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Role of resonances in nonleptonic hyperon decays
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We examine the importance of resonances for the nonleptonic hyperon decays in the framework of chiral
perturbation theory. Lower lying resonances are included in the effective theory. Integrating out the heavy
degrees of freedom in the resonance saturation scheme generates higher order counterterms in the effective
Lagrangian, providing an estimate of the pertinent coupling constants. A fit to the eight independent decay
amplitudes that are not related by isospin symmetry is performed and reasonable agreeineifi $and p
waves is achieved S0556-282(199)08609-9

PACS numbd(s): 12.39.Fe, 14.20.Jn

I. INTRODUCTION LECs enter the calculation so that the theory lacks predictive
power. In order to proceed these parameters were estimated
The matrix elements of nonleptonic hyperon decays caty means of spin-3/2 decuplet resonance exchange. The re-
be described in terms of just two amplitudes—the parity-sults for thep waves were still in disagreement with the data
violating s wave and the parity-conserving wave. Chiral —and, therefore, additional counterterms that were not satu-
perturbation theory provides a framework whereby these arrated by the decuplet had to be taken into account. An exact
plitudes can be expanded in terms of small four-momentéit to the data was possible, but the question remains whether
and the current masses, of the light quarksg=u,d,s. At~ the LECs are estimated correctly.
lowest order in this expansion the amplitudes are expressed Another intriguing possibility was examined by Le
in terms of two unknown coupling constants, the so-called¥aouancet al, who assert that a reasonable fit for betnd
low energy constantd ECs). However, there is no consen- P waves can be provided by appending pole contributions
sus for the determination of these two weak parameters. firom SU(6)(70,17) states to thes waves[5]. Their calcula-
one employs values which provide a good fit for theaves, tions were performed in a simple constituent quark model
one obtains a poor description of tpevaves. On the other and appear to be able to provide a resolution of ¢hand
hand, a goog-wave representation yields a poswave fit ~ p-wave dilemma.
[1]. In order to overcome this problem, one must go beyond The purpose of the present work is to consider the validity
leading order. In the paper of Bijners al. [2], a first at-  Of this approach within the framework of chiral perturbation
tempt was made in calculating the leading chiral correctiongheory. This would provide also an estimate of the counter-
to such decays. The authors worked in the limi;=m, terms involved in such a calculation, which have been ne-
=0 and kept only the nonanalytic logarithms from the Gold-glected completely if2] and[3]. Furthermore, we include
stone boson loops—no local counterterms were considerede octet of spin-parity 1/2 Roper-like states, which gener-
However, the resulting-wave predictions no longer agreed alizes the considerations {f]. We do not intend to provide
with the data, and the corrections for thevaves were even a definitive solution of the problem of hyperon decay but
larger. rather to study the relevance of resonance saturation estima-
Jenkins reinvestigated this topic within the framework oftion of counterterms. We will show that one is able to suc-
heavy baryon chiral perturbation theory, explicitly including cessfully identify counterterms in chiral perturbation theory

the spin-3/2 decuplet in the effective the¢8). Asin[2], no  With the contributions found in the quark model. The calcu-
counterterms were included—only leading nonanalyticlations are performed at the tree level. Of course, for a more

pieces from the meson loops were retained anee my=0  quantitative statement one has to include loop effects. How-
was assumed. Working in tt&U(6) limit (by neglecting the eVer, this is beyond the scope of the present work.
octet-decuplet mass splittingshe found significant cancel- In the following section then, we introduce the effective
lations between the octet and decuplet components in th&eak and strong Lagrangians including resonant states. By
loops. For thes waves good agreement between theory andntegrating out the heavy degrees of freedom from the theory
experiment was restored, although in the case optvaves, the effects of the resonances are included in the counterterms
the chiral corrections did not provide a good description ofand expressions for the decay amplitudes in terms of these
the data. Thus, the inability to fis and p waves simulta- constants are given. A least-squares fit to experiment is per-
neously remains even after including the lowest non-analytiéormed in Sec. Ill, while in Sec. IV we conclude with a brief
contributions. summary.
In our recent papg#] a calculation was performed which
includedall terms at one—loo.p order. This work suffers from Il. RESONANCES IN HYPERON DECAYS
the fact, however, that at this order too many new unknown
There exist seven experimentally accessible nonleptonic
hyperon decays:3"—nn", St—p#®, S —nw, A
*Email address: borasoy@het.phast.umass.edu —pm, A—n7®, E-—Anx and2°—A#° and the ma-
"Email address: holstein@phast.umass.edu trix elements of these decays can each be expressed in terms

