
PHYSICAL REVIEW D, VOLUME 59, 094012
Nonperturbative description of deep inelastic structure functions in light-front QCD
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In this paper, we explore the deep inelastic structure functions of hadrons nonperturbatively in an inverse
power expansion of the light-front energy of the probe in the framework of light-front QCD. We arrive at
general expressions for various structure functions as the Fourier transform of matrix elements of different
components of bilocal vector and axial vector currents on the light-front in a straightforward manner. The
complexities of the structure functions are mainly carried by the multi-parton wave functions of the hadrons,
while the bilocal currents have a dynamically dependent yet simple structure on the light-front in this descrip-
tion. Further, the factorization theorem and the scale evolution of the structure functions are presented in this
formalism by using old-fashioned light-front time-ordered perturbation theory with multi-parton wave func-
tions. Nonperturbative QCD dynamics underlying the structure functions can be explored in the same frame-
work. Once the nonperturbative multi-parton wave functions are known from low-energy light-front QCD, a
complete description of deep inelastic structure functions can be realized.@S0556-2821~99!02009-3#

PACS number~s!: 12.38.2t, 11.30.Rd, 13.85.Hd, 13.88.1e
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I. INTRODUCTION

With the recent and planned experiments on polarized
unpolarized structure functions, the field of deep inelas
scattering has entered a new era. New experiments are
ginning to provide invaluable information on the so-call
‘‘higher twist’’ ~power suppressed! contributions to deep in-
elastic cross sections, a theoretical understanding of w
requires nonperturbative information on the structure of h
rons. To unravel this structure, there is an urgent need
develop nonperturbative theoretical tools which are pre
ably based on physical intuition and which at the same t
employ well-defined field theoretical calculational proc
dures. Towards this goal, in this work, we propose a n
method of calculation of structure functions combining t
coordinate space approach based on light-front current a
bra techniques and the momentum space approach bas
Fock space expansion methods in light-front theory in
Hamiltonian QCD framework.

To get an intuitive picture of deep inelastic scattering
field theory, it is extremely helpful to keep close contact w
parton ideas. However, partons were originally introduced
collinear, massless, on-mass-shell objects. In reality,
QCD governed interacting partons should not be collin
and massless. The question, then, is, can one generalize
concept and introducefield theoretic partonsas non-collinear
and massive~in the case of quarks! but still on-mass-shel
objects in interacting field theory? A nonperturbative ligh
front Hamiltonian description of composite systems wh
utilizes many body wave functions for the constituents
lows us to precisely achieve this goal.

Now, the problem is how to introduce many body~or
multi-parton! wave functions in the description of deep i
elastic structure functions. An attractive possible avenu
0556-2821/99/59~9!/094012~15!/$15.00 59 0940
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provided by the Bjorken-Johnson-Law~BJL! ~high energy!
expansion of scattering amplitudes together with the use
light-front current algebra. This is essentially anonperturba-
tive approachwhere the expansion parameter is the inve
of the light-front energy of the probe~in the present case, th
virtual photon!. In this approach one can arrive at expre
sions for various structure functions as the Fourier transfo
~in the light-front longitudinal direction! of matrix elements
of different components of bilocal vector and axial vect
currents inlight-front field theory.

In the standard approach to deep inelastic scattering b
on Wilson’s operator product expansion~OPE! method
which is more mathematical, one considers the problem
renormalizing composite operators. In contrast, in the curr
algebra approach, products of field operators are evaluate
equal light-front time and have the same form as their fr
field theory counterparts. Hence, in this approach, mos
the complexities appear to be carried by the hadronic sta
We demonstrate that an expansion of the state allows u
exhibit this complexity manifestly in terms of the mult
parton wave functions, where the constituents are on-m
shell objects with nonvanishing transverse momenta. T
nonperturbative nature of the matrix elements relevant
various structure functions is thus directly translated into
language of multi-parton wave functions. The structure fu
tions, then, can be conveniently evaluated once the non
turbative wave functions renormalized at scaleQ are known.
At present major efforts are underway to evaluate these w
functions.

With the advent of QCD, the current algebra approa
which originally led to the prediction of scaling without in
troducing the concept of partons was altogether abando
in favor of the OPE method, primarily because it was kno
that the canonical manipulations that lead to many of
©1999 The American Physical Society12-1
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current algebra predictions are invalidated in perturbat
theory which gives rise to logarithmic corrections. The on
exceptions were sum rules protected by conservation la
Obviously, what was missing in the current algebra appro
was the realization that thematrix elementsrelevant for deep
inelastic scattering are those renormalized at the phys
scaleQ. Thus one of our major problems is whether we c
consistently carry out a renormalization procedure. In a s
sequent paper@1#, we shall demonstrate that in the case
leading order structure functions the scaling violations
perturbation theory can be successfully addressed by rep
ing the hadron target by a dressed parton target in the m
element and carrying out a well-defined perturbative exp
sion which closely follows the techniques of~light-front!
time-ordered perturbation theory@2–4#. Here, we will show
that we can address the issues of factorization and scale
lution in the case of a hadron target by separating the
and hard parts of the multi-parton wave functions. Furth
more, the nonperturbative contributions to deep inela
structure functions can be addressedwithin the same frame
work by incorporating the newly developed light-front reno
malization group approach to nonperturbative QCD@5–7#.
Therefore, a unified light-front description of the perturb
tive and nonperturbative QCD underlying the deep inela
structure functions can be realized.

The paper is organized as follows. In Sec. II, a brief ov
view of deep inelastic structure functions is presented.
Sec. III, we discuss within light-front QCD how the dee
inelastic structure functions are nonperturbatively related
the bilocal operators in light-front current algebra through
inverse power expansion of light-front energy of the pro
In Sec. IV, we determine the structure functions in terms
the matrix elements of the light-front bilocal vector and ax
vector currents separated only in the longitudinal directi
The operator structures involved in the structure functio
are explored and the complexities of structure functions
analyzed in Sec. V, where a scheme to evaluate the hard
soft contributions to deep inelastic structure functions in
light-front time-ordered Hamiltonian formalism is propose
In Sec. VI, we re-derive the sum rules that the struct
functions obey and discuss their physical implications.
nally a summary is given in Sec. VII.
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II. BRIEF OVERVIEW OF DEEP INELASTIC STRUCTURE
FUNCTIONS

We begin with a brief review of the basic ingredients
lepton-nucleon deep inelastic scattering~DIS!:

e~k!1h~P!→e~k2q!1X~P1q!. ~2.1!

The cross section for the above scattering process is give

ds

dVdE8
5

1

2M

a2

q4

E8

E
LmnWmn, ~2.2!

whereE(E8) is the energy of the incoming~outgoing! lep-
ton, Lmn is the leptonic matrix element,

Lmn5
1

2 (
s8

@ ū~k,s!gmu~k8,s8!ū~k8,s8!gnu~k,s!#

52~km8 kn1kn8km!22gmnk•k822i emnrsqrss,
~2.3!

andWmn the hadronic tensor which contains all the hadro
dynamics involved in the DIS process,

Wmn5
1

4pE d4j eiq•j^PSu@Jm~j!,Jn~0!#uPS&, ~2.4!

whereP and S are the target four-momentum and polariz
tion vectors respectively (P25M2, S252M2, S•P50), q
is the virtual-photon four momentum, andJm(x)
5(aeac̄a(x)gmca(x) the electromagnetic current wit
quark fieldca(x) carrying the flavor indexa and the charge
ea .

