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Deep inelastic structure functions in light-front QCD: Radiative corrections
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Recently, we introduced a unified theory to deal with perturbative and non-perturbative QCD contributions
to hadronic structure functions in deep inelastic scattering. This formulation is realized by combining the
coordinate space approach based on light-front current algebra techniques and the momentum space approach
based on Fock space expansion methods in the Hamiltonian formalism of light-front field theory. In this work
we show how a perturbative analysis in the light-front Hamiltonian formalism leads to the factorization scheme
we have proposed recently. The analysis also shows that the scaling violations due to perturbative QCD
corrections can be rather easily addressed in this framework by simply replacing the hadron target by a dressed
parton target and then carrying out a systematic expansion in the coupling constantas based on the perturba-
tive QCD expansion of the dressed parton target. The tools employed for this calculation are those available
from light-front old-fashioned perturbation theory. We present a complete set of calculations of unpolarized
deep inelastic structure functions to orderas . We extract the relevant splitting functions in all the cases. We
explicitly verify all the sum rules to orderas . We demonstrate the validity of approximations made in the
derivation of the new factorization scheme. This is achieved with the help of detailed calculations of the
evolution of structure function of a composite system carried out using multi-parton wave functions.
@S0556-2821~99!02109-8#
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I. INTRODUCTION

A general cross section in hadron physics contains b
short distance and long distance behavior and hence is
accessible to perturbative QCD. Factorization theorems@1#
allow one to separate the two behaviors in a systematic f
ion. Usually the short distance~perturbative! properties are
calculated with Feynman diagrams where the most pop
choice of regulator is dimensional regularization. So far th
is no non-perturbative implementation of dimensional re
larization in field theory. The long distance~non-
perturbative! part is given in terms of a set of operator matr
elements which are left for computation, for example, in l
tice gauge theory. Since the factorization scale is an arti
reflecting our present inability to do computations in QC
the two sectors~perturbative and non-perturbative! should
merge smoothly. Since currently available formalisms e
ployed to tackle the two sectors use different regulators,
ferent degrees of freedom, etc., this goal is difficult to a
complish in practice. It is desirable to have a method
calculation where same formalism is used to deal with b
perturbative and non-perturbative regions of QCD.

Recently we have proposed a new method@2# of calcula-
tion of deep inelastic structure functions that combines c
rent algebra techniques and Fock space expansion met
in light-front field theory in a Hamiltonian framework. W
have arrived at expressions for various structure function
the Fourier transform of hadron matrix elements of differe
components of bilocal vector and axial vector currents on
light-front. By expanding the state of the hadron in terms
multi-parton wave functions, non-perturbative QCD dyna
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ics underlying the structure functions can be explored.
In this work we show that a perturbative analysis in t

light-front Hamiltonian formalism leads to the factorizatio
scheme proposed in Ref.@2#. The analysis also shows tha
the scaling violations due to perturbative QCD correctio
can be rather easily addressed in this framework by sim
replacing the hadron target by dressed parton target and
carrying out a systematic expansion in the coupling cons
as based on the perturbative QCD expansion of the dres
parton target. The tools used are those belonging to lig
front old fashioned perturbation theory@3–5# which employs
transition matrix elements and energy denominators inst
of Feynman propagators.

The advantage of using the light-front Hamiltonian fo
mulation is that the matrix elements can be naturally defin
in the light-front gauge (A150 in light-front coordinates!.
With this gauge choice, there is no need for the path orde
exponential between fermion field operators in the bilo
current which is mandatory in other popular gauge choic
Since we do not have to deal with four dimensional integr
involving Feynman propagators, we do not encounter so
of the problems associated with the use of the non-covar
gauge conditionA150 in usual covariant perturbative QCD
calculations.

Meanwhile, the evaluation of the matrix elements in o
approach~see Sec. IV! is straightforward, which also greatl
clarifies the physical picture of deep inelastic scatter
~DIS!. For example, matrix elements of the transverse co
ponent of the bilocal vector and axial vector currents are e
to analyze in the present method. In sharp contrast, there
well-known problems@6# associated withg5 in dimensional
regularization. Also the presence of quark masses pose
problem in our calculations which has been bothersome f
©1999 The American Physical Society13-1
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long time in the standard operator product expansion~OPE!
or Feynman diagram approach of DIS.

Since our approach deals with probability amplitudes, r
and virtual processes are calculated to the same order w
out any difficulties, in contrast with the Altarelli-Paris
method@7# which deals with probability densities. We firs
present results for the unpolarized structure functionsF2(x)
for a dressed quark~extracted from the plus component
the vector bilocal! and a gluon target to orderas . We extract
the relevant splitting functions. In these cases we also exp
itly verify the longitudinal momentum sum rule. Furthe
more, interference effects are straightforward to handle. A
result, we explicitly show the invalidity of the popular twis
classification@8#. We demonstrate this by analyzing the m
trix element of the transverse component of the bilocal v
tor current~see Sec. IV for details!. In the conventional OPE
analysis@9#, it is customary to ignore the non-trivial structu
of the state, and consider the operator structure alone to d
conclusions. A case in point is the transverse componen
the bilocal vector current. This operator is not diagonal a
in the twist analysis of Ref.@8# will appear to have twist 3.
Hence it appears as if this operator matrix element can
have a parton interpretation. However, our explicit calcu
tions show that this operator matrixmatrix elementis indeed
twist 2 and has the familiar parton interpretation. This b
comes clear onlyafter the evaluation of the matrix elemen
which includes off-diagonal ones@10#.

For a second example, in the case of the transverse p
ized structure function, it is popular to ignore quark mass a
stress quark-gluon correlations. Explicit calculations@11#
employing our methods have shown that the operators
involve g5 which do not have an explicit dependence on
quark massmq come out proportional tomq when the matrix
element is taken between dressed quark states. In parti
all the operators contribute at the same level to the struc
functiongT of a dressed quark. This is shown to be essen
for the g2 structure function to obey the Burkhard
Cottingham sum rule@12# in perturbative QCD.

In this work we also provide a detailed calculation of t
evolution ofF2 structure function for a hadronic bound sta
An entire analysis is carried out using multi-parton wa
functions in momentum space. Both real and virtual p
cesses are accounted for and in the lowest order analysis
begins to see the emergence of the standard evolution e
tion. The detailed analysis justifies the approximations m
in Sec. II which lead to factorization to all orders in pertu
bation theory. Then what remains unsolved is the n
perturbative contribution that is defined in the same fram
09401
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work. At present, the non-perturbative QCD dynamics a
hadronic bound states on the light-front are indeed explo
in this same framework. Therefore, we hope that the pres
work ~Ref. @2# and the present paper! can really provide a
natural connection of the fully theoretical understanding
the experimental phenomena of DIS. Note that for exclus
processes, factorization has been proved using the light-f
formalism by Brodsky and Lepage@3#.