0556-2821/99/5®)/09402%8)/$15.00 59 094025-1 ©1999 The American Physical Society



BUGRA BORASOY AND BARRY R. HOLSTEIN PHYSICAL REVIEW D59 094025

of a parity-violating swave amplitudeAi(jS) and a parity- represents the contraction of the pseudoscalar fields with the

conservingp-wave amplitudeA(” : Gell-Mann matrices. We replade by the pion decay con-
_ S o stantF ,=92.4 MeV which is consistent to the order we are
A(B;—B,; W)ZUBj{Ai(j '+ A] )75}UBi- (1) working. B is the standar&U(3) matrix representation of

the low-lying spin-1/2 baryonsN,A,%,=) and we work in
The underlying strangeness-changing Hamiltonian transge jsospin limitm,=my=m.
forms underSU(3)X SU(3) as (§ ,1r)®(27.,1g) and, ex- The purely mesonic component of the Lagrangian can be

perimentally, the octet piece dominates over the 27-plet by @ecomposed into a strong and a weak interacting part
factor of twenty or so. Consequently, we will neglect the

27-plet in what follows. Isospin symmetry of the strong in- Ly=L5+LY, (6)
teractions implies then the relations
where£ 5= L3 is the usualstrong and electromagnelic

A(A—pm )+ 2AA—nm%)=0 mesonic Lagrangian at lowest order—cf., e[§J, From the
weak mesonic Lagrangian only the term
AE"—=Am )+ 2AE°—A=%=0 e2
LY=-Th_tr(h u,u* 7
VAZ T —pr®)+AC —nm)— A —n7")=0, 6= NN U5 @

2 , .
@ contributes to the order we are working. Here, we have de-

which hold for boths and p waves. We chooses®  fined
—n7t, 3" —=nw", A—pw_ andE — A= as the four

—yt tht
independent decay amplitudes which are not related by isos- h.=u"hu+u'h'u, (8)

pm_'l_h ¢ thi ki dv the role of with h3=835: being the weak transition matrix. Note that
e purpose of this work Is to study the role o reSO 1 | transforms as a matter field and the weak couphings

nances in hyperon decays. To this end, it is sufficient in thi§N ; :
e . ) ell-determined from weak nonleptonic kaon decays—
preliminary study to work at the tree level. We consider first_ P

i ; . . . =3.2x10"".
the Lagrangian without resonances, which will be included Turning to the weak component of the meson-baryon La-
in the following section. Our starting point is the relativistic

effective chiral strong interaction Lagrangian for the pseudo-granglan’ the form of the lowest order Lagrangian is

scalar bosons coupled to the lowest-lying *142aryon octet E‘;f’go):dtr(g{m B+ f tr(§[h+ B]), 9)
Eg,%:i tr(gyﬂ[D“,B])— M tr(§B) andd,f are theonly weak counterterms considered in most
1 1 previous calculation$1-3]. As discussed in the Introduc-
=y Yy tion, use of this Lagrangian does not provide a simulta-
+-Dtr(B » B} + zF tr(B ».B ; . :
2 "(Byuys{u”,B} 2 "(Byuys[u”.B), neously satisfactory fit t@ and p waves, even after the in-

