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We develop perturbative QCD factorization theorems for the exclusive semileptonic heavy baryon decay
Abﬂplz in which the relevant hadronic form factor is expressed as the convolution of a hard subamplitude
with the A}, baryon wave function and the proton wave function. The specific evolution scale for the proton
wave function, determined from the best fit to the data of the proton form factor, is adopted. The Sudakov
resummation for a heavy-light systefine A, baryon and the quark-level decay diagrams with at least one
hard gluon attaching thie quark, which were ignored in the literature, are incorporated. It turns out that these
additional ingredients are important: the neglect of the former and the latter reduces the results of the form
factor by factors 1.5 and 3, respectively. We present the predictions of the form factor and of the proton energy
spectrum for the various choices of the parameter involved in the baryon wave function.
[S0556-282(199)05109-7

PACS numbe(s): 13.30.Ce, 12.38.Bx, 12.38.Cy

[. INTRODUCTION Similarly, inclusive decay spectra and decay rates oBhe
meson are factorized into the convolution of a harquark
Recently, we have applied perturbative QUBRCD) fac-  decay subamplitude withBimeson distribution function and

torization theorems to variol® meson decays, and progress several jet functions for light energetic final stafbs]. The
have been madgl—8]. For exclusive processdd,2], the distribution function, being the outcome of the resummation
form factors involved in decay spectra and decay rates aref nonperturbative power corrections to the processes, has
factorized into the convolution of a hard subamplitude withbeen extracted from the photon energy spectrum of the decay
meson wave functions. The former is process dependent argl— X,y [7]. The jet functions collect the double logarithms
calculable in perturbation theory at the parton level. The latappearing at the end points of decay spectra, whose resum-
ter, absorbing long-distance dynamics Bfmeson decays, mation gives the Sudakov factor. The three-scale factoriza-
are universalprocess independentand must be extracted tion theorem also applies to inclusive nonleptonic decays.
from experimental data or derived by using nonperturbativeJsing the above formalism, we have observed that the

methods. For example, we have determined Eheneson  single-charm modeb—cud is enhanced more than the

wave function from the best fit to the experimental data of ) — . : . .
the branching ratioB(B—K*y) [3]. The resummation double-charm modb— ccs is. The semileptonic branching

[9,10] of double logarithms from the overlap of collinear and "atio Bsy=B5(B—XIv) is then reduced without increasing
soft enhancements in radiative corrections to meson wavi!® charm yieldn. per B decay, and the largBs, contro-
functions plays an important role in the analyses. The resultV€rsy in the conventional approach based on heavy quark
ant Sudakov factor suppresses the long-distance contrib@ffective theory is resolvef]. Our predictions for the ab-
tions, and improves the applicability of PQCD around theSolute lifetimes of thé& meson and of thé, baryon are also
few GeV scalg11]. consistent with the datg, such that the lifetime ratio
The Wilson evolution in effective field theory has been T(Ab)/7(Bg) can be explaine@].
incorporated into the above PQCD formalism, leading to the With the above successes, it is natural to extend the
three-scale factorization theorem for nonleptonic de¢ays PQCD formalism to more complicated heavy baryon decays.
As the evolution scale runs to below thequark masM, N this paper we shall start with the simplest exclusive mode
and thec quark massM., the constructive and destructive Ap— plv, taking into account the Sudakov resummation for
interferences between the external and inteiadmission a heavy-light systenthe A, baryon in this cageinvestigat-
contributions involved in bottom and charm decays, respecing the applicability of PQCD to heavy baryon decays, and
tively, appear. Nonfactorizable and nonspectator contributinderstanding the sensitivity of predictions to the variation
tions can be evaluated systemmatically, which make possiblef the A}, baryon wave function, which remains unknown. It
the simultaneous explanation of the ratioR=5(B is expected that a PQCD analysis of heavy baryon decays is
—JYK*)IB(B—JIyK) and R =B(B—J/yK})/B(B  not as reliable as that of heavy meson decays, since partons
—JIyK*) in theB—J/yK*) decayg12]. With the further  in the former case are softer and Sudakov suppre_ssion is
inclusion of the all-order soft gluon exchanges, the mechaweaker. We shall show that PQCD for the dedgy—plv is
nism of the opposite signs of nonfactorizable contributions irreliable only at the high end of the proton energy. Therefore,
bottom and charm decays has been undersfdpd our approach may be appropriate for exclusive nonleptonic
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heavy baryon decays, which will be studied in the future. (B’,p’,s’|. The form factors;(g?) andg;(q?) depend only
The first attempt to apply the PQCD factorization theoremon the momentum transfef=(p—p’)>.