The plan of this paper is as follows. In Sec. II we prese
a perturbative analysis in the light-front Hamiltonian forma
ism which leads to the factorization and to the concept of
structure function of a dressed parton in DIS. The tools n
essary for the evaluation of these functions are discusse
Sec. III. Unpolarized dressed parton distribution functio
are discussed in Sec. IV. We also present the explicit ve
cation of the appropriate sum rules in this section. A detai
analysis of the structure function of bound states is carr
out in Sec. V which justifiesa posteriorithe approximations
made in the study in Sec. II. Finally Sec. VI contains a d
cussion and conclusions. We leave a detailed discussio
the polarized dressed parton structure function and
associated factorization and evolution equation for polari
hadron structure functions to be presented in a forthcom
paper.

II. FACTORIZATION: A PERTURBATIVE ANALYSIS

In this section we show in detail how the factorizatio
picture discussed in Ref.@2# emerges in a perturbative analy
sis carried over to all orders in the case where the bilo
operator involved does not change the particle number.
analysis leads to the concept of the structure function o
dressed parton in DIS.

To explicitly demonstrate the factorization picture on t
light-front, we consider theF2 structure function as a spe
cific example in this section. For simplicity we drop refe
ence to the flavor: then,

F2~x,Q2!

x

5
1

4pE dj2e2 i P1j2x/2

3^PSu@~c1!†~j2!c1~0!2~c1!†~0!c1~j2!#uPS&.

~2.1!

From the discussion in Sec. V B of @2#, we have
ion
F2~x,Q2!

x
5q~x,Q2!5

1

4pE dj2e2 i P1j2x/2 (
n1 ,n2

^PSm2un1&^n2uPSm2&^n1uUh
21@~c1!†~j2!c1~0!

2~c1!†~0!c1~j2!#Uhun2&, ~2.2!

whereUh5T1 exp$(2i/2)*2`
0 dx1P̃int

2 (x1)%, and P̃int
2 [Pint

2H1Pint
2M is denoted as the hard and mixed light-front interact

Hamiltonian.
3-2
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In the following, we shall not explicitly evaluate contributions from intermediate states which involve vanishing e
denominators. These contributions are most conveniently included by introducing the wave function renormalization
associated with the parton active in the high energy process.

Let us consider first few terms in the expression given in Eq.~2.2!. The lowest order term yields the function

q~0!~x,Q2!5q~x,m2!5(
n

u^PS,m fact
2 un&u2

5(
s
Em

d2k'^PSm2ubs
†~yP1,k'!bs~yP1,k'!uPSm2&. ~2.3!
th
ic
tr

s
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Terms linear in the interaction Hamiltonian vanish since
plus component of the bilocal operator conserves part
number on the light-front. Consider the second order con
bution

q~2!~x,Q2!5
1

4 (
nmpk

^PSm2un&E
2`

0

dx1
1^nuP̃int

2 ~x1
1!um&

3^muOup&K pU E
2`

0

dx2
1P̃int

2 ~x1
1!UkL

3^kuPSm2&. ~2.4!

Here we have denoted

O5
1

4pE dj2e2 i P1j2x/2@~c1!†~j2!c1~0!

2~c1!†~0!c1~j2!#. ~2.5!

Using

Pint
2 ~x1!5ei P f ree

2
~x1!/2Pint

2 ~0!e2 i P f ree
2

~x1!/2, ~2.6!

we have

q~2!~x,Q2!5 (
nmpk

1

P0n
2 2P0m

2

1

P0k
2 2P0p

2
^nuP̃int

2 ~0!um&

3^muOup&^puP̃int
2 ~0!uk&^PSm2un&^kuPSm2&.

~2.7!

The statesun&, anduk& are forced to be low energy state
with (k')2,m2. We can restrict the statesum&,up& to be high
energy states with (k')2.m2. The bilocal operatorO picks
an active parton in a high energy state whose longitud
momentum is forced to bexP1. Further we need to kee
only terms inP̃int

2 which cause transitions involving the a
tive parton.~Transitions involving spectators lead to wa
function renormalization of spectator states which are c
celed by the renormalization process as shown explicitly
Sec. V B.!

To orderas , a straightforward evaluation~see later! leads
to
09401
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q~x,Q2!5N H q~x,m2!

1
as

2p
Cf ln

Q2

m2E
x

1dy

y
P~x/y!q~y,m2!J ,

~2.8!

whereN is the wave function renormalization constant of t
active parton andP is the splitting function. Including the
contribution from the wave function renormalization co
stant to the same order (as), we get

q~x,Q2!5E dy P~x,Q2;y,m2!q~y,m2!, ~2.9!

where the hard scattering coefficient

P~x,Q2;y,m2!

5d~x2y!1
as

2p
Cf ln

Q2

m2E
0

1

dzd~zy2x!P̃~z! ~2.10!

with P̃(x)5P(x)2d(12x)*0
1dyP(y).

We note that the above analysis can be carried over to
orders in perturbation theory with the result

P~x,Q2;y,m2!

5^yP1,k',suUh
21OUhuyP1,k',s&

5^yP1,k',s;~dressed!uOuyP1,k',s;~dressed!&.
~2.11!

In evaluating the above expression, only in the interact
Hamiltonians in the extreme left and extreme right of t
time ordered product do we need to keep a mixture of s
and hard partons. This is governed byPint

2M . They are
needed to cause the transition of a soft parton to a h
parton. In the rest of the interaction Hamiltonians occurri
in the chain, the partons are restricted to be hard; i.e., t
are determined byPint

2H only. For the leading logarithmic
evolution we are discussing here, they appear ordered
transverse momentum.
3-3
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III. TOOLS OF CALCULATION

In this section, we outline the basic tools for calculati
the perturbative contribution to the structure function
namely the hard scattering coefficients,P(x,Q2;y,m2),
given by Eq.~2.11!. If we setk5P, theny51 and the hard
scattering coefficients just become the structure function
dressed quark and gluon targets in DIS,

f i
p~x,Q2!5

1

4pE dhe2 ihx

3p^ksu@c̄~j2!G ic~0!7H.c.#uks&p . ~3.1!