3) clusion of meson loops. In order to improve the agreement
with experiment, one must account for additional weak coun-
terterms, but, performing the calculation with the complete
Lagrangian including counterterms from higher orders, one
has no predictive powdr]. Indeed there exist only eight
experimental numbers: thee and p-wave amplitudes for the
four independent hyperon decays, while on the other side,
the theoretical predictions contain considerably more than
o eight low energy constants. We are not able to fix all the
U(¢p)=u*(p)=exp2ip/F}, u,=iu'V,Uu’, (4)  |ow-energy constants appearing i}y from data, even if
. we resort to largeN, arguments. We will therefore use the
with F being the pseudoscalar decay constant in the chirgbrinciple of resonance saturation in order to estimate the im-

where the superscript denotes the chiral order BN the
octet baryon mass in the chiral limit. We 48t 3/4 andF
=1/2, which are the&s U(6) values. The pseudoscalar Gold-
stone fields ¢=m,K, ) are collected in the 8 3 unimodu-
lar, unitary matrixU(x),

limit, and portance of these constants, as outlined in the following sec-
tions.
1 1 + +
EWO“L % Y ™ K A. Inclusion of resonances
1 1 1 In order to include resonances one begins by writing
b=— T - — '+ —y KO down the most general Lagrangian at lowest order which
J2 V2 J6 exhibits the same symmetries as the underlying theory, i.e.
Lorentz invariance and chiral symmetry. For the strong part
K~ KO _ i - we require invariance undé2 and P transformations sepa-
J6 rately, while the weak piece is invariant undeP Stransfor-

(5) mations, where the transformati@interchanges down and
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strange quarks in the Lagrangian. We will work in t6& L£=i0v D*O+O(A+iv.C 16
limit so that all LECs are realOf course,C and P invari- QYuBFRHQ 7sC)Q (16)
ance are not required separately for the weak interacting Lawith

grangian)
We begin with the inclusion of the lowest, I/2negative B —Mg 0 0 «a
parity level in (70,T). In [5] it was shown that such states R/ A= 0 —Ma)’ C= a 0/
: . . . R
dominate the contributions from (70,1 and considerably (17)

improve agreement with experiment for the hyperon decays.

Among the well established states one WE1535) and Note, thatA andC are Hermitian. Decomposing the doublet
A(1405). As for the remaining 17/2octet components there field Q as follows:

are a number of not so well-established states in the same

mass range—cf[5] and references therein. We denote the 1 1
1/2" octet byR. UnderC P transformations the fields behave Qr=5(1175)Q, Qu=5(1-75)Q (18
as
L the Lagrangian reads
B—y,CB', B—B'Cy,, u“—>—u;, — — _ _
L£=iQrY,D*Qr+iQ 7,D*Q +Q MQr+QrM'Q,
h+ﬂh1, D"‘H—D;, (19
S — with M=A+iC. Then by applying a bi-unitary transforma-
R—>_’)/OCRT, R_>_RTC')/0, (10) tion y applying y
whereC is the usual charge conjugation matrix. The kinetic Qr—RQr, Q,—LQ, (20)

term is straightforward
with unitary matricedR andL one can diagonalize the matrix

LR"=itr(Ry,[D*R])—Mgtr(RR) 1) M
with My being the mass of the resonance octet in the chiral L"™MR=Mg4 (21
limit. The resonanceR couple strongly to the 1/2 baryon
octetB via the Lagrangian whereM is diagonal with positive elements. The first two
. . terms in Eq.(19) remain unchanged by this transformation.
E(ngﬁisd[tr(Ryﬂ{u“,B})—tr(Byﬂ{u“,R})] Expressing the Lagrangian in terms @fwe obtain
+is[tr(Ry,[u*,B]) ~tr(By,[u“,R])] (12 £=iQy,D*Q+QM4Q (22

and the two coupling constansg ands; can be determined which is the desired result. Including the interaction terms
from the strong decays of the resonan@dsthe Appendi,  from Egg does not alter the proof. The interaction term of

yielding the central values the formiRysB can therefore be neglected, which leads to
_ _ significant simplifications of the weak Lagrangian between
$4=0.17, $=-0.12. 13 the resonances and the low-lying baryon octet.
We can then turn to the lowest order weak Lagrangian
which reads

