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Small eigenvalues of the SU„3… Dirac operator on the lattice and in random matrix theory
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We calculate complete spectra of the staggered Dirac operator on the lattice in quenched SU~3! gauge theory
for b55.4 and various lattice sizes. The microscopic spectral density, the distribution of the smallest eigen-
value, and the two-point spectral correlation function are analyzed. We find the expected agreement of the
lattice data with universal predictions of the chiral unitary ensemble of random matrix theory up to a certain
energy scale, the Thouless energy. The deviations from the universal predictions are determined using the
disconnected scalar susceptibility. We find that the Thouless energy scales with the lattice size as expected
from theoretical arguments making use of the Gell-Mann–Oakes–Renner relation.@S0556-2821~99!00609-8#

PACS number~s!: 11.15.Ha, 05.40.2a, 11.30.Rd, 12.38.Gc
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The low-lying eigenvalues of the Dirac operator are
great importance for the understanding of spontaneous c
symmetry breaking in an infinite volume@1#. On the lattice,
however, one is always working at finite volume. Therefo
it is important to know how the thermodynamic limit is a
proached. It was shown by Leutwyler and Smilga@2# that in
the domain

1/L!L!1/mp , ~1!

whereL is a typical hadronic scale,L is the linear extent of
the Euclidean box, andmp is the pion mass, the low-energ
behavior of QCD can be described by a simple effect
partition function whose existence imposes certain c
straints on the eigenvalues of the Dirac operator. The sp
trum of the Dirac operator in the domain~1! has been suc
cessfully predicted by chiral random matrix theory~RMT!
@3,4#. The only ingredients of the calculation are the glob
symmetries of the theory and the assumption that chiral s
metry is spontaneously broken. It has recently been sh
that there is an overlap between the domain of validity
chiral RMT and of chiral perturbation theory, and that in th
overlap region the two approaches yield the same results@5#.

The results so obtained provide analytical information
the way in which the thermodynamic limit is approache
They are universal in the sense that they do not depend
the precise values of the parameters of the theory, i.e., o
simulation parameters on the lattice. However, the domai
validity of the universal results does depend on the par
eters. The energy scalelRMT up to which RMT applies, i.e.
the Thouless energy, follows from the upper bound onL in
relation ~1! and the Gell-Mann–Oakes–Renner relatio
mp

2 f p
2 52mS, wheref p5Fp /A2 is the pion decay constan

S is the absolute value of the chiral condensate^c̄c&, andm
is a valence quark mass. It is thus determined by@6–8#

lRMT /D} f p
2 L2, ~2!

where D51/r(0)5p/(VS) is the level spacing at zero
Here, V5L4 denotes the four-volume, andr(l)5^(nd(l
0556-2821/99/59~9!/094503~5!/$15.00 59 0945
f
ral

,

e
-
c-

l
-
n
f

n
.
on
he
of

-

,

2ln)&A is the spectral density of the Dirac operator averag
over gauge field configurationsA. The relation betweenr(0)
andS is given by the Banks–Casher formula,pr(0)5VS
@1#.

The aim of this paper is~i! to test the universal predic
tions of chiral RMT for the distribution and correlations o
the low-lying Dirac eigenvalues and~ii ! to check the predic-
tion of Eq. ~2! for the Thouless energy, using lattice da
computed in quenched SU~3! gauge theory with the stag
gered Dirac operator. Point~i! has previously been consid
ered in quenched SU~2! @9,10#, in SU~2! with dynamical
fermions@11#, in quenched SU~3! in three dimensions@12#,
in U~1! in two dimensions@13#, and, very recently, in
quenched SU~3! in four dimensions@14#. Point ~ii ! has pre-
viously been tested in quenched SU~2! @15#. All these inves-
tigations were done with the staggered Dirac operator exc
for Ref. @13# in which the fixed point Dirac operator with
respect to a renormalization group transformation was us
Since real QCD has three colors, SU~3! in four dimensions is
clearly the most important case.

The Euclidean Dirac operator in the continuum is giv
by iD” 5 i ]”1gtaA” a, where theta are the generators of th
gauge group. The operatoriD” is Hermitian with real eigen-
values. It anticommutes withg5 and, therefore, all nonzero
eigenvalues come in pairs6ln with eigenvectorscn ,g5cn .
There can also be zero modes which are either left-hande
right-handed. The topological charge of a given gauge fi
configuration is equal to the difference in the number of le
handed and right-handed zero modes. On the lattice, the s
gered Dirac operator reads

~ iD” !x,y5
i

2(m @hm~x!Um~x!dx1m,y2hm~y!Um
† ~y!dx2m,y#,

~3!

whereU and h denote the link variables and the stagger
phases, respectively.

