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Perturbative matching of lattice and continuum heavy-light currents with NRQCD heavy quarks
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The temporal and spatial components of the heavy-light vector current and the spatial components of the
axial-vector current are expressed in terms of lattice-regulated operators suitable for simulations ofB andD
mesons. The currents are constructed by matching the appropriate scattering amplitudes in continuum QCD
and a lattice model to one-loop order in perturbation theory. In the lattice theory, the heavy quarks are treated
using the nonrelativistic~NRQCD! formulation and the light quarks are described by the tadpole-improved
clover action. The light quarks are treated as massless. Our currents include relativistic and discretization
corrections throughO(as /M ,aas), whereM is the heavy-quark mass,a is the lattice spacing, andas is the
QCD coupling. As in our previous construction of the temporal component of the heavy-light axial-vector
current, mixing between several lattice operators is encountered at one-loop order, andO(aas) dimension-four
improvement terms are identified.@S0556-2821~99!03109-4#

PACS number~s!: 12.38.Gc, 12.39.Hg, 13.20.He, 14.40.Nd
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I. INTRODUCTION

An important goal of lattice gauge theory is to provid
estimates of the hadronic matrix elements, such as thos
the electroweak currents and effective four-fermion ope
tors, which are needed for precision tests of the stand
model. Numerical simulations of quarks and gluons
lattice-regulated QCD currently provide the only means
calculating such matrix elements from first principles taki
long-distance QCD dynamics fully into account. An impo
tant ingredient in these calculations is the construction of
lattice current operators which match the currents define
the continuum to some desired accuracy. In this paper,
express the heavy-light vector and axial-vector currents
terms of operators defined in a lattice model in which
heavy quarks are treated using the nonrelativistic~NRQCD!
formulation @1#, the light quarks are described by th
tadpole-improved clover action@2#, and the gluons are gov
erned by the standard Wilson action. These heavy-light c
rents are important in studies of heavy meson leptonic
semileptonic decays~for recent reviews, see Refs.@3–5#!.
The lattice currents are determined by matching scatte
amplitudes in the lattice model to those in continuum QC
to one-loop order in perturbation theory. The matching
carried out throughO(1/M ,as /M ,aas) where M is the
heavy quark mass,a is the lattice spacing, andas is the QCD
coupling. The light quarks are treated as massless.

Each heavy-light currentJm , defined in some continuum
renormalization scheme, can be written

Jm5(
j

Cj
JJm, lat

~ j ! 1O~as
2 ,a2,1/M0

2 ,asa/M0!, ~1!

where Jm, lat
( j ) are operators defined in the effective latti

theory,M0 is the heavy quark~bare! mass parameter appea
ing in the lattice NRQCD action, and theCj

J coefficients are
0556-2821/99/59~9!/094504~9!/$15.00 59 0945
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c-numbers which depend only onas andaM0. The goal is to
identify the operatorsJm, lat

( j ) and to calculate the matchin
coefficientsCj

J(as ,aM0). The procedure for doing this wa
described in a previous article@6# in which the temporal
component of the axial-vector current was studied. For c
venience, we reiterate the salient steps:~1! select a quark-
gluon scattering process induced by the heavy-light curr
of interest and calculate the one-loop amplitude for this p
cess in continuum QCD;~2! expand the amplitude in power
of 1/M ; ~3! identify operators in the lattice theory, usually b
inspection, which reproduce the terms in this expansion;~4!
calculate the one-loop mixing matrix of these operators
the lattice theory; and~5! adjust theCj

J coefficients to pro-
duce a linear combination of lattice current operators wh
one-loop scattering amplitude agrees with that determine
step ~2! to a given order in 1/M and a. In this paper, we
apply the above procedure to the spatial componentsAk of
the axial-vector current and the spatial and temporal com
nents of the vector currentVm . We omit much of the calcu-
lational details since they are similar to those already
scribed in Ref.@6#.

In Sec. II, we start from a continuum QCD calculatio
and identify the current operators in the effective theo
needed to reproduce the continuum current throu
O(as /M ). In Sec. III, we describe the lattice theory and t
one-loop mixing calculation among theJm, lat

( j ) . The matching
procedure is then completed in Sec. IV. In Sec. V, we d
cussO(aas) corrections in the static limit, and issues pe
taining to terms that behave asas log(aM) are dealt with in
Sec. VI. The paper concludes with a summary of our res
in Sec. VII.

