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Adiabatic string shape for nonuniform rotation
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It is well known that a straight Nambu-Goto string is an exact solution of the equations of motion when its
end moves in a circular orbit. In this paper we investigate the shape of a confining relativistic string for a
general motion of its end. We determine analytically the shape of the curved string to leading order in deviation
from straightness, and show that it reduces to an expected non-relativistic result. We also demonstrate numeri-
cally that in realistic meson models this deviation is always small. We further find that the angular momentum
and energy are the same as for the straight string, but that the curved string has a small radial momentum not
present in a straight string. Our results justify the common assumption of straight strings usually made in
hadron models.@S0556-2821~99!04309-X#

PACS number~s!: 12.38.Aw, 11.25.Pm, 12.39.Ki
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I. INTRODUCTION

For some time flux tube models@1,2# and Wilson loop
expansion calculations@3# have been used to understand ha
ron states. The usual assumption is that the color field ca
taken to lie on straight lines connecting the quarks. T
‘‘straight line’’ or ‘‘rigid’’ flux configuration is in the spirit
of an adiabatic or Born-Oppenheimer approximation tha
assumed to hold at least for slowly moving quarks.

Nesterenko@4# points out that this adiabatic approxim
tion cannot be valid if the quark has angular accelerati
The argument is based on a classic theorem of ruled surfa
The Nambu-Goto string action requires the string to sw
out a surface of minimal area. Catalan’s theorem@5# states
that if the string is straight there is only one minimal surfa
swept out; a helicoid. This surface describes a meson s
consisting of uniformly rotating quarks. As we will observ
a straight string with the end moving radially also sweeps
a minimal surface as long as the angular velocity is const
This solution does not correspond to the motion of an ac
meson since the quark plus string angular momentum is
conserved. However, one may take the point of view that
string shape can be studied with arbitrary end motion, s
as caused by an arbitrary external force acting on the e
The motion of the string with quarks at the ends is the
special case. In this paper we use the rigidly rotating solu
as our starting point and consider angular acceleration of
end points as a perturbation.

A rigidly rotating string with its end point quarks movin
in perfectly circular orbits is not a realistic model for meso
because quantum mechanics requires there to be some
motion, and by angular momentum conservation, some
gular acceleration as well. The string must be curved if i
to sweep out a minimal area while its end points unde
angular acceleration. We will discuss here the shape of
curved string and conclude that small curvatures do
0556-2821/99/59~9!/094011~8!/$15.00 59 0940
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change its dynamics. This result holds even for relativis
string motion.

In Sec. II we define our notation for the Nambu-Go
action and obtain the string wave equation, angular mom
tum and energy relations. We also establish exact stra
string solutions with arbitrary radial motion but constant a
gular velocity. An intuitive picture of a non-relativistic strin
is developed in Sec. III. The relativistic shape equation a
solutions for small angular acceleration are established
Sec. IV. We demonstrate numerically in Sec. V that the s
of the string deformations is small and therefore that
perturbative approach is sound. The angular momentum
energy for the curved string are considered in Sec. VI a
our conclusions are given in Sec. VII.

II. THE NAMBU-GOTO-POLYAKOV STRING

The string action is proportional to the string tensiona
and to the area swept out by the string. It is conventiona
written in Polyakov@1# form as

S52
a

2E dtE
s1

s2
dsA2h habX,a

m X,b
n hmn , ~2.1!

wherehab is a two-dimensional metric auxiliary field whos
indices run overt ands, andh5det(hab). Xm(t,s) is the
string position andX,a

m []aXm. The action is invariant unde

reparametrization of the coordinatest→ t̃(t,s) and s

→s̃(t,s), and under Weyl scaling of the metric

hab~t,s!→ef~t,s!hab~t,s!. ~2.2!

Because the metrichab has no dynamics, we may solve i
field equations and substitute the result back into the ac
without changing the equations of motion for the other fiel
The equations of motion forhab ,
©1999 The American Physical Society11-1
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X,a
m Xm,b5

1

2
habh

cdX,c
m Xm,d , ~2.3!

and invariance under Weyl scaling~2.2! allow us to sethab
equal to the induced metric

hab5X,a
m Xm,b , ~2.4!

from which we see that Eq.~2.1! reduces to, and is therefor
classically equivalent to, the standard square-root Nam
Goto action.

We will fix the coordinatest ands by choosingt to be
equal to coordinate timet, and s to run linearly along the
length of the string and have a fixed interval (s1 ,s2) regard-
less of the physical length of the string. This simplifies t
description of the end points of the string, but unfortunat
precludes the use of orthonormal coordinates. A more
tailed explanation of the Nambu-Goto-Polyakov string,
geometrical aspects, and its relation to QCD strings can
found in Ref.@6#.

The boundary conditions we take onXm(t,s) are that one
end is fixed and the other is arbitrarily forced:

Xm~t,s1!5~ t,0!, Xm~t,s2!5„t,x~ t !…, ~2.5!

wherex(t) is a prescribed function of time. This simplifie
our presentation because we are only examining the piec
string from the center of mass to one of the quarks. It i
trivial generalization to include quarks at both ends. To
clude the dynamics of a~spinless! quark on the end of the
string, we would use its equation of motion,

ṗm52aA2h hsaX,a
m , ~2.6!

which is essentially Newton’s second law with the tension
the string providing the force. The equation of motion~2.6!
arises from the variation of the boundary of the string wh
quarks are included from the beginning.