The above hadronic tensor can be decomposed into in
pendent Lorentz invariant functions:
Wmn5S 2gmn1
qmqn

q2 D W1~x,Q2!1S Pm2
n

q2 qmD S Pn2
n

q2qnDW2~x,Q2!2 i emnlsql@SsW3~x,Q2!1PsS•qW4~x,Q2!#

5S gmn2
qmqn

q2 D S 1

2
FL~x,Q2!2

M2

n
F2D1FPmPn2

n

q2 ~Pmqn1Pnqm!1gmn
n2

q2GF2~x,Q2!

n

2 i emnls
ql

n
@SsLg1~x,Q2!1SsTgT~x,Q2!#. ~2.5!

The dimensionless functions
2-2
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NONPERTURBATIVE DESCRIPTION OF DEEP . . . PHYSICAL REVIEW D 59 094012
FL~x,Q2!52F2W11S M22
~P•q!2

q2 DW2G , ~2.6!

and

F2~x,Q2!5nW2~x,Q2! ~2.7!

are the so-called unpolarized structure functions meas
from the unpolarized target and

g1~x,Q2!5n@W3~x,Q2!1nW4~x,Q2!# ~2.8!

and

gT~x,Q2!5g1~x,Q2!1g2~x,Q2!5nW3~x,Q2! ~2.9!

are the longitudinal and transverse polarized structure fu
tions. While x5Q2/2n is the famous Bjorken scaling var
able,Q252q2 the negative of momentum transfer squar
carried by the virtual photon andn5P•q the energy trans-
fer. The longitudinal and transverse polarization vector co
ponents are given by

SmL5Sm2SmT , SmT5Sm2Pm

S•q

n
. ~2.10!

These structure functions provide a probe to explore v
ous aspects of the intrinsic structure of hadrons. It may
worth noting that in the literature,g1 andg2 are usually used
to characterize the longitudinal and transverse polari
structure functions. However,g2 is not really a transverse
polarized structure function. It also has no clear physi
interpretation. OnlygT , which can be directly measure
when the target is polarized along the transverse direct
characterizes the full information on the transverse polar
tion structure.

The early SLAC experiment discovered that the struct
function F2 depends only on the Bjorken scaling variablex,
and is independent of momentum transferQ2. This discovery
led to the parton picture proposed first by Feynman@8# in
which the constituents in hadrons can be treated as point
free particles, i.e., partons. Of course, the picture of po
like and noninteracting partons is certainly over-simplifie
As is well known, the fundamental constituents~i.e., quarks
and gluons! inside hadrons are indeed strongly interacti
with each other and are governed by the fundamental Q
theory. Only in the limit of very largeQ2, does the
asymptotic freedom feature of QCD make the quarks
gluons behave as point-like and weakly interacting parto
The scale invariance ofF2 is violated for finite values ofQ2.
For the past 20 years, QCD investigations of deep inela
structure functions have mainly concentrated on the beha
of the scaling violation of these structure functions, which
believed to be the best way to test QCD as the fundame
theory of the strong interaction.

Among these investigations, two methods have domina
the whole research topic: the OPE method@9# and the QCD
improved~or field theoretic! parton model based on the fa
torization scheme@10#. The structure functions have bee
extensively explored either in terms of their moments in
language of the OPE method or in terms of diagramm
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calculations in the language of the QCD improved par
model. Both the methods have made great success in un
standing the scale evolution of the structure functions wit
the perturbative QCD domain. Although the deep inelas
scatterings provide a novel way to separate the physic
perturbative and nonperturbative QCD dynamics and al
the exploration of the high energy behavior of the consti
ents inside the hadrons, the structure functions themse
however, are still dominated by the nonperturbative stro
interaction dynamics. A complete understanding of hadr
crucially depends on our understanding of nonperturba
QCD. The OPE method addresses the structure function
terms of their moments, which naturally separates the sh
distance and long-distance dynamics but it also makes
nonperturbative dynamics of long-distance physics m
complicated in terms of the moments. On the other hand,
QCD improved parton model was built in the framework
perturbation theory with the assumption of collinearit
which simplifies the perturbative QCD treatment but it
also unclear how to explore nonperturbative QCD dynam
because nonperturbative QCD dynamics is mainly de
mined by the noncollinear motion of the low energy quar
and gluons.

In the next section we shall use an inverse power exp
sion of the light-front energyq2 of the virtual photon~the
extended BJL theorem on the light-front! to extract these
deep inelastic structure functions. This approach was or
nally proposed to study DIS sum rules protected by cons
vation laws in the pre-QCD era@11#. Here, we shall extend
this approach to QCD without recourse to perturbat
theory. Therefore it is essentially a direct nonperturbat
QCD description. The resulting structure functions are
rectly expressed in terms of the hadronic matrix elements
light-front bilocal vector and axial vector currents, where t
currents have a relatively simple structure although they
dynamically dependent. All the hadron dynamics~including
both the perturbative and nonperturbative dynamics! reside
in the multi-parton hadronic wave functions. This is a d
scription very different from that of the OPE method and t
QCD improved parton model.

III. EXPANSION IN INVERSE POWER OF LIGHT-FRONT
ENERGY OF THE VIRTUAL PHOTON

The inverse power expansion of the virtual photon lig
front energyq2 is applied to forward scattering amplitude
Explicitly, as is well known, the hadronic tensor is related
the forward virtual-photon hadron Compton scattering a
plitude:

Wmn5
1

2p
Im Tmn ~3.1!

with
2-3
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Tmn5 i E d4jeiq•j^PSuT„Jm~j!Jn~0!…uPS&

5S 2gmn1
qmqn

q2 D T1~x,Q2!

1S Pm2
n

q2 qmD S pn2
n

q2qnDT2~x,Q2!

2 i emnlsql@SsT3~x,Q2!1PsS•qT4~x,Q2!#.

~3.2!

Using the optical theorem, we have

Ti~x,Q2!52E
2`

`

dq81
Wi~x8,Q2!

q812q81

, i 51,2,3,4. ~3.3!

Then, as we shall see, the structure functions are conne
to the light-front bilocal currents through the 1/q2 expansion
of Tmn.

An expansion ofTmn in terms of 1/q2 was originally
proposed by Jackiw@11# based on the BJL theorem. Th
general expansion in 1/q2 is given by

Tmn52 (
n50

` S 1

q2D n11E dj2d2j'eiq•j

3^PSu@~ i ]j
2!nJm~j!,Jn~0!#j150uPS&, ~3.4!

whereq25q02qz, the light-front energy of the virtual pho
ton, and]252 ]/]j1 is a light-front time derivative. The
light-front coordinates of the space-time are defined by

j65j06j3, j'
i 5j i ~ i 51,2!. ~3.5!

The above expansion shows that the time-ordered matrix
ement can be expanded in terms of an infinite series of e
light-front time commutators.

For largeQ2 and largen limits in DIS, theoretically with-
out loss of generality we can always select a Lorentz fra
such that the light-front energyq2 of the virtual photon be-
comes very large. Then, only the leading term in the ab
expansion is dominant, i.e.,

Tmn 5
large q2

2
1

q2E dj2d2j'

3eiq•j^PSu@Jm~j!,Jn~0!#j150uPS&. ~3.6!

