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Adiabatic string shape for nonuniform rotation
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It is well known that a straight Nambu-Goto string is an exact solution of the equations of motion when its
end moves in a circular orhit. In this paper we investigate the shape of a confining relativistic string for a
general motion of its end. We determine analytically the shape of the curved string to leading order in deviation
from straightness, and show that it reduces to an expected non-relativistic result. We also demonstrate numeri-
cally that in realistic meson models this deviation is always small. We further find that the angular momentum
and energy are the same as for the straight string, but that the curved string has a small radial momentum not
present in a straight string. Our results justify the common assumption of straight strings usually made in
hadron modeld.S0556-282(199)04309-X]

PACS numbds): 12.38.Aw, 11.25.Pm, 12.39.Ki

I. INTRODUCTION change its dynamics. This result holds even for relativistic
string motion.
For some time flux tube mode[d,2] and Wilson loop In Sec. Il we define our notation for the Nambu-Goto

expansion calculatior{8] have been used to understand had-action and obtain the string wave equation, angular momen-
ron states. The usual assumption is that the color field can g&m and energy relations. We also establish exact straight
taken to lie on straight lines connecting the quarks. Thisstring solutions with arbitrary radial motion but constant an-
“straight line” or “rigid” flux configuration is in the spirit  gular velocity. An intuitive picture of a non-relativistic string

of an adiabatic or Born-Oppenheimer approximation that ids deyeloped in Sec. lll. The relativistic shape equat_ion an'd
assumed to hold at least for slowly moving quarks. solutions for small angular acc_eleratl_on are establlshed_ in

Nesterenkd4] points out that this adiabatic approxima- Sec. IV. We demonstrqte nu_mencally in Sec. V that the size
tion cannot be valid if the quark has angular acceleration®f the string deformations is small and therefore that the
The argument is based on a classic theorem of ruled surfacdigrturbative approach is sound. The angular momentum and
The Nambu-Goto string action requires the string to sweeF"nergy for the curved string are considered in Sec. VI and
out a surface of minimal area. Catalan’s theorf@hstates OUr conclusions are given in Sec. VL.
that if the string is straight there is only one minimal surface
swept out; a helicoid. This surface describes a meson state Il. THE NAMBU-GOTO-POLYAKOV STRING
consisting of uniformly rotating quarks. As we will observe,
a straight string with the end moving radially also sweeps out
a minimal surface as long as the angular velocity is constanf’
This solution does not correspond to the motion of an actual’
meson since the quark plus string angular momentum is not a .
conserved. However, one may take the point of view that the S=-— —f de doyV—h habX‘gX”an, (2.7
string shape can be studied with arbitrary end motion, such 2 o1 Y
as caused by an arbitrary external force acting on the ends. . . . . . .
The motion of the string with quarks at the ends is then éNhgrehab is a two-dimensional metric auxiliary f|elq whose
special case. In this paper we use the rigidly rotating solutiofndices run overr and o, andh=det(hay). X*(7,0) is the
as our starting point and consider angular acceleration of thetfing position and;=d,X*. The action is invariant under
end points as a perturbation. reparametrization of the coordinates— 7(7,0) and o

A rigidly rotating string with its end point quarks moving H}(T,g), and under Weyl scaling of the metric
in perfectly circular orbits is not a realistic model for mesons
because guantum mechanics requires there to be some radial hap(70)—e? " Dh, (7,0). (2.2
motion, and by angular momentum conservation, some an-
gular acceleration as well. The string must be curved if it isBecause the metrib,, has no dynamics, we may solve its
to sweep out a minimal area while its end points undergdield equations and substitute the result back into the action
angular acceleration. We will discuss here the shape of theithout changing the equations of motion for the other fields.
curved string and conclude that small curvatures do nofThe equations of motion fdn,,,,

The string action is proportional to the string tensi@n
nd to the area swept out by the string. It is conventionally
ritten in Polyakov{1] form as
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The metrich,,, from Eq.(2.4), is

1
XX ub=> haph®@X~X (2.3

m,ds
hap=—X%XG+ XLXE+X4X5
and invariance under Weyl scalirig.2) allow us to seth,

_ _yw0 0 *
equal to the induced metric ==X X b T2 REXLX b)), 29

(2.4 where we adopt the notation=X".

