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In this paper, we explore the deep inelastic structure functions of hadrons nonperturbatively in an inverse
power expansion of the light-front energy of the probe in the framework of light-front QCD. We arrive at
general expressions for various structure functions as the Fourier transform of matrix elements of different
components of bilocal vector and axial vector currents on the light-front in a straightforward manner. The
complexities of the structure functions are mainly carried by the multi-parton wave functions of the hadrons,
while the bilocal currents have a dynamically dependent yet simple structure on the light-front in this descrip-
tion. Further, the factorization theorem and the scale evolution of the structure functions are presented in this
formalism by using old-fashioned light-front time-ordered perturbation theory with multi-parton wave func-
tions. Nonperturbative QCD dynamics underlying the structure functions can be explored in the same frame-
work. Once the nonperturbative multi-parton wave functions are known from low-energy light-front QCD, a
complete description of deep inelastic structure functions can be redl&@856-282(199)02009-3

PACS numbgs): 12.38-t, 11.30.Rd, 13.85.Hd, 13.88e

I. INTRODUCTION provided by the Bjorken-Johnson-LaiBJL) (high energy
expansion of scattering amplitudes together with the use of
With the recent and planned experiments on polarized antight-front current algebra. This is essentiallypanperturba-
unpolarized structure functions, the field of deep inelastidive approachwhere the expansion parameter is the inverse
scattering has entered a new era. New experiments are bef the light-front energy of the prob@n the present case, the
ginning to provide invaluable information on the so-calledvirtual photon. In this approach one can arrive at expres-
“higher twist” (power suppressedaontributions to deep in- sions for various structure functions as the Fourier transform
elastic cross sections, a theoretical understanding of whicfin the light-front longitudinal directionof matrix elements
requires nonperturbative information on the structure of hadef different components of bilocal vector and axial vector
rons. To unravel this structure, there is an urgent need tourrents inlight-front field theory
develop nonperturbative theoretical tools which are prefer- In the standard approach to deep inelastic scattering based
ably based on physical intuition and which at the same timen Wilson's operator product expansioi®©PE method
employ well-defined field theoretical calculational proce-which is more mathematical, one considers the problem of
dures. Towards this goal, in this work, we propose a newenormalizing composite operators. In contrast, in the current
method of calculation of structure functions combining thealgebra approach, products of field operators are evaluated at
coordinate space approach based on light-front current algequallight-front time and have the same form as their free
bra technigues and the momentum space approach based figld theory counterparts. Hence, in this approach, most of
Fock space expansion methods in light-front theory in ahe complexities appear to be carried by the hadronic states.
Hamiltonian QCD framework. We demonstrate that an expansion of the state allows us to
To get an intuitive picture of deep inelastic scattering inexhibit this complexity manifestly in terms of the multi-
field theory, it is extremely helpful to keep close contact withparton wave functions, where the constituents are on-mass-
parton ideas. However, partons were originally introduced ashell objects with nonvanishing transverse momenta. The
collinear, massless, on-mass-shell objects. In reality, thaonperturbative nature of the matrix elements relevant for
QCD governed interacting partons should not be collineawvarious structure functions is thus directly translated into the
and massless. The question, then, is, can one generalize tihémguage of multi-parton wave functions. The structure func-
concept and introdudgeld theoretic partongs non-collinear tions, then, can be conveniently evaluated once the nonper-
and massivein the case of quarksbut still on-mass-shell turbative wave functions renormalized at sc@are known.
objects in interacting field theory? A nonperturbative light- At present major efforts are underway to evaluate these wave
front Hamiltonian description of composite systems whichfunctions.
utilizes many body wave functions for the constituents al- With the advent of QCD, the current algebra approach
lows us to precisely achieve this goal. which originally led to the prediction of scaling without in-
Now, the problem is how to introduce many bodyr  troducing the concept of partons was altogether abandoned
multi-partor) wave functions in the description of deep in- in favor of the OPE method, primarily because it was known
elastic structure functions. An attractive possible avenue ishat the canonical manipulations that lead to many of the
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current algebra predictions are invalidated in perturbatiorl. BRIEF OVERVIEW OF DEEP INELASTIC STRUCTURE

theory which gives rise to logarithmic corrections. The only FUNCTIONS

exceptions were sum rules protected by conservation laws.

Obviously, what was missing in the current algebra approacpe

was the realization that threatrix elementselevant for deep

inelastic scattering are those renormalized at the physical

scaleQ. Thus one of our major problems is whether we can e(k)+h(P)—e(k—q)+X(P+q). 2.9

consistently carry out a renormalization procedure. In a sub-

sequent paperl], we shall demonstrate that in the case of ) ) o

leading order structure functions the scaling violations offhe cross section for the above scattering process is given by

perturbation theory can be successfully addressed by replac-

ing the hadron target by a dressed parton target in the matrix 2 =

element and carrying out a well-defined perturbative expan- do _ i @ E_L WHY 2.2

sion which closely follows the techniques fght-front) dQdE’ 2M g* E A '

time-ordered perturbation theof2—4]. Here, we will show

that we can address the issues of factorization and scale evo- ) ) ) )

lution in the case of a hadron target by separating the sof!hereE(E’) is the energy of the incomingputgoing lep-

and hard parts of the multi-parton wave functions. Further{o L, is the leptonic matrix element,

more, the nonperturbative contributions to deep inelastic

structure functions can be addressethin the same frame- 1 o o

work by incorporating the newly developed light-front renor- L= > 2 [u(k,s)y,u(k’,s")u(k’,s") y,u(k,s)]

malization group approach to nonperturbative QED-7]. s’

Therefore, a unified light-front description of the perturba-

tive and nonperturbative QCD underlying the deep inelastic =2(k,k,+kk,)—29,,k K —2i€,,,,q°s’,

structure functions can be realized. 2.3
The paper is organized as follows. In Sec. Il, a brief over-

\élgg |0|{ ?iee pdi?cilg:tl\fvitﬁirr? c”t;rr](ta_f:grr:?tggst)lshop\)/;etsﬁ; tgg'epmandwf‘_” the hadronic tensor which contains all the hadronic

inelastic structure functions are nonperturbatively related t§Ynamics involved in the DIS process,

the bilocal operators in light-front current algebra through an

inverse power expansion of light-front energy of the probe.

