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Perturbative matching of lattice and continuum heavy-light currents with NRQCD heavy quarks
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The temporal and spatial components of the heavy-light vector current and the spatial components of the
axial-vector current are expressed in terms of lattice-regulated operators suitable for simulaoasddd
mesons. The currents are constructed by matching the appropriate scattering amplitudes in continuum QCD
and a lattice model to one-loop order in perturbation theory. In the lattice theory, the heavy quarks are treated
using the nonrelativistictNRQCD) formulation and the light quarks are described by the tadpole-improved
clover action. The light quarks are treated as massless. Our currents include relativistic and discretization
corrections througlO(a/M,aa), whereM is the heavy-quark masa,is the lattice spacing, and is the
QCD coupling. As in our previous construction of the temporal component of the heavy-light axial-vector
current, mixing between several lattice operators is encountered at one-loop ord®faandl dimension-four
improvement terms are identifie50556-282(199)03109-4

PACS numbgs): 12.38.Gc, 12.39.Hg, 13.20.He, 14.40.Nd

[. INTRODUCTION c-numbers which depend only en, andaM,. The goal is to
identify the operatorslﬁjﬂat and to calculate the matching
An important goal of lattice gauge theory is to provide coefficientsC;](as,aMo). The procedure for doing this was
estimates of the hadronic matrix elements, such as those @escribed in a previous articlg] in which the temporal
the electroweak currents and effective four-fermion operacomponent of the axial-vector current was studied. For con-
tors, which are needed for precision tests of the standargenience, we reiterate the salient stefid: select a quark-
model. Numerical simulations of quarks and gluons ingluon scattering process induced by the heavy-light current
lattice-regulated QCD currently provide the only means ofof interest and calculate the one-loop amplitude for this pro-
calculating such matrix elements from first principles takingcess in continuum QCO2) expand the amplitude in powers
long-distance QCD dynamics fully into account. An impor- of 1/M; (3) identify operators in the lattice theory, usually by
tant ingredient in these calculations is the construction of thegnspection, which reproduce the terms in this expansidn;
lattice current operators which match the currents defined igalculate the one-loop mixing matrix of these operators in
the continuum to some desired accuracy. In this paper, Wehe lattice theory; and5) adjust theC; coefficients to pro-
express the heavy-light vector and axial-vector currents iRy, ce a linear combination of lattice current operators whose
terms of operators defined in a lattice model in which thegne.joop scattering amplitude agrees with that determined in
heavy quarks are treated using the nonrelativiéiRQCD)  gtep (2) to a given order in M and a. In this paper, we
formulation [1], the light quarks are described by the gnn)y the above procedure to the spatial componéqtef
tadpzli'"‘f[‘r?rovted g'oge\;v?llcno[m]’t?md 'tl'hhe qu;)]ns artla_ gh(?[v- the axial-vector current and the spatial and temporal compo-
erne e standard Wilson action. These heavy-light curx ;
y y-ilg nents of the vector currei, . We omit much of the calcu-

rents are important in studies of heavy meson leptonic anghtional details since they are similar to those already de-
semileptonic decaysfor recent reviews, see Refg3-5]). scribed in Ref[6].

The lattice currents are determined by matching scattering |, sec. |1 we start from a continuum QCD calculation
amplitudes in the lattice model to those in continuum QCDyq identify the current operators in the effective theory
to o_ne—loop order in perturbation theory. The mgtchmg ISneeded to reproduce the continuum current through
carried out throughO(1/M,as/M,aas) where M is the 5, /M). In Sec. IIl, we describe the lattice theory and the
heavy quark MAass, 1S the lattice spacing, and is the QCD one-loop mixing calculation among tH§)|at. The matching
coupling. The “ght quarks are treated as massless._ procedure is then completed in Sec. IV. In Sec. V, we dis-
Each heayy—llght current,,, defmgd In some continuum cussO(aag) corrections in the static limit, and issues per-
renormalization scheme, can be written taining to terms that behave aglog(aM) are dealt with in
Sec. VI. The paper concludes with a summary of our results