For simplicity, we consider here the fixed endaat=0
from which we see that Eq2.1) reduces to, and is therefore and the moving end afr,=1. Variation of the action with
classically equivalent to, the standard square-root Nambuespect to the position of the string yields the equations of
Goto action. motion

We will fix the coordinates and o by choosingr to be abyiy _
equal to coordinate timg and o to run linearly along the (\/__hh X!p),a=0- (210
length of the string and have a fixed interval,(o») regard-
less of the physical length of the string. This simplifies the
description of the end points of the string, but unfortunatelyg
precludes the use of orthonormal coordinates. A more de- 1
tailed explanation of the Nambu-Goto-Polyakov string, its P#:J’ da’HM(T,O'):—af doy-hh™X,, (211
geometrical aspects, and its relation to QCD strings can be 0
found in Ref.[6].

1
The boundary conditions we take ¥t(,0) are that one J3= f do X121 = _2af doV=—h h™ Im(X* X ,).
end is fixed and the other is arbitrarily forced: 0 '(2 )
A

Equations (2.10 have an exact solution in which a
wherex(t) is a prescribed function of time. This simplifies straight string rotates uniformliconstant angular velocity
our presentation because we are only examining the piece bt has an arbitrarily changing length. This is the solution
string from the center of mass to one of the quarks. It is ahat we will perturb to find the string shape when its end
trivial generalization to include quarks at both ends. To in-undergoes angular acceleration. Our ansatz is
clude the dynamics of é&pinles$ quark on the end of the 0
string, we would use its equation of motion, X(mo)=t=r,

hab: Xf;XM'b ,

OnceX*(7,0) is known, the string four-momentum and an-
ular momentum are

XM(Tio-l):(t!O)v X#(T,Uz):(t,x(t)), (25)

pt=—a\—h h7ax*, (2.6) oR(D)

X(7,0)= elet, (2.13

which is essentially Newton’s second law with the tension in

the string providing the force. The equation of moti@®6)  From Eq.(2.9), we find the metric tensor

arises from the variation of the boundary of the string when

quarks are included from the beginning. -v7?2 4RR
Our purpose here is not to solve for the actual motion of hap=

the string—quark system, which is a difficult problem, but

rather to find the shape of a string given a prescribed motion

oRR R?

of its end. Knowing the shape of the string, and using Eq. V=h=Rly,, (2.14
(2.6), we are in principle able to find the motion of the .
string—quark system. In practice, we use the expressions for ab_ -R oR
the total energy and angular momentum and quark momen- V=hn= Y1 oR Ry2/’
tum in terms of the quark velocity to find the spectrum for
the quantized string—quark system numerically. We demonyhere we define
strate in Appendix A that Eq2.6) is equivalent to the con-
servation of energy, angular momentum and the quark mass- v, =oR,
shell relation.
Planar motion is best described in terms of complex co- y 2=1-o0%?, (2.19
ordinates instead of vector notation. In complex coordinates,
the string positiorX* can be written as y 2=1- az(vi +R?).
X¥(7,0)=(7,X"(1,0),X"(7,0),0), (2.7 Substituting the above into the string equatid@sl0, we
with find that they are exactly satisfied. This result is the realiza-

tion of Catalan’s theorem mentioned earlier, where the

1 straight line to the quark sweeps out a helicoid of fixed pitch

X* =" (X1+iX?). (2.9  butarbitrarily varying radius. Again we emphasize that this
NA is a solution of the string equationi®.10 only. In a realistic
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meson, for which Eq(2.6) also holds for the quarks on the
ends, we must perturb ER.13 to find a solution that takes
into account the necessary angular acceleration of the ends

For future reference, we give here expressionslfoand 05 dP, = dP, (- g—cf,)
P, of the straight string. From Ed2.12 we find that the @
. . R
angular momentum is given as « 02 f7 o4 o o .
& % d?y 6= xR
T _ P e R o | P ®
Jstraight™ 22 do vy, [—RIm(iwo“R*+ oR) X
0 ha vt
03 dP, = (adx)y,v o (adx)® x

+oRIM(oR?)] : v
1 (b) @

2
_ 3 1 o%do FIG. 1. The solution to the non-relativistic string shaga).
0v1l—o v° Force balance on a small elemafit. (b) Transverse and radial
momentum of an element.
aR?

arcsin(v )

2
- 1-v7 | (2.16 IIl. NON-RELATIVISTIC STRING SHAPE

- 2v,

. _ In the above we have demonstrated that a uniformly ro-
The corresponding energy and spatial momentum from Eqgting string can remain straight even if the length changes.

