PHYSICAL REVIEW D, VOLUME 59, 094013

Deep inelastic structure functions in light-front QCD: Radiative corrections
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Recently, we introduced a unified theory to deal with perturbative and non-perturbative QCD contributions
to hadronic structure functions in deep inelastic scattering. This formulation is realized by combining the
coordinate space approach based on light-front current algebra techniques and the momentum space approach
based on Fock space expansion methods in the Hamiltonian formalism of light-front field theory. In this work
we show how a perturbative analysis in the light-front Hamiltonian formalism leads to the factorization scheme
we have proposed recently. The analysis also shows that the scaling violations due to perturbative QCD
corrections can be rather easily addressed in this framework by simply replacing the hadron target by a dressed
parton target and then carrying out a systematic expansion in the coupling canstated on the perturba-
tive QCD expansion of the dressed parton target. The tools employed for this calculation are those available
from light-front old-fashioned perturbation theory. We present a complete set of calculations of unpolarized
deep inelastic structure functions to ordey. We extract the relevant splitting functions in all the cases. We
explicitly verify all the sum rules to ordesg. We demonstrate the validity of approximations made in the
derivation of the new factorization scheme. This is achieved with the help of detailed calculations of the
evolution of structure function of a composite system carried out using multi-parton wave functions.
[S0556-282199)02109-9

PACS numbses): 12.38-t, 11.30.Rd, 13.85.Hd, 13.88e

[. INTRODUCTION ics underlying the structure functions can be explored.
In this work we show that a perturbative analysis in the
A general cross section in hadron physics contains bottht-front Hamiltonian formalism leads to the factorization
short distance and long distance behavior and hence is n§éheme proposed in Ref2]. The analysis also shows that
accessible to perturbative QCD. Factorization theorftis the scaling violations due to perturbative QCD corrections

allow one to separate the two behaviors in a systematic faslfgnlat::?nramgrhzzsrgﬁ ?;rdgsge%r'gsggz fr:rrpoenwtzrrk ebtyailgqtprjllgn
ion. Usually the short distandgerturbative properties are P 9 get by P g

. : carrying out a systematic expansion in the coupling constant
calculated with Feynman diagrams where the most populay, paseq on the perturbative QCD expansion of the dressed

choice of regulator is dimensional regularization. So far thergyarion target. The tools used are those belonging to light-
is no non-perturbative implementation of dimensional regu+ront old fashioned perturbation thedr§—5] which employs
larization in field theory. The long distancénon- transition matrix elements and energy denominators instead
perturbative part is given in terms of a set of operator matrix of Feynman propagators.

elements which are left for computation, for example, in lat- The advantage of using the light-front Hamiltonian for-
tice gauge theory. Since the factorization scale is an artifagnulation is that the matrix elements can be naturally defined
reflecting our present inability to do computations in QCD, in the light-front gauge A" =0 in light-front coordinates

the two sectorgperturbative and non-perturbativehould With this gauge choice, the_re is no need for th_e path or_dered
merge smoothly. Since currently available formalisms em_exponentlal between fermion field operators in the bilocal

ployed to tackle the two sectors use different regulators, girgurrent which is mandatory in c_>ther pop_ular g_auge.chomes.
Since we do not have to deal with four dimensional integrals

ferentl_dﬁg_rees oft_freeﬂo_m, detc.., tg}ls tgo?]l IS d|ff|cu|ihto dac}involving Feynman propagators, we do not encounter some
complish in practice. [t IS desirable 1o have a metnod Ol o problems associated with the use of the non-covariant
calculation where same formalism is used to deal with bot

. . . auge conditiolA™ =0 in usual covariant perturbative QCD
perturbative and non-perturbative regions of QCD. calc%lations. P Q
Recently we have proposed a new methaof calcula- Meanwhile, the evaluation of the matrix elements in our

tion of deep inelastic structure functions that combines curgpproach{see Sec. 1Vis straightforward, which also greatly
rent algebra techniques and Fock space expansion methogisrifies the physical picture of deep inelastic scattering
in light-front field theory in a Hamiltonian framework. We (DIS). For example, matrix elements of the transverse com-
have arrived at expressions for various structure functions asonent of the bilocal vector and axial vector currents are easy
the Fourier transform of hadron matrix elements of differentto analyze in the present method. In sharp contrast, there are
components of bilocal vector and axial vector currents on thevell-known problemg6] associated withys in dimensional
light-front. By expanding the state of the hadron in terms ofregularization. Also the presence of quark masses poses no
multi-parton wave functions, non-perturbative QCD dynam-problem in our calculations which has been bothersome for a
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long time in the standard operator product expan$®RE  work. At present, the non-perturbative QCD dynamics and
or Feynman diagram approach of DIS. hadronic bound states on the light-front are indeed explored