In Sec. IV, we determine the structure functions in terms of

the matrix elements of the light-front bilocal vector and axial

vector currents separated only in the longitudinal direction. i

The operator structures involved in the structure functioné’}/herep andS are the tarzget fozur-rgomentéjm and polariza-

are explored and the complexities of structure functions arfon vectors respectively{*=M?, $°=-M*, S-P=0),q

analyzed in Sec. V, where a scheme to evaluate the hard ai®l the virtual-photon four momentum, and]*(x)

soft contributions to deep inelastic structure functions in the= = e, .(X) y*,(X) the electromagnetic current with

light-front time-ordered Hamiltonian formalism is proposed. quark fieldiy,(x) carrying the flavor indexx and the charge

In Sec. VI, we re-derive the sum rules that the structuree, .

functions obey and discuss their physical implications. Fi- The above hadronic tensor can be decomposed into inde-

nally a summary is given in Sec. VII. pendent Lorentz invariant functions:

We begin with a brief review of the basic ingredients of
pton-nucleon deep inelastic scatteriiiyS):

Wir= - f d* erPSLIH(£),31(0)]IPY), (2.4
41 , , .

wv — 2% quV 2 " v " v v v 2 i _UVNO 2 2
WY = -9 + q2 Wl(X!Q )+ P _afq P _azq WZ(X!Q )_IE q)\[SO'W3(X’Q )+PUS'qW4(X1Q )]
g“q”\ (1 M?2 v v?|F5(x,Q?)
—| grv— _ 2y_ rpv_ rov v pv et 2
(9 _q2_>(2FL(X’Q) Fa|+| PP az(P q’+P"g*)+g rrd
. q
TN [S,01(6,Q7) + Spr0r(x,QD)]. 25

The dimensionless functions
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(P-qg)? calculations in the language of the QCD improved parton
M?— T) Wz}- (260 model. Both the methods have made great success in under-
standing the scale evolution of the structure functions within
and the perturbative QCD domain. Although the deep inelastic
) ) scatterings provide a novel way to separate the physics of
Fa(x,Q%) = »W5(x,Q%) 2.7 perturbative and nonperturbative QCD dynamics and allow
are the so-called unpolarized structure functions measurédi® exploration of the high energy behavior of the constitu-
from the unpolarized target and ents inside the _hadron_s, the structure functions t_hemselves,
however, are still dominated by the nonperturbative strong
91(%,Q?) = 1[W3(x,Q?) + vW,(x,Q?)] (2.8) interaction dynamics. A complete understanding of hadrons
crucially depends on our understanding of nonperturbative
QCD. The OPE method addresses the structure functions in
gr(x,Q2)=g1(x,Q2) + go(x,Q1) = »\W,(x,Q2) (2.9  terms of their moments, which natu_raIIy separates the short-
distance and long-distance dynamics but it also makes the
are the longitudinal and transverse polarized structure funaionperturbative dynamics of long-distance physics more
tions. Whilex=Q?2v is the famous Bjorken scaling vari- complicated in terms of the moments. On the other hand, the
able,Q*= —g? the negative of momentum transfer squaredQCD improved parton model was built in the framework of
carried by the virtual photon and=P-q the energy trans- perturbation theory with the assumption of collinearity,
fer. The Iongitgdinal and transverse polarization vector comyyhich simplifies the perturbative QCD treatment but it is
ponents are given by also unclear how to explore nonperturbative QCD dynamics
S-q because nonperturbative QCD dynamics is mainly deter-
—_— (2.10 mined by the noncollinear motion of the low energy quarks
v and gluons.

These structure functions provide a probe to explore vari- [N the next section we shall use an inverse power expan-
ous aspects of the intrinsic structure of hadrons. It may b&ion of the light-front energy™ of the virtual photon(the
worth noting that in the literaturey, andg, are usually used €xtended BJL theorem on the light-frortb extract these
to characterize the longitudinal and transverse polarizedeep inelastic structure functions. This approach was origi-
structure functions. Howeveg, is not really a transverse nally proposed to study DIS sum rules protected by conser-
polarized structure function. It also has no clear physicavation laws in the pre-QCD erfd 1]. Here, we shall extend
interpretation. Onlygy, which can be directly measured this approach to QCD without recourse to perturbation
when the target is polarized along the transverse directiortheory. Therefore it is essentially a direct nonperturbative
characterizes the full information on the transverse polarizaQCD description. The resulting structure functions are di-
tion structure. rectly expressed in terms of the hadronic matrix elements of

The early SLAC experiment discovered that the structurgight-front bilocal vector and axial vector currents, where the
function F, depends only on the Bjorken scaling variakle currents have a relatively simple structure although they are
and is independent of momentum trang@ér This discovery  dynamically dependent. All the hadron dynamiicluding
led to the parton picture proposed first by Feynni@hin  poth the perturbative and nonperturbative dynajnieside
which thg cons'tltuents in hadrons can be trea;ed as pomtfllkﬁ, the multi-parton hadronic wave functions. This is a de-
free particles, i.e., partons. Of course, the picture of POINtscription very different from that of the OPE method and the
I|ke_and noninteracting partons is certalr_ﬂy oyer-S|mpI|f|ed.QCD improved parton model.

As is well known, the fundamental constituefit®., quarks
and gluong inside hadrons are indeed strongly interacting

m‘;gri‘?‘cgrﬂt;‘eirr}a?r?earlfm?to‘gmvee‘iybﬁrgeeggd?jrggsm?:]gc':ﬁ|. EXPANSION IN INVERSE POWER OF LIGHT-FRONT
asymptotic freedom feature of QCD make the quarks and ENERGY OF THE VIRTUAL PHOTON

gluons behave as point-like and weakly interacting partons. . . . .
The scale invariance &%, is violated for finite values o?. The INVErSe power expansion of the thqal photo_n light-
For the past 20 years, QCD investigations of deep inelasti ont energyq s applied to forward scattering ?‘mp"t“des-
structure functions have mainly concentrated on the behavi xplicitly, as IS well known, the hadronic tensor is re!ated to
of the scaling violation of these structure functions, which istne forward virtual-photon hadron Compton scattering am-
believed to be the best way to test QCD as the fundament&
theory of the strong interaction.

Among these investigations, two methods have dominated
the whole research topic: the OPE meth&lland the QCD WMV:imTMV 3.1)
improved(or field theoreti¢ parton model based on the fac- 27 '
torization schemd10]. The structure functions have been
extensively explored either in terms of their moments in the
language of the OPE method or in terms of diagrammatiavith

FL(Xsz):Z{_Wl_F

and

S.=S,~S,1, S

(S "

TZSM_ PM

litude:
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Explicitly, the basic commutation relation on light-front is

TH =] J d*ee'd 4P T(I*(£)3%(0))|PS) .
{00, L (W e oy = AT (X =y ) 82X, —Y,),

rqY (3.7
=| —g""+ — | Tix,Q?) o _ _
q which is exact in the full QCD theor}3], where ¢ (x) is
called the dynamical component of fermion field on the
v v it .
+| pr— azqu) ( p’— aqu)Tz(X:QZ) light-front:
. POO=¢, )+ (X),  P=(X)=AT¢(x),
—ie*"™g)[S,T3(X,Q%) +P,S-qT4(x,Q?)].
(3.2 A==39%" (3.9
Using the optical theorem, we have The minus componeng_(x) is determined fromy, (x) as a
result of the Dirac equation:
* 2 W Xll 2
Ti(XaQZ):ZJ dq +&, i=1,2,3,4. (3.3 1
700 q'*'—q’+ ¢,(X)=ia—+(lal-DL+,8mq)lﬁ+(X). (3.9

Then, as we shall see, the structure functions are connectgél, .« \ve have alread
to the light-front bilocal currents through theql/ expansion
of T+,

An expansion of T#” in terms of 1§~ was originally
proposed by Jackiyll] based on the BJL theorem. The
general expansion in 47 is given by

y used the light-front ga#ge=0, and
D, =4, —igA, is the transverse component of the covariant
derivative, o, = y%y',8=1°.