(2.1D are When the end has angular acceleration the string must curve.
L arcsin To gain intuition we consider a quasi-Newtonian string of
resin | “ " . . 1
Estraigh™ — aJ do (—Ry,)=aR . (217 mass density a which rotates with '|nstantaneous angular
0 Uy velocity w about one end. In the rotating frame an element at

distancex=oR is assumed to be in equilibrium under two
i forces, the tension force

Pstraight: ﬁ P, straights (2.18 d2y
Fensior™ aWdXi (3.1
where
and the angular acceleration fictitious force
__, [t odo )
P sraight=aR"e | N Fiictitious= — (@dX) @X, (3.2
as shown in Fig. 1. The only other possible transverse force
aR — is the Coriolis force due to the radial motion of the right end.
B Z[l_ 1=vi] 219 However, the element does not experience a Coriolis force

since motion of the end only creates more string and the
We observe thaP,ign:iS purely transverse in direction. notion of longitudinal velocity has no meaning. This type of
It is also interesting to note the small velocity limits for motion can be thought of as “adiabatic” since the resulting
these quantities. If we define the moment of inertia of ashape depends only on the end acceleration. The force equi-

uniform string of “mass”aR rotating about one end as librium condition yields
1 d?y .
|= §(aR)R2, (2.20 DE = @ (3.3

In terms of dimensionless variabldsy/R ando=Xx/R, the

then the low velocity limits of)3, E, andP, are L
above equation is

Polo, a2
— =wR%0. (3.9
1 dO'
E—aR+ = lw?, (2.2)) . . '
2 Using the end conditiof(oc=0)=f(oc=1)=0, we find the
non-relativistic string shape
1
Pi—>§(aR)vL. wR2 ,
f(o)=———0a(1-0%), (3.9
As one might expect, the string can be thought of as a rod of
massaR. which is illustrated in Fig. 1.
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IV. RELATIVISTIC STRING SHAPE d?f .
, . . o . — =0Rw, 4.8
In order to find the relativistic string shape, in this section do “8

we consider the nature of small string deflections. We again =~ ) L
consider adiabatic solutions generalizing the non-relativisti?vhich is identical to the non-relativistic result, E§.4). The

concept of the previous section to the Nambu-Goto case. wilambu-Goto shape must then reduce to the previous result,
straightforwardly perturb about the straight string solutionEd: (3.5).

(2.13 to take With the choice of independent variable
Xo(7,0)=t, E=ov,, (4.9
1 the shape equatiof®.7) reduces to the simpler form

X(T:O-): ﬁ(O’R(t)‘FF(O’))EXH:l(Q)t'F d)(t))]v (41) d2f df sz
1-)—m+é—f=¢ —|, 4.1

where the functiorF(o) is assumed complex. We also as- whose exact analytic solution,

sume thaf (), ¢(t), ¢=w, andR are small, and therefore -

we drop terms likeFw, FR, ¢R, etc. Using Eq(2.9), we _oR%1 N A P

find in this approximation f(o) v3 g tarcsi+ y1-grjarcsing+ Cag
+C,(V1— €+ arcsirg), (4.1)

1 )
hi=— —+200’RReF—20°0?R%¢,
4 is discussed in Appendix B. The constais and C, are
fixed by the end conditions thdf{ o) vanish atc=0 and

htg=Np=0RR-wRIMF+owImF’, o=1. The final result is

(4.2
’ : R2
hye=R%+2RReF’. f(o)= wT shap¢a), (4.12

The assumed string positio@.1) and the metrichy,

above must satisfy the equations of moti¢hl0 for the _ E 1 ; 2
time and spatial components shapeo) vl ngi((ams'mi)
(V=h ht) ,=0, 4.3 — (arcsinov | )?)
+o1-v2arcsiv
(V=h h?X ;) ,=O0. (4.4 INETh s
Upon substitution, and with considerable but straightforward —V1-c*tarcsinv, |. (413
algebra, we find that each equation is satisfied whéa)
satisfies By comparison of the above expression with B35 we

see that the only difference from the non-relativistic result is

d?(ImF) , d(ImF) in the shape function. From the power series expansion it is

(1—020f)—d02 Sy —vf IMF=0R%. straightforward to verify that
(45) v <1
shapéo) — —o(1—d?), (4.19