Since our approach deals with probability amplitudes, reain this same framework. Therefore, we hope that the present
and virtual processes are calculated to the same order withvork (Ref. [2] and the present papecan really provide a
out any difficulties, in contrast with the Altarelli-Parisi natural connection of the fully theoretical understanding to
method[7] which deals with probability densities. We first the experimental phenomena of DIS. Note that for exclusive
present results for the unpolarized structure functiegps«) processes, factorization has been proved using the light-front
for a dressed quarkextracted from the plus component of formalism by Brodsky and Lepad@].
the vector bilocgland a gluon target to order;. We extract The plan of this paper is as follows. In Sec. Il we present
the relevant splitting functions. In these cases we also explica perturbative analysis in the light-front Hamiltonian formal-
itly verify the longitudinal momentum sum rule. Further- ism which leads to the factorization and to the concept of the
more, interference effects are straightforward to handle. As atructure function of a dressed parton in DIS. The tools nec-
result, we explicitly show the invalidity of the popular twist essary for the evaluation of these functions are discussed in
classification 8]. We demonstrate this by analyzing the ma- Sec. Ill. Unpolarized dressed parton distribution functions
trix element of the transverse component of the bilocal vecare discussed in Sec. IV. We also present the explicit verifi-
tor current(see Sec. IV for detaisIn the conventional OPE cation of the appropriate sum rules in this section. A detailed
analysiq 9], it is customary to ignore the non-trivial structure analysis of the structure function of bound states is carried
of the state, and consider the operator structure alone to dragut in Sec. V which justifies posteriorithe approximations
conclusions. A case in point is the transverse component aghade in the study in Sec. Il. Finally Sec. VI contains a dis-
the bilocal vector current. This operator is not diagonal anctussion and conclusions. We leave a detailed discussion of
in the twist analysis of Ref.8] will appear to have twist 3. the polarized dressed parton structure function and the
Hence it appears as if this operator matrix element cannassociated factorization and evolution equation for polarized
have a parton interpretation. However, our explicit calcula-hadron structure functions to be presented in a forthcoming
tions show that this operator matnmatrix elements indeed  paper.
twist 2 and has the familiar parton interpretation. This be-
comes clear onlafter the evaluation of the matrix elements || FACTORIZATION: A PERTURBATIVE ANALYSIS
which includes off-diagonal ond4.0].

For a second example, in the case of the transverse polar- In this section we show in detail how the factorization
ized structure function, it is popular to ignore quark mass andpicture discussed in Reff2] emerges in a perturbative analy-
stress quark-gluon correlations. Explicit calculatiorig]  Sis carried over to all orders in the case where the bilocal
employing our methods have shown that the operators th&perator involved does not change the particle number. The
involve ys which do not have an explicit dependence on theanalysis leads to the concept of the structure function of a
quark massn, come out proportional te, when the matrix ~ dressed parton in DIS.
element is taken between dressed quark states. In particular To explicitly demonstrate the factorization picture on the
all the operators contribute at the same level to the structurkght-front, we consider thé-, structure function as a spe-
functiongy of a dressed quark. This is shown to be essentiafific example in this section. For simplicity we drop refer-
for the g, structure function to obey the Burkhardt- €nce to the flavor: then,

Cottingham sum rul¢12] in perturbative QCD.

In this work we also provide a detailed calculation of the F2(X,Q?)
evolution ofF, structure function for a hadronic bound state. X
An entire analysis is carried out using multi-parton wave
functions in momentum space. Both real and virtual pro-  _ 1 f d¢é e e 1P EX2
cesses are accounted for and in the lowest order analysis one Ax
begins to see the emergence of the standard evolution equa- _ _
tion. The detailed analysis justifies the approximations ma?de X(PSL(# ) (E) ¥ (0) = ()T 0y (£)]IPS).
in Sec. Il which lead to factorization to all orders in pertur- (2.2
bation theory. Then what remains unsolved is the non-
perturbative contribution that is defined in the same framefrom the discussion in Se¥ B of [2], we have

Fa(x,Q%)

X

1 o
—a(xQ7) = 5= | de e 7R S (Pl (nPSumlU, (0 (€ )0 (0)
m ny.ny
—(")N0) gt (£7)1UpIny), (2.2

whereU,=T" exp{(—i/2)/° .dx P, .(x")}, andP;,,=P;."'+ P, M is denoted as the hard and mixed light-front interaction
Hamiltonian.
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In the following, we shall not explicitly evaluate contributions from intermediate states which involve vanishing energy
denominators. These contributions are most conveniently included by introducing the wave function renormalization constant
associated with the parton active in the high energy process.

Let us consider first few terms in the expression given in d®). The lowest order term yields the function

q(o)(xan):q(Xaﬂz):; |<PS’Mf2actJ n>|2

-3 f”dzkwpsﬂbg(yw,ki)bs(yw,ki)|Psﬂ2>. 2.3

Terms linear in the interaction Hamiltonian vanish since the )
plus component of the bilocal operator conserves particle  4(x,Q%)=N
number on the light-front. Consider the second order contri-
bution

a(x, u?)

aS Q2 1dy 2
+5_Ci |HFL7P(X/V)Q()’,M )i

1 0 -
a?(x.Q%)=7 n%)k@suzln)JdeI<n|Pmt(XI)Im> 2.9

O im—
X(m|O| p)< p’ Jiwdxz Pint(X1)

whereN is the wave function renormalization constant of the
K active parton and is the splitting function. Including the

contribution from the wave function renormalization con-
X (K| PSu?). (2.4  stant to the same order(), we get

Here we have denoted
Q(X,Q2)=f dy P(x,Q%y,u®)aly,u?), (2.9
1 g
O:_d——lex/Z +T—+0

47Tf £e LY (E)7(0) where the hard scattering coefficient

— (Tt ()] (2.
(") Oy (£7)] ¥ pxQPyd)

Using

2 01 5
. . :5(x—y)+;—;cfln Q—Zf dzs(zy—x)P(z) (2.10
Pi—r1t(x+):el PreelX )/2Pi—m(0)e—l PtreelX )/2’ (26) MJo

we have with P(x)=P(x) — 8(1—x) f5dy P(y).
We note that the above analysis can be carried over to all
1 1 5 orders in perturbation theory with the result
4P(x,Q%)= > ————— ————(n|Pi(0)|m)
nmpk Py, = Pom Pok— Pop P(x,Q2%y, u?)
X(m|O|p)(p[Pin(0)[K)(PSu?[n)(k|PSu?). =(yP*,k',s|U, tOU|yP* k" ,s)
(2.7)
=(yP" kt,s;(dressefl OlyP* ,k*-,s;(dressed).
The stategn), and|k) are forced to be low energy states (2.11
with (k+)%< u?. We can restrict the statém),|p) to be high
energy states withk(-)2> 2. The bilocal operato© picks In evaluating the above expression, only in the interaction

an active parton in a high energy state whose longitudinaHamiltonians in the extreme left and extreme right of the
momentum is forced to b&P". Further we need to keep time ordered product do we need to keep a mixture of soft
only terms inP;,, which cause transitions involving the ac- and hard partons. This is governed B". They are
tive parton.(Transitions involving spectators lead to wave needed to cause the transition of a soft parton to a hard
function renormalization of spectator states which are canparton. In the rest of the interaction Hamiltonians occurring
celed by the renormalization process as shown explicitly irin the chain, the partons are restricted to be hard; i.e., they