Because of the above special property of quatkmore
generally fermionfield on the light-front, the light-front cur-
rent explicitly depends on interaction of the theory, which is
1 \n+1 very different from the usual equal-time formulation. In
THr=—>> (_) J ded2g, elaé other words, the fundamental interaction is manifested ex-

n=0\4 plicitly in the light-front current commutators.
From Egs.(3.7) and(3.9), we have

{(//+(X),¢t(y)}x+:y+

o

X(PY[(id;)"*(£),9"(0)]¢+ ol PS), (3.9

whereq™ =q°—@?, the light-front energy of the virtual pho-

ton, andd~=24/9¢" is a light-front time derivative. The AT _ )
light-front coordinates of the space-time are defined by = e~y )liay- DT —Bm]&* (X, —y.).
=018 d=¢ (i=12). (3.5 (3.10

The above expansion shows that the time-ordered matrix elFhus, after a tedious but straightforward calculation, one can
ement can be expanded in terms of an infinite series of equéihd that
light-front time commutators.

For largeQ? and largev limits in DIS, theoretically with-  [37(X),37(¥) ]y =y+
out loss of generality we can always select a Lorentz frame
such that the light-front energy™ of the virtual photon be- :2 ei' ay
comes very large. Then, only the leading term in the above a
expansion is dominant, i.e.,

1 _
3 e(X =y )8A(x, —y IV, (X]y)

1
5 e(x” _yi)ﬁz(xi -Yy.)

+ i
large g~ ax

1
™ = - f d¢d%,
X[VL(Xly)+iel Al (x]y)]

| —H.c.], (3.11
X e YPY[I*(£),3"(0)]s+—o|PS). (3.6)

As a result, the leading contribution to the deep inelastiovhereV% andA’ are defined as the bilocal vector and axial
structure functions is determined by the light-front currentvector currents:
algebra. The light-front current commutator can be computed

directly and exactly from QCOwhere QCD should be quan- Vﬁ(xly)=$a(x) e (YY), (3.12
tized on the light-front time surfacg” = £°+ ¢3=0 with the
light-front gaugeA_ =0 [2,3]). Hence, all the subsequent Aﬁ(XW):Za(X)Y“%%(Y)- (3.13

derivations are exact within the light-front QCD and without

further assumptions or approximations of the collinear and As we can see, the light-front current commutators are
massless partons that were used in the previous derivationgry different from the equal-time current commutators.
[9,10]. Here the commutator is indeed given by terms involving
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spatial derivatives. These space-derivatives come from the 1 F, F,
nonlocality of #_(x) on the light-front. In the equal-time W+_:§FL+(PL) __ZPJ_ a2
formulation, there is no such nonlocality to the fermion field.

Therefore one cannot derive such a commutator from the 01 gT

naive canonical equal-time commutators. As we will soon +2i€'qg| S — ST (4.9)
see in the next section it is these spatial derivatives that lead
to the simple expressions of the structure functions in termg,nere St=S—S"P,/P*, S, =S-S7=S"P,;/P*, and
of bilocal current matrix elements. This is an essential fea-
ture in the present approach that make the light-front curre
algebra specially useful in the exploration of the deep inelas-
tic structure functions. )
The commutators for other current components can alsbP SIVE(£0)—VE(0[§)|PS) = PMVla(P £-P)

be found straightforwardly. For example,

[J+(X)1Ji(y)]x+=y+
-3 o

=1P*q” in the largeq™ limit. We introduce the form
actors for the bilocal current matrix elements,

+EVoo(PLEP), (42

1 (PYAL(£]0)+AL(0])|PS) =SAy,(P%,é-P)
— 7=y ) Ex -y

+PHE-SAL(P2E-P)

X[VL(XW)—iE”AL(XIy)]} +E1S- EAg,(P?E-P).

4.3
11 o
+ | ——e(x =y ) A(xt—yH[g"VI(x]y) Sinceé™ =0, it follows that the matrix elements of the plus
4 and transverse components of the bilocal current yield the
- same form factov,,. Using the definition
+ielA)(x|y)]|—H.c.;. (3.19
—_ |q tem /2
Thus, one can use E@3.1]) to extract the structure func- (&)= f (4.4

tions and then use E@3.14) to make a consistency check.

Now, the Compton scattering amplitude in the lagje  \ye find that
limit can be immediately expressed in terms of the hadronic
matrix elements of the bilocal vector and axial vector cur-

% r+
rents. For example, the{—) componenfT "~ is given by T =— 1_f qdq J' d¢ el TeTrR
largeq™ 1 gt e e
T = ——f dg~ e ¢ ()
a’ x2 € P Viet 50V,
i
x(PS2 ei[—q*vg(g 0) i [ — stE—
< % « 2 | +§€”qi SjA1a+PjT§A2aH' (45)
i o
—ZAVL(ET[0) Hie AL (¢ |O)]] —H.c. PS>- The bilocal current form factors are determined from Egs.

(4.2 and(4.3):
(3.15

The above result §hoyvs that the bilocal vectorland axial vec- Vi,= %<pg$a(§*)y+ Po(0)= o (0) Yy h o (E7)|PS)
tor currents entering ifm#” are separated only in the longi-

tudinal directioné™ = £9— &3, This property naturally leads (4.6)
to the well-known scaling behavior of the structure functions

when we ignore the QCD dynamics at very high. In the

_ e A o i -
next section, we will extract explicitly the structure functions P! (PYYal€7)71a(0) = 4o 0) 7'l €7)IPS),
in terms of these bilocal current matrix elements. 4.7
IV. GENERALIZED EXPRESSIONS FOR DEEP — 1 P~ +
INELASTIC STRUCTURE FUNCTIONS Vo= =\ P Yal &) v - pTY |¥a(0)—H.c/PS
Now, let us pick up the sameH—) component of the B

hadronic tensor, Ed2.5), to find the deep inelastic structure _ 1 PSy.(e)| v - E_ | y.(0)—H.clPS
function by comparing with Eq3.15 through Eq.(3.3). In & “« “« | '
the largeq™ limit, (4.9
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4.9

Ala: §_IT<P% wa(g_)( yl_ F’y+> ’YSl//a(o)+ H.c.

Ps).