to the A,—plv decay was made by Loinaz and Akhoury In the case of massless leptons with

[13]. However, they did not consider the Sudakov resumma- _

tion for the A, baryon, and their evaluation of the hard sub- .l y“(1=ys)»=0, 4

amplitude was not complete: the quark-level decay diagrams .

with at least one exchanged gluon attachinglitugiark were E Is easy to obs_erve that only 'ghe four form f_actcbgs .fz’

ignored. Our analysis shows that these two ingredients are ifL andg, contribute. We rewrite the hadronic matrix ele-

fact important. The neglect of the former and the latter rement as

duces the results of the relevant form factor by factors 1.5 =, 2 _ 2

and 3, respectively. We shall adopt the King-Sachrai<a) M, =P(p)[L1(9%) 7.(1=v5) +Ri(q7) ¥, (1+ ¥s)
quel[lé}] for the proton wave function_, along with the spe- +Ly(gd)i o, (1= vs5)q"+ R,(9?)

cific choice of its evolution scale, which were determined '

from the best fit to the experimental data of the proton form Xio,,(1+vs5)q"JAu(P), 5)

factor[15,16. Furthermore, the full expression of the Suda- . _
kov factor with the accuracy up to next-to-leading logarithmsith the definitions
[2] will be inserted. 1 1

In Sec. Il we briefly explain how to factorize the pertur- Li==(f;+07), Ri==(f;—0g1),
bative and nonperturbative contributions to the dedgy 2 2

—plv into the hard subamplitude and the baryon wave func- 1 1

tions, respectively. The large logarithms contained in these Lo,=—=(f,+0,), R,=—=(f,—0,).
convolution factors are organized in Sec. lll. The factoriza- 2 2

tion formula for the relevant form factor is presented in Sec. (6)
IV. Numerical analyses are performed in Sec. V, where th
behaviors of the form factor and of the proton energy spe
trum are exhibited. Section VI is the conclusion.

ince the form factorL; dominates for unpolarized\,
Cbaryon decays, we shall evaluate orly in the present
work.
The hadronic matrix element involves both nonperturba-
Il. FACTORIZATION THEOREMS tive and perturbative dynamics. To evaluate it, we employ
factorization theorems, in which the former is separated from
the latter, and absorbed into universal baryon wave func-
tions. After performing the factorization, we compute the
G perturbative part, i.e., the hard subamplitude, order by order
_"F Tk _ reliably, and convolute it with the baryon wave functions.
M \/EV“bM"[I V(= ysnl, @ Certainly, this factorization picture should fail at some power
of 1/M Ay My, being theA , baryon mass, where nonfactor-
where Gg. is the Fermi coupling constant and,, is the  jzaple soft gluon exchanges do not cancel exactly. We have
Cabibbo-Kobayashi-MaskawéCKM) matrix element. Al gerived the leading-power factorization theorem for heavy
QCD dynamics is contained in the hadronic matrix elementmeson decays in RefL]. This formalism can be extended to
— heavy baryon decays straightforwardly, whose basic ideas
M, =(P(p")|uy.(1—ys)b|Ay(p)), (20 will be briefly reviewed below.
" The lowest-order diagrams for the decay amplitude at the
wherep (p’) is the momentum of thé\, baryon(proton.  qyark level are exhibited in Fig. 1, where thequark is
The general structure of a matrix element of charged Weat‘epresented by a double line, and the symtiotienotes the
currents between baryon states is expressed as electroweak vertex, from which the lepton pair emerges. The
) — two gluons are hard, when the proton recoils fast, which give
(B',p’,s'[j#|B,p,s)=B"(p’,s")[f1(q*) »* the necessary momentum transfer to make the outgoing
i 2y uv 2\ 1t guarks move collinearly and form the proton. The diagrams
IT2(a%) o™q,+15(a9)a"1B(p.s), Figs. Ag)—1(n) were not considered in Ref13], because
they were assumed to be suppressed tMAlbl We shall