II. OPERATOR IDENTIFICATION

The heavy-light vector and axial-vector currents a
given as usual by Vm(x)5q̄(x)gmh(x) and Am(x)
©1999 The American Physical Society04-1
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COLIN J. MORNINGSTAR AND J. SHIGEMITSU PHYSICAL REVIEW D59 094504
5q̄(x)g5gmh(x), respectively, whereq(x) is the light quark
field, h(x) is the heavy quark field, andgm are the standard
Dirac g-matrices in Euclidean space-time which satis
$gm ,gn%52dmn , andg55g0g1g2g3. Euclidean-space four
vectors are defined in terms of Minkowski-space fo
vectors ~indicated by an underline! using x05 i x0 and xj
5xj52xj , for j 51,2,3. For the derivative operator,]0

52 i ]0 and ] j5] j52] j . The currents are related byJ0

5J0, andJj52 i Jj . For further details, see Refs.@6,7#.
The first step in identifying the necessary operators in

effective lattice theory is to calculate the matrix elements
the continuum QCD currents for an incoming heavy quark
momentump and an outgoing light quark of momentump8.
Using the on-shell mass and wave function renormaliza
scheme in Feynman gauge and expanding in 1/M @except for
uh(p)], one finds to one-loop order in perturbation theory

^q~p8!uJmuh~p!&QCD5ūq~p8!Wm
J ~p8,p!uh~p!, ~2!

where

Wm
J ~p8,p!5a1Gm

J 2a2

ipm

M
G0

Jg02a3

p•p8

M2
Gm

J 2a4

ipm8

M
G0

Jg0

1a5

p•p8

M2

ipm

M
G0

Jg01O~1/M2!, ~3!

with

a1511
as

3p F3 ln
M

l
2

11

4 G ,
a25

as

3p
2,

a35
as

3p F6 ln
M

l
2

8p

3

M

l
1

1

2G ,
a45

as

3p F22 ln
M

l
1

1

2G ,
a55

as

3p F24 ln
M

l
15G . ~4!

For the vector current,Gm
V5gm and for the axial-vector cur

rent,Gm
A5g5gm . uh(p) anduq(p8) are the standard spinor

for the heavy and light quarks, respectively, which satisfy
Dirac equation. The light quark mass is set equal to ze
Ultraviolet divergences are treated using dimensional re
larization, and fully anti-commutingg5 matrices are used
We use a gluon massl to regulate infrared divergence
Note thatM is the heavy-quark pole mass.

In lattice NRQCD, the heavy quark is described in ter
of a two-component~in spin space! field c(x). The Dirac
field h(x) is related toc(x) @and the antiquark fieldc̃(x)]
by a unitary Foldy-Wouthuysen transformation@8#,
09450
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h~x!5UFW
21S c~x!

c̃~x!
D . ~5!

This transformation decouples the upper and lower com
nents of the Dirac field, thereby separating the quark fi
from the antiquark field. To facilitate the identification o
lattice NRQCD operators capable of matching Eq.~2!, we
similarly transform the external state spinoruh(p) into a
nonrelativistic Pauli spinor:

uh~p!5F12
i

2M
g•pGuQ~p!1O~1/M2!, ~6!

where

uQ~p!5S UQ

0 D , ~7!

andUQ is a two-component external state spinor depend
only on the spin of the heavy quark. Note that we are wo
ing in the Dirac-Pauli representation. Using Eq.~6!, the re-
lation g0uQ(p)5uQ(p), and the Dirac equation for the ligh
quark ūq(p8)p0852ūq(p8)g•p8g0, the spatial component
of Eq. ~2! may be written

^q~p8!uJkuh~p!&QCD5h0Vk
~0!1h1Vk

~1!1h2Vk
~2!1h3Vk

~3!

1h4Vk
~4!1O~as

2,1/M2!, ~8!

with

Vk
~0!5ūq~p8!Gk

JuQ~p!, ~9!

Vk
~1!52 i ūq~p8!Gk

Jg•p

2M
uQ~p!, ~10!

Vk
~2!5 i ūq~p8!

g•p8

2M
g0Gk

JuQ~p!, ~11!

Vk
~3!52 i ūq~p8!

pk

2M
G0

JuQ~p!, ~12!

Vk
~4!52 i ūq~p8!

pk8

2M
G0

JuQ~p!. ~13!

The coefficients in Eq.~8! are given by

h05a1511asB̃0 ,

h15h0 ,

h252a35asB̃2 ,

h352a25asB̃3 ,

h452a45asB̃4 , ~14!
4-2
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where

B̃05
1

3p F3 ln
M

l
2

11

4 G ,
B̃25

1

3p F12 ln
M

l
2

16p

3

M

l
11G ,

B̃35
1

3p
4,

B̃45
1

3p F24 ln
M

l
11G . ~15!

Having obtained the 1/M expansion of the above scatte
ing amplitude in continuum QCD, the next step is to ident
operators in the lattice effective theory that can reproduce
terms in this expansion. An inspection of Eq.~8! suggests
immediately that matrix elements of the following five lattic
operators should be considered:

Jk, lat
~0! ~x!5q̄~x!Gk

JQ~x!, ~16!

Jk, lat
~1! ~x!5

21

2M0
q̄~x!Gk

Jg•“Q~x!,

~17!