JM:Z CJ_JJ(D +O(a§,a2,l/M§,aSa/Mo), (1) in Sec. VII.
]

w,lat

Q) . . ) . Il. OPERATOR IDENTIFICATION
where J;)’,, are operators defined in the effective lattice

theory,M, is the heavy quarkbare mass parameter appear-  The heavy-light vector ang axial-vector currents are
ing in the lattice NRQCD action, and tm%] coefficients are given as usual byV,(X)=q(x)y,h(x) and A,(x)
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(X)
(X))

This transformation decouples the upper and lower compo-
nents of the Dirac field, thereby separating the quark field

=q(X) vs7,.h(x), respectively, wherg(x) is the light quark 1
field, h(x) is the heavy quark field, ang, are the standard h(x)=Ugy 7
Dirac y-matrices in Euclidean space-time which satisfy
Ve ¥0}=28,,, andys= yoy172v3. Euclidean-space four-
vectors are defined in terms of Minkowski-space four-

vecjtors (indicated by an underlineusing xo=ix" and X;  gom the antiquark field. To facilitate the identification of
=x/=—xj, for j=1,2,3. For the derivative operatofy  |atice NRQCD operators capable of matching E2), we

=—ido and 9;j=9j=—¢. The currents are related h similarly transform the external state spinog(p) into a
=Jo, ‘andJdi= —I\]J For further details, see Refl6,7]. nonrelativistic Pauli spinor:

‘The first step in identifying the necessary operators in the
effective lattice theory is to calculate the matrix elements of
the continuum QCD currents for an incoming heavy quark of up(p)=|1
momentump and an outgoing light quark of momentym.

Using the on-shell mass and wave function renormalizatiofynpere

scheme in Feynman gauge and expanding i fléxcept for

un(p)], one finds to one-loop order in perturbation theory o) (UQ)
Ug(p ;

®)

7 P|Ug(D)+O(M?), ()

_ (7)
(A(p")]3,IN(P))oco=Ug(PIWo(p’.P)Un(P), (2

where andUq is a two-component external state spinor depending

only on the spin of the heavy quark. Note that we are work-
ing in the Dirac-Pauli representation. Using Ef), the re-
lation youg(p) =Uqg(p), and the Dirac equation for the light
quark ug(p")pe=—Uuq(p') ¥-P o, the spatial components
of Eq. (2) may be written

) 'P
W, (p'.p)=ail, —a,

p-p’ p# )
+ Lo+ O(1M?), 3 ,
Ve 070+ OLUM®) ® (a(P)13h(P))gco= 1ol + MUY + 7,0 + 730
with + 7,07 +0(ag, 1M?), ®)
al_ n___! JEE—
smloh 4 Q0 =Uy(p") T ug(p), ©
ag .
_ s — L YP
%= 3, O = —iug(P )z Uo(P), (10
a3=E6InM—8—TrM+E 0=y WY P o
3wl N 3 N 2/ Kk =iug(p )ZM Yol 'KUo(P), (11)
S [ M 1
=3, 2Nt O = ily(p") 3 Tug(p), (12
a5=& —4InM+5 . (4) W i P J
37| A Q7= —iug(p") 5y Touq(p). (13

For the vector currenﬂ?v ¥, and for the axial-vector cur- The coefficients in Eq(8) are given by
rent, F =Y5Yu - Un(P) anduq(p ) are the standard spinors

for the heavy and light quarks, respectively, which satisfy the
Dirac equation. The light quark mass is set equal to zero.
Ultraviolet divergences are treated using dimensional regu-

no=a,=1+aBy,

larization, and fully anti-commutingys matrices are used. o
We use a gluon mass to regulate infrared divergences. ~
Note thatM is the heavy-quark pole mass. 172=283= asB,,
In lattice NRQCD, the heavy quark is described in terms _
of a two-componentin spin spacgfield ¢(x). The Dirac 73=2a,= agsBs,
field h(x) is related toy(x) [and the antiquark field(x)] _
by a unitary Foldy-Wouthuysen transformatisi, Na=2a,= aBy, (14
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where QP =uy(p" ) Mun(p), (23
B 1 [3| M 11}
= — n__ —1,
U371\ 4 Q= —iug(p’ )FOZM Uug(p), (24)
B 1 [12I M 167 M } y-p'
—_ n——— — s P ’ :
27347 T 3 0 =iuq(p") 3 Yol gUo(P)-
L1 (25
83_54’ The coefficients in Eq(22) are given by