demonstrate that these diagrams in fact give contributions of

The amplitude for the semileptonic deCMlej is
written as

(B',p’,s'|j#|B,p,s)=B"(p’,s")[91(q%) Y*¥s

—ig,(9?) o’ ysq, the same order as those from Figsa)+1(f).
5 We then consider radiative corrections to Fig. 1, as shown
+93(d%) ¥s9“1B(p,s), (3 in Fig. 2, where the bubble represents the two hard gluons,

and explain how to absorb them into the hard subamplitude
where j* is the vector currentj§ the axial vector current, and the baryon wave functions. There are three leading mo-
B(p,s) the spinor of the initial-state baryd®,p,s) with p  mentum regions for radiative corrections, from which impor-
and s the momentum and spin, respectively. The spinoriant contributions arise. These regions are collinear, when
B'(p’,s’) is associated with the final-state baryonthe loop momentum is parallel to an energetic light quark,
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FIG. 1. Lowest order diagrams for the,— pI?decay.

=

soft, when the loop momentum is much smaller thag , (e

and hard, when the loop momentum is of ordi&y\b. We FIG. 2. Radiative corrections to Fig. 1.

associate small transverse momeita with the valence

quarks, which serve as an infrared cutoff. The collinear andvave function. The remaining important contributions from

soft contributions may overlap to give double logarithms.Fig. 2, with the collinear and soft enhancements subtracted,

While the hard contribution gives only single logarithms. ~ are then dominated by short-distance dynamics characterized
Because of the inclusion of the transverse degrees of fredly the single logarithms I, /u), and absorbed into the

dom, the factorization should be constructed in the impachard subamplitude.

parameteb space, withb conjugate tdky [1,9]. In the axial The kinematics is as follows. The momentum of thg

gaugen- A=0, n being a gauge vector amdthe gauge field, baryon at rest isp=(p*,p~,0) with p*=p = MAb/\/E.

the two-particle reducible corrections on the proton side, likerhe momenta of the valence quarks in thg baryon are
Figs. 2a) and 2b), have the double Iogarithmsz(mllﬁbbz) in

the fast recoil region and the single soft logarithm}r)( « ki=(p",x1p"Kkar),  ka=(0,x2p ", Kzr),
being the renormalization scale. Naturally, these corrections B B
are absorbed into the proton wave function. The two-particle ks=(0x3p " Kar), ™

irreducible corrections, with the gluon attaching a quark in
the A, baryon and a quark in the proton, as in Fig&)and
2(d), contain only the single logarithms lng¢), whose ef-
fects are less important, and will be neglected in the follow

wherek; is associated with thb quark, andx; are the mo-
mentum fractions. The momentum of the proton, which re-
coils in the plus direction, is chosen p$=(p’'",0,0) with
p'"=pp*. The parametep, O<p=<1, defined by

ing analysis.
On the A, baryon side, Fig. @), giving the self-energy 20.p'
: . . p-p
correction to the massive quark, produces only soft diver- p=—, (8)
gences. If the light valence quarks move slowly, collinear MAb

divergences in Figs.(® and 2g) will not be pinched[1], . . .
and these diagrams also give only soft divergences. Howis related to the energy fraction of the proton. The invariant
ever, there is probability, though small, of finding the light mass of the lepton-neutrino pair is then given by
guarks in theA, baryon with longitudinal momenta of order =(1—p)Mib. The momenta of the valence quarks in the
M,,. Therefore, Figs. @) and 2g) may still contribute col-  proton are

linear divergences. In conclusion, reducible corrections on

the A, baryon side are dominated by soft dynamics, but ki=(x1p"",0k17),  Ko=(x3p"",0Kz7),
contain weak double logarithms with the collinear ones sup- , e
pressed. These corrections are absorbed into\thearyon k3= (X3p"",0k3y). C)
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All the transverse momenta are assumed to be much smaller 1
thanM,, since the valence quarks are near or on the mass V(ky Kz kg P’ ) =5 [P (ka ki Kg,p"s )
shell. Otherwise, the quark lines should be absorbed into the
hard subamplitude. In this sense the transverse momenta play +W (kK. ks,p" )],
the role of a factorization scale, above which PQCD is reli-
able, and below which QCD dynamics is parametrized into 1
the baryon wave functions. For a similar reason, the fraction A(Ky,K3,K3,p" 1) =§[‘l’(k§,ki,k§,p’,,u)
X4 should be close to unity, as reflected by the behavior of
the A, baryon wave function in Sec. IV, such thkf is —W(ky. Ko ks,p"\ )],
roughly equal tavi2.