As a matter of fact, we can compute the perturbative Q
correction to the hadronic structure functions by calculat
the structure functions of the dressed quarks and gluons
old-fashioned light-front perturbation theory, the dress
quark or gluon states can be expanded as follows@4#:

uPs&p5UhuPs&5ANH uPs&1(
n

un&
^nuPint

2MuPs&

~P22Pn
2!

1(
mn

um&
^muPint

2Hun&^nuPint
2MuPs&

~P22Pm
2!~P22Pn

2!
1•••J ,

~3.2!

whereuPs&, the bare single particle state, andun&, the two-
particle state,um&, the three-particle state, etc., are eige
states of the free Hamiltonian. Introducing the multi-part
amplitudes~wave functions!

Fn5
^nuPint

2MuPs&

~P22Pn
2!

,

Fm5(
n

^muPint
2Hun&^nuPint

2MuPs&

~P22Pm
2!~P22Pn

2!
, ~3.3!

the expansion in Eq.~3.2! takes the form

uPs&p5AN H uPs&1(
n

Fnun&1(
m

Fmum&1•••J .

~3.4!

In the above expressions,Pint
2M and Pint

2H are the interac-
tion parts of the canonical light-front QCD Hamiltonian, b
the former contains the mixed soft and hard partons and
latter only has hard partons. The canonical light-front QC
Hamiltonian is given by the following form in our two
component formalism@4#:

Pint
2 5E dx2d2x'$Hqqg1Hggg1Hqqgg1Hqqqq1Hgggg%

~3.5!

and
09401
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Hqqg5gj†H 22S 1

]1 D ~]•A'!1s•A'S 1

]1 D ~s•]'1m!

1S 1

]1 D ~s•]'2m!s•A'J j, ~3.6!

Hggg5g fabcH ] iAa
j Ab

i Ac
j 1~] iAa

i !S 1

]1 D ~Ab
j ]1Ac

j !J ,

~3.7!

Hqqgg5g2H j†s•A'S 1

i ]1 D s•A'j12S 1

]1 D
3~ f abcAb

i ]1Ac
i !S 1

]1 D ~j†Taj!J
5Hqqgg11Hqqgg2 , ~3.8!

Hqqqq52g2H S 1

]1 D ~j†Taj!S 1

]1 D ~j†Taj!J , ~3.9!

Hgggg5
g2

4
f abcf adeH Ab

i Ac
j Ad

i Ae
j 12S 1

]1 D ~Ab
i ]1Ac

i !S 1

]1 D
3 ~Ad

j ]1Ae
j !J

5Hgggg11Hgggg2 , ~3.10!

where the dynamic fermion field operator

c1~x!5F j~x!

0 G , ~3.11!

with

j~x!5(
l

xlE dk1d2k'

2~2p!3Ak1
@bl~k!e2 ikx1d2l

† ~k!eikx#,

~3.12!

and the transverse gluon field operator

Ai'~x!5(
l
E dk1d2k'

2~2p!3k1 @« i'~l!al~k!e2 ikx1H.c.#,

~3.13!

with

$bl~k!,bl8
†

~k8!%5$dl~k!,dl8
† k8%

52~2p!3k1d~k12k81!d2~k'2k'8!,

~3.14!
3-4
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@al~k!,al8
†

~k8!#52~2p!3k1d~k12k81!d2~k'2k'8!,
~3.15!

andxl is the eigenstate ofsz in the two-component spino
of c1 by the use of the following light-frontg matrix rep-
resentation@13#:

g05F0 2 i

i 0 G , g35F0 i

i 0G , g i5F2 i s̃ i 0

0 i s̃ iG
~3.16!

with s̃15s2, s̃252s1 and « i(l) the polarization vector
of transverse gauge field.

IV. UNPOLARIZED DRESSED PARTON STRUCTURE
FUNCTIONS

In this section we present the calculations of theF2 struc-
ture function for dressed quark and gluon targets.

A. Dressed quark structure function from the plus component

The F2 structure function of a dressed quark is given
nt

m

09401
F2~x,Q2!

x
5

1

4pE dhe2 ihxV̄1

5
1

4pP1E dhe2 ihx

3p^ksuc̄~j2!g1c~0!2c̄~0!g1c~j2!uks&p .

~4.1!

The gluon structure function@1# is defined by

F2
G~x,Q2!5

1

4pP1E dhe2 ihx

3p^klu~2 !F1na~j2!F n
1a~0!ukl&p .

~4.2!

The dressed quark or gluon state can be obtained by
perturbative expansion in the old fashioned time-orde
Hamiltonian formulation, as given by Eq.~3.2!. But we can
also find such states by solving the light-front bound st
equation. Let us take the stateuP& to be a dressed quar
which obeys the eigenvalue equation
ve
S M22(
i 51

n
~k i

'!21mi
2

xi
D F Fq

Fqg

A
G5F ^quHint

H uq& ^quHint
H uqg& •••

^qguHint
H uq& •••

A �

G F Fq

Fqg

A
G . ~4.3!

Explicitly, expanding the state in terms of bare states of quark, quark plus gluon, quark plus two gluons, etc., we ha

uPs&q5ANqH b†~P,s!u0&1 (
s1 ,l2

E dk1
1d2k1

'

A2~2p!3k1
1E dk2

1d2k2
'

A2~2p!3k2
1

c2~P,suk1 ,s1 ;k2 ,l2!

3A2~2p!3P1d3~P2k12k2!b†~k1 ,s1!a†~k2 ,l2!u0&J . ~4.4!
The factorNq is the wave function renormalization consta
for the quark and the functionc2(P,suk1s1 ,k2l2) is the
probability amplitude to find a bare quark with momentu
k1 and helicitys1 and a bare gluon with momentumk2 and
helicity l2 in the dressed quark.

Introduce the Jacobi momenta (xi ,k i
')

ki
15xi P

1,ki
'5k i

'1xi P
' ~4.5!

so that

(
i

xi51,(
i

k i
'50. ~4.6!

The amplitudec2 is related to the amplitudeF2 in Eq. ~4.3!
by
AP1c2~ki
1 ,ki

'!5F2~xi ,k i
'!. ~4.7!

The two particle amplitudec2 is given by

c2~P,sup1 ,s1 ;p2 ,r2!