no=(a;+a,) =1+ asBy,

By= o | i 11
ST L N

(15
7i=(a1—a,)=1+agB},
Having obtained the M expansion of the above scatter-
ing amplitude in continuum QCD, the next step is to identify 75=2(ag+a,+as)=aBy, (26)
operators in the lattice effective theory that can reproduce the
terms in this expansion. An inspection of E@) suggests Wwhere
immediately that matrix elements of the following five lattice

operators should be considered: ~BB: 3i_3 In%— ;}
IO =a00TRQ(X), (16) '
2 [y M 19}
=373 )
IR0 = 57 q(x)r 7-VQ(x),
1 ~ 1] 16w M
* R @
(2) (W) TNy Ty T )
KialX¥) = Zr7-a() 7V %oliQ(X), Again, it is straightforward to identify operators in the lattice
(18)  effective theory which can reproduce these terms:
— (0) J
100 = GV, Q%) I ¥) = a0 TQ(x), (28
’ 2M, ’
19
49 IEu0 =57 q(x)rJy vQ(x), (29
1 - -
IEm00)= 55-a00 Vil 5Q(x),
(20) IE0= 507 q(x)y V 70l 3Q(X). (30)

whereq(x) is now the light quark field in the lattice theory, These operators were previously used in the expansion of the
Mo is the bare heavy quark mass, aR(k) is related to the  temporal component of the axial-vector heavy-light current
heavy quark field/(x) in lattice NRQCD by in Refs.[6,9].
P(X)
Q(x)= L (21 . MIXING MATRIX

Having identified the necessary operators in the lattice-
We use the bare quark madé, in the above definitions regulated effective field theory, we next need to calculate the
since it is the natural choice to use in lattice simulations andnixing matan of these operators defined by
because the pole mabsis not well defined beyond pertur-

bation theory. Definitions of the lattice derivatives are given
in the next Syection_ g <q(p )|‘]< )Iatlh p))lat 2 ZJ Q(l
For the temporal components of the curredgs=V, or
Ao, the leading I behavior is given by +0(a?,1M?2,8%, aalM),
/ 31
(a(p")3olh(P))geo= 76025” + 716! + 706 (31
+0(a2,1M?), 22 WhereQ(” are the fiveQ{ defined in Eqs(9)—(13) for u
=k=1, 2 ,3 and the threél(” defined in Eqs(23)—(25) for
with p=0. The determination of thE factors is the most diffi-
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cult aspect of the current construction. These factors are de- _ 1 ;
termined numerically using lattice perturbation theory. The O(x)av,= E[O(XﬂL a,)U ,(x)
same methods used in RE®] are applied here. We also use 0
the same lattice action as in Rg8], but for the convenience —O(x—a,)U, (x—a,)], (37
of the reader, we restate these actions below. The Feynman
rules for our heavy and light quark lattice action and further 3
details of lattice perturbation theory are given in R¢&7]. a2A@0(x)= >, (Ug TUk(X)O(x+ay)
For the heavy quark, the following NRQCD action den- k=1
sity on the latticd 1] is used: +Ul(x—ak)O(x—ak)]—ZO(x)), (39)
ar 100900~ (x+ay) | 1 aéH) :
= (X) p(x)— ' (x -—
NRQeo— ¥ XY = ! 2 a?vV@0(x)= Z (Up '[U,(x)O(x+a,)
aHo\"Ul(x) aHg\" ;
— — + J— J— J—
X[ 1 on ™ 1 on U,(x—a,)O(x—a,)]—20(x)),
(39
x| 1= 2 )’/’(X)’ (32) whereO(x) is an operator defined at lattice skewith ap-
propriate color structure.
where For the light quarks, we use the clover acti@j,
(2) — r— — . r —
Ho=— _ZAM , 33  aLign=9Ya-aqV?q+meaq—igaz > qo,,F,.0,
M, v
’ (40)
SH= — B, (34) whereV=2 v,V,, my is the bare light quark mass;,,,

—-c

®2My =3[v..7.,], and we set the Wilson parameter 1. The
o ) _ ) one-loop correction to the clover coefficient is &a?)
U, (x) are standard gauge-field link variabless an integer,  effect in our matching calculation and is neglected here.