As a result, the leading contribution to the deep inelas
structure functions is determined by the light-front curre
algebra. The light-front current commutator can be compu
directly and exactly from QCD~where QCD should be quan
tized on the light-front time surfacej15j01j350 with the
light-front gaugeAa

150 @2,3#!. Hence, all the subsequen
derivations are exact within the light-front QCD and witho
further assumptions or approximations of the collinear a
massless partons that were used in the previous deriva
@9,10#.
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Explicitly, the basic commutation relation on light-front

$c1~x!,c1
† ~y!%x15y15L1d~x22y2!d2~x'2y'!,

~3.7!

which is exact in the full QCD theory@3#, wherec1(x) is
called the dynamical component of fermion field on t
light-front:

c~x!5c1~x!1c2~x!, c6~x!5L6c~x!,

L65 1
2 g0g6. ~3.8!

The minus componentc2(x) is determined fromc1(x) as a
result of the Dirac equation:

c2~x!5
1

i ]1 ~ ia'•D'1bmq!c1~x!. ~3.9!

Here we have already used the light-front gaugeAa
150, and

D'5]'2 igA' is the transverse component of the covaria
derivative,a'

i 5g0g i ,b5g0.
Because of the above special property of quark~or more

generally fermion! field on the light-front, the light-front cur-
rent explicitly depends on interaction of the theory, which
very different from the usual equal-time formulation.
other words, the fundamental interaction is manifested
plicitly in the light-front current commutators.

From Eqs.~3.7! and ~3.9!, we have

$c1~x!,c2* ~y!%x15y1

5
L1

4i
e~x22y2!@ ia'•D'

* 2bm#d2~x'2y'!.

~3.10!

Thus, after a tedious but straightforward calculation, one
find that

@J1~x!,J2~y!#x15y1

5(
a

ea
2 H ]x

1F2
1

2
e~x22y2!d2~x'2y'!Va

2~xuy!G
1]x

i F1

2
e~x22y2!d2~x'2y'!

3@Va
i ~xuy!1 i e i j Aa

j ~xuy!#G2H.c.J , ~3.11!

whereVa
m andAa

m are defined as the bilocal vector and ax
vector currents:

Va
m~xuy!5c̄a~x!gmca~y!, ~3.12!

Aa
m~xuy!5c̄a~x!gmg5ca~y!. ~3.13!

As we can see, the light-front current commutators
very different from the equal-time current commutato
Here the commutator is indeed given by terms involvi
2-4
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spatial derivatives. These space-derivatives come from
nonlocality of c2(x) on the light-front. In the equal-time
formulation, there is no such nonlocality to the fermion fie
Therefore one cannot derive such a commutator from
naive canonical equal-time commutators. As we will so
see in the next section it is these spatial derivatives that
to the simple expressions of the structure functions in te
of bilocal current matrix elements. This is an essential f
ture in the present approach that make the light-front cur
algebra specially useful in the exploration of the deep ine
tic structure functions.

The commutators for other current components can a
be found straightforwardly. For example,

@J1~x!,Ji~y!#x15y1

5(
a

ea
2 H ]x

1F2
1

4
e~x22y2!d2~x'2y'!

3@Va
i ~xuy!2 i e i j Aa

j ~xuy!#G
1]x

j F2
1

4
e~x22y2!d2~x'2y'!@gi j Va

1~xuy!

1 i e i j Aa
1~xuy!#G2H.c.J . ~3.14!

Thus, one can use Eq.~3.11! to extract the structure func
tions and then use Eq.~3.14! to make a consistency check

Now, the Compton scattering amplitude in the largeq2

limit can be immediately expressed in terms of the hadro
matrix elements of the bilocal vector and axial vector c
rents. For example, the (12) componentT12 is given by

T12 5
large q2

2
1

q1E dj2eiq1j2/2e~j!

3K PSU(
a

ea
2 H i

2
q1Va

2~j2u0!

2
i

2
q'

i @Va
i ~j2u0!1 i e i j Aa

j ~j2u0!#J 2H.c.UPSL .

~3.15!

The above result shows that the bilocal vector and axial v
tor currents entering inTmn are separated only in the long
tudinal directionj25j02j3. This property naturally leads
to the well-known scaling behavior of the structure functio
when we ignore the QCD dynamics at very highQ2. In the
next section, we will extract explicitly the structure functio
in terms of these bilocal current matrix elements.

IV. GENERALIZED EXPRESSIONS FOR DEEP
INELASTIC STRUCTURE FUNCTIONS

Now, let us pick up the same (12) component of the
hadronic tensor, Eq.~2.5!, to find the deep inelastic structur
function by comparing with Eq.~3.15! through Eq.~3.3!. In
the largeq2 limit,
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W125
1

2
FL1~P'!2

F2

n
22P'•q'

F2

q2

12i e i j qiFSjL

g1

n
1SjT

gT

n G , ~4.1!

where SjT5Sj2S1Pj /P1, SjL5Sj2SjT5S1Pj /P1, and

n5 1
2 P1q2 in the largeq2 limit. We introduce the form

factors for the bilocal current matrix elements,

^PSuVa
m~ju0!2Va

m~0uj!uPS&5PmV̄1a~P2,j•P!

1jmV̄2a~P2,j•P!, ~4.2!

^PSuAa
m~ju0!1Aa

m~0uj!uPS&5SmĀ1a~P2,j•P!

1Pmj•SĀ2a~P2,j•P!

1jmS•jĀ3a~P2,j•P!.

~4.3!

Sincej1,'50, it follows that the matrix elements of the plu
and transverse components of the bilocal current yield
same form factorV̄1a . Using the definition

e~j2!52
i

pE2`

` dq1

q1 eiq1j2/2, ~4.4!

we find that

T1252
1

pq2E2`

` dq81

q812q1E
2`

`

dj2eiq1j2/2

3(
a

ea
2 H 1

2
~P2q12P'•q'!V̄1a1

1

2
q1j2V̄2a

1
i

2
e i j qiFSjĀ1a1Pj

S1j2

2
Ā2aG J . ~4.5!

The bilocal current form factors are determined from E
~4.2! and ~4.3!:

V̄1a5
1

P1 ^PSuc̄a~j2!g1ca~0!2c̄a~0!g1ca~j2!uPS&

~4.6!

5
1

Pi ^PSuc̄a~j2!g ica~0!2c̄a~0!g ica~j2!uPS&,

~4.7!

V̄2a5
1

j2 K PSUc̄a~j2!S g22
P2

P1g1Dca~0!2H.c.UPSL
5

1

j2 K PSUc̄a~j2!S g22
P2

Pi g i Dca~0!2H.c.UPSL ,

~4.8!
2-5
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Ā1a5
1

ST
i KPSUc̄a~j2!S g i2

Pi

P1 g1Dg5ca~0!1H.c.UPSL ,

~4.9!

Ā2a5
22

P1j2ST
i

3 K PSUc̄a~j2!S g i2
Si

S1 g1Dg5ca~0!1H.c.UPSL .

~4.10!

Comparing with Eqs.~4.1! and ~4.5! through Eq.~3.3!, we
obtain, withh[ 1

2 P1j2,

F2~x,Q2!

x
5

1

4pE dhe2 ihx(
a

ea
2V̄1a ~4.11!

5
1

4pP1E dhe2 ihx(
a

ea
2

3^PSuc̄a~j2!g1ca~0!2c̄a~0!g1ca~j2!uPS&

~4.12!