5
1

Fm21~P'!2

P1 2
m21~p1

'!2

p1
1 2

~p2
'!2

p2
1 G

3
g

A2~2p!3
Ta

1

Ap2
1

xs1

† F2
p2

'

p2
1 2

s'
•p1

'2 im

p1
1 s'

2s'
s'

•P'1 im
1 Gxs•~er2

' !* . ~4.8!

P

3-5
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We rewrite the above equation in terms of Jacobi mome
(pi

15xi P
1,k i

'5pi
'1xi P

') and the wave functionsF i

which are functions of Jacobi momenta. Using the notat
x5x1 , k15k and using the factsx11x251, k11k250,
we have

F2
s1 ,r2~x,k';12x,2k'!

5
1

Fm22
m21~k'!2

x
2

~k'!2

12x G
g

A2~2p!3
Taxs1

†

3F22
k'

12x
2

s'
•k'2 im

x
s'2s'imGxs•~er2

' !* .

~4.9!

Evaluating the expression in Eq.~4.1! explicitly, noting
that in the present case the contribution from the second t
in this expression is zero, we get the quark structure func
of the dressed quark

F2~q!
q ~x,Q2!

x
5NqH d~12x!

1 (
s1 ,l2

E dx2E d2k1
'E d2k2

'd~12x2x2!

3d2~k1
'1k2

'!uF2
s1 ,l2~x,k1

' ;x2 ,k2
'!u2J .

~4.10!

This equation makes manifest the parton interpretation of
quark distribution function; namely, the quark distributio
function of a dressed quark is the incoherent sum of pr
abilities to find a bare parton~quark! with longitudinal mo-
mentum fractionx in various multi-particle Fock states of th
dressed quark. Since we have computed the distribu
function in field theory, there are also significant differenc
from the traditional parton model@14#. The most important
difference is the fact that the partons in field theory ha
transverse momenta ranging from zero to infinity. Whet
the structure function scales or not now depends on the
traviolet behavior of the multi-parton wave functions. B
analyzing various interactions, one easily finds that in sup
renormalizable interactions, the transverse momentum i
grals converge in the ultraviolet and the structure funct
scales, whereas in renormalizable interactions, the transv
momentum integrals diverge in the ultraviolet which in tu
leads to scaling violations in the structure function.

Taking the bare and dressed quarks to be massless
arrive at

(
s1 ,r2

E d2k'uF2
s1 ,r2~x,k',12x,2k'!u2

5
g2

~2p!3 Cf

11x2

12x E d2k'
1

~k'!2 ~4.11!
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where Cf5(N221)/2N. Recalling thatuF2(x,k')u2 is the
probability density to find a quark with momentum fractionx
and relative transverse momentumk' in a parent quark, we
define the probability density to find a quark with momentu
fraction x inside a parent quark as the splitting function

Pqq~x!5Cf

11x2

12x
. ~4.12!

Clearly, the probability density to find a gluon with mome
tum fractionx inside a parent quark is defined as the splitti
function

PGq~x!5Cf

11~12x!2

x
. ~4.13!

The transverse momentum integral in Eq.~4.11! is diver-
gent at both limits of integration. We regulate the lower lim
by m and the upper limit byQ. Thus we have

F2~q!
q ~x,Q2!

x
5NqFd~12x!1

as

2p
Cf

11x2

12x
ln

Q2

m2G .
~4.14!

The normalization condition reads

NqF11
as

2p
CfE dx

11x2

12x
ln

Q2

m2G51. ~4.15!

Within the present approximation~valid only up toas),

Nq512
as

2p
CfE dx

11x2

12x
ln

Q2

m2 . ~4.16!

In the second term we recognize the familiar expression
wave function correction of the staten in old fashioned per-
turbation theory, namely,(m8 u^muVun&u2/(En2Em)2.

Thus, to orderas ,

F2~q!
q ~x,Q2!

x
5d~12x!1

as

2p
ln

Q2

m2

3Cf F11x2

12x
2d~12x!E dy

11y2

12y G .
~4.17!

Note that Eq.~4.17! can also be written as

F2~q!
q ~x,Q2!

x
5d~12x!1

as

2p
Cf ln

Q2

m2

3F 11x2

~12x!1
1

3

2
d~12x!G , ~4.18!

which is a more familiar expression. By constructio
uF2(x,k')u2 is a probability density. However, this functio
is singular asx→1 ~gluon longitudinal momentum fraction
3-6
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approaching zero!. To get a finite probability density we
have to introduce a cutoffe (xgluon.e), for example. In a
physical cross section, thise cannot appear and here we ha
an explicit example of this cancellation. Note that the fun
tion

P̃qq5Cf

11x2

~12x!1
1

3

2
d~12x!

does not have a probabilistic interpretation since it inclu
contributions from virtual gluon emission. This is immed
ately transparent from the relation

E dxP̃qq~x!50. ~4.19!

We also note that the divergence arising from small tra
verse momentum~the familiar mass singularity! cannot be
handled properly in the present calculation. This is to
contrasted with the calculation of the physical hadron str
ture function where the mass singularities can be prop
absorbed into the non-perturbative part of the structure fu
tion.

Let us now explicitly check the longitudinal momentu
sum rule for the dressed quark. According to the sum ru

E
0

1

dx@F2~q!
q ~x!1F2~G!

q ~x!#5
1

2~P1!2 q^Puu11~0!uP&q51.

~4.20!

Explicit calculations show that the gluon structure functi
for the dressed quark targetF2(G)

q is given by

F2~G!
q 5

as

2p
ln

Q2

m2 Cfx
11~12x!2

x
. ~4.21!

From Eqs.~4.18! and ~4.21! it follows that

E
0

1

dxF2
q~x!5E

0

1

dx@F2~q!
q ~x!1F2~G!

q ~x!#51 ~4.22!

since

E
0

1

dx x@ P̃qq~x!1PGq~x!#50. ~4.23!

B. Dressed quark structure function from the transverse
component

From Bjorken-Johnson-Low~BJL! expansion and light-
front current algebra, it also follows that
09401
-

s

-

e
-

ly
c-

,

F2~x,Q2!

x
5

1

4pE dhe2 ihxV̄15
1

4pPi'E dhe2 ihx
p

3^ksuc̄~j2!g ic~0!2c̄~0!g ic~j2!uks&p .

~4.24!

From Eqs.~4.1! and ~4.24!, it follows that the structure
functionF2 can be expressed not only as a matrix elemen
the plus component of the bilocal vector current, but also
matrix element of the transverse component of the bilo
current. Next we extract the structure functionF2(x) from
the transverse component of the bilocal vector current@Eq.
~4.24!#. The operator that appears in this equation is

c̄~y!g'c~0!5~c1!†~y!a'c2~0!1~c2!†~y!a'c1~0!.
~4.25!