Jk, lat
~2! ~x!5

21

2M0
q̄~x!g•“Q g0Gk

JQ~x!,

~18!

Jk, lat
~3! ~x!5

21

2M0
q̄~x!G0

J¹kQ~x!,

~19!

Jk, lat
~4! ~x!5

1

2M0
q̄~x!¹Q kG0

JQ~x!,

~20!

whereq(x) is now the light quark field in the lattice theory
M0 is the bare heavy quark mass, andQ(x) is related to the
heavy quark fieldc(x) in lattice NRQCD by

Q~x!5S c~x!

0 D . ~21!

We use the bare quark massM0 in the above definitions
since it is the natural choice to use in lattice simulations a
because the pole massM is not well defined beyond pertur
bation theory. Definitions of the lattice derivatives are giv
in the next section.

For the temporal components of the currentsJ05V0 or
A0, the leading 1/M behavior is given by

^q~p8!uJ0uh~p!&QCD5h0
t V0

~0!1h1
t V0

~1!1h2
t V0

~2!

1O~as
2,1/M2!, ~22!

with
09450
e

d

V0
~0!5ūq~p8!G0

JuQ~p!, ~23!

V0
~1!52 i ūq~p8!G0

Jg•p

2M
uQ~p!, ~24!

V0
~2!5 i ūq~p8!

g•p8

2M
g0G0

JuQ~p!.

~25!

The coefficients in Eq.~22! are given by

h0
t 5~a11a2!511asB̃0

t ,

h1
t 5~a12a2!511asB̃1

t ,

h2
t 52~a31a41a5!5asB̃2

t , ~26!

where

B̃0
t 5

1

3p F3 ln
M

l
2

3

4G ,
B̃1

t 5
1

3p F3 ln
M

l
2

19

4 G ,
B̃2

t 5
1

3p F122
16p

3

M

l G . ~27!

Again, it is straightforward to identify operators in the lattic
effective theory which can reproduce these terms:

J0,lat
~0! ~x!5q̄~x!G0

JQ~x!, ~28!

J0,lat
~1! ~x!5

21

2M0
q̄~x!G0

Jg•“Q~x!, ~29!

J0,lat
~2! ~x!5

21

2M0
q̄~x!g•“Q g0G0

JQ~x!. ~30!

These operators were previously used in the expansion o
temporal component of the axial-vector heavy-light curre
in Refs.@6,9#.

III. MIXING MATRIX

Having identified the necessary operators in the latti
regulated effective field theory, we next need to calculate
mixing matrix Zi j

J of these operators defined by

^q~p8!uJm, lat
~ i ! uh~p!& lat5(

j
Zi j

J Vm
~ j !

1O~as
2,1/M2,a2,asa/M !,

~31!

whereVm
( j ) are the fiveVk

( j ) defined in Eqs.~9!–~13! for m
5k51,2,3 and the threeV0

( j ) defined in Eqs.~23!–~25! for
m50. The determination of theZi j

J factors is the most diffi-
4-3
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cult aspect of the current construction. These factors are
termined numerically using lattice perturbation theory. T
same methods used in Ref.@6# are applied here. We also us
the same lattice action as in Ref.@6#, but for the convenience
of the reader, we restate these actions below. The Feyn
rules for our heavy and light quark lattice action and furth
details of lattice perturbation theory are given in Refs.@6,7#.

For the heavy quark, the following NRQCD action de
sity on the lattice@1# is used:

aLNRQCD5c†~x!c~x!2c†~x1at!S 12
adH

2 D
3S 12

aH0

2n D n U4
†~x!

u0
S 12

aH0

2n D n

3S 12
adH

2 Dc~x!, ~32!

where

H052
D~2!

2M0
, ~33!

dH52cB

g

2M0
s•B, ~34!

Um(x) are standard gauge-field link variables,n is an integer,
s j are the Pauli matrices,u0 is the mean link paramete
introduced by the tadpole improvement procedure@10#, and
the QCD couplingg is related toas by as5g2/(4p). At the
tree level, cB51; the one-loop contribution tocB is an
O(a2) effect in our mixing matrix calculation and hence c
be ignored here. The chromomagnetic field is given
Bj (x)52 1

2 e j lmFlm(x), where the Hermitian and traceles
field strength tensorFmn(x) is defined at the sites of th
lattice in terms of clover-leaf operators:

Fmn~x!5Fmn~x!2
1

3
TrFmn~x!,

Fmn~x!5
2 i

2a2g
„Vmn~x!2Vmn

† ~x!…,

Vmn~x!5
1

4u0
4 (

$~a,b!%mn

Ua~x!Ub~x1aa!

3U2a~x1aa1ab!U2b~x1ab!, ~35!

with $(a,b)%mn5$(m,n),(n,2m),(2m,2n),(2n,m)% for
mÞn. The lattice derivatives in our action and in the curre
operators are given by

a¹mO~x!5
1

2u0
@Um~x!O~x1am!