5
1

4pP'
i E dhe2 ihx(

a
ea

2

3^PSuc̄a~j2!g'
i ca~0!2c̄a~0!g'

i ca~j2!uPS&,

~4.13!

where the last equality is found for the first time here.
physical interpretation will be given later:

FL~x,Q2!52
q1

pP1q2E dhe2 ihx

3(
a

ea
2F S P22

P'
2

P1D V̄1a1j2V̄2aG
5

P1

4p S 2x

Q D 2E dhe2 ihx

3(
a

ea
2 K PSUc̄a~j2!S g22

P'
2

~P1!2
g1D

3ca~0!2H.c.UPSL , ~4.14!

where the first equality may be reduced to the same exp
sion obtained by the collinear expansion in the Feynm
diagrammatic method up to the order of twist-4@12#. But
here it is directly obtained in the leading order in the 1/q2

expansion without involving the concept of twist expansio
Moreover, the polarized structure functions can also
found directly as
09401
s-
n

.
e

g1~x,Q2!5
1

8pE dhe2 ihx

3(
a

ea
2 S Ā1a1

1

2
P1j2Ā2aD ~4.15!

5
1

8pS1E dhe2 ihx

3(
a

ea
2^PSuc̄a~j2!g1g5ca~0!

1c̄~0!g1g5c~j2!uPS&, ~4.16!

gT~x,Q2!5
1

8pE dhe2 ihx(
a

ea
2Ā1a

~4.17!

5
1

8pST
i E dhe2 ihx

3(
a

ea
2 K PSUc̄a~j2!S g i2

Pi

P1g1D
3g5ca~0!1 H.c.UPSL . ~4.18!

The above results are derived without recourse to per
bation theory, and also without the use of concept of coll
ear and massless partons. They are also the most ge
expressions for the leading contribution~in the 1/q2 expan-
sion, not the leading contribution in terms of twists! to the
deep inelastic structure functions in which the target is in
arbitrary Lorentz frame. Some of these expressions have
ever been obtained in previous works. Thex-dependence of
these structure functions is obvious in the above expressi
The scale (Q2)-dependence is hidden in the hadronic bou
statesuPS& which can be described by multi-parton wav
functions. In the next section, we shall analyze the comple
ties of structure functions in terms of bound states in o
description.

V. COMPLEXITIES OF STRUCTURE FUNCTIONS

A. Multi-parton wave functions

As we have seen, the derivation of structure functions
the previous section is apparently quite different from t
QCD improved~or field theoretical! parton model. The latter
which is based on the collinear concept is purely an appl
tion of perturbation theory where further exploration of no
perturbative dynamics is lacking. Our description is also o
viously very different from the OPE method. On the oth
hand, structure functions themselves are dominated by
nonperturbative quark-gluon dynamics. When we formul
them on the light-front, the structure functions are prop
tional to the simple hadronic matrix elements of the biloc
currents that are separated only in the longitudinal directi
In this formulation, no time evolution or propagation is e
plicitly involved in the matrix elements. Hence, unlike th
2-6
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OPE or the perturbative field theory descriptions of par
model, all the perturbative and nonperturbative dynam
here are completely carried by the structure of target’s bo
state. This is closer to the real physical picture probed
experiments.

The bound state of a hadron on the light-front can
simply expanded in terms of the Fock states,

uPS&5(
n,l i

E 8
dxid

2k' i un,xi P
1,xi P'1k' i ,l i&

3Fn
S~xi ,k' i ,l i !, ~5.1!

wheren representsn constituents contained in the Fock sta
un,xi P

1,xi P'1k' i ,l i&, l i is the helicity of thei th con-
stituent, and*8 denotes the integral over the space,

(
i

xi51 and (
i

k' i50 ~5.2!
re
at
he

m
cu
ll
le

on
-
t i
s
s
-

09401
n
s
d
n

e

while xi is the fraction of the total longitudinal momentum
carried by thei th constituent, andk' i is its relative trans-
verse momentum with respect to the center of mass fram

xi5
pi

1

P1 , k i'5pi'2xi P' ~5.3!

with pi
1 ,pi' the longitudinal and transverse momenta of t

i th constituent.Fn
S(xi ,k' i ,l i) is the amplitude of the Fock

state un,xi P
1,xi P'1k' i ,l i&, i.e., the multi-parton wave

function, which is boost invariant and satisfies the norm
ization condition

(
n,l i

E 8
dxid

2k' i uFn
S~xi ,k' i ,l i !u251, ~5.4!

and is, in principle, determined from the light-front boun
state equation
S M22(
i 51

n k i'
2 1mi

2

xi
D F Fqqq

S

Fqqqg
S

A
G5F ^qqquHintuqqq& ^qqquHintuqqqg& •••

^qqqguHintuqqq& •••

A �

GF Fqqq
S

Fqqqg
S

A
G . ~5.5!
n
the
e

the
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k-
is

a
on.
-
ust
lus

sent

.
in

ent
e

Here Hint is the interaction part of the light-front QCD
Hamiltonian @3#. Thus, the complexities of the structu
functions carried by hadronic bound states are now transl
into the language of multi-parton wave functions on t
light-front, rather than composite operators in the OPE.

Explicitly, let us look at the structure functionF2(x,Q2).
It is found for the first time by us@13# that F2 can be ex-
pressed in terms of a matrix element of either the plus co
ponent or the transverse component of the bilocal vector
rent. On the light-front, these two components have tota
different operator structures but amazingly their matrix e
ments determine the same structure function.

The plus componentc̄g1c52c1
† c1 has no explicit dy-

namical dependence, and has the lowest mass dimensi~a
twist-2 operator in OPE language!. The corresponding ma
trix element has a straightforward parton interpretation. I
clear from the above operator that on the light-front it is ju
a quark~parton! number operator which immediately lead
to the fact thatF2 is proportional to parton density distribu
tions qa(x,Q2):

F2~x,Q2!

x
5(

a
ea

2qa~x,Q2!, ~5.6!

qa~x,Q2!5E d2k'K PSU(
l

ba
†~k,l!ba~k,l!UPSL

5E d2k'(
n,l i

E 9
dxid

2k' i uFn,a
S ~x,xi ,k' i ,l i !u2,

~5.7!
ed

-
r-
y
-

s
t

where theQ2-dependence is carried by the multi-parto
wave functions with the active parton renormalized at
scaleQ2, and*9 denotes the integral in the right-hand-sid
over the space of Eq.~5.2! except for the active parton
(x,k')5(k1/P1,p'2xP'). With this consideration it is
straightforward to derive logarithmic corrections that are
same as those obtained in the QCD improved parton mo
or in the OPE, as will be given in@1#. In this case, all three
descriptions are almost the same. The only difference he
that in our framework, the perturbative QCD dynamics
transferred from the composite operator into the sca
dependent multi-parton wave functions on the light-fro
which enables us to describe the nonperturbative dynam
in the same framework.