According to the above explanation, the factorization for- S o 1 S e
mula for the form factol , is expressed as T(ky Ko kg, p',u) = 5[W(ky ks kz,p", )

1 — ’ ’ ' '
Li= | T 100 [ [0, by 0700 i
The structure of theA, baryon distribution amplitude
XHa’B’«/aﬁy(Xif X0, M )W A0y (X 07,0, ), Wy, is simplified in the heavy quark limit. Under the as-
sumptions that the spin and orbital degrees of freedom of the

(10 light quark system are decoupled, and thebaryon is in the
with the symbols ground stateg wave), ¥, is expressed g3
3 3 2 2 fy
dx]=]] dxé| 1-> x|, [d?b]= =, N
[dx)=11 dx ( 2 x.) [d?b]1=11 2 V= ﬁNcanAme]ﬁy
11

XAbaq)(kl!kZ!kSlp!lu’)! (14)
where theé function is the consequence of the momentum
conservation. The symbol with a prinfjelx’] is defined WherefAb is the normalization constant antl, is the A
similarly. Note that there are no the variabkgs. Since we baryon spinor. There is also only a single wave function
shall drop the transverse momenta carried by the internaissociated with thd , baryon.
guarks in the hard subamplitude, the transverse separations
among the valence quarks of the, baryon are equal to Ill. SUDAKOV RESUMMATION
those of the proton. It has been shown that this approxima-
tion, simplifying the analysis, gives reasonable predictions The large logarithms, appearing in the wave functions and

for the proton form factof15]. the hard subamplitude, should be organized by the resumma-
The proton distribution amplitud® is defined, in the tion technique[9] and the renormalization-grougRG)
transverse momentum space, by method. The RG summation of the single logarithms
) In(M,, /1) and Inpp) leads to the evolution from the char-
¥ 1 f dy; dy, ik -y .abc acteristic scale of the hard subamplitude to the factorization
P“'BV_Z\/ENC =1 (2m)3 e e scale 1. The resummation of the double logarithms
Inz(MAbb) exhibits Sudakov suppression in the latydong-
X (0| T[ua(y1)u(y2)d5(0)]|P), distance region, such that PQCD analysis becomes rela-
; tively reliable at the energy scale MAb' The standard deri-
= p(1) [(B'C)up(¥sP), V(K ,p, 1) vation of a Sudakov factor is referred to in Rdf8,10].
8\/§Nc 7 The result of the Sudakov resummation for the proton

;o wave function¥p is given b
(B 75C)agP AKL P 1) P oNER Y
3

_ v yn ! !

(00" C) g7 ysP), T P )], (12 \If(x{,bi,p',m=ex;{—|21 (owxip™)
whereN.= 3 is the color numbetP) the proton statey and
d the quark fieldsa, b, andc the color indices, and, 8, and u du _
v the spinor indices. The second form shows the explicit —3f — Yqlas(u)]
Dirac matrix structurd 17] with the normalization constant oM
fp, the proton spinoP, the charge conjugation matrig, (15)
ando,,=[v,,7,])/2. Using the permutation symmetry and
the constraint that the total isospin of the three quarks isvith the quark anomalous dimensioR(as) = — as/m. The
equal to 1/2, the three functiong A, andT are related to a exponens, corresponding to the double-logarithm evolution,
single function¥ through[17] is written as[10]

¢(Xi, !CW) y
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dp

0 . (16)

|n(Q)A[as<p)]+B[as<p>]

S<W’Q>=ff )

where the anomalous dimensioAsto two loops andB to
one loop are

LS 67 w2 10 +8 | e’E\ ]/ ag\?
=Gt e T3 Mgl )

2 ag [e?7El
B=3 7N =2 ) @n

n¢=4 for A baryon decays being the flavor number, ard

the Euler constant. The two-loop running coupling constant Working

ag(p) 1 B1 InIn(u?/A?) 18
- 2/ 23 120 27A2y ] (18)
T Boln(u¥A?) B3 InP(uA?)
with the coefficients
B 33—2n; B 153—19n; 19
BO_ 12 ’ ﬁl_Tv ( )

and the QCD scalé\=Acp, Will be substituted into Eq.

(16). Compared to Ref.13], our expression of the Sudakov
factor with the accuracy up to single logarithms is more
complete, since we have used the two-loop running coupling

constant in Eq(18). The second exponent in E(LY), i.e.,

the integral containingy,, corresponds to the single-

logarithm RG evolution. The functiost, obtained by factor-
ing the p’* dependence out o¥, coincides with the con-
ventional parton model.