< % f)(v IS4
(4.10

Comparing with Egs(4.1) and (4.5 through Eq.(3.3), we
obtain, withnp=1P "¢,

) ’YSd/a(O) +H.c.

XQ)

X

fdr]e '”XE e2Vy, (4.10)

1 )
_Wf dpe ™Y €2

X (P €)Y ha(0)— h(0)y b €7)|PS)
(4.12
_ 1 —inXx 2
__'_47TPIJ_J dye 7 ; e?

X(PY o€V, ha(0)— a(0) Y, o £7)|PS),
(4.13

PHYSICAL REVIEW D 59 094012

g <xQ2>=ifdne“"x
1 8w

_ 1 _
Ala + EP " S_AZa

x>, e?
a

‘Wfd’?e’“’x

x 2 P YulE )y v51al0)

(4.19

+4(0)y " ysph(£7)|PS), (4.16

1 . _
2y — —inx 2
gr(x,Q%) 87TJ dne ; €, 14
(4.17)

i 7x
8WSTJ dne-

— P!
X2 e§< P% %(é‘)( v- ;7*)

=)

The above results are derived without recourse to pertur-
bation theory, and also without the use of concept of collin-
ear and massless partons. They are also the most general
expressions for the leading contributi@in the 1~ expan-
sion, not the leading contribution in terms of twists the

X ystho(0)+ H.c. (4.18

where the last equality is found for the first time here. Itsdeep inelastic structure functions in which the target is in an

physical interpretation will be given later:

q+
2y _ —inx
FL(x.Q?) WMJ dne
P2
x2 € (P‘ 57| Viaté vza}

_P*(Zx)z i
areie) fd’?e
2| pd 7 Pi
X; ea\ PYua(§7) 7_—(P+)27+

o)

X ,(0)—H.c. (4.14

arbitrary Lorentz frame. Some of these expressions have not
ever been obtained in previous works. Thdependence of
these structure functions is obvious in the above expressions.
The scale Q?)-dependence is hidden in the hadronic bound
states|PS) which can be described by multi-parton wave
functions. In the next section, we shall analyze the complexi-
ties of structure functions in terms of bound states in our
description.

V. COMPLEXITIES OF STRUCTURE FUNCTIONS
A. Multi-parton wave functions

As we have seen, the derivation of structure functions in
the previous section is apparently quite different from the
QCD improved(or field theoretical parton model. The latter
which is based on the collinear concept is purely an applica-
tion of perturbation theory where further exploration of non-
perturbative dynamics is lacking. Our description is also ob-
viously very different from the OPE method. On the other

where the first equality may be reduced to the same expresrand, structure functions themselves are dominated by the
sion obtained by the collinear expansion in the Feynmamonperturbative quark-gluon dynamics. When we formulate

diagrammatic method up to the order of twis{<#2]. But

here it is directly obtained in the leading order in the ™1/

them on the light-front, the structure functions are propor-
tional to the simple hadronic matrix elements of the bilocal

expansion without involving the concept of twist expansion.currents that are separated only in the longitudinal direction.
Moreover, the polarized structure functions can also bén this formulation, no time evolution or propagation is ex-

found directly as

plicitly involved in the matrix elements. Hence, unlike the
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OPE or the perturbative field theory descriptions of partorwhile x; is the fraction of the total longitudinal momentum

model, all the perturbative and nonperturbative dynamicsarried by theith constituent, andc, ; is its relative trans-

here are completely carried by the structure of target’'s boungderse momentum with respect to the center of mass frame:

state. This is closer to the real physical picture probed in

experiments. p;
The bound state of a hadron on the light-front can be Xi=5¥, KiL=PiL—XP, (5.3

simply expanded in terms of the Fock states,
, with p;" ,p;, the longitudinal and transverse momenta of the
IPS) =2 | dxid?k,[n,x;PT,xP, +x, i\ ith constituent®3(x; ,«,; ,\;) is the amplitude of the Fock
A state [n,x;P*,x;P, + x,;,\{), i.e., the multi-parton wave
Xq)f(xi KL, (5.1) fun(_:tion Whi_c_h is boost invariant and satisfies the normal-
ization condition

wheren represents constituents contained in the Fock state

[n,xiP*,x;P, +x,;,\i), \; is the helicity of theith con- J 2 S 2_
) ; X I Pa(Xi, ki,N)|7=1 4
stituent, andf’ denotes the integral over the space, r% Al Pk M= 1, 649

2 x=1 and 2 J— (5.2) and is, in principle, determined from the light-front bound
™ o ' state equation

Diyq (qqdHindaqq)  (qaqHinaaag - [ Poaq

Kizl+mi2 s S
®gqq0| =| (aaadHin|aaa) D g0 - (5.5

(M‘E—

Here H;,, is the interaction part of the light-front QCD where the Q?-dependence is carried by the multi-parton
Hamiltonian [3]. Thus, the complexities of the structure wave functions with the active parton renormalized at the
functions carried by hadronic bound states are now translatestaleQ?, and /" denotes the integral in the right-hand-side
into the language of multi-parton wave functions on thegyer the space of Eq(5.2) except for the active parton
light-front, rather than composite operators in the OPE. (x,x,)=(k*/P*,p, —xP,). With this consideration it is
.. . 2 i) i) .

It _E);phm;lyf, Ie‘ihus ]!F’Otktf”“ thg strucl:ngttahfutnFctlﬁz(xt,)Q ). straightforward to derive logarithmic corrections that are the

IS found for the Tirst ume by u$13] atF, can be €X-  same as those obtained in the QCD improved parton model
pressed in terms of a matrix element of either the plus COMZ it the OPE. as will be given ifd]. In this case, all three
ponent or the transverse component of the bilocal vector Cu;descriptions a’re almost the same. 'i'he only diffe’rence here is

rent. On the light-front, these two components have totall : . o
different operator structures but amazingly their matrix ele-thalt |fn oudr fframewr(]) rk, the perturbatwe QC.D dynhamlcs I'S
ments determine the same structure function. transterred irom the composite operator into the scale-

The plus componen?y* lﬂ=211f1 ¥, has no explicit dy- dependent multi-parton wave functions on the light-front,