But the transverse componentc̄g ic5c̄2g'
i c1

1c̄1g'
i c2 depends explicitly on the fundamental quar

gluon interaction in QCD. According to the twist analys
@14#, the transverse component of the bilocal current is
twist 3 operator which has no simple parton interpretati
However, we have explicitly shown@13# that the correspond
ing matrix element of the above transverse component m
have the same parton interpretation as that from the p
component. This is indeed obvious because they repre
the same form factor of the bilocal current@see Eqs.~4.6!
and ~4.7!# and they describe the same structure functionF2
@see Eqs.~4.12! and~4.13!#. The explicit calculations in Ref
@13# further demonstrate that the real dynamics contained
the structure functions is determined by the matrix elem
with the rich information carried by the multi-parton wav
2-7



ns
t

e
f
re
d-
a

e
st
an
d

th

-
le
ur
so
e
u
n

ag
ive

ns
all

x-
ront
-

At
ibit
the
ely,
the
il-
ter

bes
ines
be
o-
t

ne
for

n
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functions. It is the complicated multi-parton wave functio
that cause the same behavior for the matrix elements of
two apparently different operators~the plus and transvers
components of bilocal current!. Hence, the complexities o
deep inelastic structure functions in light-front QCD a
mainly carried by the multi-parton wave functions of ha
rons which completely determine the Lorentz invariant m
trix element@i.e. the form factors in Eqs.~4.2!,~4.3!# of the
bilocal currents. In the following subsection, we shall furth
explore the soft and hard contributions to deep inela
structure functions in terms of light-front Fock space exp
sion and light-front time-ordered perturbation theory of ha
ronic states.

B. Factorization scheme in light-front QCD

Up to this point, all the derivations and discussions of
deep inelastic structure functions in the 1/q2 expansion have
been rigorously carried out within light-front QCD and with
out recourse to perturbation theory. The remaining prob
is how to evaluate various matrix elements of bilocal c
rents. These matrix elements contain both hard and
quark and gluon dynamics. As we have analyzed in this s
tion, all the hard and soft dynamics probed through the str
ture functions are completely carried by the target’s bou
state in the present formulation. This is the main advant
of this formalism that allows us to explore the perturbat
D

r

in
tu

,
a
n
th
e
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and nonperturbative contributions to the structure functio
in the same framework. In the rest of this section, we sh
propose a scheme for such an exploration.

In Sec. V A, the hadronic bound state is formally e
pressed in terms of Fock space expansion on the light-f
by Eq. ~5.1!, and it is determined in principle by the light
front bound state equation~5.5!. However, the difficulty in
determining wave functions by solving Eq.~5.5! is that the
QCD Hamiltonian contains more than one energy scale.
different energy scales, the QCD Hamiltonian can exh
different aspects of the dynamics. Let us roughly divide
quark and gluon dynamics into two energy domains, nam
high energy and low energy. In the high energy domain,
dynamics is controlled by the renormalized QCD Ham
tonian with all the constituents carrying momenta grea
than a scalem fact ('1 GeV) which we call the factorization
energy scale. This high energy QCD Hamiltonian descri
all the hard dynamics of quarks and gluons and determ
the hard contributions to the structure functions which can
calculated in the perturbation theory. In the low energy d
main, the effective QCD Hamiltonian is still unknown bu
such a low energy QCD Hamiltonian should fairly determi
the low energy structure of the hadrons and is responsible
the soft contributions to the structure functions.

Schematically, we may write the QCD Hamiltonian o
the light-front for DIS as
HQCD
LF 5

¦

HQCD
H [E

ki'
2 >m fact

2
dki

1d2ki'HQCD
C ~ki ! for hard contributions,

HQCD
M [E dki

1d2ki'HQCD
C ~ki ! for mixed hard and soft modes,

HQCD
L [E

ki'
2

,m fact
2

dki
1d2ki'HQCD

L ~ki ! for soft contributions,

~5.8!
CD
ar-
where HQCD
H represents the canonical light-front QC

Hamiltonian~with densityHQCD
C given in @3#! in which the

transverse momenta of all the quarks and gluons are
stricted to bem fact

2 ,k'
2 ,Q2 ~i.e., hard partons!, andHQCD

L

denotes a low energy effective light-front Hamiltonian
which all the constituents have the transverse momen
k'

2 ,m fact
2 ~soft partons!. This low energy Hamiltonian is, in

principle, obtained by integrating out all modes withk'
2

.m fact
2 from the canonical light-front QCD Hamiltonian

which leads toHQCD
L . In addition, we also introduce

Hamiltonian HQCD
M which depends only on the interactio

part and which mixes the hard and soft partons. Writing
light-front QCD Hamiltonian in such three parts will mak
e-

m

e

the discussion of the perturbative and nonperturbative Q
contributions to DIS structure functions much more transp
ent, as we will see next.

Now, the target bound state can be expressed by

uPS&5UhuPS,m fact
2 &, ~5.9!

with

Uh5T1 expH 2
i

2E2`

0

dx1~HQCD
H 1HQCD

M !J , ~5.10!
2-8
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NONPERTURBATIVE DESCRIPTION OF DEEP . . . PHYSICAL REVIEW D 59 094012
HQCD
L uPS,m fact

2 &5
P'

2 1M2

P1 uPS,m fact
2 &. ~5.11!

In Eq. ~5.10!, HH andHM contain the interaction parts onl
and the mixed HamiltonianHQCD

M is active only in the ex-
treme right of the time-ordered expansion. In other wor
the hard and the soft dynamics in the bound states are d
mined separately byHQCD

H andHQCD
L but these two contri-

butions are connected byHQCD
M through the time-ordered

expansion of Eq.~5.10! on the stateuPS,m fact
2 & in Eq. ~5.9!,

where the soft dynamics, represented byuPS,m fact
2 &, must be

solved nonperturbatively from Eq.~5.11!. The key point to
solve Eq.~5.11! is to find the low energy effective Hamil
tonian HQCD

L . A practical procedure to findHQCD
L on the

light-front may be the use of similarity renormalizatio
group approach plus a weak-coupling treatment develo
recently@5–7#. Indeed, a major effort on the study of ligh
front QCD is underway at present to solve this problem@15#.

To see how the perturbative and nonperturbative Q
contributions can be separately evaluated in the present
malism and how these two contributions are connected
HQCD

M , we substitute Eqs.~5.9!–~5.11! into the expressions
of structure functions. Denote the structure functions sim
by Fi[:$FL ,F2 ,g1 ,gT%,

Fi~x,Q2!;E dhe2 ihx(
a

3ea
2^PSuc̄a~j2!G ica~0!6H.c.uPS&,

~5.12!

where G i involves the Diracg-matrices@see Eqs.~4.12!–
~4.18!#. It follows that

Fi~x,Q2!5E dhe2 ihx(
a

ea
2 (

n1 ,n2

^PS,m fact
2 un1&

3^n2uPS,m fact
2 &

3^n1uUh
21@c̄a~j2!G ica~0!6H.c.#Uhun2&,

~5.13!

whereun1&,un2& are a complete set of quark and gluon Fo
states with momentumki

2<m fact
2 . This is indeed the genera

ized factorization theorem in the light-front Hamiltonian fo
mulation. The hard contribution is described by the mat
element

^n1uUh
21@c̄a~j2!G ica~0!6H.c.#Uhun2&, ~5.14!

which can be evaluated in the light-front time-ordered p
turbation theory@3#. The physical picture corresponds to th
multi-parton forward scattering amplitude with all the inte
nal partons carrying a momentum with the transverse c
ponentk',m fact

2 <k'
2 <Q2, and the longitudinal momentum

fractiony,x<y<1. The soft contribution is characterized b
the overlap of the multi-parton wave functions in differe
Fock states:
09401
,
er-

ed

D
r-
y

y

x

-

-

^PS,m fact
2 un1&^n2uPS,m fact

2 &, ~5.15!

which contains all the quantum correlations and interfere
effects of multi-parton~quarks and gluons! dynamics in the
low energy domain withk'

2 ,m fact
2 . Since all the internal

partons in the time-ordered expansion ofUh in Eq. ~5.14!
carry momentam fact

2 <k'
2 <Q2, the mixed HamiltonianHQCD

M

has a contribution only in the extreme left and extreme ri
of the time-ordered products. It is this effect that conne
the hard contribution of Eq.~5.14! to the soft contribution,
Eq. ~5.15!. We will present more detailed discussion in@1#.