The infrared cutoffcw is the inverse of a typical trans-

PHYSICAL REVIEW D59 094014

3
®(x;,b; ,p,u)=exp[ —IZZ s(cw,x,p7)

w d —
~3[" Loy a0 cwm. @1
cw M

Note the lack of the exponestfor the b quark. Since thé
quark is heavy, radiative corrections associated with it do not
produce double logarithms. While the coefficient of the
anomalous dimensiof, is still 3, because the RG evolution

is determined by the ultraviolet structure of loop corrections,
which are not affected by the heavy quark mass. The param-
eterc is also set to 1.14 for convenience.

out the contraction of

oo gy HY 7B o in the momentum  space,
whose explicit expression from each quark-level decay dia-
gram in Fig. 1 is listed in Table I, we extract the hard sub-
amplitudeH. To simplify the formalism, we have applied the
approximationM b~MAb, and neglected the transverse mo-
mentum dependence of the internal quark propagators as
mentioned before. The RG evolution Hfin the b space is
written as

, S d; —
H()(i ,xi,bi,MAb,M)ZeX[{—32 f :Vq[as(ﬂ)]
=1 Ju M

XH(X X0 My sty t), (22)
where the hard scalds will be specified below. The two
arguments; andt, of H imply that each running coupling
constanta, is evaluated at the mass scale of the correspond-
ing hard gluon.

IV. FACTORIZATION FORMULA

verse distance among the three valence quarks as stated be-

fore. The recent PQCD analysis of the proton form factor

shows that a reasonable choicevofs [18]

11 1
), (20

W=I’T\II’1<b—1,b—2,b—3

with by=|b;—b,|. The best fit to the experimental data of

the proton form factor determines the parameterl.14
[16]. The introduction of this parameteris natural from the
viewpoint of the resummation, since the scaieg, with c of
order unity, is as appropriate &as[9,10]. The variation ofc,

with cw being the factorization scale, represents the different

Employing a series of permutations of the valence quark
kinematic variables, the summation of the expressions in
Table | reduces to two terms. Combining E¢k5), (21), and
(22), we obtain the factorization formula

27 (1 1/A 2m
L1=—f [dX'][dX]f bldblbzdeJ dofp(cw)f,
27 0 0 0 b
2

ijl Hj(x{,xi,bi My ti) WX % ,cw)

xexg — S(X{ ,X; CW,My )], (23

partitions of radiative corrections into the perturbative Suda-

kov factor and the nonperturbative wave functignAs all

1/b; are much larger than, the Sudakov form factor does
not give suppression. As one of these scales gets cloAe to
the Sudakov factor tends to zero and suppresses this region.
It is easy to observe that choosing the infrared cutoff in Eq.

(20) suppresses all the infrared divergences.

The Sudakov resummation for a heavy-light system, such

as theB meson, has been developed in Réf. The resum-

mation for theA, baryon wave function is similar, and the

result is

where the variable is the angle betweeh,; andb,. The

expressions oH; are

H1= ag(t1y) as(tin) Kol ml\hbbﬂ
X Ko(Vxzx5pM A,D2),

Ho= ag(to1) as(ta) Kol \/@MAbbl)

X Ko(VX2X3pM p b2), (24)
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TABLE I. The expressions dﬂ_fpa/ﬁ/y,H“'ﬁ'V'“fB”IfAbaﬁy from the diagrams in Fig. 1 in terms @%;=xx{ pM} + (kir—ki7)?, D;
:(1—xi)(1—xi’)pMib+ (kit—k{7)2. For each diagrarta)—(n) row (1) is the original expression, rof2) is the series of variable changes
necessary for bringing rol) into the desired form, and roB) is the expression after variable changes.