There are no constraints on the real partFofwhich is a
consequence of the reparametrization invariance of thand, hencef (o) reduces to the non-relativistic limit. In Fig.
Nambu-Goto-Polyakov actiof2.1). In terms of a dimension- 2 we showshapéd o) for non-relativistic, intermediate, and
less quantity fully relativistic speeds. One can observe that even for a very
rapid rotationy | = wR—1, the string shape does not change
f=ImF/R, (4.6 dramatically with respect to the non-relativistic result.

we find that the displacement from the straight string satisfies \, AL IDITY OF THE PERTURBATIVE APPROACH

2 2 d2f ,df . As we have seen from Ed@4.12, the actual size of the
(1-0 UL)W tovy do —vif=0R%. (4.7 displacement from the straight string is controlled by a factor
of twR?. Its magnitude for meson states can be estimated
For small rotational velocities, , the string shape equa- using the heavy-light version of the relativistitraighy flux
tion (4.7) reduces to tube (RFT) model[2]. Since the numerical solution of the
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0.120
A . \ . . O | m = 0 states
03 0.4 0.6 0.8 T 0.115
0.1 0.110 |
0.105
-0.2 o
© (\&\ 0.100
g .03
g v=0 ‘8 0095
= <
-0.4 0.090
05 V=05 e o0sst
0.080
-0.6
v,=1.0 0.075
o ) . ) ) 0.070 t ! t : : :
FIG. 2. The relativistic string shape function given in E4.13 1 2 3 4 5 6 7 8 9 10
for various transverse velocities = oR. L
model provides us with a matrix representation for the FIG. 4. The dependence §i((wR?)?) on the angular momen-

tum. These results were obtained in the heavy-light RFT model,
with string tensiora=0.2 GeV\? and light quark massm=0. The
n=1 line corresponds to the ground state. Also shown are the first
two radially excited states.

operator in a particular basis, it is convenient to rews®?
as

wR?>=v,R—v,R. (5.2

shown in those figures were obtained using only the confin-

The above classical expression can be quantized by the a&g part of the heavy-light RFT model with string tension

propriate symmetrization procedure, and by promo#ng  ,_q 5 Ge\2. Addition of the short-range one gluon ex-
andR to quantum-mechanical operators, for which one Carl:hange interaction would further reduce our results.
useQ = —i[Q,H]. In this way, once the model is solved and

matrix representations fos, and the HamiltoniarH are
found, it is straightforward to compute the expectation value VI. STRING ANGULAR MOMENTUM, ENERGY, AND
of wR? for a given quantum state. LINEAR MOMENTUM

Figures 3 and 4 show the dependence of the quantity \we now compute the effects of the deformation away
:V{(wR??) on the light quark mass and angular momen-from straightness on string dynamics. To this end we com-
tum, respectively. These results indicate that the actual sizeare the angular momentum, energy, and linear momentum
of the displacement from the straight string in real mesons iof the actual string with that of the straight string. The simi-
smaller than 10%, which illustrates the validity of the larities and differences are quite interesting. We proceed in

straight string approximation. Note that numerical estimategach case by substituting the perturbed string fetrf) and
the consequent perturbed metric into the desired dynamical

0.100 : r . : r quantities.
0.095 | P-wave states
0.090 n-2 ] A. Angular momentum
. 0085 \ The expressiori2.12 for the angular momentum to first
N _ . o
@ 0.080 n-=1 . order in small quantities becomes
2 oot n=3 1
> - ] 33=733 ar. g F(1)
0.070 - g — Re
=4 stralght 2
- | n Vi—v
ooesf +
=5 - .
0.060 o ] agR® 1 arcsirn
_— =1, (6.1)
0.055 | J1-v? v,
0.050 . . . . .
0 0.05 0.1 0.15 0.2 0.25 03

m [GeV] where we refer to Eq.2.16) for the straight string result. To
compare with the straight string angular momentum we must

FIG. 3. The dependence f /<(sz) ) on the light quark mass have strings of the same length and with the same end ve-
m. These results were obtained for tRevave states in the heavy- locity which requires that both R&(1) and ¢ vanish. We
light RFT model, with string tension=0.2 Ge\?. Then=1 line  then conclude that for small deviations from straightness the

denotes the ground state, while the other lines correspond to the firehgular momentum of the curved string is the same as that of
four radially excited states. the straight string,
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J3=J3

straight (6'2)