The simple parton picture in deep inelastic processes
responds to the case ofun1&5un2& in Eq. ~5.13! with only
one parton inun1& actively participating in the high energ
process, all others being spectators. This immediately le
to

Fi~x,Q2!;(
a

ea
2E

x

1

dyPpp8,iS y,x,
Q2

m fact
2 D qa i~y,m fact

2 !,

~5.16!

where the hard scattering coefficientPpp8,i is determined by

Ppp8,iS y,x,
Q2

m fact
2 D .E dhe2 ihx

3^y,k' ,suUh
21@c̄a~j2!G ica~0!

7H.c.#Uhuy,k' ,s&. ~5.17!

Here we have denoteduy,k' ,s&(y5k1/P1) as the active
parton state. Equation~5.17! means that we have suppress
all references to the spectators in the statesun1&. The hard
scattering coefficient is directly related to the so-called
splitting function whose physical interpretation is the pro
ability to find a daughter partonp8 in the active parent parton
p. The quantityqa i(y,m fact

2 ), usually called the parton distri
bution function, is given by

qa i~y,m fact
2 !5(

n
u^PS,m fact

2 un&u2, ~5.18!

wheren runs over all the Fock states containing the act
parton with momentum fractiony. Theoretically, the parton
distributions are determined by solving Eq.~5.11!. Physi-
cally, they contain only the quantum correlations of mul
parton dynamics but no quantum interference effects. An
ample of such distribution functions is given by Eqs.~5.6!
and ~5.7! for F2(x)/x which manifestly exhibits the simple
parton picture. For detailed calculations also see Ref.@1#.

The above discussions indeed constitute a presentatio
factorization scheme in the light-front Hamiltonian formul
tion. The leading hard contributions to the structure fun
tions are given by the hard scattering coefficie
Ppp8,i(y,x,Q2/m fact

2 ) and a complete calculation ofPpp8,i

based on the light-front time-ordered perturbative expans
of the multi-parton wave functions will be presented in
subsequent paper@1#. The evaluation of the soft contributio
2-9
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to the structure functions, given byqa i(x,m fact
2 ), remains for

future investigations of nonperturbative light-front QCD a
proaches to the hadronic bound states. Other higher o
contributions can also be systematically evaluated from E
~5.14! and ~5.15! @1#. Thus, a unified treatment of both pe
turbative and nonperturbative aspects of deep inelastic s
ture functions in the same framework may emerge wh
permits one to overcome the obstacles in dealing with
nonperturbative QCD dynamics in OPE and field theoret
parton model approaches.

VI. PHYSICAL INTERPRETATION OF THE STRUCTURE
FUNCTIONS FROM SUM RULES

In this last section, we shall explore the physical mean
of the deep inelastic structure functions in our framework
light-front QCD. The physical meaning of the structure fun
tions can be easily understood from the sum rules they o
Some of them have been known for long time but others
new. Sum rules generally arise from the existence of con
vation laws. First we consider the case of sum rules in
polarized deep inelastic scattering for which a detailed c
sideration of the energy-momentum density in QCD
necessary.

A. Energy-momentum tensor in QCD

The symmetric, gauge-invariant energy-momentum ten
in QCD is given by

umn5 1
2 c̄ i @gmDn1gnDm#c2FmlaF la

n

1 1
4 gmn~Flsa!22gmnc̄~ iglDl2m!c. ~6.1!

The last term vanishes using the equation of motion.For-
mally, we split the energy momentum tensor into a ‘‘ferm
onic’’ part uq

mn and a ‘‘gauge bosonic’’ partug
mn :

uq
mn5 1

2 c̄ i @gmDn1gnDm#c ~6.2!

and

ug
mn52FmlaF la

n 1 1
4 gmn~Flsa!2, ~6.3!

with F la
n 5]nAla2]lAa

n1g fabcAb
nAlc . To be consistent

with the study of deep inelastic structure function which
formulated in A150 gauge, we shall work in the sam
gauge.

We have, for the fermionic part of the longitudinal m
mentum density,

uq
115 i c̄g1]1c. ~6.4!
09401
er
s.

c-
h
e
l

g
f
-
y.

re
r-
-
-

or

ug
1152F1lF l

15]1Ai]1Ai . ~6.5!

Thus

u115 i c̄g1]1c1]1Ai]1Ai , ~6.6!

free of interactions at the operator level itself. The longi
dinal momentum operator

P15
1

2E dx2d2x'u11. ~6.7!

Next consider the fermionic transverse momentum d
sity

uq
1 i5 1

2 c̄ i @g1Di1g iD1#c5uq21
1 i 1uq22

1 i , ~6.8!

with

uq21
1 i 5 1

2 c̄ ig1Dic and uq22
1 i 5 1

2 c̄ ig i]1c. ~6.9!

For the Hamiltonian density, the fermionic part is given b

uq
125uq

12~1!1uq
12~2! , ~6.10!

with

uq
12~1!5 ic1†]2c11gc1†A2c1 ~6.11!

and

uq
12~2!5 ic2†]1c2. ~6.12!

Using the Dirac equation for the fermion, we find th
uq

12(1)5uq
12(2) . Thus we have

uq
125 i c̄g2]1c52ic2†]1c2 ~6.13!

52c1†@a'•~ i ]'1gA'!1g0m#

3
1

i ]1@a'•~ i ]'1gA'!1g0m#c1.

~6.14!

The gauge boson part of the Hamiltonian density is m
complicated@3#:
2-10
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ug
1252F1laF la

2 1
1

4
g12~Flsa!25

1

4
~]1A2a!21

1

2
Fi jaFi j

a

5~] iAa
j !212g fabcAa

i Ab
j ] iAc

j 1
g2

2
f abcf adeAb

i Ac
j Ad

i Ae
j 12g] iAa

i S 1

]1D @ f abcAb
j ]1Ac

j 12~c1!†Tac1#

1g2S 1

]1D @ f abcAb
i ]1Ac

i 12~c1!†Tac1#S 1

]1D @ f adeAd
j ]1Ae

j 12~c1!†Tac1#, ~6.15!
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where we have used the equation of constraint for the ga
field.

Next, we discuss the physical interpretation of the de
inelastic structure functions on the basis of the sum ru
they obey.

B. Longitudinal momentum sum rule

The content of the momentum sum rule has been kno
for a long time. For completeness, we shall rederive it in
framework. The sum rule is simply that if we add up t
longitudinal momentum fractions carried by all quarks, an
quarks, and gluons~alternatively by valence quarks, se
quarks and, gluons! in the nucleon we should get 1. From th
expression ofF2 in terms of the plus component of the bilo
cal current matrix element given in Eq.~4.12! we have

E
0

1

dxF2~x!5S 1

2~P1!2D(
a

ea
2^PuuFa

11uP&. ~6.16!

Formally, we can define the ‘‘gluon structure function’’@10#

F2
G~x!5

1

4pP1E dhe2 ihx^PuF1na~j2!F n
1a~0!uP&,

~6.17!

so that

E
0

1

dxF2
G~x!5S 1

2~P1!2D ^PuuG
11uP&. ~6.18!

Only if we assumeea51 can one obtain the momentum su
rule

E
0

1

dx@F21F2
G#51. ~6.19!