Diagram WeHW /(473 pfy, 127) Diagram WeHW /(473 pf [27)
@ (@) (421301031 2T 1230124 () @ [ 213103+ 2T 1230123
(1=x1)(1=x1)D11D33 (1=%)(1=X})D11Dyp
2 23 (2 none
©) [3120130F 2T 1320130 ©) [ 21301051 2T 1230124
(1—x1)(1=%1)D11 D (1-X1)(1=x})D11Dyy
Eg @ 8 (k) (@) [(1=X3—X1X2) p— X2 ] 213123
&) 0 (1=x3)(1=Xz)p(X3p— 1) D2;D33
© (1) 2T 1230123 2[(1—2Xp+X3=X3p) p+ X2 T123123
(1—%1)(1—X3)DpyD33 (1=x1)(1—X) p(X3p—1)D;;D33
2 13,251,352 2 1-3,2-1,3-2
® 2T310¢312 ® [(1=x—XgX)p— X4 J¢130312
(1—x3)(1=x1)D11Ds; (1=x3)(1=x1) p(Xop—1)D11 Do,
CIACY ~ Y213p123 2[(1—2x3+Xp—X3p) p+ X1 Ta120312
(1—%1)(1—X3) D2;Ds3 (1—x5)(1=X1) p(Xpp—1)D11Dyy
Eg 1-3,2-1,3-2 @ [(1=2X5+X3—X3p) p+ X3]o13b123
—Vneobaz (1=X)) (1= Xg) p(xjp—1)DyDa3
1- 1—x5)D1,D:
© () (1= Oxz) wre + 2[(1_X3_X§/_(1_X3)(1_,Xi)P)P_X3]T123¢123
) 0 (1=x1)(1=X3) p(Xzp = 1)Dp;D33
) 0 ) 153,251,352
() (1) [¢213P105F 2T1§¢123] ®) [(1—=2%+ X1 —X1p)p+Xo 1300312
(1=x1)(1=%1)D11Dzp (1=x3)(1—X2)p(X1p— 1) D11D5,
2 none 2[(1— %= x1— (1= X2) (1 —x3) p) p — X2 Ta126312
&) [ 213P123+ 2T 1230103 o .
= (1=x3)(1=X2) p(X1p—=1)D11Dy,
(1=x1)(1=x%9)D11D2p (m)
@ (1) 5 - @ [#213105T 2T12j¢123]
X3(p= 1) T123123 (1—x1)(1—X})D11Da3
(1=x3)p[(1=X3)X3p+X3]Dy5D33 ) 253
2 1-3,2-1,3-2 ©) (3100130 2T 1320130
®) 2%(p— D) T3100312 (1_X1)(1_Xi)511D22
(1=x1)p[(1=X2)X1p+X2]D11D2p (n (1) XU Ya1sbiast 2T 1oabrzal
@ 0 2 =
2 0 (1=x%1)“pD11D33
©) 0 ) 23
(@) X4[ rarab1o3t 2T 1256b104] ®) X[ 31001301 2T 1320132
(1—x)%pDy1Dsp (1-x1)?pD1;Dy,
2 none
©)

X1[ ¥2130125F 2T 1050123
(1-x1)?pD11D,
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with Ky the modified Bessel function of order zero. The. TABLE Il. The constants anq the Appel polynomials involved
functions¥;, which group together the products of the ini- in the KS proton wave functiog in Eq. (30) [22].

tial and final wave functions, are, in terms of the notation

j a N; b; Aj(x))
¢123E ¢(X11X21X3)1 ¢123E lﬂ(x:’t,Xé,Xé,CW), (25) 0 100 1 O l
ven b 1 0310  21/2 20/9 X1 — X3
9 y 2 0370 72 2419 23(x,+X3)
3 0630  63/10 32/9 2—7(X;+X3)+8(X2+x3) +4x1X3
v,— 2(h3100130F 2T 13000130 Yo130123F 2T1230129) 4 000333 567/2 40/9 X1~ Xa— (413) (C—x2)
(1=x1)(1—x3) 5 00632 81/5 42/9 27 (X, + X3) + 14X, X3
+(14/3) (x3+x3)

N X1(Y3100130+ 2T 1300130+ Yo130125F 2T 1230129
(1-x1)%p

3

(26)

= 130312
(1—%3)(1—x3)

2T
v, 312$312 ,
(1-x3)(1—xg)

2X2(p— 1) T31060312
(1=x1)p[(1=X)X1p+X5]

N [(1—X5—X3X1) p— X1 ] 132312
(1=x3)(1—xq1)p(xzp—1)
2[(1_ 2X1+ X = X5p) p+ X1 | Ta100312
(1—x3)(1—Xq)p(X5p—1)
[(1—2Xo+ X1 = X1p) p+ Xo] 1320312
(1-x3)(1=x2)p(X1p—1)
4 2{[1_X2_ X1—(1=X2)(1=X3)plp— X2} Ta126312
(1-x3)(1=x2)p(X;p—1) '