Sec. V B) are determined b)P;nH only. For the leading logarithmic
To orderag, a straightforward evaluatiofsee laterleads  evolution we are discussing here, they appear ordered in
to transverse momentum.
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Ill. TOOLS OF CALCULATION 1 1
— t] _ 1 1 L
In this section, we outline the basic tools for calculating Haag=9¢ [ ( gt (0-A )+ oA )(0 g +m)
the perturbative contribution to the structure functions,
namely the hard scattering coefficient®(x,Q?%y,u?), 1 |
given by Eq.(2.1). If we setk=P, theny=1 and the hard + o (o-0"—m)o-A" 1 €, (3.6
scattering coefficients just become the structure functions of
dressed quark and gluon targets in DIS,
1 Hygg= gfabC{aA' ALAL+ (JAL) | — | (ALa* A‘)}
p A —inx
X (kS| (£ )T 9(0) TH.c]ks),. (3.1) 1
_ Haqge=9 {{ro Al — |o-ALE+2 )
As a matter of fact, we can compute the perturbative QCD
correction to the hadronic structure functions by calculating
the structure functions of the dressed quarks and gluons. In abc tra
old-fashioned light-front perturbation theory, the dressed x(1 Aba A) (£'T7)
quark or gluon states can be expanded as follpiys
M|ps) =Hqqga T Haagee 39
t
PS)y=UlP9 = N{ [P9)+ 3 | (PJ“ =
quqq: 292{ (gTTag)( (ngag)] (3.9
2 | <m|P|nt |n><n|P|nt |PS> .
(P"=Po)(P"=Py) ’ e i
3.2 H(‘,ggg——ff"bCfade Al A'AdAJ+2 (ALaTAL) —+>
where|Ps), the bare single particle state, ajnj, the two- . .
particle state|m), the three-particle state, etc., are eigen- X (AT AL)
states of the free Hamiltonian. Introducing the multi-parton
amplitudes(wave functiong
= Hggga T Hoggep: (3.10
([Pt IPS)
n— (ITT) where the dynamic fermion field operator
n
§(X)
-3 <m|P|nt |n><n|P|nt |PS> (3.3 P (x)= (3.1
" E (P -P(P =P '
with
the expansion in Eq3.2) takes the form
Ex)=2 )(xfk+—d2ki[bx(k)e“k“rolT (k)e™]
PS)p= N {[PS)+ 2 ®gln)+ 2> <I>m|m>+~-~] X 2(2m)3 k™ - !
n m
(3.4 (312
M H and the transverse gluon field operator
In the above expressionB;,," andP;,; are the interac-
tion parts of the canonical light-front QCD Hamiltonian, but dktd2kt
the former contains the mixed soft and hard partons and the Al‘(x)= 2 ——=—[e"(May(k)e ™+ H.c],
latter only has hard partons. The canonical light-front QCD 2(2m)°k
Hamiltonian is given by the following form in our two- (3.13
component formalisni4]: )
with
Pin= fdx d*x*{Haqg™ Hagg+ Haage™ Haaaa* Hagog {by(K),by, (k")}={d\(Kk),d] k'}
(35) :2(2W)3k+5(k+_kr+)52(kJ__kJ_r),
and (3.19
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[ay(K),a), (k") ]=2(2m) 3" s(k* —k'*) 82(k-— k"), Fa(x.Q%) _ dne V.
(3.15 X 1
and y, is the eigenstate of, in the two-component spinor 1 .
of ¢, by the use of the following light-front matrix rep- :477p+f dne'”
resentatiorj 13]: . .
_ _ . X (K P(E7) Y Y(0) = Y(0) ¥ Y(£7)|KS)p.
o |0 i , |0 —ig' 0
Y= ;Y= . Y= ~ (4.9
| 0 i 0 0 io . . .
(3.16 The gluon structure functioft] is defined by
with ot=0?, o?=—oc' and&'(\) the polarization vector FS(x,Q%)= yp=r —ix

of transverse gauge field.
X (KN|(=)F 3£ )F "X 0)[KN),p.
IV. UNPOLARIZED DRESSED PARTON STRUCTURE
FUNCTIONS (4.2)

The dressed quark or gluon state can be obtained by the
perturbative expansion in the old fashioned time-ordered
Hamiltonian formulation, as given by E(3.2). But we can
also find such states by solving the light-front bound state
equation. Let us take the statP) to be a dressed quark
The F, structure function of a dressed quark is given by which obeys the eigenvalue equation

In this section we present the calculations of Ehestruc-
ture function for dressed quark and gluon targets.

A. Dressed quark structure function from the plus component

d, (alHRJa)  (alHidag) - [ @4
Dqq | =| (aglHla) Dy |. 4.3

()

o3,

Explicitly, expanding the state in terms of bare states of quark, quark plus gluon, quark plus two gluons, etc., we have

dkid2k [ dkidks
|Pa)q= \/_{ b'(P,0)|0)+ E 2(P,alky,o1;Ka,N2)

g1, \/2(277')3k1 \/2(277_)3'(; ”