2Um
† ~x2am!O~x2am!#, ~36!
09450
e-
e

an
r
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t

O~x!a¹Q m5
1

2u0
@O~x1am!Um

† ~x!

2O~x2am!Um~x2am!#, ~37!

a2D~2!O~x!5 (
k51

3

„u0
21@Uk~x!O~x1ak!

1Uk
†~x2ak!O~x2ak!#22O~x!…, ~38!

a2¹~2!O~x!5 (
m50

3

„u0
21@Um~x!O~x1am!

1Um
† ~x2am!O~x2am!#22O~x!…,

~39!

whereO(x) is an operator defined at lattice sitex with ap-
propriate color structure.

For the light quarks, we use the clover action@2#,

aLl ight5q̄¹”q2a
r

2
q̄¹~2!q1m0q̄q2 iga

r

4 (
m,n

q̄smnFmnq,

~40!

where¹”5(mgm¹m , m0 is the bare light quark mass,smn

5 1
2 @gm ,gn#, and we set the Wilson parameterr 51. The

one-loop correction to the clover coefficient is anO(as
2)

effect in our matching calculation and is neglected here.
At one-loop order, the mixing matrix elements may

written @11#

Zi j
J 5d i j 1asH F1

2
~C̃q1C̃Q!1C̃m~12d i0!Gd i j 1 z̃ i j

J J ,

~41!

whereC̃q and C̃Q are the contributions from the light- an
heavy-quark external leg corrections~that is, from wave
function renormalization factors!, and z̃ i j

J denote the contri-
butions from the vertex corrections. Our use of an on-sh
renormalization scheme with lattice operators defined
terms of the bare massM0 is responsible for the term pro
portional toC̃m , where

M5@11asC̃m#M01O~as
2!. ~42!

Note that although the current operatorsJm, lat
( i ) are defined

usingM0, the pole massM appears inVm
( j ) . Within the con-

text of finite-order perturbation theory, the pole mass is
observable quantity. It is gauge invariant and regularizat
scheme independent. Hence, it is the natural heavy-qu
mass definition to use when matching amplitudes in differ
schemes. However, in reality, a confined quark has no p
mass. Once the matching coefficientsCj

J are obtained in
terms of aM, it is then necessary to eliminate any depe
dence onM in favor of some quark mass which is define
beyond perturbation theory. Clearly, the mass parameterM0
appearing in the lattice action is the most suitable and c
4-4
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venient choice. The relationship betweenM andM0 given in
Eq. ~42! is then used to re-express theCj

J coefficients in
terms ofM0.

The factors in Eq.~41! may be further decomposed:

C̃q5Cq1
2

3p
ln al1Cq

TI ,

C̃Q5CQ2
4

3p
ln al,

~43!

C̃m5Cm1Cm
TI ,

z̃ i j
J 5z i j

J 1z i j
J,TI1z i j

J,IR ,

whereCq , CQ , Cm , andz i j
J are infrared finite and indepen

dent of the tadpole improvement factoru0, and z i j
J,IR and

z i j
J,TI contain the infrared divergences and tadpole impro

ment contributions, respectively, from the vertex correctio
Contributions toC̃q and C̃m from the tadpole improvemen
counterterms are denoted byCq

TI andCm
TI , respectively. The

tadpole improvement terms are

Cq
TI52u0

~2! ,

Cm
TI52u0

~2!S 12
3

2naM0
D ,

z i j
J,TI5u0

~2!d i j ~12d i0!, ~44!

whereu0512asu0
(2)1O(as

2). For the usual plaquette defi

nition u05^ 1
3 Tr Uh&1/4 in the Wilson gluonic action,u0

(2)

5p/3. For massless clover quarks,Cq51.030. Values for
CQ andCm are given in Ref.@6#.

IV. MATCHING

To complete the operator construction forJk , we invert
Eq. ~31! to getVm

( j )5( i(Z
J) j i

21^Jm, lat
( i ) & lat , substitute this into

Eq. ~8!, peel off the dependence on the external states,
use Eqs.~14!, ~15!, ~41!, ~42!, and~43! to obtain

Jk5~11as@B02CQq2t0
Jk# !Jk, lat

~0!

1~11as@B12CQqm2t1
Jk2t1

TI# !Jk, lat
~1!

1as@B22t2
Jk#Jk, lat

~2! 1as@B32t3
Jk#Jk, lat

~3!

1as@B42t4
Jk#Jk, lat

~4! 1O~as
2 ,a2,1/M2,asa/M !,

~45!
09450
-
.

nd

wheret j
Jk5z0 j

Jk1z1 j
Jk ,t1

TI5u0
(2) ,

B05
1

p F ln~aM0!2
11

12G5B1 ,

B25
1

p F4 ln~aM0!1
1

3G ,
B35

4

3p
,

B45
1

p F2
4

3
ln~aM0!1

1

3G , ~46!

and

CQq5
1

2
~Cq1Cq

TI1CQ!, ~47!

