G2^G&v)(Q2^Q&v)&v was not tuned carefully. In par
ticular R of 600 in Eq.~3.9! is much larger than its optima
vaule. The time required for the valence approximation a
error calculation was still less than 5% of the time requir
by the full QCD calculations.

For G we used Wilson loopsW0 , . . . ,W10 consisting,
respectively, of paths 131,231, all rotations of steps in the

directions 1ˆ ,2̂,3̂,21̂,22̂,23̂, all rotations of steps in the

directions 1ˆ ,2̂,3̂,22̂,21̂,23̂, 331, 232, 431, 531, 3

FIG. 1. Feynman diagrams which contribute toDb.
8-4
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COUPLING CONSTANT AND QUARK-LOOP EXPANSION . . . PHYSICAL REVIEW D59 094508
32, 432, and 333. For the 333 loop,W10, Fig. 2 shows
the predicted error̂(W102^W10&v)(Q2^Q&v)&v as a func-
tion of the highest powern of coupling strength used in Eq
~3.9!. The error converges adequately byn of 7. For smaller
Wilson loops, W0 , . . . ,W9, the predicted error’s conver
gence as a function ofn is comparable to or faster than th
convergence shown in Fig. 2. Forn of 7, Fig. 3 shows the
relative shift of the valence approximation from fu
QCD, (̂ Wi&2^Wi&v)/^Wi&, and the predicted value
^(Wi2^Wi&v)(Q2^Q&v)&v /^Wi&. To within statistical un-
certainties, the predicted errors agree with the true error

The true errors in Fig. 3 were found from the shortest f
QCD run sufficient to confirm equilibration o
^W0&, . . . ,̂ W10&. Nonetheless, the statistical uncertainties
the predicted errors are much larger than those in the
errors. If we were to run the error prediction algorithm lo
enough to obtain statistical uncertainties comparable to
uncertainties found by a direct comparison of full QCD a

FIG. 2. The predicted relative shift in Wilson loopW10 from its
valence approximation value as a function of the ordern in cou-
pling constant compared to the true shift of full QCD.

FIG. 3. The predicted relative shift in 11 Wilson loops fro
their valence approximation values in comparison to the true s
of full QCD.
09450
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the valence approximation, it is possible that the compu
time required by the error algorithm would become comp
rable to that for full QCD. To find the uncertainty arisin
from use of the valence approximation, however, the sta
tical uncertainty in the error estimate does not need to be
much smaller than the error estimate’s central value. Use
this way, for the set of parameters of the test, our algorit
takes significantly less time than the shortest possible di
comparison of the valence approximation and full QCD.

VI. GLUEBALL-QUARKONIUM MIXING

We now consider briefly the valence approximation
glueball-quarkonium mixing, corrections to the valence a
proximation to mixing which follow from Eq.~3.2! and a
mixing calculation reported in Ref.@9#. The lowest lying
glueball, according to the valence approximation, is sta
and is expected to be a scalar. Evidence thatf 0(1710) is
composed mainly of this state is given in Refs.@10–13#.
With quark-antiquark annihilation initially ignored, the ligh
est scalar quarkonium states are also stable. Their vale
approximation masses and evidence for their identificat
with observed states is discussed in Refs.@14,11–13#.

Mixing among thess̄ and (uū1dd̄)/A2 scalars and the
scalar glueball then occurs through quark-antiquark annih
tion. In the valence approximation, the glueball-quarkoniu
mixing energy can be extracted@12,13# from the vacuum
expectation value

Cv~ t !5^g~ t !s~0!&v , ~6.1!

whereg(xW ,t) is the smeared zero-momentum scalar glueb
operator of Ref.@15#, with vacuum expectation subtracte
and s(xW ,t) is the smeared zero-momentum scalar quar
nium operator of Ref.@14#. It is convenient to define also
full QCD C(t) by Eq.~6.1! with ^•••&v replaced bŷ •••&. A
qualitative representation ofCv(t) is provided by Fig. 4 giv-
ing a typical Feynman diagram contributing to the latti
weak coupling expansion forCv(t).

Assuming, for simplicity, only vacuum polarization aris
ing from u andd quarks taken to have degenerate mass,
one-quark-loop correction toCv(t) can be found from Eqs
~3.1!–~3.3!. For the present discussion, we will not apply t
expansion of Eq.~3.8!. The one-quark-loop error inCv(t)
becomes

C~ t !2Cv~ t !5TM2
Db

6
TP ,

TM5^@g~ t !s~0!2^g~ t !s~0!&v#

3@2tr log~M !2^2tr log~M !&v#&v ,

TP5^@g~ t !s~0!2^g~ t !s~0!&v#@P2^P&v#&v . ~6.2!

Qualitative representations ofTM andTP are given by typi-
cal Feynman diagrams contributing to their weak coupl
expansions shown in Figs. 5~a! and 5~b!, respectively.
Among the processes contributing toTM in Fig. 5~a! are
glueball-quarkonium transitions through common pi-

ift
8-5
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W. LEE AND D. WEINGARTEN PHYSICAL REVIEW D59 094508
kaon-antikaon, and eta-eta decay channels. The quantityTP ,
on the other hand, is the counterterm, discussed in Sec
which arises from the shiftDb betweenb of full QCD and
the screenedbv of the valence approximation.