. . . which enables us to describe the nonperturbative dynamics
namical dependence, and has the lowest mass dime(sion . P y

twist-2 operator in OPE languageThe corresponding ma- in the same framework. — . —

trix element has a straightforward parton interpretation. It is But ~the transverse componentyy'y= Y+
clear from the above operator that on the light-front it is just+ ¢, y| &~ depends explicitly on the fundamental quark-
a quark(partor) number operator which immediately leads gluon interaction in QCD. According to the twist analysis
to the fact thatf, is proportional to parton density distribu- [14], the transverse component of the bilocal current is a

tions g,(x,Q?): twist 3 operator which has no simple parton interpretation.
F,(x,.Q?) However, we have explicitly showji 3] that the correspond-
—’:E eiqa(X,Qz), (5.6) ing matrix element of the above transverse component must
X a have the same parton interpretation as that from the plus

component. This is indeed obvious because they represent
qa(X,Qz)Zf dzki< P#E bl (k,\)by(K,\) PS> the same form factor of the bilocal currefsee Eqs(4.6)
X and (4.7)] and they describe the same structure funcfign
[see Egs(4.12 and(4.13)]. The explicit calculations in Ref.
_ 2 2. 1S NN [13] further demonstrate that the real dynamics contained in
_f d KLn’EM A A%l P (X111 M the structure functions is determined by the matrix element
(5.7  with the rich information carried by the multi-parton wave
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functions. It is the complicated multi-parton wave functionsand nonperturbative contributions to the structure functions
that cause the same behavior for the matrix elements of thia the same framework. In the rest of this section, we shall
two apparently different operatofshe plus and transverse propose a scheme for such an exploration.

components of bilocal currentHence, the complexities of In Sec. VA, the hadronic bound state is formally ex-
deep inelastic structure functions in light-front QCD arepressed in terms of Fock space expansion on the light-front
mainly carried by the multi-parton wave functions of had- by Eq.(5.1), and it is determined in principle by the light-
rons which completely determine the Lorentz invariant ma-+ront hound state equatiofs.5). However, the difficulty in

trix element]i.e. the form factors in Eqd4.2),(4.3] of the  yetermining wave functions by solving E€5.5) is that the
bilocal currents. In the following subsection, we shall furtherQCD Hamiltonian contains more than one energy scale. At

) : . ifferent energy scales, the QCD Hamiltonian can exhibit
structure functions in terms of light-front Fock space expan-

. : . h different aspects of the dynamics. Let us roughly divide the
fé%riwcasrlgtg%ht—front lime-ordered perturbation theory of had'quark and gluon dynamics into two energy domains, namely,

high energy and low energy. In the high energy domain, the
dynamics is controlled by the renormalized QCD Hamil-
tonian with all the constituents carrying momenta greater
Up to this point, all the derivations and discussions of thethan a scaleu;,i(=1 GeV) which we call the factorization
deep inelastic structure functions in the1/expansion have energy scale. This high energy QCD Hamiltonian describes
been rigorously carried out within light-front QCD and with- all the hard dynamics of quarks and gluons and determines
out recourse to perturbation theory. The remaining problenthe hard contributions to the structure functions which can be
is how to evaluate various matrix elements of bilocal cur-calculated in the perturbation theory. In the low energy do-
rents. These matrix elements contain both hard and sofnain, the effective QCD Hamiltonian is still unknown but
qguark and gluon dynamics. As we have analyzed in this secuch a low energy QCD Hamiltonian should fairly determine
tion, all the hard and soft dynamics probed through the structhe low energy structure of the hadrons and is responsible for
ture functions are completely carried by the target’s boundhe soft contributions to the structure functions.
state in the present formulation. This is the main advantage Schematically, we may write the QCD Hamiltonian on
of this formalism that allows us to explore the perturbativethe light-front for DIS as

B. Factorization scheme in light-front QCD

HSCDEfz , dki"d%k, HGep(ki)  for hard contributions,

i1= Mact

H(LchD: HgCDEJ dkﬁdzkuHSCD(ki) for mixed hard and soft modes, (5.9

H(LDCDEJ2 , dk"d%k, Hocp(ki)  for soft contributions,

i1 S Mfact

where cho represents the canonical light-front QCD the discussion of the perturbative and nonperturbative QCD
Hamiltonian (with de”Sitycho given in[3]) in which the  contributions to DIS structure functions much more transpar-
transverse momenta of all the quarks and gluons are rént, as we will see next.

stricted to beu2<k?<Q?2 (i.e., hard partons and Hbco Now, the target bound state can be expressed by
denotes a low energy effective light-front Hamiltonian in
which all the constituents have the transverse momentum
k? < uZ . (soft partons This low energy Hamiltonian is, in
principle, obtained by integrating out all modes Wkﬁ

>u2., from the canonical light-front QCD Hamiltonian, with
which leads tpoCD. In addition, we also introduce a
Hamiltonian cho which depends only on the interaction

part and which mixes the hard and soft partons. Writing the Up,=T" exp — i_fo dx" (HBcp+H¥cp) . (5.10
light-front QCD Hamiltonian in such three parts will make 2) -

|PS>:Uh|PS’Mf2act>v (5.9
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P?+M? (PS u2edni)(ny|PS ude), (5.15
HECD| PS’:U’fzac& = T' PS!:U’fzac&' (5'11) % o

which contains all the quantum correlations and interference
In Eq. (5.10, H" andHM contain the interaction parts only effects of multi-partor(quarks and gluonsdynamics in the
and the mixed Hamiltoniai g, is active only in the ex- low energy domain withk? < .. Since all the internal
treme right of the time-ordered expansion. In other wordspartons in the time-ordered expansion@f in Eg. (5.14
the hard and the soft dynamics in the bound states are detegarry momentauf,.<k?<Q? the mixed Hamiltoniai §p,
mined separately waCD and Hbco but these two contri- has a c_ontribution only in the extremg left and extreme right
butions are connected bM?SCD through the time-ordered O©f the tme—ordergd products. It is this effect that. connects
expansion of Eq(5.10 on the StatéPSaM?ac& in Eq. (5.9), the hard contrlbytlon of Eq5.19 to the soft cont_rlbutlon,
where the soft dynamics, represented| Bﬁ,ufzad), must be Ea. (5'15_)' we will pres_ent more deta_lled dls_cussmn[il].
solved nonperturbatively from Eq5.11). The key point to The simple parton picture in deep inelastic processes cor-

solve Eq.(5.1) is to find the low energy effective Hamil- responds to the case M1>:|n.2>. in Eq. (5.13 with only
tonian H.(_?CD_ A practical procedure to fintH-l(")CD on the ©ne parton inn,) actively participating in the high energy

light-front may be the use of similarity renormalization process, all others being spectators. This immediately leads

group approach plus a weak-coupling treatment developetc?

recently[5-7]. Indeed, a major effort on the study of light- 1 Q?
front QCD is underway at present to solve this prob|es). F.(x.02)~ ezJ dvP. | v.x. —1q.. 2