CQqm5CQq1Cm1Cm
TI . ~48!

As expected, the infrared divergences from the various te
in the expansion coefficients cancel. Results fort j

Vk andt j
Ak

for various values ofaM0 are listed in Tables I and II, re
spectively.

For the temporal component of the vector current,
substitute the inverted Eq.~31! into Eq. ~22!, remove the
dependence on the external states, and use Eqs.~26!, ~27!,
~41!, ~42!, and~43! to obtain

V05~11as@B0
t 2CQq2t0

V0# !J0,lat
~0!

1~11as@B1
t 2CQqm2t1

V02t1
TI# !J0,lat

~1!

1as@B2
t 2t2

V0#J0,lat
~2! 1O~as

2 ,a2,1/M2,asa/M !,

~49!

where

B0
t 5

1

p F ln~aM0!2
1

4G ,
B1

t 5
1

p F ln~aM0!2
19

12G ,
B2

t 5
4

p
. ~50!

Again, all infrared divergences cancel. Results fort j
V0 for

variousaM0 values are given in Table III.
From Eqs.~45! and~49!, one easily obtains the matchin

coefficientsCj
J of Eq. ~1! which expresses the heavy-ligh

currents in terms of operators suitable for numerical simu
tions using lattice NRQCD. These coefficients can be writ
in the form
4-5
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TABLE I. Values of the coefficientst i
Vk corresponding to the spatial components of the vector currenVk

for various values of the bare heavy-quark massaM0 and NRQCD stability parametern. Uncertainties in the
determinations of these parameters due to the use of Monte Carlo integration are included.

aM0 n t0
Vk t1

Vk t2
Vk t3

Vk t4
Vk

10.0 1 0.8189~1! 20.588(3) 213.93(1) 20.566(4) 20.940(5)
7.0 1 0.7880~1! 20.640(2) 28.150(7) 20.508(3) 20.909(3)
4.0 1 0.7221~1! 20.757(5) 22.809(7) 20.385(7) 20.836(7)
4.0 2 0.7340~1! 20.742(4) 23.084(8) 20.422(6) 20.842(7)
3.5 2 0.7176~2! 20.775(4) 22.310(5) 20.392(6) 20.817(6)
3.0 2 0.6982~1! 20.821(4) 21.594(4) 20.351(5) 20.791(5)
2.7 2 0.6840~2! 20.856(3) 21.196(4) 20.323(5) 20.767(5)
2.5 2 0.6732~2! 20.877(3) 20.955(4) 20.309(5) 20.750(4)
2.0 2 0.6410~1! 20.962(3) 20.427(3) 20.254(4) 20.693(3)
1.7 2 0.6170~2! 21.027(2) 20.188(2) 20.218(3) 20.647(3)
1.6 2 0.6075~2! 21.051(2) 20.123(2) 20.205(3) 20.627(2)
1.2 3 0.5768~2! 21.175(2) 20.081(2) 20.150(3) 20.534(2)
1.0 4 0.5559~2! 21.265(2) 20.148(1) 20.108(3) 20.464(2)
0.8 5 0.5249~2! 21.387(2) 20.288(1) 20.049(3) 20.363(1)
i
ca
rk

r

Ci
J~as ,aM0!5H 11asr i

J~aM0!1O~as
2! ~ i 50,1!,

asr i
J~aM0!1O~as

2! ~ i>2!.
~51!

The values forr i
Vk , r i

Ak , andr i
V0 for various values ofaM0

are listed in Tables IV, V, and VI, respectively.

V. O„aas… CORRECTIONS

In this section, discretization corrections in the static lim
aM0→` are discussed. To study such corrections, we
culated allt i

J for several large values of the heavy qua
mass. With the exception oft2

J , all of the t i
J tended tamely

to finite values in the static limit. However, asaM0 became
09450
t
l-

large, we found that the magnitude oft2
J began to grow

linearly with aM0:

t2
J →

aM0@1

22aM0zdisc
J 1const, ~52!

where thezdisc
J are constants independent ofaM0. We de-

termined thezdisc
J by computingt2

J for aM0510, 25, 100,
400, 1000, and 5000. We then fit the results fo
2t2

J/(2aM0) to a quadratic polynomial in 1/(aM0) and ob-
tained the following limiting values:

zdisc
A0 51.029~2!, ~53!

zdisc
Vk 51.031~1!, ~54!
tor
TABLE II. Values of the coefficientst i
Ak corresponding to the spatial components of the axial-vec

currentAk , similar to Table I.