The constrained fermion fieldc25(1/i ]1)@a'
•( i ]'

1gA')1g0m#c1. Hence the operator in the above equati
appears to be higher twist~twist 3!. Without loss of general-
ity we take the' direction along thex axis. The structure
function can be explicitly written as

F2~x,Q2!

x
5

1

8p

P1

P1 E dy2e2 i P1y2x/2^Puj†~y!

3@Om1Ok'1Og#j~0!uP&1H.c.,

~4.26!

with

Om5 im
1

i ]1 s2,

Ok'5
1

i ]1 @ i ]12s3]2#,

Og5g
1

i ]1 @A11 is3A2#.

~4.27!

First consider contributions from the operatorOm . Only
potential non-vanishing contributions are from the diago
matrix elements for the single quark state and the qua
gluon state. The single quark matrix element vanishes
causes2 flips helicity. The diagonal contribution from th
quark-gluon state also vanishes because of the cancella
between the two terms in Eq.~4.25!. Thus the contribution
from Om to F2 vanishes.

Next consider contributions from the operatorOk'. Ex-
plicit evaluation leads to
3-7
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F2~x,Q2!

x U
k'

5NqH d~12x!1
1

P1 (
s1 ,l2

E dx2E d2k1
'E d2k2

'd~12x2x2!

3d2~k1
'1k2

'!uF2
s1 ,l2~x,k1

' ;x2 ,k2
'!u2

k1
11xP1

x J
5NqH d~12x!1 (

s1 ,l2

E dx2E d2k1
'E d2k2

'd~12x2x2!

3d2~k1
'1k2

'!uF2
s1 ,l2~x,k1

' ;x2 ,k2
'!u2J , ~4.28!

since*d2k1
'k1

1uc2u250 as a consequence of rotational invariance. Equation~4.28! gives the same result as Eq.~4.10!.
Last, we evaluate the contribution from the quark-gluon correlation operatorOg :

F2~x,Q2!

x U
g

5
1

2

g

A2~2p!3

1

P1 (
s1 ,l2

E dy

A12y
d2k'xs

†@el2

1 1 is3el2

2 #xs1
F2

s1 ,l2~y,k';12y,2k'!1H.c.50. ~4.29!

This is because the quark-gluon amplitudeF2 has two types of terms:~a! terms proportional to the quark massm accompanied
by s' which vanish becausexs

†s'xs50 and~b! terms proportional tok' which vanish because of rotational symmetry. Th
the contribution fromOg to the structure function vanishes.

From Eq.~4.28! and Eq.~4.10!, it follows that the structure function extracted from Eq.~4.24! has the same result given b
Eq. ~4.17! and hence the same parton interpretation as that extracted from Eq.~4.1!. Thus we have explicitly demonstrated th
parton interpretation of the transverse component of the bilocal vector matrix element in unpolarized deep inelastic sc
The classification of twist in DIS or other hadronic collision processes based on the different components of light-front
operators seems unreliable.

C. Dressed gluon structure function

The dressed gluon state can be expanded as

uPl&g5ANgH a†~P,l!u0&1 (
s1s2

E dk1
1d2k1

'

A2~2p!3k1
1

dk2
1d2k2

'

A2~2p!3k2
1
A2~2p!3P1d3~P2k12k2!c2~qq̄!

3~P,luk1s1 ,k2s2!b†~k1s1!d†~k2 ,s2!u0&1
1

2 (
l1l2

E dk1
1d2k1

'

A2~2p!3k1
1

dk2
1d2k2

'

A2~2p!3k2
1
A2~2p!3P1d3~P2k12k2!c2~gg!

3~P,luk1l1 ,k2l2!a†~k1l1!a†~k2 ,l2!u0&J . ~4.30!
s.

by
The factor of1
2 is the symmetry factor for identical boson

As before we introduce the boost invariant amplitudes

AP1c2~qq̄!~ki
1 ,ki

'!5F2~qq̄!~xi ,k i
'!,

AP1c2~gg!~ki
1 ,ki

'!5F2~gg!~xi ,k i
'!.

~4.31!

The qq̄ wave function of the dressed gluon is given by
09401
F2
s1 ,s2~x,k';12x,2k'!

5
1

Fm22
m21~k'!2

x~12x! G
g

A2~2p!3
Taxs1

†

3Fs'
•k'

x
s'2s'

s'
•k'

12x
2 i

m

x~12x!
s'G

3x2s2
~er2

' !* . ~4.32!

Thegg wave function of the dressed gluon state given
3-8
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F2~gg!~x,k'!

5
g

A2~2p!3
2i f abc

x~12x!

~k'!2

1

Ax

1

A12x
el1

j el2

l ~el
i !*

3F2k id l j 1
k j

x
d i l 1

k l

12x
d i j G . ~4.33!

The contribution from the first term in Eq.~4.30! to the
gluon structure function for the dressed gluon target is gi
by

F2~G!
g~1! 5d~12x!. ~4.34!

The contribution to the gluon structure function from theqq̄
component of the dressed gluon state is a disconnected
tribution which we omit. The contribution to the gluon stru
ture function from thegg component of the dressed gluo
state is given by

F2~G!
g~3! 5

as

2p
ln

Q2

m22NF x

12x
1

12x

x
1x~12x!Gx.

~4.35!

We define the probability density to a find a gluon wi
momentum fractionx in the dressed gluon,PGG(x), by

PGG~x!52NF x

12x
1

12x

x
1x~12x!G . ~4.36!

Collecting all three contributions together, we have

F2~G!
g ~x,Q2!5NgFd~12x!1

as

2p
ln

Q2

m22N

3S x

12x
1

12x

x
1x~12x! D xG . ~4.37!

The coefficientNg is determined from the longitudina
momentum sum rule for the dressed gluon target; nam
we require

E
0

1

dxF2
g~x!5E

0

1

dx@F2~G!
g ~x!1F2~q!

g ~x!#

5
1

2~P1!2 g^Puu11~0!uP&g51. ~4.38!

Thus we need to evaluate

1

2~P1!2 g^Puuq
11~0!uP&g . ~4.39!

Explicit evaluation leads to
09401
n

n-

y,

1

2~P1!2 g^Puuq
11~0!uP&g5

as

2p
ln

Q2

m2

1

2

3E dx@x21~12x!2#Ng .