A few remarks about the Lagrangiahd) are in order. In

principle, terms of the fornf?u“DMR are allowed by sym-
metry considerations. But, by use of the equation of motion WD i Ttr(RIh. BY —tr(Bih. R
for the resonance fields Lre " =i U(R{h.,B}) ~tr(B{h. ,R}p)]

. . . . with two unknown weak couplingsy andw; , which will be
one is able to reduce it to the terms already included {3 . determined from a fit to the hyperon decaggain, a term

The_ interaction termR ysB also satisfies the symmetry con- ¢ inq formﬁysmB is allowed by symmetry considerations,
straints, but can be transformed away by a unitary transforg, 5 bro0f analogous to the one above shows that such terms
mation. The proof of this is as follows. Consider a Lagrang—Can be transformed awayEurthermore, terms with the struc-

ian of the form = — .
I ture iRy, h,u”B and Ry,ys(D*h,)B are possible. But,

£=iBy,D*B—MgBB+iRy,D*R— MgRR+iaRysB after contraction with the vertices frof$} in the resonance
. K saturation scheme, they deliver contact terms of chiral order
+ia§y5R (15) two and involve at least two outgoing mesons, which is
clearly beyond our tree level considerations.
where we have supressed flavor indices ands the off We will not include any additional resonances from the
diagonal coupling. By introducing a doublet notation we can(70,1") multiplet, which were the only states considered in
rewrite the Lagrangian [5]. But in many other applications the spin-3/2lecuplet
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and the spin-1/2 Roper octet play an important role, cf. e.g.
[7]. The decuplet is only 231 MeV higher in average than the s
ground state octet and the Roper octet masses are compa- v K
rable to the 1/2 statesR. One should therefore presumably
account for these resonances. a) b)
We first consider the decuplet. Due to angular momentum
conservation the spin-3/2 decuplet states can couple to the FIG. 1. Diagrams including resonances that contributeandp
spin-1/2 baryon octet only accompanied by Goldstonevaves. Solid and dashed lines denote ground state baryons and
bosons—i.e. decuplet states contribute only through loogsoldstone bosons, respectively. The double line represents a reso-
diagrams to nonleptonic hyperon decays. An explicit calcuhance. Solid squares and circles are vertices of the weak and strong
lation shows that such diagrams saturate contact terms of tHteractions, respectively.
same chiral orderQ(p?), as the loop corrections with the
baryon octef4]. Since we restrict ourselves ®(p®) and  and a weak piece
O(pt) we can disregard such decuplet contributions. In ad-
dition, the calculation of relativistic loop diagrams in the
resonance saturation scheme leads to some complications.
The integrals are in general divergent and have to be renor-
malized, which introduces new unknown parameters. The
absence of a strict chiral counting scheme in the relativistic
formulation leads to contributions from higher loop diagrams
which are usually neglected in such calculations] €f. The couplingsD* and F* have already been determined
The lowest multiplet of excited states contributing to thefrom the strong decays of these resonarj@@swith central
chiral orderO(p?) is the octet of even-parity Roper-like values
spin-1/2 fields. While it was argued [8] that these play no
role, a more recent study seems to indicate that one cannot
neglect contributions from these states to, e.g., the decuplet
magnetic momentg9]. It is thus important to investigate the
possible contribution of these baryon resonances to the .
LECs. The octet consists of thBl* (1440), 3*(1660), while thg weak paramete_rd;* and f* can be determined
A*(1600) and=* (1620?). We denote the spin-1/Zeso- from a'f|t to t'he nonleptonic hyperon decay;—cf. Sec. lll.
nance octet by* . The transformation properties 8% un- Having written down the relevant Lagrangian for the reso-
der CP are the same as for the ground state barygnand ~ hances coupled to the ground state baryons we can proceed
the effective Lagrangian of th&* octet coupled to the to integrate out the heavy degrees of freedom from the ef-

ground state baryons takes the form fective theory.