aM0 n t0
Ak t1

Ak t2
Ak t3

Ak t4
Ak

10.0 1 0.2634~1! 21.098(4) 2.624~18! 0.611~6! 20.7291(2)
7.0 1 0.2685~1! 21.145(3) 2.137~12! 0.636~4! 20.7017(2)
4.0 1 0.2817~1! 21.254(2) 1.494~6! 0.691~2! 20.6401(2)
4.0 2 0.2742~1! 21.197(2) 1.475~6! 0.590~2! 20.6407(2)
3.5 2 0.2766~1! 21.225(2) 1.339~5! 0.595~2! 20.6219(2)
3.0 2 0.2793~1! 21.259(1) 1.168~4! 0.598~2! 20.5977(2)
2.7 2 0.2812~1! 21.284(1) 1.065~3! 0.598~2! 20.5796(2)
2.5 2 0.2824~1! 21.303(1) 0.985~3! 0.600~2! 20.5654(2)
2.0 2 0.2853~1! 21.365(1) 0.750~2! 0.599~2! 20.5196(2)
1.7 2 0.2862~1! 21.416(1) 0.582~2! 0.595~2! 20.4816(2)
1.6 2 0.2860~1! 21.436(1) 0.513~2! 0.591~2! 20.4661(2)
1.2 3 0.2725~1! 21.510(2) 0.188~1! 0.537~2! 20.3823(2)
1.0 4 0.2598~1! 21.567(2) 20.025(1) 0.511~2! 20.3190(2)
0.8 5 0.2407~1! 21.658(2) 20.291(1) 0.500~2! 20.2290(2)
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zdisc
Ak 520.063~1!, ~55!

zdisc
V0 520.063~1!. ~56!

The discretization factorzdisc
A0 for the temporal component o

the axial-vector current was previously calculated in Ref.@6#,
but its determination was not done very accurately. We h
recalculatedzdisc

A0 here to a much higher precision.
Since the contributions proportional tozdisc

J are purely
O(aas) discretization corrections, one may absorb the
terms into the lattice current operators. Improved current
erators can be defined using

Ĵm, lat
~0! ~x!5Jm, lat

~0! ~x!1aszdisc
J Jm, lat

~disc!~x!, ~57!

TABLE III. Values of the coefficientst i
V0 corresponding to the

temporal component of the vector currentV0, similar to Table I.

aM0 n t0
V0 t1

V0 t2
V0

10.0 1 0.3549~2! 20.541(8) 1.706(19)
7.0 1 0.3961~2! 20.572(6) 1.339(12)
4.0 1 0.4954~2! 20.643(3) 0.982(12)
4.0 2 0.4868~1! 20.695(3) 0.969(6)
3.5 2 0.5161~1! 20.718(3) 0.907(5)
3.0 2 0.5542~1! 20.752(3) 0.844(4)
2.7 2 0.5832~2! 20.774(2) 0.815(4)
2.5 2 0.6058~1! 20.794(2) 0.792(3)
2.0 2 0.6795~2! 20.853(2) 0.744(3)
1.7 2 0.7417~2! 20.899(2) 0.718(2)
1.6 2 0.7666~2! 20.920(2) 0.707(2)
1.2 3 0.8832~2! 21.034(1) 0.684(1)
1.0 4 0.9674~2! 21.109(1) 0.682(1)
0.8 5 1.0853~2! 21.202(1) 0.696(1)
09450
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Ĵm, lat
~ j ! ~x!5Jm, lat

~ j ! ~x!, ~ j .0!, ~58!

where

Jm, lat
~disc!~x!52aM0Jm, lat

~2! ~x!

52aq̄~x!g•“Q g0Gm
J Q~x!. ~59!

The mixing of the improved operators is given by

^q~p8!uĴm, lat
~ i ! uh~p!& lat5(

j
Ẑi j

J Vm
~ j !

1O~as
2,1/M2,a2,asa/M !,

~60!

where

Ẑ0i
J 5Z0i

J 12asaM0zdisc
J d2i , ~61!

Ẑj i
J 5Zji

J ~ j .0!. ~62!

Then the coefficientsĈj
J of these operators are

Ĉ2
J5C2

J22aM0zdisc
J as , ~63!

Ĉi
J5Ci

J ~ iÞ2!, ~64!

and the heavy-light currents are given by

Jm5(
j

Ĉ j
JĴm, lat

~ j ! 1O~as
2 ,a2,1/M0

2 ,asa/M0!. ~65!

Terms which grow linearly withaM0 are no longer presen
in Ĉj

J and Ẑi j
J . Note that in the lattice NRQCD approac

discretization and relativistic corrections are intertwin
sinceO(a) and O(1/M ) interactions are treated as equa
important.
of

ion are
TABLE IV. Values of the coefficientsr j
Vk defined in Eq.~51! corresponding to the spatial components

the vector current for various values of the bare heavy-quark massaM0 and NRQCD stability parametern.
Uncertainties in the determinations of these parameters due to the use of Monte Carlo integrat
included.

aM0 n r0
Vk r1

Vk r2
Vk r3

Vk r4
Vk

10.0 1 20.5051(3) 20.128(5) 16.968~11! 0.991~4! 0.069~5!