o are the Pauli matrices), is the mean link parameter At one-loop order, the mixing matrix elements may be
introduced by the tadpole improvement procedur@], and  \ritten [11]

the QCD couplingy is related toag by as=g?/ (4). At the
tree level,cg=1; the one-loop contribution tag is an 1. . ~ -
O(a?) effect in our mixing matrix calculation and hence can ~ Zj;=8ij + as[ 5(Cq+Co) +Cr(1- 510)} ij + §.J,]

be ignored here. The chromomagnetic field is given by (41)
Bj(X)=— 3 €imFim(X), where the Hermitian and traceless
field strength tensoF ,,(x) is defined at the sites of the
lattice in terms of clover-leaf operators:

whereC, and C,, are the contributions from the light- and
heavy-quark external leg correctiorithat is, from wave

function renormalization facto}sandZiJj denote the contri-
Fu(X)=F,(x)— Tr]—“ (X, butions from the vertex corrections. Our use of an on-shell

renormalization scheme with lattice operators defined in

terms of the bare madd, is responsible for the term pro-

i , =
Fu(X)= T (QMV(X)_QLV(X))’ portional toC,,,, where
M=[1+aCpn]Mo+0(a?). (42
Q%)= au? {(az Ua(x)U p(x+a,) Note that although the current operatafd,, are defined
usingM, the pole masM appears if2{)) . Within the con-
XU _(x+a,+agVU_gz(x+ag), (35  text of finite-order perturbation theory, the pole mass is an

observable quantity. It is gauge invariant and regularization
with {(a,8)} ., ={(s,v),(v,—u),(—u,—v),(—v,u)} for  scheme independent. Hence, it is the natural heavy-quark
u# v. The lattice derivatives in our action and in the currentmass definition to use when matching amplitudes in different
operators are given by schemes. However, in reality, a confined quark has no pole
mass. Once the matching coefficielﬁg’ are obtained in
terms ofaM, it is then necessary to eliminate any depen-
dence onM in favor of some quark mass which is defined
+ beyond perturbation theory. Clearly, the mass paranidter
—U,(x—a,)0(x~-a,)], (36) appearing in the lattice action is the most suitable and con-

av,0(x)= 5 ! 5 [Uu(00(x+a,)
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venient choice. The relationship betwedrandM, given in whererfk—gokJr 511’ M= g),
Eq. (42 is then used to re-express tlﬁq] coefficients in

terms ofM,,. 1
The factors in Eq(41) may be further decomposed: Bo=—|In(@Mo) — 75/ =B,
- 2 . 1 1
Cq—Cq+§|na)\+Cq , 82:; 4|n(aM0)+§ ,
Co=C —ilna)\ B3:3i’
Q Q" 34 J T
“ B,= 4| M ! 46
Cn=Cp+C}, 4= |~ 3In@Mo) +3/, (46)
and
gu glj +§J TI+§J R
1
Cqq=5(Cq+ Cy'+Co), (47

whereCq, Cq, Cpy, andgI are infrared finite and indepen-
dent of the tadpole improvement factap, and ¢ and
£;™' contain the infrared divergences and tadpole improve- Cqam=Cqq*+Cm+Cp - (48)
ment contributions, respectively, from the vertex corrections.

Contributions toC andC,, from the tadpole improvement As expected, the infrared divergences from the varlous terms
counterterms are denoted Qg and CTI respectively. The in the expansion coefficients cancel. Resultsﬁjd?and J.

tadpole improvement terms are for various values oM, are listed in Tables | and II, re-
spectively.
@ For the temporal component of the vector current, we
Cq=—ug", substitute the inverted Eq31) into Eqg. (22), remove the

dependence on the external states, and use (6k.(27),
(41), (42), and(43) to obtain

3
T__ @[ 1_
Cm="Yo (1 2naMg)’

V 1+ aS[BO CQq TOO])JOK-H

t_ _
é«] T|_u82)6ij(1_5io), (44) +(1+ as[Bl Cqu Tl Tl ])Jolat
+ad BY— 7,130+ O(a?,a%, M2, aa/M),
whereuy=1-au{®’+ 0(a?). For the usual plaquette defi- (49)

nition uy=(% TrU)* in the Wilson gluonic actionu{?
=m/3. For massless clover quark§,=1.030. Values for where
Cq andC,, are given in Ref[6].