LY _=d*[tr(B*{h, ,B})+tr(B{h, ,B*})]

+f*[tr(B*[h, ,B])+tr(B[h, ,B*])]. (27

D*=0.60, F*=0.11, (29)

kin

Lorg=Lom4 L3, o+ Lo 24
B¥B™ ~p* T ~B*B ' “B*B @49 B. Resonance saturation
with the kinetic term In this section we calculate the tree level diagrams involv-
Kin_ o= . — ing resonances which contribute to nonleptonic hyperon de-
Lg» =1 tr(B*y,[D#B*])~Mp« tr(B*B*), (25  cay. Allowing the resonance masses to become large with

a strong interaction paff]

1 — _
L= 2 D [r(B* v, ysiu#,B}) +tr(By, ysiu”,B})]

1 —_ JR—
+ 2 F*[tr(B* v, ys[u* B]) +tr(By, ys[u*,B*])]

(26)

fixed ratios of coupling constant to mass, higher order terms
in the effective meson-baryon Lagrangian are generated, the
coefficients of which can be expressed in terms of a few

resonance parameters.

Using the vertices from the Lagrangians developed in the
preceeding section we calculate the diagrams in Fig. 1. Then,
performing the limitMg,Mg+— and using the Cayley-
Hamilton identity for the two traceless33 matricesu,, and
h,,

g tr(BT ,{h, ,{u*B}}+ g tr(BT ,{u“,{h, ,B}})+ % tr(BT ,[h, ,[u“,B]]+ % tr(BT ,[u“,[h, ,B]])

=2 t(BT,B)tr(h,u#)+2 t(Bh,)T, tr(u*B)+2 t(Bu)T, tr(h,B),

with I’ ,= v, vs,7,, one generates the effective Lagrangian

(29
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L%V =g,{tr(By,[h: {u*,B}]) +tr(By,{u*,[h ,BIN}+guftr(By,{h. ,[u“,B]) +tr(By,[u“ {h, ,B}])}
+ga{tr(By,[h. [u“,B]]) +tr(By,[u“[h, ,BID}+gatr(By,B)tr(u“h, )+ geltr(By, ys[h. ,{u*,B}])
+tr(By, ys{u¥,[hy ,BIN}+gAtr(By, ysth ,[u®,B]}) +tr(By, ys[u“ {h, ,B}]D}+gs{tr(By, ysh, ,[u*,B]])

+r(By, ys[u”,[h ,BID}+gotr(By, ysB)tr(uth,). (30)

The couplings read, in terms of the resonance parameters,wherek is the outgoing momentum of the pion and2
=iys0,,v" is the Pauli-Lubanski spin vector, which in the

_SaWr _StWd _StWr_ SdWd rest frame is given bys'~°=(0,}0). The structure of the
S VR O VI YTV - ins aln :
R R R R Lagrangian remains almost unchanged with and v, ys
replaced byv,, and 2S,, respectively. The only additional
4sq Wy D* f* F* d* terms that contribute are relativistic corrections to the Dirac
94= 3Mg 96:4MB* ' 97:4MB* ' term and are of the forrf¥]
1 —
F*f* D*d* D* d* Lij=L§® =~ —tr(B[D, [D*B]])
Os= - v Go= : (31 2M
AMpgs  12Mp« 3Mpg«
1 _—
The Lagrangianlg" forms, together with the weak + I\O/Itr(B[U -D,[v-D,B]]. (39

