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Small eigenvalues of the S(B) Dirac operator on the lattice and in random matrix theory
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We calculate complete spectra of the staggered Dirac operator on the lattice in quen¢BjegaBge theory
for B=5.4 and various lattice sizes. The microscopic spectral density, the distribution of the smallest eigen-
value, and the two-point spectral correlation function are analyzed. We find the expected agreement of the
lattice data with universal predictions of the chiral unitary ensemble of random matrix theory up to a certain
energy scale, the Thouless energy. The deviations from the universal predictions are determined using the
disconnected scalar susceptibility. We find that the Thouless energy scales with the lattice size as expected
from theoretical arguments making use of the Gell-Mann—Oakes—Renner rel&iih6-282(199)00609-9

PACS numbegps): 11.15.Ha, 05.46-a, 11.30.Rd, 12.38.Gc

The low-lying eigenvalues of the Dirac operator are of —\,))a is the spectral density of the Dirac operator averaged
great importance for the understanding of spontaneous chiralver gauge field configurations The relation betweep(0)

symmetry breaking in an infinite volunjd]. On the lattice,

andy, is given by the Banks—Casher formulap(0)=V%,

however, one is always working at finite volume. Therefore[1].

it is important to know how the thermodynamic limit is ap-
proached. It was shown by Leutwyler and Smil@athat in
the domain

UA<L<1l/m,, 1)
whereA is a typical hadronic scalé, is the linear extent of
the Euclidean box, andh,, is the pion mass, the low-energy

The aim of this paper i$i) to test the universal predic-
tions of chiral RMT for the distribution and correlations of
the low-lying Dirac eigenvalues ard) to check the predic-
tion of Eq. (2) for the Thouless energy, using lattice data
computed in quenched $B) gauge theory with the stag-
gered Dirac operator. Poirit) has previously been consid-
ered in quenched SB) [9,10], in SU(2) with dynamical
fermions[11], in quenched S(B) in three dimension§l12],

behavior of QCD can be described by a simple effectiven U(1) in two dimensions[13], and, very recently, in
partiion function whose existence imposes certain conguenched SU®) in four dimensiong14]. Point(ii) has pre-
straints on the eigenvalues of the Dirac operator. The spegiously been tested in quenched @J[15]. All these inves-

trum of the Dirac operator in the domaif) has been suc-
cessfully predicted by chiral random matrix theqgMT)

tigations were done with the staggered Dirac operator except
for Ref. [13] in which the fixed point Dirac operator with

[3,4]. The only ingredients of the calculation are the globalrespect to a renormalization group transformation was used.
symmetries of the theory and the assumption that chiral symsince real QCD has three colors, @Vin four dimensions is
metry is spontaneously broken. It has recently been showslearly the most important case.

that there is an overlap between the domain of validity of

The Euclidean Dirac operator in the continuum is given

chiral RMT and of chiral perturbation theory, and that in thispy i =i+ gt®A2, where thet® are the generators of the

overlap region the two approaches yield the same reghilts

gauge group. The operatdd is Hermitian with real eigen-

The results so obtained provide analytical information onvajues. It anticommutes witlys and, therefore, all nonzero
the way in which the thermodynamic limit is approached.ejgenvalues come in paits\ , with eigenvectorsy,, , ysi,, .

They are universal in the sense that they do not depend ophere can also be zero modes which are either left-handed or
the precise values of the parameters of the theory, i.e., of thgght-handed. The topological charge of a given gauge field
simulation parameters on the lattice. However, the domain oonfiguration is equal to the difference in the number of left-
validity of the universal results does depend on the paramhanded and right-handed zero modes. On the lattice, the stag-

eters. The energy scalgyr up to which RMT applies, i.e., gered Dirac operator reads
the Thouless energy, follows from the upper boundLoin

relation (1) and the Gell-Mann—Oakes—Renner relation, i :
m2f2=2m3, wheref,=F . /2 is the pion decay constant, ('D)x,yzzg [ 7,0V (%) Oty = M (YIU 1 (Y) S5 iy,
3, is the absolute value of the chiral condengatey), andm 3

is a valence quark mass. It is thus determined&y8]
whereU and » denote the link variables and the staggered
phases, respectively.
The claim is that the distribution and the correlations of
the small eigenvalues o) are described by universal func-
tions which can be computed, e.g., in chiral RVB[4]. The