Similarly, from Eq.~4.13! in terms of the transverse com
ponent of bilocal current matrix element, we have
09401
ge

p
s

n
r

-

E dxF2~x,Q2!

5
1

2P1P'
i (

a
ea

2^PSuc̄~0!g1~ i ]J i !ca~0!uPS&

5
1

P1P'
i (

a
ea

2^PSuuFa
1 i uPS&, ~6.20!

and the momentum sum rule can also be written as

1

2P1P'
i ^Puu1 i uP&5

1

2P1P'
i ^Pu@uF

1 i1uG
1 i #uP&51.

~6.21!

The sum rule given in Eq.~6.16! means thatF2 measures
the longitudinal momentum distribution of quarks inside t
hadrons, as has been known for a long time ago. From E
~6.16! and ~6.20! we observe that the hadron expectati
value of the longitudinal and transverse momentum dens
gives the same information, namely, the total longitudin
momentum fraction carried by the partons.

We note here an apparent paradox that results when
ignores the essential complexities carried by the state.
operators corresponding to the transverse momentum de
explicitly depend on the interaction sinceDi5] i2 igAi and
uq22

1 i depends onc2 which in turn depends explicitly on the
interaction. Since we know thatPi is a kinematical operator
this appears puzzling at first sight. Thus we expect the
parent dependence ofPi on the interaction to be spurious
However, this cannot be demonstrated at the level of op
tors alone. But this is not a serious problem since what re
matters are the matrix elements.

Indeed, our demonstration@13# that the matrix element o
the transverse component of the vector bilocal has the s
parton interpretation as that of the plus component and he
the apparent interaction dependence in the former is c
pletely spurious in turns directly tells us that the interacti
dependence of the operatoruq22

1 i is completely spurious. In
that case an explicit evaluation of off-diagonal matrix e
ments in the Fock space expansion of states is involv
2-11
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Similarly, an explicit demonstration shows thatuq21
1 i has no

interaction dependence at the level of matrix eleme
namely

uq21
1 i 5 1

2 i c̄ ig1] ic1g~c1!†Aic1, ~6.22!

but the matrix elements of the second term vanish. Then
the level of matrix elements,

uq
1 i5 i c̄g i]1c. ~6.23!

This demonstration clearly shows that drawing conclusi
by looking at the operator structure is quite misleading in
case of operators that are twist 3 in the conventional de
tion.

SinceF2 involves quark charges in specific combination
it does not give the direct test of the above momentum s
rule. To test the sum rule experimentally, one can comb
the data for both the electron-proton and electron-neu
deep-inelastic scatterings and assume that the sea is fl
symmetric; then,

E dx@F2
ep~x!1F2

en~x!#5
5

9

1

~P1!2 (
a

^PSuuFa
11uPS&

5
5

9

1

P1P'
i (

a
^PSuuFa

1 i uPS&.

~6.24!

This shows that95 *dx@F2
ep(x)1F2

en(x)# is the total longitu-
dinal momentum fraction carried by all the quarks in prot
and neutron. If the quarks carry all the momentum, then
expect that

E dx@F2
ep~x!1F2

en~x!#5
5

9
. ~6.25!

Experimental data show that the above integral is 0.28
other words, as is well-known, half of the momentum
hadrons are carried by gluons or the sea quarks if the se
not flavor symmetric.

C. Sum rule for g1

Now we consider the sum rule forg1 and its physical
interpretation. Integratingg1 over x, we simply have

G1~Q2!5E dxg1~x,Q2!

5
1

2S1 (
a

ea
2^PSuc̄a~0!g1g5ca~0!uPS&.

~6.26!

Note that

^PSuc̄a~0!g1g5ca~0!uPS&5Dqa
GI~Q2!S1 ~6.27!
09401
t,
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whereDqa
GI is the distribution function of chirality carried

by all the quarks in the longitudinally polarized target a
renormalized in the gauge invariant scheme. The above f
can also be directly obtained from Eq.~4.3!. Then, we have

G1~Q2!5
1

2 (
a

ea
2Dqa

GI~Q2!. ~6.28!

If one uses the chiral invariant renormalization scheme,
first moment ofg1 also exhibits the anomaly contributio
@16#. We will discuss how this property manifests in th
light-front Hamiltonian formulation in a separate publicatio

It is clear now thatg1 describes the distribution of chiral
ity carried by the quarks inside the target~proton or neutron!.
Note that the first momentG1 is usually called the proton’s
spin structure function. But one must also be aware that
the light-front, the plus component of axial current is t
same as the third component of the quark helicity opera
density on the light-front. Therefore, its expectation value
the same as the third component of the spin on the light-fr
~i.e., light-front helicity!, which is not the same as th
z-component of intrinsic spin defined in the rest frame of t
equal-time coordinates. On the light-front, as is well-know
there is a very complicated relation between the light-fro
helicity and the intrinsic spin in the rest frame. This relati
depends on the interactions in the fundamental theory.
present, one only knows the exact relation for free the
@17#. In other words,g1 does not really measure the spin
proton. Simply calling Eq.~6.28! a spin sum rule is mislead
ing.

D. Light-front helicity sum rule

For fermions, the intrinsic light-front helicity distribution
function is given by

Dq~x,Q2!5
1

8pS1E dhe2 ihx

3^PSu@c̄~j2!g1S3c~0!1H.c.#uPS&

~6.29!

whereS35 ig1g2. This is the same as the chirality distribu
tion functiong1.

We define the orbital helicity distribution for the fermio

DqL~x,Q2!5
1

4pP1E dhe2 ihx^PSu@c̄~j2!g1i

3~x1]22x2]1!c~0!1H.c.#uPS&.

~6.30!

For the gluon, the intrinsic light-front helicity distribution i
defined@18# as

Dg~x,Q2!52
i

4p~P1!2xE dhe2 ihx

3^PSuF1a~j2!F̃ a~0!
1 uPS&. ~6.31!

The dual tensor
2-12
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F̃mn5 1
2 emnrsFrs with e112252. ~6.32!

We also define the light-front orbital helicity distribution fo
the gluon as

DgL~x,Q2!52
1

4pP1E dhe2 ihx

3^PSu@x1F1a~j2!]2Aa~0!

2x2F1a~j2!]1Aa~0!#uPS&. ~6.33!

Note that all the above distribution functions are defined
the light-front gaugeA150.

The light-front helicity operator is given by

J35
1

2E dx2d2x'@x1u122x2u11# ~6.34!

whereumn is the symmetric energy momentum tensor. E
plicitly, the fermion orbital helicity operator

Jq~o!
3 5 i E dx2d2x'c1†@x1]22x2]1#c1 ~6.35!

and the fermion intrinsic helicity operator

Jq~ i !
3 5

1

2E dx2d2x'c1†S3c1. ~6.36!

The gluon orbital helicity operator

Jg~o!
3 5

1

2E dx2d2x'@x1~]1A1]2A11]1A2]2A2!

2x2~]1A1]1A11]1A2]1A2!# ~6.37!

and the gluon intrinsic helicity operator

Jg~ i !
3 5

1

2E dx2d2x'@A1]1A22A2]1A1#. ~6.38!

The helicity sum rule for the nucleon target implies

1

N ^PSu@Jq~ i !
3 1Jq~o!

3 1Jg~ i !
3 1Jg~o!