.1 1
By=— In(aMo)—L—1 ,
IV. MATCHING 7
To complete the operator construction foy, we invert .
Eq. (31) to getQ=3,(Z%) ;I 1. Substitute this into B1
Eq. (8), peel off the dependence on the external states, and
use Egs(14), (15), (41), (42), and(43) to obtain

_1| M 19
- n(a 0)_1—2,

BL=—. (50)
3= (14 a By~ Coq= 70D I
Again, all infrared divergences cancel. Results f@fP for
variousaM values are given in Table III.
From Egs.(45) and(49), one easily obtains the matching
coefficientsCJ-J of Eqg. (1) which expresses the heavy-light
+aB,— Tik]J(4) +O(a§ ,a2,1M2, aalM), currents in terms of operators suitable for numerical simula-

k.lat tions using lattice NRQCD. These coefficients can be written
(45) in the form

+(1+ adB;—Coqm— Tl =1 DI

J 2 3
+ ag By~ )19+ ad Bs— 73133
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TABLE I. Values of the coefficientsiVk corresponding to the spatial components of the vector cuxfgnt
for various values of the bare heavy-quark mabk, and NRQCD stability parametar Uncertainties in the
determinations of these parameters due to the use of Monte Carlo integration are included.

aM, n T?)/k T\l/k T\Zlk T;/k TZk

10.0 1 0.81861) —0.588(3) —13.93(1) —0.566(4) —0.940(5)
7.0 1 0.78801) —0.640(2) —8.150(7) —0.508(3) —0.909(3)
4.0 1 0.72211) —0.757(5) —2.809(7) —0.385(7) —0.836(7)
4.0 2 0.73401) —0.742(4) —3.084(8) —0.422(6) —0.842(7)
35 2 0.717€2) —0.775(4) —2.310(5) —0.392(6) —0.817(6)
3.0 2 0.69821) —0.821(4) —1.594(4) —0.351(5) —0.791(5)
2.7 2 0.684(R) —0.856(3) —1.196(4) —0.323(5) -0.767(5)
2.5 2 0.67322) —0.877(3) —0.955(4) —0.309(5) —0.750(4)
2.0 2 0.64101) —0.962(3) —0.427(3) —0.254(4) —0.693(3)
1.7 2 0.617(2) ~1.027(2) -0.188(2) —0.218(3) —0.647(3)
1.6 2 0.6078) —-1.051(2) —0.123(2) —0.205(3) —0.627(2)
1.2 3 0.5768) —-1.175(2) —0.081(2) —0.150(3) —0.534(2)
1.0 4 0.555@) —1.265(2) —0.148(1) —0.108(3) —0.464(2)
0.8 5 0.524%) —1.387(2) —0.288(1) —0.049(3) —-0.363(1)

o y 1+asPiJ(aMo)+O(01§) (i=0,1), large, we found that the magnitude mj began to grow
i (as,aMo) e (aMy)+0(a?)  (i=2). linearly with aM,
(51 aMg>1
75 — —2aMgljisct const, (52)

Vi A v .
The values fop,’, p,*, andp, ® for various values oM,

J .
are listed in Tables IV, V, and VI, respectively. where thely;. are constants independent @M,. We de-

termined thel},. by computingr} for aMy=10, 25, 100,
400, 1000, and 5000. We then fit the results for
V. O(aas) CORRECTIONS - r%/(ZaMO) to a quadratic polynomial in 1&M;,) and ob-

. . . o . . .. tained the following limiting values:
In this section, discretization corrections in the static limit

aMy—o are discussed. To study such corrections, we cal- é,A_O ~1.0292) (53)
culated all ) for several large values of the heavy quark disc ™ '

mass. With the exception af), all of the 7 tended tamely v

to finite values in the static limit. However, asM, became {gisc=1.0311), (54)

TABLE II. Values of the coefficientsriA" corresponding to the spatial components of the axial-vector
currentA,, similar to Table I.