(27)

The functionsT are related tay in a similar way to Eq(13).
The complete Sudakov exponedits written as

. _
_ tiq d/““ —
s=3 stowxp)+3[ M Lofae]
1=2 cw 0
3 tio d; —
+ 3 sewxp)+3[ " Loyl @9
=1 cw M
with the hard scales
ti=ma{ (1 -x1)(1-%1)pMy , 1y, cw],
tor=ma{ VXiX;pMy , 1y ,cw],

t15= o= max{ yXX;pMy , 1/, cw]. (29)

The first scales in the brackets are associated with the longi-
tudinal momenta of the exchanged gluons and the second

ones with the transverse momenta. 4|l should be larger
than the factorization scataw by definition as shown above.

For the wave functionf, we adopt the KS moddl14],
which has been found to give predictions for the proton form
factor in better agreement with the data compared to the
Chernyak-Zhitnitsky modefl17]. The KS model is decom-
posed a$19,20

bj /(480)

as(W) aA(x), (30

ag(mo)

5
lﬂ(Xi W)= ¢as(xi)jzo Nj

with uo~1 GeV and =12 X,X3. The constants\;,
a;, andb;, and the Appel polynomialg; are listed in Table
Il. The evolution of the normalization constaht is given by
[17]

1/(6Bo)

ag(w) , (31)

ag(uo)

fp(w)= fP(,U«o)[

with fp(ue)=(5.2+0.3)x 102 Ge\~.

We do not consider the evolution of thig, wave function
¢ in the scalew, because it is still not known yet. Similarly,
the running of the normalization consta\ﬁ,l;b is also ne-

glected, which is assumed to tﬁgb= fp(ug) for simplicity
[13]. It is convenient to use the new dimensionless variables

X2
&= Xot+Xa'
2T X3

N=Xo+ X3 (32

when presenting the model for thg, baryon wave function
¢. We choosd21]

d(Lm)=Np?{(1—n)(1-)
{ Mib mé
xexpg — — - —
2B(1—n) 2B°ni(1-90)

for ¢103 and ¢35, Where the parameteg® can be fixed by
experimental data oh,, baryon decays, and, is the mass
of the light degrees of freedom. Accordingly, we have

d(L,m)=N7n?{(1—9)(1-9)

p[ MY, m3d- g0
xXexpg — -
2B29(1-0)  2B%nL(1-1n)

(33

(34

094014-7
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FIG. 3. Dependence df; on b, for 3=1.0. b, is in units of FIG. 5. Dependence df; on p.
L , i For p=0.9, 50% of the contribution is accumulated in this
for ¢31,. The normalization constai is determined by region. Asp=1.0, the smalb contribution reaches 52%.
1 1 For the large3=2.0, which corresponds to a broadeg
f dZ f ndned(L,n)=1. (35 baryon wave functiorp, the percentages of perturbative con-
0 0

tributions forp=0.8, 0.9, and 1.0 increase a bit up to 49, 52,
. . : ... and 55 %, respectively, as shown in Fig. 4. Since the long-
In the next section we shall investigate how the predlcuonsdistance contribution is less enhanceddaythe magnitudes

for the form factorl; vary with the parameteg. of L, are reduced to about 63% of those f&=1.0. If re-
garding the region witlw,/77<<0.5 as being perturbatid ],
the PQCD analysis of the decay,— plv for p>0.8 is rela-

We are now ready to compute the form factgrin Eq.  tively self-consistent, since the short-distance contributions
(23) numerically, adoptingVl, =5.621 GeV,A=0.2 GeV, begin to dominate. The above percentages of perturbative
and m,=0.8 GeV. We consider two typical values of the contributions are smaller than those in the heavy meson de-
parameter, 1.0, and 2.0, and the corresponding depen£@y B— mlv, which are roughly 60—70% near the high end
dences oL, on the cutoff ofb; andb,, by.=b,.=b,, for  ©Of the pion energy spectrufii]. This is expected, because
the proton energy fractiop=0.8, 0.9, and 1.0, are displayed there are more partons to share the baryon momentum, such
in Figs. 3 and 4, respectively. It is observed that the rise ofhat the partons are softer, and Sudakov suppression is
all the curves indeed saturates at about 0.85/A, indicat-  Weaker. o _
ing that the larges region does not contribute because of Compared to the analysis in R¢L3], we have taken into
Sudakov suppression. Figure 3 shows that §e10.8, ap- accognt Fhe resummation effect fr'om the baryon and the
proximately 47% of the contribution th, comes from the contributions to the hard subamplitude from Fig&)+1(n).