3 #uPS&56
1

2
,

~6.39!

whereN52(2p)3P1d3(0). Thus we arrive at the sum rul
obeyed by the helicity distribution functions:

E
0

1

dx@Dq~x,Q2!1DqL~x,Q2!1Dg~x,Q2!1DgL~x,Q2!#

56
1

2
~6.40!

as a result of light-front helicity conservation.

E. Sum rule for gT and the Burkhardt-Cottingham sum rule

From Eq.~4.15! it follows that
09401
n

-

E
0

1

dxg1~x,Q2!5
1

16pE2`

1`

dxE dhe2hx

3(
a

ea
2 S Ā1a1

1

2
P1j2Ā2aD .

~6.41!

Provided the bilocal form factorĀ2a does not have patho
logical behavior asj2→0, we have

E
0

1

dxg1~x,Q2!5
1

8
Ā1a~0!. ~6.42!

Also we have, from Eq.~4.17!,

E
0

1

dxgT~x,Q2!5
1

8
Ā1a~0!. ~6.43!

SincegT5g11g2, it follows from Eqs.~6.42! and~6.43! that

E
0

1

dxg2~x,Q2!50 ~6.44!

which is the BC sum rule.
Recently, in the literature, there have been discussi

about the validity of the BC sum rule in perturbative QC
@19,20#. Here we have shown the validity of the sum ru
exactly up to the leading contribution in the 1/q2 expansion
without recourse to perturbation theory.

Obviously, the BC sum rule does not provide us any
tuition about the physical picture ofg2. Indeed, as we have
pointed out the physical picture forg2 is not clear, since
experimentally one directly measuresg1 and gT when the
target is polarized in the longitudinal and transverse dir
tions, respectively. The transverse polarized structure fu
tion is gT rather thang2. Equations~6.42! and~6.43! indicate
that by averaging overx, the longitudinal and the transvers
structure functions give the same result. This can be ag
regarded as a consequence of rotational symmetry. Howe
this does not imply thatg1(x) andgT(x) are the same.

To see clearly the intrinsic physical picture ofgT(x,Q2),
let us consider the target state being transversely polarize
the x-direction without loss of generality. Then we can sim
ply expressuPS& as a combination of the helicity up an
down states:uPS'

x &5(1/A2)(uP↑&6uP↓&) for Sx56M . It
is easy to show thatgT measures the helicity flip processe
on the light-front@21#,

gT~x,Q2!5
1

8pME
2`

`

dhe2 ihx

3
1

2 (
l

K PlUc̄a~j2!S g i2
Pi

P1 g1Dg5ca~0!

1H.c.UP2l L . ~6.45!

Not that the quantityg2 is purely introduced in the Lorentz
decomposition of the hadronic tensorWmn for historical rea-
2-13
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sons and has no clear physical interpretation. Onlyg1 andgT
have a clear physical picture:g1 measures the parton helicit
distribution andgT measures the parton helicity flip effec
which is equivalent to the measurement of the effects
chiral symmetry breaking and therefore it involves mo
complicated intrinsic dynamics of quarks and gluons. A p
sible relation betweengT and dynamical chiral symmetr
breaking is explored in@21#, and more detailed theoretica
and experimental investigations remain to be carried out

F. Sum rule for twist-4 part of F L

From Eqs. ~4.12! and ~4.14! it follows that F2(2x)
5F2(x) andFL

t54(2x)52FL
t54(x). Consider the integral

E
2`

1`

dx
FL

t54~x!

x

52E
0

`

dx
FL

t54~x!

x

5
P1

pQ2E
2`

1`

xdxE dhe2 ihx

3(
a

ea
2F K PUc̄a~j2!S g22

~P'!2

~P1!2Dca~0!

2H.c.UPL G ~6.46!

where in the first equality, the symmetry property ofFL
t54

has been used. Interchanging the orders ofx andy2 integra-
tions and carrying out the integrations explicitly, we arrive
@22#

E
0

1

dx
FL

t54~x,Q2!

x

5
2

Q2 (
a

ea
2

3F K PUc̄a~0!i S g2]12
~P'!2

~P1!2 g1]1Dca~0!UPL G .
~6.47!

Identifying i c̄g2]1c5uq
12 , the fermionic part of the light-

front QCD Hamiltonian density, andi c̄g1]1c5uq
11 , the

fermionic part of the light-front QCD longitudinal momen
tum density@see Eqs.~6.4! and ~6.13! above#, we arrive at
the interesting relation

E
0

1

dx
FL

t54~x,Q2!

x

5
2

Q2 (
a

ea
2F K PUuqa

12~0!2
~P'!2

~P1!2uqa
11~0!U L G .

~6.48!
09401
f
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We have used the fact that the physical structure func
vanishes forx.1. We observe that the integral ofFL(q)

t54/x is
related to the hadron matrix element of the fermionic parts
the light-front Hamiltonian density. The above relation
makes manifest the nonperturbative nature of the twist-4
of the longitudinal structure function.

The fermionic operator matrix elements appearing in E
~6.48! changes withQ2 as a result of the mixing of quark an
gluon operators in QCD under renormalization. Next we a
lyze this problem of operator mixing and derive a new su
rule at the twist-4 level arising as a result of the conservat
of energy-momentum tensor.

We define the twist-4 longitudinal gluon structure fun
tion

FL~g!
t54~x!5

1

Q2

xP1

2p E dj2e2 ihx

3F @^Pu~2 !F1la~j2!Fla
2 ~0!

1 1
4 g12Flsa~j2!Flsa~0!uP&1~j2↔0!#

2
~P'!2

~P1!2 @^Pu~2 !F1la~j2!Fla
1 ~0!uP&

1~j2↔0!#G . ~6.49!

Then if we assumeea51, we have

E
0

1dx

x
@FL

t541FL~g!
t54#

5
2

Q2F ^Puu12~0!uP&2
~P'!2

~P1!2 ^Puu11~0!uP&G .
~6.50!

But

^Puu12~0!uP&52P1P2

52@M21~P'!2# and

^Puu11~0!uP&52~P1!2, ~6.51!

whereM is the invariant mass of the hadron. Thus we arr
at a new sum rule for the twist-4 part of the longitudin
structure function@22#:

E
0

1dx

x
~FL

t541FL~g!
t54!54

M2

Q2 . ~6.52!

VII. CONCLUSION

In this paper, beginning with an inverse power expans
of the light-front energy of the probe in the framework
light-front QCD, we have arrived at the most general expr
sion for the leading contributions to deep inelastic struct
functions as the Fourier transform of the matrix element
different components of bilocal vector and axial vector c
rents. Although some of the expressions are already kno
others are either completely new, such as the expression
2-14
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F2 in terms of the transverse component of bilocal curr
matrix element and the expression forFL , or generalizations
of earlier results in some specific Lorentz frame to an a
trary Lorentz frame, e.g. the expressions forgT ~or g2).

We have also derived new sum rules forgT and FL ,
which provide the physical picture of these structure fu
tions. An important feature of the present formulation
deep inelastic processes is the fact that we have unified
treatment of soft and hard contributions to the structure fu
tions in terms of multi-parton wave functions. The hard co
tributions can be easily calculated from light-front tim
ordered perturbative expansion in high energy QCD@1,3,4#,
while the soft contributions can be evaluated by the mu
parton wave functions below the factorization sca
a-

,

J.

tt

-

al

09401
t
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-
f
he
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-

-

('1 GeV), by solving the light-front bound state equatio
based on the recently developed nonperturbative renorm
ization group approach@5–7# or other approaches on light
front QCD @15#. Further investigations along this directio
are in progress and will be published in forthcoming pape
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