Ak Ax Ax Ax Ak

aM,

=)

TO 7'1 7'2 T3 7'4
10.0 1 0.26341) —1.098(4) 2.62418) 0.6116) —0.7291(2)
7.0 1 0.26851) —1.145(3) 2.1372) 0.6364) —0.7017(2)
4.0 1 0.28171) —1.254(2) 1.4966) 0.6912) —0.6401(2)
4.0 2 0.274R1) ~1.197(2) 1.4765) 0.5902) —0.6407(2)
35 2 0.27661) —1.225(2) 1.3365) 0.5952) —0.6219(2)
3.0 2 0.27981) —1.259(1) 1.1680) 0.5982) ~0.5977(2)
2.7 2 0.28121) —1.284(1) 1.0663) 0.5982) ~0.5796(2)
2.5 2 0.28241) —1.303(1) 0.9863) 0.6002) —0.5654(2)
2.0 2 0.28581) —1.365(1) 0.75(®) 0.5992) —0.5196(2)
1.7 2 0.28621) —1.416(1) 0.582) 0.5952) —0.4816(2)
1.6 2 0.28601) —1.436(1) 0.51®) 0.5912) —0.4661(2)
1.2 3 0.27251) —1.510(2) 0.1881) 0.5372) —0.3823(2)
1.0 4 0.25981) ~1.567(2) —0.025(1) 0.51(2) —0.3190(2)
0.8 5 0.24071) —1.658(2) —0.291(1) 0.50(2) —0.2290(2)
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TABLE lll. Values of the coefficients-iVD corresponding to the
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() i
temporal component of the vector currafy, similar to Table I. JialalX) = J” el (7>0), 58
— - v v v where
T, T T.
° 0 L 2 329 (x) = 2aMgJ 2} (X)
10.0 1 0.354@) —0.541(8) 1.706(19)
7.0 1 0.39612) —0.572(6) 1.339(12) =—aq(x) ¥ VyQ(x). (59)
3:8 ; gjggg _82328; 832555) The mixing of the improved operators is given by
35 2 0.51611) —0.718(3) 0.907(5)
3.0 2 0.55421) ~0.752(3) 0.844(4) @(p)3PadN(P)) = E 0\
2.7 2 0.583%2) —0.774(2) 0.815(4)
2.5 2 0.60581) ~0.794(2) 0.792(3) +0(a?,1M?,82,aalM),
2.0 2 0.6798) —0.853(2) 0.744(3)
17 > 0741®)  —0899(2)  0.718(2) (60)
1.6 2 0.76662) —0.920(2) 0.707(2) where
1.2 3 0.883%) —1.034(1) 0.684(1) A
1.0 4 0.96742) —1.109(1) 0.682(1) Z5i=Z3i+2a:aMol3iscai » (61)
0.8 5 1.085%) —1.202(1) 0.696(1) o
Z;=2; (j>0). (62
ggikscz ~0.0631), (55) Then the coefficienté:jJ of these operators are
AJ_ I J
dj/ioscz —0.0631). (56) C:2 CZ 2aMO£d|scasy (63)
Cl=c] (i#2), (64)

The discretization factogdISC for the temporal component of ) )
the axial-vector current was previously calculated in Rgff.  @nd the heavy-light currents are given by
but its determination was not done very accurately. We have

A . ..
recalculated?,°. -here to a much higher precision.

Since the contributions proportional ). are purely
O(aag) discretization corrections, one may absorb thesé&erms which grow linearly witaM, are no longer present

terms into the lattice current operators. Improved current opin CJ and ZJJ Note that in the lattice NRQCD approach,

erators can be defined using

IO = I0(X) + arslgis I 10 (),

u,lat

w,lat

(57)

J —E CID+0(a? a2 IMF, asa/Mg).  (65)

dlscret|zat|on and relativistic corrections are intertwined
sinceO(a) and O(1/M) interactions are treated as equally
important.