In Ref. @9# a model is proposed for mixing among th
valence approximation to the lightest scalar glueball s
and the valence approximations to the lightest scalarss̄ and
(uū1dd̄)/A2 states. Applied to glueball-quarkonium mixin
energies, this model omits the leading valence approxima
mixing amplitude coming fromCv(t) and represented in Fig
4. The model includes instead only transitions through co
mon pi-pi, kaon-antikaon and eta-eta decay channels. T
transitions do contribute toTM . Thus the model might be
viewed as a calculation of quark-loop corrections to the
lence approximation to mixing if not as an evaluation of t
full mixing process. The equation assumed to govern mix
between the valence approximation glueball and quarkon
states through intermediate decay channels, however,
tirely ignores the counter-termTP . No argument is offered
in support of this omission. Reference@9# simply assumes
without proof, a relation between full QCD and valence a
proximation propagators with no term corresponding toTP .

With this counter-term dropped, Eq.~6.2! gives the error
in Cv(t) for a version of the valence approximation withDb
forced to zero. Equivalently, it is easily checked thatTP is
the derivative ofCv(t) with respect tobv . Thus by dropping
theTP term from Eq.~6.2! the one-quark-loop error estima
for Cv(t) is altered by approximately the increment inCv(t)
in going frombv2Db to bv . For bv of 5.93, Db is known
to be greater than 0.23. Thus a lower bound on the effec
settingDb to zero can be found by comparing valence
sults atbv of 5.70 with those atbv of 5.93. The data in Refs
@12,13# then show that the one-quark-loop error estimate
glueball-quarkonium energy is changed by an amount eq
to the entire leading valence approximation to the mix
energy obtained fromCv(t).

FIG. 4. Quarkonium-glueball mixing through quark-antiqua
annihilation.

FIG. 5. One-quark-loop corrections to the valence approxim
tion to quarkonium-glueball mixing.
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A cross-check on the consequences for valence appr
mation errors of forcingDb to zero can be obtained by mak
ing this change in the error formula applied to low-lyin
hadron masses and meson decay constants. Using the d
Refs. @1,4# for bv of 5.70 and 5.93, we find that withDb
forced to zero, masses and decay constants are off b
much as 45%, rather than by less than 10% or less than 2
respectively, for an optimally chosenDb.

Thus as a calculation of errors in the valence approxim
tion to glueball-quarkonium mixing energies, Ref.@9# would
be expected to predict significantly larger errors than actu
occur with an optimal choice ofDb. As we mentioned ear-
lier, however, also missing from the calculation of Ref.@9# is
the leading valence approximation term which can be
tained fromCv(t). It appears to us that Ref.@9# gives neither
an adequate model of the full glueball-quarkonium mixi
process nor of the corrections to the leading valence appr
mation to this process. We believe its results are simply
correct.

In partial defense of Ref.@9#, it might be argued that
althoughTP is not explicitly present in the relation give
between valence approximation propagators and those of
QCD, TP is nonetheless present implicitly. The coupling b
tween valence approximation states and two-body de
channels is assumed to fall exponentially withukW u2, wherekW
is the center-of-mass system 3-momentum carried by on
the decay products. Perhaps this exponential cutoff remo
from the equation of Ref.@9# those contributions whichTP
subtracts from our equations. For this to hold would requ
a surprising coincidence since no mention is made in Ref.@9#
of the need for a term likeTP in the relation between full
QCD and the valence approximation and no attempt is m
to tune the cutoff to absorb this term. The cutoff is intr
duced simply as the authors’ expectation of the behavio
coupling between unstable scalars and their pseudoscala
cay products.

In addition, however, it is mentioned explicitly in Re
@9#, and supported by the tables giving proposed values
full QCD corrections to valence approximation masses, t
the model of Ref.@9# predicts full QCD masses below va
lence approximation masses for those states which are s
in the valence approximation but unstable in full QCD. Th
is exactly the result to be expected for corrections to
valence approximation given by Eqs.~3.2! and~3.3! with TP
removed. For the vacuum expectation of an arbitraryG, Eqs.
~3.2! and ~3.3! give

^G&2^G&v5TM
G 2

Db

6
TP

G ,

TM
G 5^~G2^G&v!@2tr log~M !2^2tr log~M !&v#&v ,

TP
G5^~G2^G&v!~P2^P&v!&v . ~6.3!

The contribution to the error in̂G&v from the termTM
G is the

incremental effect of the color charge screening due t
single quark loop and therefore of a decrease, by so
-

8-6
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amount, in the QCD effective charge. As a consequenc
QCD’s asymptotic freedom this term shifts quantities w
mass units toward smaller values in full QCD than in t
valence approximation. From our discussion earlier it f
lows that the termTP

G has the opposite effect. It shifts qua
tities with mass units toward larger values in full QCD th
in the valence approximation. In fact, as might be expec
from the discussion of Ref.@11#, calculations of valence ap
proximation decay constants@4,3# and a recent calculation o
ar

ar

09450
of

-

d

masses@3# show that full QCD quantities for excited state
are consistently larger those of the valence approximat
ThereforeTP

G for propagators of excited states is consisten
larger in magnitude thanTM

G , and the model of Ref.@9#
predicts even the wrong sign for the relation between mas
in full QCD and in the valence approximation. It appears
us this error is clear evidence that the model’s cutoff
decay momenta cannot have absorbed the effect of the o
sion of TP

G .
ett.

,
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