X \2(27)°P T 83(P—ky—ky)bT(ky,0p)at (ky,\ |o>] (4.9
|
The factor\ is the wave function renormalization constant VP (ki k) =D y(xi, k). 4.7

for the quark and the functiog,(P,a|k,0,ko\5) is the
probability amplitude to find a bare quark with momentum
ki and helicityo, and a bare gluon with momentuky and  The two particle amplitudey, is given by
helicity A, in the dressed quark.
Introduce the Jacobi momenta; (i)

lrIIZ(P10-|plISl;p2!p2)

kK =xP* ki =« +xP* (4.9 1
so that ~ [mZ+(PE)? - m*+(pp)? (pp)?
P p1 P2
Z xi=1,2 K=0. (4.6) 9 1 { p_2 o*pi—im&
V2(2m)2 @ 1 "p, P1
The amplitudey, is related to the amplitud®, in Eqg. (4.3 ot PL+im |
by —o T X ()" 4.9
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We rewrite the above equation in terms of Jacobi momentavhere C¢=(N2—1)/2N. Recalling that|®,(x,«)|? is the

(P =xiP*, ki =pi +x;P*) and the wave functionsb;

probability density to find a quark with momentum fraction

which are functions of Jacobi momenta. Using the notatiorand relative transverse momentu in a parent quark, we

X=X;, k1=« and using the factg;+x,=1, k;+x,=0,
we have

DX,k 1%, — k")

1 Y

— Ta T
[mz_ m2+(KL)2_(KL)2 \/m Xsl
X 1-x
L gtokt—im
x| 25— —T= o*—o*im})(,,-(etz)*.

4.9

Evaluating the expression in E4.1) explicitly, noting

that in the present case the contribution from the second ter
in this expression is zero, we get the quark structure functio

of the dressed quark

(Q)

X

{5(1 X)

dxzf dzxif d2

2( L L A 1. 1y|2
X 8%(ky + Kk3)| Do (X, KT 1 X2, K3)] ]

+ >

o1,Np

K3 8(1—X—Xy)

(4.10

This equation makes manifest the parton interpretation of the

quark distribution function; namely, the quark distribution

function of a dressed quark is the incoherent sum of prob-

abilities to find a bare partofguark with longitudinal mo-
mentum fractiorx in various multi-particle Fock states of the

dressed quark. Since we have computed the distributio

function in field theory, there are also significant differences
from the traditional parton mod¢l4]. The most important
difference is the fact that the partons in field theory have
transverse momenta ranging from zero to infinity. Whether
the structure function scales or not now depends on the ul-
traviolet behavior of the multi-parton wave functions. By
analyzing various interactions, one easily finds that in super-
renormalizable interactions, the transverse momentum inte-
grals converge in the ultraviolet and the structure function

define the probability density to find a quark with momentum
fraction x inside a parent quark as the splitting function

1+ x2
.

(4.12

Pgq(x)=C o
Clearly, the probability density to find a gluon with momen-
tum fractionx inside a parent quark is defined as the splitting
function

1+(1—x)?
—

Pgq(X)=C; (4.13
The transverse momentum integral in E4.11) is diver-
gent at both limits of integration. We regulate the lower limit

ItI)y w and the upper limit byQ. Thus we have

FZ(q)(X Q% ag Z Q2
— - Ny 6(1— x)+ Cf 1—x Inlu2
(4.14
The normalization condition reads
f dx—- In e =1. (4.19

Within the present approximatiofvalid only up toasg),

o, [ kX

In the second term we recognize the familiar expression of
wave function correction of the statein old fashioned per-
furbation theory, namelyg ,|(m|V|n)|?/(E,— E)*.

Thus, to ordefasg,

Ng= 1— In

(4.19

2

2(q>(X Q?

X

Q2

=56(1—- x+—|n
( ) 2

scales, whereas in renormalizable interactions, the transveriote that Eq.(4.17) can also be written as

momentum integrals diverge in the ultraviolet which in turn
leads to scaling violations in the structure function.

Taking the bare and dressed quarks to be massless, we

arrive at

>

01.,p2

d2KL|<I)(271’pz(X,KL,1—X,—KL)|2

deL

9° 1+ x?

(277)3 Cix

1

L2

(4.10)

x2 1+y?
X Cs¢ 1-x —5(1—x)f dy 1oy |
(4.17)
Fl@(xQ% as  Q°
S =810+ 5 Cln
x* 35 1 4.1
Xm+§(—x), (4.18

which is a more familiar expression. By construction,
|®,(x,«4)|? is a probability density. However, this function
is singular asx—1 (gluon longitudinal momentum fraction
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approaching zeno To get a finite probability density we Fo(x,Q%) 1 o 1 _
have to introduce a cuto# (Xq,0n>€), for example. In a —_ = —j dpe '™V, = uf ne '™
physical cross section, thiscannot appear and here we have X mP

an explicit example of this cancellation. Note that the func-

tion X (kS| () ¥ (0) = i 0) ¥ () [KS)p .
(4.29
~ 2 3
Pgq=C ﬁ+ 8(1—x) From Eqgs.(4.1) and (4.24), it follows that the structure

functionF, can be expressed not only as a matrix element of
the plus component of the bilocal vector current, but also the
does not have a probabilistic interpretation since it includegnatrix element of the transverse component of the bilocal
contributions from virtual gluon emission. This is immedi- current. Next we extract the structure functibg(x) from
ately transparent from the relation the transverse component of the bilocal vector curf&if
(4.24)]. The operator that appears in this equation is

dxP, =0. 4.1 _
f *Paal) (419 ¢<y>¢¢(0>=(W)T(y)aﬂ/r<0>+w—)*(y)aiwgg)éa

We also note that the divergence arising from small trans-
verse momentuntthe familiar mass singularitycannot be  The constrained fermion fieldy™ =(1/id")[a"-(id"
handled properly in the present calculation. This is to betgA")+y°m]y*. Hence the operator in the above equation
contrasted with the calculation of the physical hadron strucappears to be higher twigtwvist 3). Without loss of general-
ture function where the mass singularities can be properljty we take thel direction along thex axis. The structure
absorbed into the non-perturbative part of the structure funcfunction can be explicitly written as
tion.