region with ay(1/b,)/w<0.5, or equivalentlyp,<0.61A.  Recalculating., for =1.0 andp=1.0 without the Sudakov
factor associated with thd, baryon, we observe a 37%

V. NUMERICAL RESULTS

0.0030

0.0020 -

L1

dridp

0.0010 -

0.0000
0.0

FIG. 4. Dependence df; on b, for 8=2.0. b, is in units of
1A qcp- FIG. 6. Dependence afT'/dp on p in units of 10 '8 GeV.
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decrease. Note that the inclusion of the Sudakov factor from VI. CONCLUSION
the heavy baryon causes an enhancement, instead of a sup-
pression. It is not difficult to understand this result. SiNce . . . .
in Egs.(26) and (27) are not positive definite in the whole In_th|s paper we have studied the semileptonic detgy
kinematic region, it is possible that the modulation of this—plv as an initial application of the PQCD factorization
Sudakov factor suppresses the negative portion of the intéheorem to heavy baryon decays. It is found that the pertur-
grand in Eq.(23) more than the positive portion. bative analysis is reliable near the high epd-0.8) of the

The more essential improvement is the consideration oproton energy spectrum. Compared to the previous study
Figs. 1g)—1(n) in the evaluation of the hard subamplitude. It [13], we have taken into account the Sudakov resummation
was argued that the contributions from these diagrams, witfor a heavy-light systenithe A, baryon and a complete
at least one of the exchanged gluons attachingbtk@ark,  hard subamplitude. The quark-level decay diagrams ne-
are suppressed by the poweMly , and thus negligibl€13].  glected in Ref[13] turn out to be very important.
However, this argument is correct only when the exchanged Semileptonic charmless, decays could be observed in
gluons are soft, such that thequark propagators in Figs. run Il of the Fermilab Tevatron colliding beam experiment.
1(g)-1(n) provide a power suppression byl\/l,(b. Before  From run | data, the Collider Detector at Fermilé®DF) is
investigating the validity of this argument, it has contradictedexpected to observe several hundred of Ae- Al v semi-
the assumption of hard gluon exchangs, based on which tHeptonic decay events. With higher luminosity, higher beam
PQCD formalism was developed. Our analysis indicates thatnergy and an improved silicon vertex detector, the observed
with the help of Sudakov suppression, the exchanged gluong,— A | v events in run Il could be increased by two orders
are indeed hard enough, and that Fig&y)41(n) lead to  of magnitude. This compensates the small factor of
contributions of the same order as those from Figa).-21(f). IVub|?/|Vep|? SO that hundreds of ,— plv events could be
If considering only the first six diagrams in Fig. 1 as in Ref. expected from run 1l of CDF. While this may provide some
[13], the result ofL, for =1.0 andp=1.0 reduces by a hints on the application of PQCD to the process, it might not
factor 3. That is, the diagrams ignored in Réf3] are in fact e enough for a definitive test of our approach. For that
even more important. . , purpose, we need to wait for a dedicatBdfactory at the

At last, we present the variations bf and of the differ- Tevatron (BTeV) or at the CERN Large Hadron Collider

ential decay rate (LHC) (LHC-B).
2015 In the mean time, our approach is being applied to the
dI" GFMA . . - . .
—=|Vyp/? bp2(3_2p)||_1|2, (36)  semileptonic decay\p— Al v, for which experimental data
dp 9673 are available. We shall try to determine the paramgterf

the A, baryon wave function from this decay, and then ex-
tend the PQCD formalism to nonleptong, baryon decays,
which are more challenging. These subjects will be pub-
lished elsewhere.

for massless leptons with the proton energy fracpoEm-
ploying the Fermi coupling constantG-=1.16639
X10°GeV 2 and the Cabibbo-Kobayashi-Maskawa
(CKM) matrix elementV,,=0.003, results fo3=1.0, 1.5,
and 2.0 are displayed in Figs. 5 and 6, respectively. The
curves rise quickly a®<0.6, implying the dominance of

nonperturbative contributions. Our predictions become in- ACKNOWLEDGMENTS

sensitive to the parametgrof the A, baryon wave function
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