B. Energy

Similarly, when we evaluate Eq2.11) with =0 we
obtain

I LA CO F(0)
= Egtraighi™ — 70— —aRre
\/l—vf
aRfp | 1 arcsin |
> — . (6.3
vi |\ Y1-0? vy

PHYSICAL REVIEW D 59 094011

For small orbital velocities we have
1<l aRwR%,

o7 (6.1

PR_)_

To understand the size of the radial string momentum we
will compare it to other “relativistic corrections” that arise
in meson dynamics. In a meson with a quark meskrge
enough that the quark velocity is small, the quark’s angular
momentum dominates that of the string. In this cake
~mRw=constant and we havBw=—2Rw. The radial
momentum is primarily due to the non-relativistic quark with
corrections from relativity and the string;

Again requiring the accelerating string to have the same

length and angular velocity as the straight string,FRE)
=ReF(0)=¢=0, we have

E= Estraight- (6.9
C. Linear momentum
Finally we compute the linear momentum,
1
P=—(Pgr+iP)), (6.5

V2

of the curved string using the spatial part of E8.11). The
transverse momentum component is

P, =P straightt \/%Lvl ReF(1)
apR?[ 1
e o
With the usual end conditions, we obtain
P =P, straights (6.7

WhereP | giigntdS given in Eq.(2.19. The curved string also
has radial momentum

Pr=—aR? f 1ol a 6.8
R™ a w 0 g0y, do_v ( . )
which, after integration by parts, becomes
P R Jld Ho) (6.9
=a —_—. .
R U | 0 U(l—o'zvi)alz

It is worth noting that the expression for radial momentum
(6.9) (and alsoP,) can be directly read off of Fig. 1.

Referring back to our explicit solutio@.13 for f(o), we
find the analytic solutiorPg to be

(:L)RZ > (208 ) .
PRz—aRv—4 1- 1—vi—?arcs|rvL arcsin .
1

(6.10

+ aR >
12m° L

: 1
P§t=mF{1+ +oo.

(6.12

20!
The string radial momentum is smaller by a factoraé&¥/6m
than the first relativistic correction.

In this section we have observed that to leading order the
angular momentum, energy, and transverse momentum of
the curved string are unchanged by small deviations from a
straight string. The bending of the string will induce a radial
momentum but it is of higher order than the leading relativ-
istic corrections. In this way, we agree with the work of
Brambilla et al.[3] who showed that in the Wilson loop
formalism relativistic corrections are correctly computed as-
suming a straight path between the quarks.

VII. CONCLUSIONS

We have considered here the shape of a QCD string with
one end fixed and the other moving with arbitrary velocity,
but with a small angular acceleration. We calculated the de-
viation from a straight string and found it to reduce to a
physically reasonable non-relativistic limit. The solutions we
have obtained are adiabatic in the sense that they depend
only on the end condition, and would be static in the end rest
frame.

To find the shape of the curved string, we perturbed an
exact straight solution to the Nambu-Goto-Polyakov string
equations and solved exactly the resulting equations of mo-
tion to leading order in the perturbation. As long as the an-
gular acceleration is sufficiently small this should provide an
accurate picture of the string shape. We numerically solved a
straight string model to estimate the angular acceleration that
occurs in actual mesons. The result was that the string devia-
tion from a straight line is never very large, justifying the use
of our perturbative approach, and showing the validity of the
straight string approximation.

In addition we have computed the angular momentum,
energy, and linear momentum of the curved string. In each
case but one, the perturbation drops out and the perturbed
string behaves identically to the straight one. Only for the
radial momentum does the deviation from straightness have
an effect. In the semi-relativistic approximation this radial
momentum is smaller by a factor @R/6m than the first
relativistic correction. The straight string approximation is
then justified for heavy quark mesons as previously pointed
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out from a different point of vieW3]. For relativistic mesons
the string radial momentum may have small, but perhaps (7TP“=J

gy . 3

doP*7+ >, pf
. . i=1,2
interesting and calculable consequences.

a1

oy , .
ACKNOWLEDGMENTS =—f do P*7 +i_§;2 P
0'1 -4
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The equations of motiorP/;*=0 are used to go from the
APPENDIX A: CONSERVATION OF MOMENTUM first to the second line, and the final result vanishes by the
AND ANGULAR MOMENTUM quark equations of motiofA3).