The claim is that the distribution and the correlations
the small eigenvalues ofiD” are described by universal func
tions which can be computed, e.g., in chiral RMT@3,4#. The
©1999 The American Physical Society03-1
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distribution of the low-lying eigenvalues is encoded in t
spectral one-point function near zero virtuality, the so-cal
microscopic spectral density defined by@3#

rs~z!5 lim
V→`

1

VS
rS z

VS D . ~4!

Similarly, one considers the microscopic limit of the tw
point cluster function,

t2~z1 ,z2!5 lim
V→`

1

~VS!2
T2S z1

VS
,

z2

VS D ~5!

with

T2~l1 ,l2!5r~l1!r~l2!2R2~l1 ,l2!, ~6!

whereR2(l1 ,l2) is the two-point spectral correlation func
tion, i.e., the probability density that one eigenvalue is atl1
and another atl2 , all other eigenvalues being unobserved

For SU~3! with the staggered Dirac operator, the releva
symmetry class in the framework of chiral RMT is the chir
unitary ensemble@16#. In the following, we briefly summa-
rize analytical results for this ensemble which are of r
evance for the present work. The microscopic spectral d
sity is given by@4#

rs~z!5
z

2
@Jm

2 ~z!2Jm11~z!Jm21~z!# ~7!

with the Bessel functionJ andm5Nf1unu, whereNf andn
denote the number of massless flavors and the topolog
charge, respectively. The distribution of the smallest eig
value forNf5n50 reads@17#

P~lmin!5
lmin

2
e2lmin

2 /4. ~8!

The two-point cluster function in the microscopic limit
given by @4#

t2~z1 ,z2!5z1z2F z1Jm11~z1!Jm~z2!2z2Jm~z1!Jm11~z2!

z1
22z2

2 G 2

.

~9!

The quantities in Eqs.~7! through~9! do not contain any free
parameters. For a comparison with lattice data, the ene
scale is determined by the parameterVS which is obtained
from the data by extractingr(0) and applying the Banks
Casher relation,pr(0)5VS. Thus, the comparison betwee
lattice data and the predictions of Eqs.~7! through ~9! is
parameter-free.@Strictly speaking, on finite lattices a spon
tanous breaking of chiral symmetry cannot occur andr(0) is
zero. The latter quantity must, therefore, be determined
extrapolatingr(l) to l50. In practice, this extrapolation
presents no difficulties.#

We now turn to the details of our numerical simulation
They were done in quenched SU~3! gauge theory withb
56/g255.4 on lattices of sizeV5L4 with L54, 6, 8, 10.
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The boundary conditions are periodic for the gauge fie
and periodic in space and anti-periodic in Euclidean time
the Dirac operator. The gauge field configurations were g
erated using a combined Metropolis and overrelaxation a
rithm on the link variables. Two consecutive configuratio
are separated by at least 30 runs of one Metropolis sw
with three hits and 20 overrelaxation sweeps using Creu
method@18#. The complete spectrum of the staggered Dir
operator was then calculated using the Cullum-Willough
version of the Lanczos algorithm for the matrix of2D” 2.
This operator couples only even to even and odd to o
lattice sites. Both blocks have the same eigenvalues. Hen
is sufficient to consider only even lattice sites. The eigenv
ues of 2D” 2 were checked against the identity Tr(2D” 2)
53V which was fulfilled with relative accuracy 1029. The
total number of diagonalized configurations and the extra
lated values ofpr(0)5VS are shown in Table I.

The lattice data forrs(z) andP(lmin) are compared with
the predictions of Eqs.~7! and ~8! in Fig. 1. In Eq.~7!, we
have usedm50. Clearly, Nf50 since we consider the
quenched approximation. The fact thatn50 is less obvious.
The prediction of Eq.~7! is restricted to sectors with definit
topological charge. Therefore, one should compute the to
logical charge of each gauge field configuration and comp
the lattice data in each topological sector with the predict
of Eq. ~7!. However, Eq.~7! assumes that fornÞ0 the Dirac
operator has exact zero modes. This is not the case for s
gered fermions on the lattice where at finite lattice spacina
the would-be zero modes are shifted by an amount prop
tional to a2 @19#. For the value ofb we used,a is still
relatively large so that no zero modes are present. This
plains why the lattice data are consistent with Eq.~7! for n
50, as seen in Fig. 1. Very similar results for differentb
were very recently presented in@14#.