LagrangiansC < at lowest order and }) from Eq.(7), the

strangeness changing Lagrangian which we employ for thgve utilize the same notation for the baryon fields as in the
calculation of the decay amplitudg#lote that the most gen- re|ativistic case. These terms produce a finite shift to the bare

eral LagrangianC i) contains two additional terms masses of the baryons. Since we work with the physical
_ _ masses of the baryons the effects lbﬁ‘,fg are already in-
gstr(Bhy) y,tr(u“B) +gotr(Bh ) v, ystr(u“B) +(H.c.) cluded in our expressions for the decay amplitudes and we

(32 can neglect Eq(35).

that are not generated by the resonances considered here. The general structure of tfewave decay amplitudes is

1
C. Heavy baryon limit Ai(jS):—{ai(jS)+v : kﬁi(js)} (36)

V2F,

We evaluate the decay amplitudes in the extreme non-
relativistic limit wherein the baryons are characterized by awith
four velocity v, [10]. A consistent chiral counting scheme
emerges, i.e. a one-to-one correspondence between the Gotﬂ;ln:O, B(;lﬁ —49,+49,— 493
stone boson loops and the expansion in small momenta and

quark masses. In the heavy baryon formulation pheave  of =d—f, B =-2g,—2g,+2g;
must be modified, sinces connects the light with the heavy
degrees of freedom which are integrated out in this scheme. 1 1
One therefore introduces the modified heavy bargamave a(ASE,= — —(d+3f), ,B(Asg: — —(10g,+2g,+6493)
amplitude A by G V6
AP _ 1 (P) R © _1 _
== S (E+M)AT, (33 o == p(d=30), B2, = (100, + 20, 605).

whereE; and M; are the energy and mass of the outgoing 37
baryon, respectively. In the rest frame of the heavy baryonin the rest frame of the decaying baryon the energy of the
v,=(1,0,0,0), the decay amplitude reduces to the nonmeson may be written as

relativistic form

1 2 2 2
. 1 v'k:m(Mi_Mj+mw)' (38
A(B|—>B] W):XB]_ Al(JS)“‘EkO'Al(]P) XBi !
We obtain very similar expressions for the resonance contri-

butions to those found in the constituent quark mdds!

— 149 (P)
_XBi{Aij +S-kAjj }XBa’ (34 There the contributions to the waves were found to be
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TABLE I. Experimental values of the decay amplitudes includ-

J i/ ing the errors. The numbers have to be multiplied by a factor of
o ,, 107"
—»—.’—»— ————»————-0’——»—
a) b) AYL AP AS) AL
v 0.13£0.02 4.270.02 3.25-0.02 —4.51+0.02

) ) AR, AP, A a@,

/’ ," —44.4+0.16 152-0.16 —23.4+0.56 —14.8+0.55

» = - .
c) d)

FIG. 2. Diagrams that contribute ®andp waves.(a) contrib- P _ 1 Z (d—3f)(D—F)
utes both tes andp waves, whereah),(c),(d) contribute only to the X=-a M =— My \/—

p waves. Solid and dashed lines denote ground state baryons and
Goldstone bosons, respectively. Solid squares and circles are verti-

ces of the weak and strong interactions, respectively. —D (d+f)

1
M~— My \/—
proportional to the mass difference of the decaying and the
light baryon which differs fronv - k only by terms quadratic ®
in the meson masses. To the order we are working then we Bz-a= E(2096+497_ 1294)
have agreement with the quark model calculation. The con-
tact diagram that contributes to tkevaves is shown in Fig.

1
2a. (p) —
———(D-3F). 40
For thep waves one finds the form ¢z \/5( ) &

Ai(jp): Ill. RESULTS AND DISCUSSION

% +ﬁ<p>+ h., 2¢ (39
2F, M= In this section we discuss the numerical values of the

h ) g he b | M th LECs and the fit to experiment. There exist eight indepen-
where aj;” denotes the baryon pole termy™ the contact  yon eynerimental numbers, i.andp-wave amplitudes for

terms mL‘W(l) and ¢{P the contribution from the weak de- the four decaysS*—nm. S —na, A—pm  and
cay of the meson. The diagrams which contribute toghe =-_, A 7~ which are not related by isospin. The central