To see how the perturbative and nonperturbative QCD Q%) Ea: a ) Yoo ¥ "l Qi Hiac):
contributions can be separately evaluated in the present for- (5.19

malism and how these two contributions are connected by _ N _ _
chov we substitute Eq95.9—(5.11) into the expressions where the hard scattering coefficieR§ ; is determined by
of structure functions. Denote the structure functions simply

by Fi=:{F_,F2,91,91}, 2 .
y Fi=:{F_,F2,91,97} Ppp’,i(yX!QT :fdneﬂnx
: Mtact
Fi(X,Q2)~f dne ' T
* X<yrkLrs|Uh [l//a(g )Fll//a(o)
X € (PY (£ )T, (0)=H.c|PS), TH.c]Uply.k, ,S). (5.17)
(512 Here we have denotefy,k, ,s)(y=k*/P*) as the active
whereT; involves the Diracy-matrices[see Egs(4.12—  Parton state. Equatiofb.17) means that we have suppressed
(4.18]. It follows that all references to the spectators in the state$. The hard

scattering coefficient is directly related to the so-called the

. splitting function whose physical interpretation is the prob-
Fi(Xer):f dne ”’Xg e(z,nzn (PS ufaciny) ability to find a daughter partop’ in the active parent parton
1z p. The quantityq,,;(y, u2.,). usually called the parton distri-
X{(Ny|PS, iy bution function, is given by
X (N1 Up a6 )T a(0) = H.C.JUp| ),
e I (5.13 qai(ywufzact):; |<PSva2acIJn>|2' (5.18

where|n,),|n,) are a complete set of quark and gluon Fockwheren runs over all the Fock states containing the active
states with momenturk®< u2,.,. This is indeed the general- parton with momentum fractiog. Theoretically, the parton
ized factorization theorem in the light-front Hamiltonian for- distributions are determined by solving EG.11). Physi-
mulation. The hard contribution is described by the matrixcally, they contain only the quantum correlations of multi-
element parton dynamics but no quantum interference effects. An ex-
ample of such distribution functions is given by E@S.6)
(U Mo (E0)Ti0,(0) = H.cJUpIN,),  (5.14  and(5.7) for F,(x)/x which manifestly exhibits the simple
parton picture. For detailed calculations also see Réf.
which can be evaluated in the light-front time-ordered per- The above discussions indeed constitute a presentation of
turbation theonyf3]. The physical picture corresponds to the factorization scheme in the light-front Hamiltonian formula-
multi-parton forward scattering amplitude with all the inter- tion. The leading hard contributions to the structure func-
nal partons carrying a momentum with the transverse comtions are given by the hard scattering coefficient
ponentk, , u&z<k®<Q?, and the longitudinal momentum P, i(y,x,Q% uf.) and a complete calculation dP,, ;
fractiony,x<y=1. The soft contribution is characterized by based on the light-front time-ordered perturbative expansion
the overlap of the multi-parton wave functions in different of the multi-parton wave functions will be presented in a
Fock states: subsequent papé¢t]. The evaluation of the soft contribution
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to the structure functions, given toy,;(x, uZ,), remains for 0y " =—F™F L =0"A0TA (6.5
future investigations of nonperturbative light-front QCD ap-

proaches to the hadronic bound states. Other higher ordq_r

contributions can also be systematically evaluated from Eqs.hus

(5.14 and(5.19 [1]. Thus, a unified treatment of both per-

turbative qnd npnperturbative aspects of deep inelastic st'ruc— gt = i$7+f9+ G+ atAGTA (6.6)
ture functions in the same framework may emerge which

permits one to overcome the obstacles in dealing with the

nonperturbative QCD dynamics in OPE and field theoreticafree of interactions at the operator level itself. The longitu-

parton model approaches. dinal momentum operator
1
VI. PHYSICAL INTERPRETATION OF THE STRUCTURE p+:_f dX7d2XL o+, 6.7
FUNCTIONS FROM SUM RULES 2

In this last section, we shall explore the physical meaning . e
of the deep inelastic structure functions in our framework of _ Next consider the fermionic transverse momentum den-
light-front QCD. The physical meaning of the structure func-S"tY
tions can be easily understood from the sum rules they obey.
Some of them have been known for long time but others are
new. Sum rules generally arise from the existence of conser-
vation laws. First we consider the case of sum rules in un-
polarized deep inelastic scattering for which a detailed conwith
sideration of the energy-momentum density in QCD is
necessary.

0, =3yi[y'D'+yD ly=0;"1+6;',, (6.9

0. 1=3yiy'D'y and 6. ,=%yiyaty. (6.9

A. Energy-momentum tensor in QCD For the Hamiltonian density, the fermionic part is given by

The symmetric, gauge-invariant energy-momentum tensor
in QCD is given by

+—_ p+—(1) +—(2)
05 =05 P+, (6.10
61" = 3 gi[ YD+ y' D Y= FHFY, with
+ 59" (Froa)® =g Wiy Dy —m)y. (6.0 e
04 =iy oYy AT Y (6.11
The last term vanishes using the equation of motieor-
mally, we split the energy momentum tensor into a “fermi- and
onic” part 64" and a “gauge bosonic” pary”:
0~ P=iyToty, (6.12
04"=3yi[y*D"+y'D*]y (6.2 , _ | , ,
Using the Dirac equation for the fermion, we find that
g~ P=067 . Thus we have
and
0 =iy ot y=2iy oty (6.13
0= —FH9F + 504 (Fppa), 6.3 !

=2y a, (19, +gA,)+y°m]
with F%,=3d"Aa— AL+ 9fanArAL.. TO be consistent
with the study of deep inelastic structure function which is
formulated inA"=0 gauge, we shall work in the same
gauge.
We have, for the fermionic part of the longitudinal mo- (6.19
mentum density,

1 .
XF[“L'('@"'QAL)"' Yomlyt.

— The gauge boson part of the Hamiltonian density is more
O =iy "y 6.4  complicated 3]:
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+— +\a + - 1 +aA—a)2 1 ijapa

2
=(d'AL)2+2gfaPAl Al 5T Al + 92 fabcradepl AIALAL + 245 AL

o

; )[fabCA’ I AL+ 2(y )Ty ]

[fa"eAJa AL+2(y*) T3y, (6.15

[faP°AL 0T AL+ 2(y") TRy ]

where we have used the equation of constraint for the gauge 5
field. f dxF,(x,Q%)

Next, we discuss the physical interpretation of the deep

inelastic structure functions on the basis of the sum rules 1 ’ — o
they obey. = 357 2 CulPSHOY (1) 9u(O)IPY
1 _
B. Longitudinal momentum sum rule = S0 2 ei(pg g;;|p5>, (6.20
] «

The content of the momentum sum rule has been known
for a long time. For completeness, we shall rederive it in our
framework. The sum rule is simply that if we add up theand the momentum sum rule can also be written as
longitudinal momentum fractions carried by all quarks, anti-
quarks, and gluongalternatively by valence quarks, sea 1 1
quarks and, gluonsn the nucleon we should get 1. From the +ip\ — +iy pti _
expression of, in terms of the plus component of the bilo- 2P P} (Pl™'IP) 2P*P| (PILOF"+ 66 1[P)=1.
cal current matrix element given in E(.12 we have (6.21)