The agreement between the lattice data and the unive
predictions is quite satisfactory, also for the two-point clus
function in the microscopic limit which we have plotted
Fig. 2 along with the prediction of Eq.~9! for m50. A fixed
value ofz254.68 ~corresponding to the location of the se
ond maximum ofrs(z)) was chosen.

The quantityt2(z1 ,z2) is interesting since it enters in th
calculation of the disconnected scalar susceptibility which
turn, can be used to determine the Thouless energy, i.e.
scalelRMT above which the lattice data deviate from th
universal predictions of Eqs.~7! through~9!. In terms of the
Dirac eigenvalues, this quantity is defined as@20#

xdisc5
1

VK (
k,l 51

N
1

~ ilk1m!~ il l1m!L 2
1

VK (
k51

N
1

ilk1mL 2

,

~10!

TABLE I. Simulation parameters and extrapolated value ofVS
for b55.4.

L Conf. VS

4 35337 22567
6 11748 1207628
8 2635 3918658
10 1059 94296155
3-2
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FIG. 1. Microscopic spectral density~left! and distribution of the smallest eigenvalue~right! of the staggered Dirac operator in quench
SU~3! for b55.4 andV5L4 with L54, 6, 8, 10. The histograms represent the lattice data, the dashed curves are the predictions of~7!
~with m50) and~8!.
094503-3
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whereV is the number of lattice sites,N the number of ei-
genvalues andm a valence quark mass, respectively. T
average is over independent gauge field configurations.
~10! can be rewritten in terms of integrals involving the spe
tral one- and two-point functions of the Dirac operator. R
caling xdisc by 1/(VS2) and changing fromm to u5mVS,
we have

xdisc~u!54u2E
0

`

dx
rs~x!

~x21u2!2

24u2E
0

`E
0

`

dxdy
t2~x,y!

~x21u2!~y21u2!

52u2@Km
2 ~u!2Km11~u!Km21~u!#

3@ I m
2 ~u!2I m11~u!I m21~u!#, ~11!

where in going from the first to the second line we ha
inserted the RMT results forrs andt2 . The functionsI and
K are modified Bessel functions. In the case ofm50, Eq.
~11! simplifies to

xdisc~u!5u2@K1
2~u!2K0

2~u!#@ I 0
2~u!2I 1

2~u!#. ~12!

In order to compare the lattice results forxdisc obtained
from Eq.~10! with the RMT prediction of Eq.~11! we intro-
duce the variable@15#

FIG. 2. Microscopic two-point cluster functiont2(z1 ,z2) with
z2 at the second maximum ofrs(z) for L54 and L56, respec-
tively. The histograms represent the lattice data, the dashed cu
are the prediction of Eq.~9! for m50.
09450
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ratio5
x lattice

disc 2xRMT
disc

xRMT
disc

~13!

which is plotted in Fig. 3. This ratio should be close to ze
in the domain of validity of the RMT predictions and devia
from zero at some value ofu5uRMT which corresponds to
the Thouless energy.~The deviations of the ratio from zer
for very small values ofu are artefacts of the finite lattice
size and of finite statistics. This point was discussed in R
@15#.!

The prediction of Eq.~2! is that lRMT /D should scale
with L2. If we expresslRMT in terms of uRMT5lRMTVS
5plRMT /D, uRMT should also scale withL2. To check this
predicted scaling behavior we have plotted the ratio of E
~13! as a function ofu/L2 in Fig. 4. We observe that all dat
fall on the same curve, confirming the prediction of Eq.~2!
with regard to the scaling withL2. Since we have only con
sidered one value ofb, we cannot check the scaling withf p

2 .
From Fig. 4 we can read offlRMT /D'0.04L2 in lattice
units.

es

FIG. 3. The ratio defined in Eq.~13! for b55.4 and various
lattice sizes.

FIG. 4. The ratio of Eq.~13! plotted versusu/L2.
3-4
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In summary, we have shown that the distribution and
correlations of the low-lying eigenvalues of the stagge
Dirac operator in quenched SU~3! are described by universa
functions up to a certain energy scale, the Thouless ene
The latter quantity was determined using the disconnec
scalar susceptibility, and the predicted scaling withL2 was
o

ev

D
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confirmed. It would be of great interest to extend the pres
study to dynamical fermions for which analytical results a
also available@21#.
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