Let us now explicitly check the longitudinal momentum ) .
sum rule for the dressed quark. According to the sum rule, 2(X Q ) 1 P — —iPtyX2 +

1 1 O+ Oy + O4]£(0)|PY+H.c.,
fodx[F&q)(xHF%(G)(x)] a7 o(PlO(0)P)=1 ! -+ Ogl(0)|P)+H.c

(4.26
(4.20
with
Explicit calculations show that the gluon structure function
for the dressed quark targEQ(G) is given by
1
Om=imm—+02,
q Q2 1+(1-x)?
OpL= .i[iﬁl—o—%z]
From Egs.(4.18 and(4.2]) it follows that gt '
o q 1
fo dxFZ(x)=f dx[Fz(q)(x)vLFz(G)(x)]:l (4.22 Og:gia—+[A1+i(r3A2].
(4.27
since
First consider contributions from the opera@y,. Only
) potential non-vanishing contributions are from the diagonal
= _ matrix elements for the single quark state and the quark-
P +P =0. 4.2 . . .
fo dx X Pag(X) +Peq(x)]=0 (4.23 gluon state. The single quark matrix element vanishes be-
causeo? flips helicity. The diagonal contribution from the
_ quark-gluon state also vanishes because of the cancellation
B. Dressed quark structure function from the transverse between the two terms in E@4.25. Thus the contribution
component from O, to F, vanishes.
From Bjorken-Johnson-LowBJL) expansion and light- Next consider contributions from the opera®©y.. Ex-
front current algebra, it also follows that plicit evaluation leads to
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Fo(x,Q? 1
Fa(xQ) =N, 5(1—x)+ dx, | d2k7 | d2k5 8(1—X—Xj)
X q 2
KL ("1}‘2
1 1
K1+ XP
><52(K1+K§)|q>gl'”2(x,,<;;x2,K§)|ZlT]

=Nq( 8(1—x) JdXZJ d?k JdZKJ2'5(1—X—X2)
(Tl }\2

><52(K§+K§)|cbgl'“2(x,xi;xz,K§)|2}, (4.28

since [d?«7 k1| ,/?=0 as a consequence of rotational invariance. Equadd?8 gives the same result as E¢.10).
Last, we evaluate the contribution from the quark-gluon correlation ope@jor

F2xQ) 1 g 1 J dy x
"2 PI d? +i o, @AY, K1y, — k) +H.c=0. (4.2
X g 2202w pr, | oy e ot e @y Ly ) (4.29

This is because the quark-gluon amplituble has two types of termga) terms proportional to the quark massaccompanied
by o- which vanish becausg’ o x,,=0 and(b) terms proportional ta" which vanish because of rotational symmetry. Thus
the contribution fromOy to the structure function vanishes.

From Eq.(4.28 and Eq.(4.10), it follows that the structure function extracted from E4.24) has the same result given by
Eq. (4.17 and hence the same parton interpretation as that extracted froM.BEqThus we have explicitly demonstrated the
parton interpretation of the transverse component of the bilocal vector matrix element in unpolarized deep inelastic scattering.
The classification of twist in DIS or other hadronic collision processes based on the different components of light-front bilocal
operators seems unreliable.

C. Dressed gluon structure function

The dressed gluon state can be expanded as

) dk; d’ki  dk; d%k; — B
|PNYg= VNGt af(P,V)]0)+ X V2(2m)3P 7 83(P—ky— ko) ¥ha(qq)

s1os b N2(2m)%k; V2(2m)%k;

Pk o0 (TR o) 1 2 dkjd%k;  dk; d%k,
X(P,Nkyoq,ko0 o 10 ar ™
101,K207 101 272 Xme J N2(2m)3%k] V2(2m)%K;

V2(2m)3P T 83(P—Ky—K2) thagg)

X(Pv)\|k1)\1:kz)\z)aT(kﬁ\l)aT(kz:7\2)|0>] . (4.30

The factor of3 is the symmetry factor for identical bosons. ¢St 2(x, kb 1—X, — kb)
As before we introduce the boost invariant amplitudes

1 g
B m*+ (k*)? WTaX;
VP Yaqa (ki k) =D oqq (xi ), m2— 0| v2(2m)
X(1—x)
ot -kt N lal'xL .m
vP ‘/’2(99 (k" k)= D3(gg)(Xi K7 ) % S T X(1—Xx)
(4.31
XX-s,(€5,)" (432
The qawave function of the dressed gluon is given by The gg wave function of the dressed gluon state given by
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Dygq) (X, kM) 1 Q21
” 2p7)2¢(Pla "(O)IP)g=5 |n—22
g abcx(1 x) 1 1

T 2e2nr T (7 Jx 1o <
P i

X| =K' +— St 7= % (4.33 (4.40

Ex EA)*

X f dx{ X2+ (1—x)?]N.

We define the probability density to find a quark with mo-
The contribution from the first term in E@¢4.30 to the  mentum fractionx in a dressed gluon as the splitting function
gluon structure function for the dressed gluon target is giverP,g(x):

by

1
Fe)=8(1-x). (4.34) Pac(X)= §[X+(1—x)2]. (4.41)

The contribution to the gluon structure function from the From Eq.(4.38 we arrive at

component of the dressed gluon state is a disconnected con-

tribution which we omit. The contribution to the gluon struc- N,
ture function from thegg component of the dressed gluon

state is given by

Q2
1+ —In;g dx{ [x?+(1—x)?]