TABLE IV. Values of the coefficienm}’k defined in Eq(51) corresponding to the spatial components of
the vector current for various values of the bare heavy-quark mksand NRQCD stability parameter
Uncertainties in the determinations of these parameters due to the use of Monte Carlo integration are

included.

aM, n pgk p\lfk p\Z/k p\3/k pXk

10.0 1 —0.5051(3) —0.128(5) 16.968.1) 0.991(4) 0.0695)
7.0 1 —0.5441(2) —0.202(4) 10.73@) 0.9323) 0.1903)
4.0 1 —0.5496(2) —0.346(5) 4.6807) 0.81Q7) 0.3547)
4.0 2 —0.5744(2) —0.382(5) 4.9588) 0.8466) 0.36Q7)
35 2 —0.5694(2) —0.421(5) 4.0105) 0.8166) 0.3926)
3.0 2 —0.5585(2) —0.443(5) 3.09¢%) 0.7785) 0.4315)
2.7 2 —0.5472(2) —0.470(4) 2.5664) 0.7475) 0.4515)
25 2 —0.5366(2) —0.495(4) 2.22¢) 0.7345) 0.4674)
2.0 2 —0.4958(2) —0.521(3) 1.418) 0.6784) 0.5053)
1.7 2 —0.4561(3) —0.551(3) 0.97(®@) 0.6423) 0.5283)
1.6 2 —0.4391(3) —0.564(3) 0.82) 0.6303) 0.5342)
1.2 3 —0.3679(3) —0.609(3) 0.41@) 0.5743) 0.5632)
1.0 4 —0.3018(4) —0.606(3) 0.2541) 0.5333) 0.5702)
0.8 5 —0.1818(5) —0.597(4) 0.11Q) 0.4733) 0.5641)
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TABLE V. Values of the coef‘ficient$)fk corresponding to the spatial components of the axial-vector
current, similar to Table IV.

aM, n pgk p':‘k p;‘k p'::‘k p4Ak

10.0 1 0.050@) 0.383(6) 0.41819) —0.186(6) —0.1420(2)
7.0 1 —0.0246(2) 0.303(4) 0.44712) —0.211(4) —0.0180(2)
4.0 1 —0.1093(2) 0.151(3) 0.378) ~0.267(2) 0.157€)
4.0 2 —0.1146(2) 0.073(3) 0.399) ~0.166(2) 0.158@)
35 2 —0.1285(1) 0.028(3) 0.369) -0.171(2) 0.196@)
3.0 2 ~0.1396(1) —0.005(3) 0.337) —-0.174(2) 0.2378)
2.7 2 —0.1444(2) —0.043(3) 0.3083) —-0.174(2) 0.264@)
25 2 —0.1458(2) —0.070(3) 0.2883) —-0.176(2) 0.282@)
2.0 2 —0.1401(2) -0.117(3) 0.23@) —0.174(2) 0.331®)
1.7 2 —0.1253(2) -0.161(3) 0.20() -0.171(2) 0.3628)
1.6 2 -0.1177(2) —0.180(3) 0.19(2) ~0.166(2) 0.372®)
1.2 3 ~0.0636(3) —0.275(3) 0.15(1) —-0.112(2) 0.411(2)
1.0 4 —0.0058(3) —0.304(3) 0.13) -0.087(2) 0.425@)
0.8 5 0.10286) —0.326(4) 0.1181) -0.076(2) 0.429Q)

VI. LARGE LOGARITHMS are summed using the renormalization grdR&) equations

3 . . _ which follow from the requirement that physical quantities

Another feature of theC; matching coefficients is the st not depend op. Sinceu appears only inside the loga-
presence of Irg{M) terms. The simulations of heavy-light rithms, one ends up with simple anomalous-dimension ma-
systems carried out to date have used bare heavy quark magges and RG equations which can be solved straightfor-
values in the rangaMy~1.6-4.0 where these logarithms \ardly. The situation is more complicated in the present
are not large. However, in the largeM, limit, these loga-  cajlculation. The role of: is taken over by the inverse lattice
rithms must be treAated with care. The logarithms appearingpacing 14, and a appears not only in the logarithms, but
in the coefficientstJ for j>0 are tamed by the 1d(M,) also in other places, such as tlﬂ}éwhich are complicated
factors in their corresponding current operators. Howeverfunctions ofaM,. Furthermore, the ultraviolet cutoff d/is
the logarithm appearing in th&} coefficient becomes prob- an integral part of our effective theory and we cannot take
lematical and must be dealt with using the renormalizatiora—0.
group. As discussed in Ref6], the observation that the left-hand

In matching calculations between QCD and various conside of Eq.(1) is independent of the lattice spacing can be
tinuum effective theories, one usually encounters similarexploited to derive an RG equation for tﬁg] coefficients.