7.0 1 20.5441(2) 20.202(4) 10.733~7! 0.932~3! 0.190~3!

4.0 1 20.5496(2) 20.346(5) 4.680~7! 0.810~7! 0.354~7!

4.0 2 20.5744(2) 20.382(5) 4.955~8! 0.846~6! 0.360~7!

3.5 2 20.5694(2) 20.421(5) 4.011~5! 0.816~6! 0.392~6!

3.0 2 20.5585(2) 20.443(5) 3.099~4! 0.775~5! 0.431~5!

2.7 2 20.5472(2) 20.470(4) 2.566~4! 0.747~5! 0.451~5!

2.5 2 20.5366(2) 20.495(4) 2.228~4! 0.734~5! 0.467~4!

2.0 2 20.4958(2) 20.521(3) 1.415~3! 0.678~4! 0.505~3!

1.7 2 20.4561(3) 20.551(3) 0.970~2! 0.642~3! 0.528~3!

1.6 2 20.4391(3) 20.564(3) 0.828~2! 0.630~3! 0.534~2!

1.2 3 20.3679(3) 20.609(3) 0.419~2! 0.574~3! 0.563~2!

1.0 4 20.3018(4) 20.606(3) 0.254~1! 0.532~3! 0.570~2!

0.8 5 20.1818(5) 20.597(4) 0.110~1! 0.473~3! 0.564~1!
4-7



tor

COLIN J. MORNINGSTAR AND J. SHIGEMITSU PHYSICAL REVIEW D59 094504
TABLE V. Values of the coefficientsr j
Ak corresponding to the spatial components of the axial-vec

current, similar to Table IV.

aM0 n r0
Ak r1

Ak r2
Ak r3

Ak r4
Ak

10.0 1 0.0504~2! 0.383(6) 0.413~18! 20.186(6) 20.1420(2)
7.0 1 20.0246(2) 0.303(4) 0.447~12! 20.211(4) 20.0180(2)
4.0 1 20.1093(2) 0.151(3) 0.377~6! 20.267(2) 0.1578~2!

4.0 2 20.1146(2) 0.073(3) 0.397~6! 20.166(2) 0.1584~2!

3.5 2 20.1285(1) 0.028(3) 0.362~5! 20.171(2) 0.1963~2!

3.0 2 20.1396(1) 20.005(3) 0.337~4! 20.174(2) 0.2375~2!

2.7 2 20.1444(2) 20.043(3) 0.305~3! 20.174(2) 0.2641~2!

2.5 2 20.1458(2) 20.070(3) 0.288~3! 20.176(2) 0.2826~2!

2.0 2 20.1401(2) 20.117(3) 0.238~2! 20.174(2) 0.3316~2!

1.7 2 20.1253(2) 20.161(3) 0.200~2! 20.171(2) 0.3625~2!

1.6 2 20.1177(2) 20.180(3) 0.191~2! 20.166(2) 0.3727~2!

1.2 3 20.0636(3) 20.275(3) 0.151~1! 20.112(2) 0.4110~2!

1.0 4 20.0058(3) 20.304(3) 0.131~1! 20.087(2) 0.4251~2!

0.8 5 0.1023~5! 20.326(4) 0.113~1! 20.076(2) 0.4298~2!
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VI. LARGE LOGARITHMS

Another feature of theĈj
J matching coefficients is the

presence of ln(aM0) terms. The simulations of heavy-ligh
systems carried out to date have used bare heavy quark
values in the rangeaM0;1.624.0 where these logarithm
are not large. However, in the largeaM0 limit, these loga-
rithms must be treated with care. The logarithms appea
in the coefficientsĈj

J for j .0 are tamed by the 1/(aM0)
factors in their corresponding current operators. Howev
the logarithm appearing in theĈ0

J coefficient becomes prob
lematical and must be dealt with using the renormalizat
group.

In matching calculations between QCD and various c
tinuum effective theories, one usually encounters sim
logarithms of the form ln(M/m), wherem is some scale in-
troduced by the renormalization procedure. Such logarith

TABLE VI. Values of the coefficientsr j
V0 corresponding to the

temporal component of the vector current, similar to Table IV.

aM0 n r0
V0 r1

V0 r2
V0

10.0 1 0.1712(3) 20.387(9) 20.433(19)
7.0 1 0.0599(2) 20.482(7) 20.065(12)
4.0 1 20.1107(3) 20.672(4) 0.291(12)
4.0 2 20.1150(2) 20.642(5) 0.305~6!

3.5 2 20.1557(2) 20.691(4) 0.367~5!