+2N =1. (442

1

X 1-=X
TX+ T+X(1—X) X

Thus to orderag, we have

(4.35
QZ
We define the probability density to a find a gluon with Ngzl |n—z dx{ [x2+(1—x)?]
momentum fractiorx in the dressed gluorR¢g(X), by

X 1-x
X 1—X +2N 1—+—+x(1—x))x]. (4.43
Poc(X)=2N|——+ ——+x(1-x)|. (4.3 -x X
1-x X
Correspondingly, the complete dressed gluon structure func-
Collecting all three contributions together, we have tion is given by
2
Q? g 2= 51—+ i onl [ X 17X
Fz(G)(X Q%)= 5(1 x)+2—ln —2N F26)(%,Q%)=48(1-x)+ 277|n,u,2 2N (1—X), + X
1-x 11 1
- X+T+X(l x)) (4.37) +X(1—X) | X+ 1—25(1 X) —55(1—x) .
(4.44

The coefficient\ is determined from the longitudinal
momentum sum rule for the dressed gluon target; namelyincluding the end pointX— 1) contributions, we define
we require

~ . X X
PGG(X) =2N (m'ﬁ‘ T

1
—30(1-%). (4.45

+X(1—X)

11
1 1 + 1—25(1—X)]
fo dxF3(x)= fo dX[F3g)(x)+ Fg(q)(x)]

1 ++

This is indeed the first calculation of the gluon splitting func-
tion from the dressed gluon in the literature. Lepage and
Brodsky[3] mentioned a Fock space calculation of DIS split-
ting functions but for gluon splitting function; they just

guoted the result from7]. It is easy to verify that

Thus we need to evaluate

1 ++
mdpwq (0)|P)g. (4.39

l ~
dx Y 2Pys(X)+Pgg(x)]=0. 4.4
Explicit evaluation leads to fo X 2Pqcx)* Pec(x)] (449
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V. STRUCTURE FUNCTION OF THE HADRON: PARTON the “meson-like” bound state and explicitly demonstrate the
PICTURE, SCALE EVOLUTION AND FACTORIZATION validity of factorization outlined in Sec. Il.
As we have schematically discussed in Sedalko see A. Parton picture

[2]), the non-perturbative contribution to the structure func- ) . .

tions and the scaling violations from the perturbative QCD Let us first d'SCU.SS the emergence of the parton picture for
corrections can be unified and treated in the same framework€ Structure function of a composite state. We expand the
in our formalism. In this section, we shall address the issuestate|P) for the qq bound state in terms of the Fock com-
associated with scaling violations in the structure function ofponentsgqg, qqg, ... as follows:

dk; d%kg dk; d%ky
Py= 3 107Ky 2 07°K3

2 ) Bk amk Pa(Plky, 015Kz, 02) V2(2m) PF 83 (P—ky— k)b (ky,01)d  (k;,02)|0)

A [ ook - digats
+
rians ) 22m3k; ) 22mg ) 22wk e
X (Plky,01;Kz,02;K3,03)V2(27)3P* 83(P—ky—ky—ka)b'(ky,01)d (ky,00)al (ks N3)|0) + - -+ . (5.9

Here ¢, is the probability amplitude to find a quark and an antiquark in the meggis the probability amplitude to find a
quark, antiquark and a gluon in the meson, etc.

As in Sec. IV we evaluate the expression in E41) explicitly. The contribution from the first terrifrom the quark, in
terms of the amplitudes

VP (k' k) = D% k),
P a(ki” ki) =Pa(xi k), (5.2
and so on, is

F300) _

> dx, dZKfJA d2k5 8(1—X—Xp) 8%(kq1+ K2)|(I)(2rl’”2(x,f<i XoK5) |2

01,02

+ > dxzf dng dZK{fdzxﬁfdzxga(l—x—xz—xg)az(xﬁK2+K3)|q>g1*"2'*3(x,,¢;xz,Ké;x3,K§)|2

01,02,\3
4+ (5.3

Again, the partonic interpretation of the, structure function is manifest in this expression. Using different techniques and
approximations, the same result has been also obtained by Brodsky and [[8page
The contribution to the structure function from the second term in(&q) is

F3(x)
2= | dx dzxifdzxézs(l—x—xz)&%mK2>|<1>;’1"’2<x2,f<§;x,xblz

01,02

+ 2 dXZJ dX3f deiJ dZKEJ‘ deé(s(l_X_Xz_X3)52(Kl+ K2+ K3)|CD51102’A3(X2,K12_ ;X,Ki‘ ;X3,K§)|2

01,02,\3

e (5.4

The normalization condition guarantees that the meson. Since the bilocal current componghtinvolves
only fermions explicitly, we appear to have missed the con-
f dx —o (5.5 triputions _from the gluon constituents. alto.gether. Thg glu-
' onic contribution to the structure functidf, is most easily
calculated by studying the hadron expectation value of the
which reflects the fact that there are two valence particles itonserved longitudinal momentum operakof.

Fi00 | F3(x)
X X
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From the normalization condition, it is clear that the va- 35 0<«ki,k5<u,
lence distribution receives contributions from the amplitudes h
: : ; D3, 0<ky<u,u<kz<A
®,,P5, ... at any scaleu. This has interesting phenom- 3 1S MRS K= A
enological implications. In the model for the meson with DS, u<ki<A,0<ki<p,
only a quark-antiquark pair of equal mass, the valence dis- P et A
tribution function will peak aix=3. If there are more than 3 MSKL KA

just the two particles in the system, the resulting valencq_et us consider the quark distribution functiog(x)

S ) . )
d]str|but|on will no longer be_syr_nmetnc about=; as a =F,(x)/x defined in Eq(5.3). In presence of the ultraviolet
simple consequence of longitudinal momentum conserva-

tion cutoff A, q(x) depends on\ and schematically we have
Equation(5.3) as it stands is useful only when the bound A A (A

state solution in QCD is known in terms of the multi-parton q(x,A%)=> J D5+ J J ®3. (5.8

wave functions. The wave functions, as they stand, span both 0 00

the perturbative' and non-perturbqtive sectors of the 'theor)fzor convenience, we write

Great progress in the understanding of QCD in the high en-

ergy sector has been made in the past by separating the soft q(x,A?)=0g,(x,A?)+q3(x,A?), (5.9