~4.40!

We define the probability density to find a quark with m
mentum fractionx in a dressed gluon as the splitting functio
PqG(x):

PqG~x!5
1

2
@x1~12x!2#. ~4.41!

From Eq.~4.38! we arrive at

NgF11
as

2p
ln

Q2

m2E dxH @x21~12x!2#

12NS x

12x
1

12x

x
1x~12x! D xJ G51. ~4.42!

Thus to orderas , we have

Ng512
as

2p
ln

Q2

m2E dxH @x21~12x!2#

12NS x

12x
1

12x

x
1x~12x! D xJ . ~4.43!

Correspondingly, the complete dressed gluon structure fu
tion is given by

F2~G!
g ~x,Q2!5d~12x!1

as

2p
ln

Q2

m2 H 2NF S x

~12x!1
1

12x

x

1x~12x! D x1
11

12
d~12x!G2

1

3
d~12x!J .

~4.44!

Including the end point (x→1) contributions, we define

P̃GG~x!52NH S x

~12x!1
1

12x

x
1x~12x! D1

11

12
d~12x!J

2
1

3
d~12x!. ~4.45!

This is indeed the first calculation of the gluon splitting fun
tion from the dressed gluon in the literature. Lepage a
Brodsky@3# mentioned a Fock space calculation of DIS sp
ting functions but for gluon splitting function; they jus
quoted the result from@7#. It is easy to verify that

E
0

1

dx x@2PqG~x!1 P̃GG~x!#50. ~4.46!
3-9
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V. STRUCTURE FUNCTION OF THE HADRON: PARTON
PICTURE, SCALE EVOLUTION AND FACTORIZATION

As we have schematically discussed in Sec. II~also see
@2#!, the non-perturbative contribution to the structure fun
tions and the scaling violations from the perturbative QC
corrections can be unified and treated in the same framew
in our formalism. In this section, we shall address the iss
associated with scaling violations in the structure function
s

09401
-

rk
s
f

the ‘‘meson-like’’ bound state and explicitly demonstrate t
validity of factorization outlined in Sec. II.

A. Parton picture

Let us first discuss the emergence of the parton picture
the structure function of a composite state. We expand
stateuP& for the qq̄ bound state in terms of the Fock com
ponentsqq̄, qq̄g, . . . as follows:
and
uP&5 (
s1 ,s2

E dk1
1d2k1

'

A2~2p!3k1
1E dk2

1d2k2
'

A2~2p!3k2
1

c2~Puk1 ,s1 ;k2 ,s2!A2~2p!3P1d3~P2k12k2!b†~k1 ,s1!d†~k2 ,s2!u0&

1 (
s1 ,s2 ,l3

E dk1
1d2k1

'

A2~2p!3k1
1E dk2

1d2k2
'

A2~2p!3k2
1E dk3

1d2k3
'

A2~2p!3k3
1

c3

3~Puk1 ,s1 ;k2 ,s2 ;k3 ,l3!A2~2p!3P1d3~P2k12k22k3!b†~k1 ,s1!d†~k2 ,s2!a†~k3 ,l3!u0&1••• . ~5.1!

Herec2 is the probability amplitude to find a quark and an antiquark in the meson,c3 is the probability amplitude to find a
quark, antiquark and a gluon in the meson, etc.

As in Sec. IV we evaluate the expression in Eq.~4.1! explicitly. The contribution from the first term~from the quark!, in
terms of the amplitudes

AP1c2~ki
1 ,ki

'!5F2~xi ,k i
'!,

P1c3~ki
1 ,ki

'!5F3~xi ,k i
'!, ~5.2!

and so on, is

F2
q~x!

x
5 (

s1 ,s2

E dx2E d2k1
'E d2k2

'd~12x2x2!d2~k11k2!uF2
s1 ,s2~x,k1

' ;x2k2
'!u2

1 (
s1 ,s2 ,l3

E dx2E dx3E d2k1
'E d2k2

'E d2k3
'd~12x2x22x3!d2~k11k21k3!uF3

s1 ,s2 ,l3~x,k1
' ;x2 ,k2

' ;x3 ,k3
'!u2

1••• . ~5.3!

Again, the partonic interpretation of theF2 structure function is manifest in this expression. Using different techniques
approximations, the same result has been also obtained by Brodsky and Lepage@3#.

The contribution to the structure function from the second term in Eq.~4.1! is

F2
q̄~x!

x
5 (

s1 ,s2

E dx2E d2k1
'E d2k2

'd~12x2x2!d2~k11k2!uF2
s1 ,s2~x2 ,k2

' ;x,k1
'!u2

1 (
s1 ,s2 ,l3

E dx2E dx3E d2k1
'E d2k2

'E d2k3
'd~12x2x22x3!d2~k11k21k3!uF3

s1 ,s2 ,l3~x2 ,k2
' ;x,k1

' ;x3 ,k3
'!u2

1••• . ~5.4!
n-
lu-

the
The normalization condition guarantees that

E dxFF2
q~x!

x
1

F2
q̄~x!

x
G52 ~5.5!

which reflects the fact that there are two valence particle
 in

the meson. Since the bilocal current componentJ̄1 involves
only fermions explicitly, we appear to have missed the co
tributions from the gluon constituents altogether. The g
onic contribution to the structure functionF2 is most easily
calculated by studying the hadron expectation value of
conserved longitudinal momentum operatorP1.
3-10
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From the normalization condition, it is clear that the v
lence distribution receives contributions from the amplitud
F2 ,F3 , . . . at any scalem. This has interesting phenom
enological implications. In the model for the meson w
only a quark-antiquark pair of equal mass, the valence
tribution function will peak atx5 1

2 . If there are more than
just the two particles in the system, the resulting valen
distribution will no longer be symmetric aboutx5 1

2 as a
simple consequence of longitudinal momentum conse
tion.

Equation~5.3! as it stands is useful only when the bou
state solution in QCD is known in terms of the multi-part
wave functions. The wave functions, as they stand, span
the perturbative and non-perturbative sectors of the the
Great progress in the understanding of QCD in the high
ergy sector has been made in the past by separating the
~non-perturbative! and hard~perturbative! regions of QCD
via the machinery of factorization. It is of interest to s
under what circumstances a factorization occurs in the
mal result of Eq.~5.3! and a perturbative picture of scalin
violations emerges finally. We shall explicitly address th
issue in the following section.