waves are depicted in Fig. 2, and yield values for our parameters aFe,=92.4 MeV, D=0.75, F
1 2 =0.50. The procedure of estimating the counterterms of
(P _ _ 2D (d—f)— “D(d+3f higher order in the resonance saturation scheme involving
@xn Ms—My ( ) —My 3 ( ) the 1/2°, 1/2" octetsR,B* introduces eight additional pa-

rameters, four of which are determined from the strong reso-
,3(zp+)n: — 80+ 89,—80s, ¢<P) = nance decays. Together with the couplimgandf from the
weak Lagrangian at lowest order we have then six param-
2 eters with which to perform a least-squares fit to the nonlep-
=D (d+3f) tonic hyperon decays. The experimental values of the decays
—My 3 are shown in Table |, and the fitted chiral expansions of the
decay amplitudes read, in units of 10

aP ——;ZF(d—f)—
20 My—My

BY) = —4de— 407405, ¢V ,=D-F
A$),=0.00-0.04=—0.04,

(p)— P _
ap= MA My J—(d+3f (D+F) AP =-19.6-24.8=—44.4,
1 AP =7.19-1.86=5.33,
D (d—f)
R ‘/— &)
AP =-533+6.94=1.61,
1
plfy=— 75(2006+ 497+ 1250 Alfp=3.32-115=2.17,
6
AP)=-12.4-11.0- -234,
(<) J——
$xp=— (P3P AL = —6.06+1.92=—4.14,
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TABLE Il. Numerical values of the LECs obtained from a least-squares fit. The couplirgsl f are
given in units of 107 GeV, theg; in units of 1077,

d f 91 92 g3 94 Ye 97 Os 9o
0.44 —0.50 0.26 0.14 -0.12 —0.26 0.09 -011 0.21 -0.79
A@A: —10.44-4.30=—14.7, (41) levelin chiral perturbation theory. To this end, we included

the spin-1/2 octet from the (70,1) states and the octet of
where the first number is the lowest order piece, involvingRoper-like 1/2 fields in the effective theory. The most gen-
the weak counterternd, f, and the second number contains eral Lagrangian incorporating these resonances coupled to
the contributions from contact terms at next order. The conthe ground state baryons introduces eight new parameters,
tributions from the weak meson decays for {hevaves ap- four of which can be determined from the strong decays of
pear also at that order and are, therefore, included in théhe resonances. Integrating out the resonances generates
second number. The results, particularly for fneaves, are  counterterms in the Lagrangian at next-to-leading order. On
in satisfactory agreement with experiment. A fit wihly  the other hand, the inclusion of the spin-3/@ecuplet, as
the spin-1/2 resonances, as performed in the quark model itherformed in4], generates terms at the same chiral order as
[5], doesnot lead to good agreement between theory andpe oop corrections?(p?), which is beyond the accuracy of
experiment in the framework of heavy baryon chiral pertur-yi« calculation and therefore can be neglected5lrit was
. argued that the inclusion of the spin-1/®ctet is sufficient

[5]. The reason for this is that it is not possible to obtain a? 0 obtain a satisfactory fit for bothandp waves. We were

! ! . able to show that in the framework of chiral perturbation
satisfactory fit forp waves by using only the lowest order theory the structure of the contributions from these reso-
couplingsd and f. In the usual quark model approach the y