(non-perturbative and hard(perturbative regions of QCD

via the machinery of factorization. It is of interest to seewhere the subscripts 2 and 3 denote the two-particle and

under what circumstances a factorization occurs in the forthree-particle contributions respectively. Thus, schematically

mal result of Eq.(5.3) and a perturbative picture of scaling We have

violations emerges finally. We shall explicitly address this

Ds= (5.7

. . . . A w (A
issue in the following section. q(x,A2)=q(x,,u2)+E f |¢2|z+2 fo J' |(D§h|2
2 1
B. Perturbative picture of scaling violations in a bound state A(u A (A
- ina violations i +2 @307+ X @32
To address the issue of scaling violations in the structure uJo P

function of the “meson-like” bound state, it is convenient to
separate the momentum space into low-energy and high- (5.10
energy sectors. Such a separatiqn h_as been introduced in tWe investigate the contributions from the amplitudbgh
past in the study of the renormalization of bound state equa; 1 dhs 1o ordera. in the followin

tions [15] in light-front field theory. The two sectors are 3 s 9:

formally defined by introducing cutoff factors in the momen-
tum space integrals. How to cut off the momentum integrals
in a sensible and convenient way in light-front theory is a We substitute the Fock expansion, E§.1), in Eq. (4.3
subject under active research at the present time. Complic&hd make projection with a three particle state
. . L : t t t

tions arise because of the possibility of large energy diverb'(ky,0;1)d"(k;,0;)a’ (ks,05)|0) from the left. In terms of
gences from both smak™ and largek" regions. In the fol-  the amplitudesb,,® 3, we get

lowing we investigate only the effects of logarithmic SN

divergences arising from large transverse momenta, ignoring ~ P3* > “(X,K1:Xz, k2,1 =X = X5, k3) = M1+ Mo,

the subtleties arising from both smadl (x—0) and large (5.1

X (x—1) regions and subsequently use simple transvers\%
momentum cutoff. For complications arising from-1 re-

2. Dressing with one gluon

here the amplitudes

gion see Ref[3]. 1 9 ,
My==(-) T2 VP72
1. Scale separation ' E( V2(27)% J1—x—x, 1T
We define the soft region to be"<u and the hard re- X (1=Xy,— K5 | Xp,K5) (5.12

gion to be u<k'<A, where u serves as a factorization

scale which separates soft and hard regions. Since it is amnd

intermediate scale introduced artificially purely for conve-

nience, the physical structure function should be independent 1 g a 1 )
of w. The multi-parton amplitudé, is a function of a single MZ:E \/2(277)31- N V@,
relative transverse momenturj and we define 2

X (X,Kk7;1—X,— k) (5.13
@Z, 0<Ki</.l,,

= 56 with the energy denominator
2@, u<ki<A. 6.8 ¥

e[ ye MmO (k)
The amplituded; is a function of two relative momenta& - X Xo 1—X—X,
and k3 and we define (5.14)
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and the vertices For the configuration; soft, x, hard, contributions from
1 L M, and the interference terms are suppressed by the wave
Vi=y > 2K3 (0" kg —im) ot function. The contribution frora\1,, factorizes both in trans-
17 Xoy o 1-x=X%; X verse and longitudinal space and generates a pure wave func-
' tion renormalization contribution
(ot Kky—im) N
- @7 .. *
+ot 1ox, X (€y,) (5.19 N A2 (1 1+y? ,
2 | |@82=5_Ciin— | dy5—"0z(x.u?). (520
™ o y
and
; 2k3 (ot k5 —im) We have seen that even though the multi-parton contribu-
V2=X—022 1—x—x, —o Xa tions to the structure function involve both coherent and in-
72

coherent phenomena, in the hard region coherent effects are

(o it —im) suppressed by the wave function.
+ e —

1-x

T Xy ()% (5.16
2 ! 4. Corrections from the normalization condition

3. Perturbative analysis ' In thg dressed.quark calculation, we have seen thgt the
N N o . singularity that arises as—1 from real gluon emission is

For «7 hard andk; soft, k1 + k3 ~«7 and the multiple  canceled by the correction from the normalization of the
transverse momentum integral ovér; factorizes into two  state (virtual gluon emission contribution from wave func-
independent integrals and the longitudinal momentum fractijon renormalization In the meson bound state calculation,
tion integrals become convolutions. The contribution fromso far we have studied the effects of a hard real gluon emis-
M;jto @3 is sion. In this section we study the corrections arising from the
normalization condition of the quark distribution in the com-
posite bound state.

Collecting all the terms arising from the hard gluon emis-

01,02,A3 I L1 _v_ 1
¢>3’1 (X, KT X2, k5 ;1= X—Xo,— K3)

9 L [1=X=X%; 1 " sion contributing to the quark distribution function, we have
2(2m)3 1-%; (kp)*'
A2)= 2y 4+ 2
2@ ot kg , p ol q(X,A%)=go(X, u%) +d3(X, 1)
XZ I x—% X 7 oy ()P +a2c InA2 lﬂP : (y.u?)
1 wa?xyqquzyvﬂ
X (1=Xp,— K3 ;X2,K%). (5.17 . A2
s 2
Thus the contribution from\; to the structure function is TR C Inqu(x,,u )f dyP(y). (529
as A? (idy X . . . o
2 f |q>251|2:_(;f |n_2f —Pqql = ax(y, 1), We have a similar expression for the antiquark distribution
s 2w Mm% Y y function.
(5.18 The normalization condition on the quark distribution
where function should be such that there is one valence quark in the
bound state at any scalg We choose the factorization scale
X\ 2 u=Qq. Let us first set the scalé =Q,. Then we havdin
« 1+ 9 the truncated Fock space
qu()—/)z—l vt (5.19 . .
y fodx R(x,Qf)+ fodx B(x,Q3=1 (522