1 _( 1
Joexei0-{ g7

> €(P|6f,|P). (6.16 The sum rule given in E¢(6.16 means thaE, measures
“ the longitudinal momentum distribution of quarks inside the
hadrons, as has been known for a long time ago. From Eqgs.
Formally, we can define the “gluon structure functiof20]  (6.16 and (6.20 we observe that the hadron expectation
value of the longitudinal and transverse momentum densities
gives the same information, namely, the total longitudinal
S(x)= 1 +f dnefinx<P|F+va(§7)Ft}a(o)|P>’ momentum fraction carried by the partons.
4mP We note here an apparent paradox that results when one
(6.17) ignores the essential complexities carried by the state. The
operators corresponding to the transverse momentum density
so that explicitly depend on the interaction sinEe=¢'—igA' and
, depends oy~ which in turn depends explicitly on the
L 1 |rr1]teract|0n Since \INe kno¥v that Iﬁ a_:%nematlcal opera:}or
Gy — 4+ this appears puzzling at first sight. Thus we expect the ap-
fo dXFQ(X)_(Z(P*)2)<P|QG IP). .13 parent dependence & on the interaction to be spurious.
However, this cannot be demonstrated at the level of opera-
tors alone. But this is not a serious problem since what really
matters are the matrix elements.
Indeed, our demonstratidii 3] that the matrix element of
the transverse component of the vector bilocal has the same
1 parton interpretation as that of the plus component and hence
j dx[F,+F§]=1. (6.19  the apparent interaction dependence in the former is com-
0 pletely spurious in turns directly tells us that the interaction
dependence of the operatejl‘_'2 is completely spurious. In
Similarly, from Eq.(4.13 in terms of the transverse com- that case an explicit evaluation of off-diagonal matrix ele-
ponent of bilocal current matrix element, we have ments in the Fock space expansion of states is involved.

Only if we assume,=1 can one obtain the momentum sum
rule
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Similarly, an explicit demonstration shows tl‘@;ﬂl has no WhereAqS' is the distribution function of chirality carried

interaction dependence at the level of matrix elementby all the quarks in the longitudinally polarized target and
namely renormalized in the gauge invariant scheme. The above form
can also be directly obtained from E@.3). Then, we have
Oglr=ziyiy dyrg(u)'AYT, (6.2 1
. . F(Q%)=5 2 eZAqg(QY). (6.29
but the matrix elements of the second term vanish. Then, at a

the level of matrix elements, o . L
If one uses the chiral invariant renormalization scheme, the

T 6.2 first moment ofg; also exhibits the anomaly contribution
Og =14y d g (6.23 [16]. We will discuss how this property manifests in the

. : , ._light-front Hamiltonian formulation in a separate publication.
This demonstration clearly shows that drawing conclusions ™ ; is clear now thaty, describes the distribution of chiral-

by looking at the operator strupturg is quite misleading in t.h‘ﬁty carried by the quarks inside the targptoton or neutron
case of operators that are twist 3 in the conventional definiygia that the first momert, is usually called the proton’s

tlon._ . . - L spin structure function. But one must also be aware that on
_ SinceF, involves quark charges in specific combinations, e |ight-front, the plus component of axial current is the

I ldoes not glvhe the d're?t test Of_ the at;love momentum E_urgame as the third component of the quark helicity operator
rule. To test the sum rule experimentally, one can combingensiny on the light-front. Therefore, its expectation value is

the dz_ata for. both the_ electron-proton and electron-n_eutro?ne same as the third component of the spin on the light-front
deep-inelastic scatterings and assume that the sea is flavgre light-front helicity, which is not the same as the

symmetric; then, z-component of intrinsic spin defined in the rest frame of the
5 1 equal-time coordinates. On the light-front, as is well-known,

dXTEEP(x) +E&"(x) = — PS ot fIPS there is a very complicated relation between the light-front

J [P0+ Fa 0] 9 (P") ; (PS0c, IPS helicity and the intrinsic spin in the rest frame. This relation
depends on the interactions in the fundamental theory. At

5 1 _ present, one only knows the exact relation for free theory
=95 o > (PS6LIPS). [17]. In other wordsg; does not really measure the spin of
P™P, o proton. Simply calling Eq(6.28 a spin sum rule is mislead-
This shows that fdx[F5P(x) + F5"(x)] is the total longitu- D. Light-front helicity sum rule

dinal momentum fraction carried by all the quarks in proton

and neutron. If the quarks carry all the momentum, then we For fermions, the intrinsic light-front helicity distribution
expect that ' function is given by

1 —inx
f dX[ng(X)+an(X)]: § (625 Aq(X,QZ):SWS+fdﬂe 7!

X(PS[¢(£7)y 23¢%(0)+H.c]|PS
Experimental data show that the above integral is 0.28. In (PS[w(£)y Wo) 1IPS
other words, as is well-known, half of the momentum in (6.29
hadrons are carried by gluons or the sea quarks if the sea \i/§here23=iyl

. ¥2. This is the same as the chirality distribu-
not flavor symmetric.

tion functiong;.
We define the orbital helicity distribution for the fermion

1 —inx W

X (x292—x29Y) (0)+ H.c.]|PS).

C. Sum rule for g,

Now we consider the sum rule fay; and its physical Aq.(x,Q%)=
interpretation. Integrating, overx, we simply have

Fl(Q2)=f dxg;(x,Q?) (6.30
1 ) _ For the gluon, the intrinsic light-front helicity distribution is
=557 2 €{PIY(0)y 754o(0)|PS). defined[18] as
(6.26 2 :_i—j —inx
Ag(X!Q ) 47T(P+)2X d7]e
Note that

_ X(PSF* (£ )F ) |PS.  (6.3)
(PY,(0)y" y54,(0)|PS=A0S"(QH)S* (6.2)  The dual tensor
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Euv_1 _uvpo i T2 ' i
FrI=3 e Fpp with "i7%=2. (632 fodxgl(X,QzFﬁ,mdxfd”e_"x

We also define the light-front orbital helicity distribution for

the gluon as _ 1 _
AT EF>+5A2a).
1 . a
2y —inx
X(PY[X'FT4(£7)a*A.(0) Provided the bilocal form factoA,, does not have patho-
—X2ET ()0 A L(0)]|IPS).  (6.33 logical behavior alsf —0, we hai/e
Note that all the above distribution functions are defined in fo dxg;(x,Q%) = g1a(0). (6.42
the light-front gaugeA™ =
The light-front helicity operator is given by Also we have, from Eq(4.17),
1 1 1—
J3=§f dx d?x x0T 2—x%011] (6.39 fo dxgr(x,Q?) = g"1a(0). (6.43

where 0*” is the symmetric energy momentum tensor. Ex-Sincegr=g;+0,, it follows from Egs.(6.42 and(6.43) that
plicitly, the fermion orbital helicity operator