B. Perturbative picture of scaling violations in a bound state

To address the issue of scaling violations in the struct
function of the ‘‘meson-like’’ bound state, it is convenient
separate the momentum space into low-energy and h
energy sectors. Such a separation has been introduced i
past in the study of the renormalization of bound state eq
tions @15# in light-front field theory. The two sectors ar
formally defined by introducing cutoff factors in the mome
tum space integrals. How to cut off the momentum integr
in a sensible and convenient way in light-front theory is
subject under active research at the present time. Comp
tions arise because of the possibility of large energy div
gences from both smallk1 and largek' regions. In the fol-
lowing we investigate only the effects of logarithm
divergences arising from large transverse momenta, igno
the subtleties arising from both smallx (x→0) and large
x (x→1) regions and subsequently use simple transve
momentum cutoff. For complications arising fromx→1 re-
gion see Ref.@3#.

1. Scale separation

We define the soft region to bek',m and the hard re-
gion to be m,k',L, where m serves as a factorizatio
scale which separates soft and hard regions. Since it i
intermediate scale introduced artificially purely for conv
nience, the physical structure function should be independ
of m. The multi-parton amplitudeF2 is a function of a single
relative transverse momentumk1

' and we define

F25H F2
s , 0,k1

',m,

F2
h , m,k1

',L.
~5.6!

The amplitudeF3 is a function of two relative momenta,k1
'

andk2
' and we define
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F355
F3

ss, 0,k1
' ,k2

',m,

F3
sh, 0,k1

',m,m,k2
',L,

F3
hs, m,k1

',L,0,k2
',m,

F3
hh, m,k1

' ,k2
',L.

~5.7!

Let us consider the quark distribution functionq(x)
5F2(x)/x defined in Eq.~5.3!. In presence of the ultraviole
cutoff L, q(x) depends onL and schematically we have

q~x,L2!5( E
0

L

F2
21( E

0

LE
0

L

F3
2 . ~5.8!

For convenience, we write

q~x,L2!5q2~x,L2!1q3~x,L2!, ~5.9!

where the subscripts 2 and 3 denote the two-particle
three-particle contributions respectively. Thus, schematic
we have

q~x,L2!5q~x,m2!1( E
m

L

uF2
hu21( E

0

mE
m

L

uF3
shu2

1( E
m

LE
0

m

uF3
hsu21( E

m

LE
m

L

uF3
hhu2.

~5.10!

We investigate the contributions from the amplitudesF3
sh

andF3
hs to orderas in the following.

2. Dressing with one gluon

We substitute the Fock expansion, Eq.~5.1!, in Eq. ~4.3!
and make projection with a three particle sta
b†(k1 ,s1)d†(k2 ,s2)a†(k3 ,s3)u0& from the left. In terms of
the amplitudesF2 ,F3, we get

F3
s1s2l3~x,k1 ;x2 ,k2 ;12x2x2 ,k3!5M11M2 ,

~5.11!

where the amplitudes

M15
1

E
~2 !

g

A2~2p!3
Ta

1

A12x2x2

V1F
2
s18s2

3~12x2 ,2k2
' ;x2 ,k2

'! ~5.12!

and

M25
1

E

g

A2~2p!3
Ta

1

A12x2x2

V2F
2
s1s28

3~x,k1
' ;12x,2k1

'! ~5.13!

with the energy denominator

E5FM22
m21~k1

'!2

x
2

m21~k2
'!2

x2
2

~k3
'!2

12x2x2
G
~5.14!
3-11
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and the vertices

V15xs1

† (
s18

F 2k3
'

12x2x2
2

~s'
•k1

'2 im!

x
s'

1s'
~s'

•k2
'2 im!

12x2
Gxs

18
•~el1

' !* ~5.15!

and

V25x2s2

† (
s28

F 2k3
'

12x2x2
2s'

~s'
•k2

'2 im!

x2

1
~s'

•k1
'2 im!

12x
s'Gx2s

28
•~el1

' !* . ~5.16!

3. Perturbative analysis

For k1
' hard andk2

' soft, k1
'1k2

''k1
' and the multiple

transverse momentum integral overF3 factorizes into two
independent integrals and the longitudinal momentum fr
tion integrals become convolutions. The contribution fro
M1 to F3 is

F3,1
s1 ,s2 ,L3~x,k1

' ;x2 ,k2
' ;12x2x2 ,2k2

'!

52
g

A2~2p!3
TaxA12x2x2

12x2

1

~k1
'!2xs1

†

3(
s18

F 2k1
'

12x2x2
1

s'
•k1

'

x
s'Gxs1

8 •~el1

' !* F
2
s18 ,s2

3~12x2 ,2k2
' ;x2 ,k2

'!. ~5.17!

Thus the contribution fromM1 to the structure function is

( E uF3,1
hsu25

as

2p
Cf ln

L2

m2E
x

1dy

y
PqqS x

yDq2~y,m2!,

~5.18!

where

PqqS x

yD5

11S x

yD 2

12
x

y

. ~5.19!

For the configurationk1
' hard, k2

' soft, the contribution
fromM2 does not factorize and the asymptotic behavior
the integrand critically depends on the asymptotic beha
of the two-particle wave functionF2. To determine this be-
havior, we have to analyze the bound state equation wh
shows that for large transverse momentumF2(k')
'1/(k')2. Thus the contribution fromM2 for scale evolu-
tion is suppressed by the bound state wave function. An
sis of the interference terms~betweenM1 andM2) shows
that their contribution also is suppressed by the bound s
wave function.
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For the configurationk1
' soft,k2

' hard, contributions from
M1 and the interference terms are suppressed by the w
function. The contribution fromM2 factorizes both in trans-
verse and longitudinal space and generates a pure wave
tion renormalization contribution

( E uF3,2
shu25

as

2p
Cf ln

L2

m2E
0

1

dy
11y2

12y
q2~x,m2!. ~5.20!

We have seen that even though the multi-parton contri
tions to the structure function involve both coherent and
coherent phenomena, in the hard region coherent effects
suppressed by the wave function.

4. Corrections from the normalization condition

In the dressed quark calculation, we have seen that
singularity that arises asx→1 from real gluon emission is
canceled by the correction from the normalization of t
state~virtual gluon emission contribution from wave func
tion renormalization!. In the meson bound state calculatio
so far we have studied the effects of a hard real gluon em
sion. In this section we study the corrections arising from
normalization condition of the quark distribution in the com
posite bound state.

Collecting all the terms arising from the hard gluon em
sion contributing to the quark distribution function, we ha

q~x,L2!5q2~x,m2!1q3~x,m2!