3.0 2 20.2023(2) 20.725(4) 0.430~4!

2.7 2 20.2341(2) 20.765(3) 0.458~4!

2.5 2 20.2570(2) 20.791(3) 0.481~3!

2.0 2 20.3221(2) 20.842(3) 0.529~3!

1.7 2 20.3686(3) 20.891(3) 0.555~2!

1.6 2 20.3861(3) 20.907(3) 0.566~2!

1.2 3 20.4621(3) 20.963(3) 0.589~1!

1.0 4 20.5012(4) 20.974(3) 0.591~1!

0.8 5 20.5300(5) 20.994(3) 0.577~1!
09450
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are summed using the renormalization group~RG! equations
which follow from the requirement that physical quantiti
must not depend onm. Sincem appears only inside the loga
rithms, one ends up with simple anomalous-dimension m
trices and RG equations which can be solved straight
wardly. The situation is more complicated in the prese
calculation. The role ofm is taken over by the inverse lattic
spacing 1/a, and a appears not only in the logarithms, bu
also in other places, such as thet j

J which are complicated
functions ofaM0. Furthermore, the ultraviolet cutoff 1/a is
an integral part of our effective theory and we cannot ta
a→0.

As discussed in Ref.@6#, the observation that the left-han
side of Eq.~1! is independent of the lattice spacing can
exploited to derive an RG equation for theĈj

J coefficients.

This equation describes the change in theĈj
J as the lattice

spacing is varied. Collecting theĈj
J coefficients into a vector,

the RG equation may be written

S a
d

da
1~gJ! trD ĈJW50, ~66!

where the anomalous dimension matrix is given by

g i j
J ~as ,aM0!5(

k
S a

d

da
Ẑik

J D ~ ẐJ!k j
21 . ~67!

The right-hand side of Eq.~67! is a complicated function of
aM0. Onceg i j

J is determined numerically for a large range
aM0 values, Eq.~66! can be solved by numerical method
Our primary concern was the determination of the match
coefficientsĈj

J for values ofaM0 relevant for simulations of
B andD mesons, and for such values, RG improvement w
not needed. Hence, we have not attempted to obtain the
tire anomalous dimension matrices for our current operat
4-8
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VII. SUMMARY

In summary, the spatial components of the heavy-li
axial-vector currentAk and all components of the heavy-ligh
vector currentVm were expressed in terms of lattice oper
tors suitable for use in simulations ofB andD mesons. In the
lattice theory, the heavy quarks were treated using
NRQCD formulation, the light quarks were described by t
tadpole-improved clover action, and the standard Wilson
tion was used for the gluons. The light quarks were treate
massless. The expansions were carried out toO(1/M ) by
matching appropriate scattering amplitudes to one-loop o
in perturbation theory. We found

Jm5 (
j 50

NJm
21

Cj
JJm, lat

~ j ! 1O~as
2 ,a2,1/M0

2 ,asa/M0!, ~68!

whereNAk
5NVk

55 andNV0
53. The lattice current opera

tors are given by

Jm, lat
~0! ~x!5q̄~x!Gm

J Q~x!, ~69!

Jm, lat
~1! ~x!5

21

2M0
q̄~x!Gm

J g•“Q~x!, ~70!

Jm, lat
~2! ~x!5

21

2M0
q̄~x!g•“Q g0Gm

J Q~x!, ~71!

Jk, lat
~3! ~x!5

21

2M0
q̄~x!G0

J¹kQ~x!, ~72!

Jk, lat
~4! ~x!5

1

2M0
q̄~x!¹Q kG0

JQ~x!, ~73!
-

l
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with Gm
V5gm andGm

A5g5gm , and the coefficients are

Ci
J5H 11asr i

J~aM0!1O~as
2! ~ i 50,1!,

asr i
J~aM0!1O~as

2! ~ i>2!,
~74!

where values of ther i
J(aM0) are listed in Tables IV–VI.

The currents can also be expressed in terms of impro

current operatorsĴm, lat
( j ) (x) as shown in Eq.~65!.

This completes the matching calculation throu
O(as /M ) andO(aas) for all components of the vector an
axial-vector heavy-light currents. Our matching coefficien
have already been applied in leptonicB and B* meson de-
cays to extract thef PS and f V decay constants@12–15#. They
are also relevant for studies ofB→p or r semileptonic de-
cays. In this article, we presented results only for the sim
NRQCD action of Eqs.~32!–~34!. Matching coefficients for
other NRQCD actions which have appeared in the literat
and for different values of (aM0 ,n) are also available. Fo
example, Ref.@12# used a slightly different action, and a
action with higher-order improvement terms was employ
in Refs.@13,15#. In all cases, we find that in the useful rang
1<aM0<10, the one-loop coefficients exhibit only a mil
dependence onaM0 and do not become particularly large.
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