1
f dxg(x,Q%)=0 (6.44
N fdx d>t gt xta?—x20t 1yt (6.35 0
S o which is the BC sum rule.
and the fermion intrinsic helicity operator Recently, in the literature, there have been discussions
1 about the validity of the BC sum rule in perturbative QCD
gm:—f dx d2xtyt T3yt (6.39  [19.20. Here we have shown the validity of the sum rule
2 exactly up to the leading contribution in thegl/ expansion

without recourse to perturbation theory.
Obviously, the BC sum rule does not provide us any in-
tuition about the physical picture @,. Indeed, as we have

The gluon orbital helicity operator

1 . . . : .
Jg(o) fdx—dZXi[xl((ﬁAl,ﬁAl-;- It AZ5?A?) pointed out the physical picture fay, is not clear, since
experimentally one directly measurgs and g+ when the
x2(5* ALGTAL+ 9 A291AZ)] (6.37 target is polarized in the longitudinal anpl transverse direc-
tions, respectively. The transverse polarized structure func-
and the gluon intrinsic helicity operator tion is g7 rather tharg,. Equationg6.42 and(6.43 indicate

that by averaging ovex, the longitudinal and the transverse
structure functions give the same result. This can be again
regarded as a consequence of rotational symmetry. However,
this does not imply thatj;(x) andg(x) are the same.
The helicity sum rule for the nucleon target implies To see clearly the intrinsic physical picture @f(x,Q?),
let us consider the target state being transversely polarized in
the x-direction without loss of generality. Then we can sim-
ply express|PS) as a combination of the helicity up and
(6-39) down states{PS!)=(1/y2)(|P1)*=|P])) for S*=*+M. It
is easy to show thag; measures the helicity flip processes
on the light-front[21],

g(l) fdx d’x [AT9TAZ—AZ5TAl].  (6.39

N(PS|[Jq<, +33 0 H 50 F 0 IPS =

where N=2(27)3P" 5%(0). Thus we arrive at the sum rule
obeyed by the helicity distribution functions:

fldX[Aq(X,QZ) +Aq(X,Q2)+Ag(x,Q?) +Ag, (x,Q?)] gr(x,Q%) = mf_wd ne '™
0

1 — . P
—2 (6.40 x5 2 <Px’¢a<§ )(y—;f)yswa(m

as a result of light-front helicity conservation. +H.c

.P—)\>. (6.45

E. Sum rule for gr and the Burkhardt-Cottingham sum rule Not that the quantity, is purely introduced in the Lorentz

From Eq.(4.19 it follows that decomposition of the hadronic tena#*” for historical rea-

094012-13



A. HARINDRANATH, RAJEN KUNDU, AND WEI-MIN ZHANG PHYSICAL REVIEW D 59 094012

sons and has no clear physical interpretation. @algndg;  We have used the fact that the physical structure function
have a clear physical picturg; measures the parton helicity vanishes fox>1. We observe that the integral Ef(:‘;/x is
distribution andgt measures the parton helicity flip effect, related to the hadron matrix element of the fermionic parts of
which is equivalent to the measurement of the effects ofhe light-front Hamiltonian density The above relation
chiral symmetry breaking and therefore it involves moremakes manifest the nonperturbative nature of the twist-4 part
complicated intrinsic dynamics of quarks and gluons. A posof the longitudinal structure function.

sible relation betweery; and dynamical chiral symmetry  The fermionic operator matrix elements appearing in Eq.
breaking is explored ifi21], and more detailed theoretical (6-48 changes witlQ? as a resuit of the mixing of quark and

and experimental investigations remain to be carried out. 9Uon operators in QCD under renormalization. Next we ana-
lyze this problem of operator mixing and derive a new sum

rule at the twist-4 level arising as a result of the conservation
of energy-momentum tensor.

From Egs.(4.12 and (4.14 it follows that F,(—x) We define the twist-4 longitudinal gluon structure func-
=F,(x) andF[~%(—x)=—F[~*(x). Consider the integral ~tion

F. Sum rule for twist-4 part of F_

- _ 1 xP* .
J’+°°dx':|_ 4(x) F[(}SWF@XZ—WJ dée '™
% X
—wad Fr=4(x) X| [(PI(—)F " (&7)F,(0)
= . X "
o +7 97 FM(ET)Fa(0)[P)+ (£ —0)]
= [ Txdx[ dnei P)2
WQZJLOCX Xf e —%RPK—)F*“(&)Ffa(0)|P>
— (P,)?
x; e <P’¢a(§)<v—ﬁ) ¥(0) +(§—H0)]}. (6.49

—H.ec. (6.46 Then if we assume,=1, we have

i

where in the first equality, the symmetry propertyl%f4
has been used. Interchanging the orders afidy ™ integra-

1dx
T=4 =4
JOY[FL +FIg

. ; : . . . 2 - (P1)?
ngn]s and carrying out the integrations explicitly, we arrive at _ 62[<P| 9+~ (0)|P)— ) (P|6"*(0)|P)|.
b PO (6.50
fo X—— But
5 (P|6"~(0)|P)=2P*P~
=53 e
—Q2< fa =2[M2+(P+)?] and
<P— 0)_( L (P2, ) 0)‘PH (Pl677(0)|Py=2(P")2, (.51
X Wy " — =337 d .
Val 4 (PT) Y al whereM is the invariant mass of the hadron. Thus we arrive

(6.47) at a new sum rule for the twist-4 part of the longitudinal
structure functiorj22]:

Identifying i@y‘f Y= 0;_ , the fermionic part of the light- dx ) 2
front QCD Hamiltonian density, andyy* 9" =6, *, the foy(Fff +F[(g))=4@- (6.52
fermionic part of the light-front QCD longitudinal momen-

tum density[see Eqs(6.4) and (6.13 abovd, we arrive at

. . . VIlI. CONCLUSION
the interesting relation

In this paper, beginning with an inverse power expansion

1 F[:“(X,QZ) of the light-front energy of the probe in the framework of
Jo dxf light-front QCD, we have arrived at the most general expres-
sion for the leading contributions to deep inelastic structure

2 5 L (P)? .., functions as the Fourier transform of the matrix element of

-2 Ea: e, { P|0go (0)— (P+)20qa (0)] ) |- different components of bilocal vector and axial vector cur-

rents. Although some of the expressions are already known,
(6.48 others are either completely new, such as the expression for
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F, in terms of the transverse component of biloc_:al currenf~1 GeV), by solving the light-front bound state equation
matrix element and the expression for, or generalizations pased on the recently developed nonperturbative renormal-
of earlier results in some SpeCiﬁC Lorentz frame to an arbi'ization group approac[ﬁ_ﬂ or other approaches on ||ght_
trary Lorentz frame, e.g. the expressions ggr(or g). front QCD [15]. Further investigations along this direction

We have also derived new sum rules fof and Fi,  are in progress and will be published in forthcoming papers.
which provide the physical picture of these structure func-

tions. An important feature of the present formulation of

deep inelastic processes is the' faqt that we have unified the ACKNOWLEDGMENTS
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