logarithms of the form Ii(l/w), whereu is some scale in-  This equation describes the change in @eas the lattice

tr the renormalization pr re. h logarithm . . . A - .
oduced by the renormalization procedure. Such loga gpacmg is varied. Collecting tt@f coefficients into a vector,

TABLE VI. Values of the coefficientqmjy0 corresponding to the the RG equation may be written

temporal component of the vector current, similar to Table IV.

d -

aM, n pz)/o p\l/o p\z/o ad_a + (,yJ)tr) Cc’=o0, (66)

10.0 1 0.1712(3) —0.387(9)  —0.433(19)
7.0 1 0.0599(2) —0.482(7)  —0.065(12) where the anomalous dimension matrix is given by
4.0 1 —0.1107(3) —0.672(4) 0.291(12)
4.0 2 —0.1150(2) —0.642(5) 0.3085) d..\ .
35 2 —01557(2) —0.691(4) 0.36%) i (as,aMg) = a2y | ()" (67)
3.0 2 —0.2023(2) —0.725(4) 0.430) :
2.7 2 —0.2341(2) —0.765(3) 0.4581)
25 2 —0.2570(2) ~0.791(3) 0.48(3) The right-hand side of Eq67) is a complicated function of
20 2 ~0.3221(2) —0.842(3) 0.528) aMy. Onceyﬂi is determined numerically for a large range of
1.7 2 —0.3686(3) —0.891(3) 0.558) aM, values, Eq(66) can be solved by numerical methods.
1.6 2 ~0.3861(3) ~0.907(3) 0.560) Our primary concern was the determination of the matching
1.2 3  —04621(3) —0.963(3) 0.58a1) coefficientsf:jJ for values ofaM, relevant for simulations of
1.0 4  —0.5012(4) —0.974(3) 0.5911) B andD mesons, and for such values, RG improvement was
0.8 5 —0.5300(5) —0.994(3) 0.577) not needed. Hence, we have not attempted to obtain the en-

tire anomalous dimension matrices for our current operators.
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VIl. SUMMARY with T’} =y, andI"}=ysy,,, and the coefficients are
In summary, the spatial components of the heavy-light
axial-vector currenf\, and all components of the heavy-light 3 5 )
vector currentv,, were expressed in terms of lattice opera- I 1+ agpi(aMo) +O(ag)  (i=0,), (74)
tors suitable for use in simulations BfandD mesons. In the ' aspl(aMg) +0(a?)  (i=2),

lattice theory, the heavy quarks were treated using the
NRQCD formulation, the light quarks were described by the

tadpole-improved clover action, and the standard Wilson acyhere values of the?’(aM,) are listed in Tables IV—VI
: .

tion was used for the gluons. The light quarks were treated @he currents can also be expressed in terms of improved
massless. The expansions were carried ouD{&d/M) by

. . . . g() i
matching appropriate scattering amplitudes to one-loop ordefurent operatordyi’,(x) as shown in Eq(65).
in perturbation theory. We found This completes the matching calculation through

O(as/M) andO(a«y) for all components of the vector and
- ) ) axial-vector heavy-light currents. Our matching coefficients
.= Zo CJI Dt O(al @ 1MJ,aa/Mg), (68 have already been applied in leptorBcand B* meson de-
= cays to extract thépg andf,, decay constan{d2—15. They
whereN, =Ny, =5 andN, =3. The lattice current opera- are also relevant for studies B 7 or p semileptonic de-

Ny -1

tors are given by cays. In this. article, we presented resu_lts only f_or_ the simple
NRQCD action of Egs(32)—(34). Matching coefficients for
Jig)lat(x):a(x)riQ(x), (69)  other NRQCD actions which have appeared in the literature

and for different values ofgMg,n) are also available. For

" -1— example, Ref[12] used a slightly different action, and an
Jptal¥) = 5400, - VQ(X), (70 action with higher-order improvement terms was employed
0 in Refs.[13,15. In all cases, we find that in the useful range
2 —1_ _ 5 1=aMy=10, the one-loop coefficients exhibit only a mild
Il X) = 2—MOCI(X)7" VoI, Q(X), (71 dependence oaM, and do not become particularly large.
(@) (o T
el X) = Zp-a00ToViQM), (72) ACKNOWLEDGMENTS
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