] The conservation of the angular momentum,
Here we consider the energy, momentum and angular mo-

mentum of a string with a quark at each end. The relevant , oy T L]
actions are the Nambu-Goto-Polyakov action, E41), and Jur= L do X#p +i;2Xi#pi : (A8)
the quark action ! '

L is only slightly more complicated to demonstrate. Thde-
. L w
Squarkzz igz f dT(efle‘Xi#—eimiz), (A1) rivative of J#” is

in which x{ is the position of the't quark of massn;, and o1

the auxiliary fielde; is a one-dimensional metric density

analogous to the string’s auxiliary field metrit,,. The + 2 (;(i[upivl+xi[ubivl)
boundary condition relating the two actiof&1) and(Al) is i=12

that the quarks sit at the ends of the string,

—fgzd Xlep 7 xlepio'y 4 S ylup]
X1 =XH(1,07), =12, (A2) =], 9o )+ 2 XD

Variation of the sum of the action€.1) plus (Al) with _f

0'2 .
X . . _ "pr]o_ v]o' [l
respect taX* yields the equations of motion for the quarks do (= Xxt# prio—xlep )+_212 Xi“pi

o1 i=1,

pi=(—1)"PH (A3) '

| | == XUpre|,_, +XUpiel,_, + 3 xfepil.
i=1,2

wherep# is the momentum of the quark at=(—1)', re- (A9)
lated to the quark velocity by
In going from the second to the third equality, we have used

S X : .
pl= ek T — (Ad) Xl#pH7= —a\/—h hraxlx]
OXiy, V= XEX; - '
2 = —a\/—h hoXl#x"

and — _X[,u'fpv]rr.
0S Using the boundary condition@?2) that place the quark at
a— N [_ abysu
PH= X,a ay—hh™X, (AS) the end of the string, we find

is the momentum current on the string worldsheet, which isd,J**= (x{pj! +x{P 17| ,_ )+ (X ps —xbPo],_ . )
related to the canonical string momentdi# by I[T#="P*+",
It is easy to show that the total momentum of the string- =0. (A10)

quark system, . .
Finally, the quark mass-shell condition,

P“zfgzdoP’”Jr > pk, (AB) pipi,+ M7 =0, (Al11)
oq i=1,2

which follows identically from the relation of the quark mo-
is conserved under evolution, menta to quark velocities,
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N
X

v _Xiuxi o

must be preserved by the equations of mofi@i®). We find
that

pf=m; (A12)

o .
(97'( p'upy,+ m ) - 2pMp,u,
ocpﬂuhaax,maOc Xﬂhgaxu,a

=h"3X , X*=h%h, = §7=0.
(A13)

The three condition§A7), (A10), and(A13) together im-

ply that the conservation of energy momentum, angular mo-

PHYSICAL REVIEW D 59 094011

E1-89)g"+(2—¢°)g' = B¢. (B3)
Now define
g'=H(&1(§) (B4)
to obtain
EL=-E)N(HH +H[EQL- )" +(2—&)1]=BE.
(BS)

The integrating factof(¢) is chosen to make the coefficient
of H vanish and by quadrature,

mentum, and the quark mass-shell relation are equivalent tgubstituting into Eq(B5), we find

the quark equations of motion, Eq&.6) and(A3).

APPENDIX B: EXACT SOLUTION OF THE RELATIVISTIC
STRING SHAPE EQUATION

We consider here the details of the solution of E410

L2 df
(1-¢ )Ez+§d—§—f:[3§ (B1)

to obtain the central resu{#.13 of the paper. The solution

method follows standard procedures. First we define a newinally by quadrature we havg(¢) andf=£g is

function, g, so that
f(§)=£9(¢), (B2)

giving

/1_ 2
1(6)= zg : (B6)
&
H(§)=B< ¢ —arcsiné | +C, (B7)
e |
and, by Eq.(B4),
dg (1 3 : :
d_g_'B E—ﬁarcswf) +Cyo({1— &%+ garcsing).
(B8)
f(§)=,8( 1- &2+ garcsirf arcsiné+C &
+C,(\1— €2+ £arcsing). (B9)
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