Npwr /A f2L2, 2
where A=1/p(0)=7/(VY) is the level spacing at zero.
Here, V=L* denotes the four-volume, ane(\)=(=,8(\
0556-2821/99/5®)/0945035)/$15.00
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distribution of the low-lying eigenvalues is encoded in the TABLE I. Simulation parameters and extrapolated valu&/f
spectral one-point function near zero virtuality, the so-calledor 5=5.4.
microscopic spectral density defined [8]

L Conf. A
(z)=li 1 ( z ) (4) 4 35337 2257
ps(Z)= 1M =pl o< -

V—oo VETIVE 6 11748 120% 28

L . . o 8 2635 391858

Slr_nllarly, one con5|ders the microscopic limit of the two- 10 1059 9429 155

point cluster function,

_ 1 2 The boundary conditions are periodic for the gauge fields
72(21’22)_\1[1 WTZ VsVS 5 and periodic in space and anti-periodic in Euclidean time for

the Dirac operator. The gauge field configurations were gen-
erated using a combined Metropolis and overrelaxation algo-
rithm on the link variables. Two consecutive configurations
_ are separated by at least 30 runs of one Metropolis sweep
T2(A.h2) =p(A)p(h2) = Ra(A1.h2), 6) with three hits and 20 overrelaxation sweeps using Creutz’s
method[18]. The complete spectrum of the staggered Dirac
operator was then calculated using the Cullum-Willoughby
version of the Lanczos algorithm for the matrix efD?.

with

whereR,(\1,\5) is the two-point spectral correlation func-
tion, i.e., the probability density that one eigenvalue i& at
and another a}_‘z, all other eigenvalues being unobserved. This operator couples only even to even and odd to odd
For SU3) with the staggered Dirac operator, the relevantyice sjtes. Both blocks have the same eigenvalues. Hence it
symmetry class in the framework of chiral RMT is the chiral j5 g fficient to consider only even lattice sites. The eigenval-
unitary ensembl¢l16]. In the following, we briefly summa- ;a5 of — P2 were checked against the identity Fr?)
rize analytical results for this ensemble which are of rel-— 3y which was fulfilled with relative accuracy 16. The
evance for the present work. The microscopic spectral denpta| number of diagonalized configurations and the extrapo-

sity is given by[4] lated values ofrp(0)=V3 are shown in Table I.
, The lattice data fops(z) andP(\,,) are compared with
_fr2ion the predictions of Eq9.7) and(8) in Fig. 1. In Eq.(7), we
ps(2) 2[‘]/‘(2) Jur1(2)3,-1(2)] @ have usedu=0. Clearly, Ny=0 since we consider the

guenched approximation. The fact that 0 is less obvious.
with the Bessel functiod and . =N¢+|»|, whereN; andv  The prediction of Eq(7) is restricted to sectors with definite
denote the number of massless flavors and the topologicabpological charge. Therefore, one should compute the topo-
charge, respectively. The distribution of the smallest eigentogical charge of each gauge field configuration and compare

value forN¢=»=0 readq17] the lattice data in each topological sector with the prediction
of Eq. (7). However, Eq(7) assumes that for+ 0 the Dirac
P(Ar ):Amin e*ﬁlin’“ ) operator has exact zero modes. This is not the case for stag-
min 2 ' gered fermions on the lattice where at finite lattice spaeing

_ o . ~__ the would-be zero modes are shifted by an amount propor-
The two-point cluster function in the microscopic limit is tional to a® [19]. For the value of3 we used,a is still

given by[4] relatively large so that no zero modes are present. This ex-
) plains why the lattice data are consistent with EQ.for v
B 213 ,,+1(21)3,(22) =253 ,(21)J 1+ 1(Z2) =0, as seen in Fig. 1. Very similar results for differeht
T2(21,22) = 217 272 ' were very recently presented [ih4].
v (9) The agreement between the lattice data and the universal

predictions is quite satisfactory, also for the two-point cluster
The quantities in Eqg7) through(9) do not contain any free function in the microscopic limit which we have plotted in
parameters. For a comparison with lattice data, the energlig. 2 along with the prediction of E¢9) for x=0. A fixed
scale is determined by the parame¥X which is obtained value ofz,=4.68 (corresponding to the location of the sec-
from the data by extracting(0) and applying the Banks- ond maximum ofpg(z)) was chosen.
Casher relationrp(0)=VZ2. Thus, the comparison between  The quantityr,(z,,z,) is interesting since it enters in the
lattice data and the predictions of EdS) through (9) is  calculation of the disconnected scalar susceptibility which, in
parameter-free[Strictly speaking, on finite lattices a spon- turn, can be used to determine the Thouless energy, i.e., the
tanous breaking of chiral symmetry cannot occur p@) is  scale\gyr above which the lattice data deviate from the
zero. The latter quantity must, therefore, be determined byniversal predictions of Eq$7) through(9). In terms of the
extrapolatingp(\) to A=0. In practice, this extrapolation Dirac eigenvalues, this quantity is defined[26]

presents no difficulties. N N 2
We now turn to the details of our numerical simulations. disc:i 2 1 _ l 1