p-wave amplitudes include explicBU(3) symmetry break- nances agrees with the results in the quark modgl to the order
ing corrections of higher chiral order. A much improved fit V& @€ working. In the quark model the expressions foipthe
to the p waves is possible and the contributions from theWaves include additional explic8U(3) symmetry breaking
spin-1/2” resonances, which contribute only to thevaves, ~Corrections of second chiral order, in which case, a much
are sufficient to achieve a satisfactory fit for battandp  improved fit to thep waves is possible and the contributions
waves. This indicates that such higher order corrections arom the spin-1/2 resonances, which contribute only to the
essential. By including the spin-172esonances in the reso- SWwaves, are sufficient to achieve a satisfactory fit for tth
nance saturation scheme, which contribute topheaves at andp waves. On the other hand, in chiral perturbation theory
next-to-leading order, one is able to account for some othe improvement of experimental agreement is brought about
these higher order effects. The contributions from the"1/2 by the inclusion of the Roper octet, which is in the same
resonances to the parity-conserving decay amplitudes are g1ass range as the I/ctet. The reason for this is that the
comparable size as the the ground state contributions, argntributions from the lowest order couplinggandf for the
apparently, these resonances are crucial in heavy baryon chi=wave decay amplitudes tend to cancel thus enhancing the
ral perturbation theory to obtain a satisfactory fit also for thecontributions from terms of higher chiral order. By including
p waves. For completeness, the corresponding values of tHbe spin-1/2 resonances in the resonance saturation scheme,
couplingsg; from the Lagrangiarf‘(’;’él) are given in Table which contribute to thg waves at next-to-leading order, one
I. is able to overcome this problem. By fitting the six param-
It should be noted that a very different fit with six param- eters of the weak Lagrangian, two from lowest order and
eters was performed if]. There loop corrections were in- four at next-to-leading order, to the eight independent decay
cluded and the exchange of intermediate decuplet states wagplitudes that are not related by isospin, we obtain satisfac-
used in order to estimate the LECs. It turned out that ndory agreement with experiment. We suggest then that the
satisfactory fit was possible and additional counterterms haiclusion of spin-1/2 resonances in nonleptonic hyperon de-
to be included. Inclusion of the 172and 1/2 resonance Cays provides a reasonable estimate of the importance of
states seems then to play an important role for understandirfjgher order counterterms. In order to make a more definite
of the nonleptonic hyperon decays. In fact in the case of Statement, one should go to higher orders and include meson
waves their contribution is comparable to or even exceed¥0ps. o _ _ _
that from lowest order pieces. In order to make a more de- Of course, our fitis not unique. Another satisfactory fit for
finitive statement about their importance one must, of cours¢he decay amplitudes was achieved4 by including Gold-
go to higher orders and include loops. However, this is beStone boson loops and spin-3/2 decuplet contributions. The

yond the scope of the present work. effects of higher resonances like the ones considered in the
present work were neglected. By considering only the non-
IV. SUMMARY leptonic hyperon decays it is not possible to decide which

approach describes nature more appropriately. One must ex-
We have in this paper studied the importance of baryoramine other weak processes involving hyperons, e.g. the ra-
resonances for the nonleptonic hyperon decays at the trabative hyperon decays. This work is under wWau].
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with the coefficients
APPENDIX: DETERMINATION OF THE %‘-RESONANCE
COUPLINGS sq AND s; 3 5
_ _ _ _ AN(1533w:§(Sd+Sf) :
The decays listed in the particle data book, which deter-
mine the coupling constantg ands;, areN(1535)— N,
N(1535)—N#% and A (1405)—3 7. The width follows via 1
AN(1535)n:g(Sd_3Sf)2: AN(1535>77:25§- (A4)

r=2 M2|I<¢,||T|2 (A1)
VIR Using the experimental values for the decay widths we arrive
with at the central values
1 — -
|k¢|= ZMR[(MEQ_(MB+m¢)2)(M§Q_(MB_mq§)2)]U2 Sd—0.17, s;=—0.12 (AS)
(A2)

where we have chosen the signsgfto be positive in accor-
being the three-momentum of the mesps 7,7 in the rest  dance with the ground state octBt coupling. We do not
frame of the resonance. The ternéz and Mg are the present the uncertainties in these parameters here, since for
masses of the resonance and the ground state baryon, respt® purpose of our considerations a rough estimate of these
tively. For the transition matrix one obtains constants is sufficient.
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