For the configurationc; hard, «; soft, the contribution
from M, does not factorize and the asymptotic behavior ofNext set the scald =Q. We still require
the integrand critically depends on the asymptotic behavior
of the two-particle wave functio®,. To determine this be- 1 1
havior, we have to analyze the bound state equation which f dx qz(x,Q2)+f dx g(x,Q%)=1. (5.23
shows that for large transverse momentuth,(x") 0 0
~1/(x*)2. Thus the contribution from\, for scale evolu-
tion is suppressed by the bound state wave function. AnalyWe note that the evolution af; requires an extra hard gluon
sis of the interference ternmetweenM, and M) shows which is not available in the truncated Fock space. Thus in
that their contribution also is suppressed by the bound statihe present approximatiocqg(x,Qz)zq3(x,Q§).
wave function. Carrying out the integration explicitly, we arrive at
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the interaction Hamiltonian when the active parton remains
Cf |n7J dyP(y } soft, while a hard spectator makes transition to a soft spec-
tator state. This leads to wave function renormalization of
1 ) the spectator anti-quark but this is eventually canceled by the
+ fo dx gs(x,Q%)=1. (5.24  npormalization condition as discussed in detail in Séd 4.
This justifiesa posteriori the prescription given in Sec. Il
Thus we face the necessity to “renormalize” our quark that we need to keep only those term&An™) which cause
distribution function. Let us define a renormalized quark dis-transitions involving the active parton.

1
[Cax axqp| 1+

tribution function In the wave function analysis, there are also contributions
that are omittech priori in the calculational scheme which
lead to factorization in Sec. Il. All of these contributions are
X X 1+2 C In— f dyP : )
42(% Qo) =z(x Qo) f y (y)} suppressed by the asymptotic behavior of the bound state

(5.25  wave function as we have explicitly shown. In summary, the
detailed analysis carried out with the help of multi-parton

so that, to ordetrs, wave functions in SecV B justifies the approximations
made in Sec. Il which lead to the emergence of factorization

fldx (X, Q) + fldx B(x,Q3)=1. (526 o all orders in perturbation theory and to the simple scale
0 0 evolution picture.

We have VI. CONCLUSION

s We have shown that a perturbative analysis in the light-
qz(x,Q§)=q§(x,QS)[1—2§Cf |”6§J0 dyP(y)}. front Hamiltonian formalism leads to the factorization
(5.27)  scheme proposed in Reff2]. It is shown that the scaling
violations due to perturbative QCD corrections can be rather
Collecting all the terms, to order,, we have the normalized easily addressed in this framework by simply replacing the
guark distribution function hadron target by a dressed parton target and then carrying
out a systematic expansion in the coupling constgrtased
Qs Q1 on the perturbative QCD expansion of the dressed parton
q(x,Q%) =05(x,Q3) + 57 Cf InQ70f0 dy o5(y,Qp) target. The calculational procedure utilizes techniques of old-
fashioned perturbation theory, the main ingredients of which

2 are transition matrix elements and energy denominators.
j dz s(zy-xP(2)+qx(x.Q%) (528 The main advantage of the present method can be sum-
marized as follows. The bilocal currents are defined in the
with P(2)=P(2) — 8(z— 1)fédyP(y). light-front gaugeA* =0, and since the bilocality is only in

ihe light-front longitudinal ™) direction, the path-ordered
exponential between fermion field operators in the bilocal
current is replaced by unityirrespectiveof which compo-
nent of the current is considenedThis results in an ex-
tremely simplified operator structure and a straightforward
parton picture. Further, the calculations do not employ Feyn-
man propagators and as a result we encounter neither the
usual problems associated with using a non-covariant gauge
in a covariant calculation nor the problems associated with
In this section we have carried out an analysis of the scaléhe unphysical pole of the propagator. The calculations are
evolution of structure functions of a meson-like compositestraightforward andys or the presence of quark masses
system. We have separated the parton transverse momengases no special problem. The physical picture is very clear
into soft and hard parts. The three body wave function whichat every stage of the calculation. Also the regularization
is a function of two relative momenta has soft, hard andscheme used in this framework for perturbative contributions
mixed components. The mixed components of the three bodgan be directly applied to the construction of hadronic bound
wave function which are functions of soft and hard momentastates which is the major topic of current research on light-
are responsible for the scale evolution of the soft part of thdront field theory[16,17]. Thus, once the light-front bound
structure function in perturbation theory. state structures are found, a complete theoretical understand-
In the analysis with wave functions, there are two contri-ing of structure functions can become possible.
butions to the three body wave function: one where the gluon In addition, the approach uses probability amplitudes
is absorbed by the quark and second where the gluon is alsather than probability densities and hence interference ef-
sorbed by the anti-quarkspectator. There appears a non- fects are easy to handle. Exploiting this feature, we have
vanishing contribution when the hard gluon is absorbed bylarified the parton interpretation of the matrix element of the
the anti-quark. This corresponds to the transition caused biyansverse component of the bilocal vector current. We have

We see that just as in the dressed quark case, the sing
larity arising ax— 1 from real gluon emission is canceled in
the quark distribution function once the normalization con-
dition is properly taken into account. From this derivation we
begin to recognize the emergence of the Altarelli-Parisi evo-
lution equation.

C. Summary
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presented real and virtual corrections to the structure funcpresently under way. The investigation of main contribution
tion F, for a dressed quark and gluon in a transparent manto DIS structure functions, nonperturbative QCD dynamics,
ner. The splitting functions are extracted and the longitudinals also in progress. We shall leave the discussion of these
momentum sum rule is verified explicitly to ordet. topics for future publications.

We have carried out, with the help of multi-parton wave
functions, a detailed analysis of the scale evolution of the
structure function of a composite system which justifies the
approximations made in Sec. Il which lead to the emergence We acknowledge useful discussions with Stan Brodsky
of factorization to all orders in perturbation theory and to aamd James Vary. This work is partially supported by grants
simple scale evolution picture. A complete fourth order cal-NSC86-2816-M001-009R-L, NSC86-2112-M001-020 and
culation is necessary to establish the viability of the newthe Physics Institute of Academia Sinica and National
approach for the perturbative domain. Such a calculation i€heng-Kung UniversitfW.M.Z.).
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