They were done in quenched &) gauge theory withg X V521 (iNg+Fm)(in+m) V\ELiNEm]

=6/g°=5.4 on lattices of siz&/=L* with L=4, 6, 8, 10. (10)
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FIG. 1. Microscopic spectral densitleft) and distribution of the smallest eigenvalright) of the staggered Dirac operator in quenched

SU(3) for B=5.4 andv=L* with L=4, 6, 8, 10. The histograms represent the lattice data, the dashed curves are the prediction&pf Egs.

(with £=0) and(®).
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FIG. 3. The ratio defined in Eq13) for 8=5.4 and various

lattice sizes.
disc disc
. Xattice™ X
ratio= Iatt|c: RMT (13)
ISC
XRMT
o1 2 3 4, 8 T 809 which is plotted in Fig. 3. This ratio should be close to zero

_ _ _ _ _ in the domain of validity of the RMT predictions and deviate

FIG. 2. Mlcroscoplt_: two-point cluster functiom(z,,2,) with from zero at some value af=ugyr Which corresponds to
Z, at the second maximum gfy(z) for L=4 andL =6, respec-  the Thouless energyThe deviations of the ratio from zero
tively. The h!st_ograms represent the lattice data, the dashed curvesy very small values ofi are artefacts of the finite lattice
are the prediction of Eq9) for x=0. size and of finite statistics. This point was discussed in Ref.
. o . [15])
whereV is the number of lattice sitedy the numbe_r of ei- The prediction of Eq(2) is that Agyr/A should scale
genvalues andn a valence quark mass, respectively. The . (2" |5 we eXpressh gy in terms of gyt =N purVE

average is over.inde_pendent gauge field. configurations. Eq. hmur/A, Ugyr Should also scale with?. To check this
(10) can be rewritten in terms of integrals mvolvmg the SPEC-hredicted scaling behavior we have plotted the ratio of Eq.
tral one;’_and two-p0|2nt functions of the Dirac operator. R€S<13) as a function ofi/L2 in Fig. 4. We observe that all data

H ISC H — ' )
caling x“*° by 1/(vX?) and changing fromm to u=mVZ, fall on the same curve, confirming the prediction of E2).

we have with regard to the scaling with?. Since we have only con-
sidered one value g8, we cannot check the scaling witf .
Xdisc(u):4uzf°°dx ps(X) From Fig. 4 we can read offkgyr/A~0.04.2 in lattice
0 (X?+u?)? units.
_4u2fmfwdxdy (%) 8 ¥
o Jo X2+ u?)(y?+u?) !

<Op o
BGES
([T
— 00 O

=

= —UK2(U)— K, 1 (WK, _1(W)]
X2 (W) =11 (U] ,_g(W)], (11

ratio
= (S,
o
[ g IO

w

where in going from the first to the second line we have

inserted the RMT results fgig and 7,. The functiond and 2
K are modified Bessel functions. In the casewof 0, Eq.
(11) simplifies to 1

. 0
XU = K2 (u) - KW 15w —13(w]. (12

- 3 1

10° 2 51022 5107 2 5 10 2 5 10

In order to compare the lattice results fgf's® obtained u/L’
from Eqg.(10) with the RMT prediction of Eq(11) we intro-
duce the variabl§¢15] FIG. 4. The ratio of Eq(13) plotted versusi/L?2.
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In summary, we have shown that the distribution and theconfirmed. It would be of great interest to extend the present
correlations of the low-lying eigenvalues of the staggeredstudy to dynamical fermions for which analytical results are
Dirac operator in quenched $8) are described by universal also availablg21].
functions up to a certain energy scale, the Thouless energy. we thank S. Meyer and H.A. Weideritter for helpful

The latter quantity was determined using the disconnectegiscussions. This work was supported in part by DFG grants
scalar susceptibility, and the predicted scaling withwas  Scha-458/5-2 and We-655/15-1.
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