1
as

2p
Cf ln

L2

m2E
x

1dy

y
PqqS x

yDq2~y,m2!

1
as

2p
Cf ln

L2

m2q2~x,m2!E dyP~y!. ~5.21!

We have a similar expression for the antiquark distribut
function.

The normalization condition on the quark distributio
function should be such that there is one valence quark in
bound state at any scaleQ. We choose the factorization sca
m5Q0. Let us first set the scaleL5Q0. Then we have~in
the truncated Fock space!

E
0

1

dx q2~x,Q0
2!1E

0

1

dx q3~x,Q0
2!51. ~5.22!

Next set the scaleL5Q. We still require

E
0

1

dx q2~x,Q2!1E
0

1

dx q3~x,Q2!51. ~5.23!

We note that the evolution ofq3 requires an extra hard gluo
which is not available in the truncated Fock space. Thus
the present approximationq3(x,Q2)5q3(x,Q0

2).
Carrying out the integration explicitly, we arrive at
3-12
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E
0

1

dx q2~x,Q0
2!F11

2as

2p
Cf ln

Q2

Q0
2E dyP~y!G

1E
0

1

dx q3~x,Q2!51. ~5.24!

Thus we face the necessity to ‘‘renormalize’’ our qua
distribution function. Let us define a renormalized quark d
tribution function

q2
R~x,Q0

2!5q2~x,Q0
2!F112

as

2p
Cf ln

Q2

Q0
2E

0

1

dyP~y!G
~5.25!

so that, to orderas ,

E
0

1

dx q2
R~x,Q0

2!1E
0

1

dx q3~x,Q0
2!51. ~5.26!

We have

q2~x,Q0
2!5q2

R~x,Q0
2!F122

as

2p
Cf ln

Q2

Q0
2E

0

1

dyP~y!G .
~5.27!

Collecting all the terms, to orderas , we have the normalized
quark distribution function

q~x,Q2!5q2
R~x,Q0

2!1
as

2p
Cf ln

Q2

Q0
2E

0

1

dy q2
R~y,Q0

2!

3E
0

1

dz d~zy2x!P̃~z!1q3~x,Q2! ~5.28!

with P̃(z)5P(z)2d(z21)*0
1dyP(y).

We see that just as in the dressed quark case, the si
larity arising asx→1 from real gluon emission is canceled
the quark distribution function once the normalization co
dition is properly taken into account. From this derivation w
begin to recognize the emergence of the Altarelli-Parisi e
lution equation.

C. Summary

In this section we have carried out an analysis of the sc
evolution of structure functions of a meson-like compos
system. We have separated the parton transverse mom
into soft and hard parts. The three body wave function wh
is a function of two relative momenta has soft, hard a
mixed components. The mixed components of the three b
wave function which are functions of soft and hard mome
are responsible for the scale evolution of the soft part of
structure function in perturbation theory.

In the analysis with wave functions, there are two con
butions to the three body wave function: one where the gl
is absorbed by the quark and second where the gluon is
sorbed by the anti-quark~spectator!. There appears a non
vanishing contribution when the hard gluon is absorbed
the anti-quark. This corresponds to the transition caused
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the interaction Hamiltonian when the active parton rema
soft, while a hard spectator makes transition to a soft sp
tator state. This leads to wave function renormalization
the spectator anti-quark but this is eventually canceled by
normalization condition as discussed in detail in Sec. V B 4.
This justifiesa posteriori the prescription given in Sec. I
that we need to keep only those terms inP2(H) which cause
transitions involving the active parton.

In the wave function analysis, there are also contributio
that are omitteda priori in the calculational scheme whic
lead to factorization in Sec. II. All of these contributions a
suppressed by the asymptotic behavior of the bound s
wave function as we have explicitly shown. In summary, t
detailed analysis carried out with the help of multi-part
wave functions in Sec. V B justifies the approximations
made in Sec. II which lead to the emergence of factorizat
to all orders in perturbation theory and to the simple sc
evolution picture.

VI. CONCLUSION

We have shown that a perturbative analysis in the lig
front Hamiltonian formalism leads to the factorizatio
scheme proposed in Ref.@2#. It is shown that the scaling
violations due to perturbative QCD corrections can be rat
easily addressed in this framework by simply replacing
hadron target by a dressed parton target and then carr
out a systematic expansion in the coupling constantas based
on the perturbative QCD expansion of the dressed pa
target. The calculational procedure utilizes techniques of o
fashioned perturbation theory, the main ingredients of wh
are transition matrix elements and energy denominators.

The main advantage of the present method can be s
marized as follows. The bilocal currents are defined in
light-front gaugeA150, and since the bilocality is only in
the light-front longitudinal (x2) direction, the path-ordered
exponential between fermion field operators in the bilo
current is replaced by unity~irrespectiveof which compo-
nent of the current is considered!. This results in an ex-
tremely simplified operator structure and a straightforwa
parton picture. Further, the calculations do not employ Fe
man propagators and as a result we encounter neither
usual problems associated with using a non-covariant ga
in a covariant calculation nor the problems associated w
the unphysical pole of the propagator. The calculations
straightforward andg5 or the presence of quark mass
poses no special problem. The physical picture is very c
at every stage of the calculation. Also the regularizat
scheme used in this framework for perturbative contributio
can be directly applied to the construction of hadronic bou
states which is the major topic of current research on lig
front field theory@16,17#. Thus, once the light-front bound
state structures are found, a complete theoretical underst
ing of structure functions can become possible.

In addition, the approach uses probability amplitud
rather than probability densities and hence interference
fects are easy to handle. Exploiting this feature, we h
clarified the parton interpretation of the matrix element of t
transverse component of the bilocal vector current. We h
3-13
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presented real and virtual corrections to the structure fu
tion F2 for a dressed quark and gluon in a transparent m
ner. The splitting functions are extracted and the longitudi
momentum sum rule is verified explicitly to orderas .

We have carried out, with the help of multi-parton wa
functions, a detailed analysis of the scale evolution of
structure function of a composite system which justifies
approximations made in Sec. II which lead to the emerge
of factorization to all orders in perturbation theory and to
simple scale evolution picture. A complete fourth order c
culation is necessary to establish the viability of the n
approach for the perturbative domain. Such a calculatio
, i

ing

7

,

.
.

09401
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presently under way. The investigation of main contributi
to DIS structure functions, nonperturbative QCD dynami
is also in progress. We shall leave the discussion of th
topics for future publications.
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