Our purpose here is not to solve for the actual motion
the string–quark system, which is a difficult problem, b
rather to find the shape of a string given a prescribed mo
of its end. Knowing the shape of the string, and using E
~2.6!, we are in principle able to find the motion of th
string–quark system. In practice, we use the expressions
the total energy and angular momentum and quark mom
tum in terms of the quark velocity to find the spectrum f
the quantized string–quark system numerically. We dem
strate in Appendix A that Eq.~2.6! is equivalent to the con
servation of energy, angular momentum and the quark m
shell relation.

Planar motion is best described in terms of complex
ordinates instead of vector notation. In complex coordina
the string positionXm can be written as

Xm~t,s!5„t,X1~t,s!,X2~t,s!,0…, ~2.7!

with

X65
1

A2
~X16 iX2!. ~2.8!
09401
u-

y
e-

e

of
a
-

n

f
t
n
.

or
n-

n-

s-

-
s,

The metrichab , from Eq. ~2.4!, is

hab52X,a
0 X,b

0 1X,a
1 X,b

1 1X,a
2 X,b

2

52X,a
0 X,b

0 12 Re~X,a* X,b!, ~2.9!

where we adopt the notationX[X1.
For simplicity, we consider here the fixed end ats150

and the moving end ats251. Variation of the action with
respect to the position of the string yields the equations
motion

~A2h habX,b
m ! ,a50. ~2.10!

OnceXm(t,s) is known, the string four-momentum and a
gular momentum are

Pm5E ds Pm~t,s!52aE
0

1

dsA2h htaXm,a ~2.11!

J35E ds X[1P2]522aE
0

1

dsA2h hta Im~X* X,a!.

~2.12!

Equations ~2.10! have an exact solution in which
straight string rotates uniformly~constant angular velocity!,
but has an arbitrarily changing length. This is the soluti
that we will perturb to find the string shape when its e
undergoes angular acceleration. Our ansatz is

X0~t,s!5t5t,

X~t,s!5
sR~ t !

A2
eivt. ~2.13!

From Eq.~2.9!, we find the metric tensor

hab5S 2g22 sRṘ

sRṘ R2 D
A2h5R/g' , ~2.14!

A2h hab5g'S 2R sṘ

sṘ Rg22D ,

where we define

v'5vR,

g'
22512s2v'

2 , ~2.15!

g22512s2~v'
2 1Ṙ2!.

Substituting the above into the string equations~2.10!, we
find that they are exactly satisfied. This result is the reali
tion of Catalan’s theorem mentioned earlier, where
straight line to the quark sweeps out a helicoid of fixed pi
but arbitrarily varying radius. Again we emphasize that th
is a solution of the string equations~2.10! only. In a realistic
1-2
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meson, for which Eq.~2.6! also holds for the quarks on th
ends, we must perturb Eq.~2.13! to find a solution that takes
into account the necessary angular acceleration of the e

For future reference, we give here expressions forJ3 and
Pm of the straight string. From Eq.~2.12! we find that the
angular momentum is given as

Jstraight
3 522

a

2E0

1

ds g'@2R Im~ ivs2R21sṘ!

1sṘ Im~sR2!#

5avR3E
0

1 s2ds

A12s2v'
2

5
aR2

2v'
Farcsin~v'!

v'

2A12v'
2 G . ~2.16!

The corresponding energy and spatial momentum from
~2.11! are

Estraight52aE
0

1

ds ~2Rg'!5aR
arcsinv'

v'

, ~2.17!

Pstraight5
i

A2
P' straight, ~2.18!

where

P' straight5aR2vE
0

1 sds

A12s2v'
2

5
aR

v'

@12A12v'
2 #. ~2.19!

We observe thatPstraight is purely transverse in direction.
It is also interesting to note the small velocity limits fo

these quantities. If we define the moment of inertia o
uniform string of ‘‘mass’’aR rotating about one end as

I 5
1

3
~aR!R2, ~2.20!

then the low velocity limits ofJ3, E, andP' are

J3→Iv,

E→aR1
1

2
Iv2, ~2.21!

P'→
1

2
~aR!v' .

As one might expect, the string can be thought of as a ro
massaR.
09401
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III. NON-RELATIVISTIC STRING SHAPE

In the above we have demonstrated that a uniformly
tating string can remain straight even if the length chang
When the end has angular acceleration the string must cu
To gain intuition we consider a quasi-Newtonian string
‘‘mass’’ density a which rotates with instantaneous angul
velocity v about one end. In the rotating frame an elemen
distancex5sR is assumed to be in equilibrium under tw
forces, the tension force

F tension5a
d2y

dx2 dx, ~3.1!

and the angular acceleration fictitious force

Ffictitious52~adx!v̇x, ~3.2!

as shown in Fig. 1. The only other possible transverse fo
is the Coriolis force due to the radial motion of the right en
However, the element does not experience a Coriolis fo
since motion of the end only creates more string and
notion of longitudinal velocity has no meaning. This type
motion can be thought of as ‘‘adiabatic’’ since the resulti
shape depends only on the end acceleration. The force e
librium condition yields

d2y

dx2 5v̇x. ~3.3!

In terms of dimensionless variables,f [y/R ands5x/R, the
above equation is

d2f

ds2 5v̇R2s. ~3.4!

Using the end conditionf (s50)5 f (s51)50, we find the
non-relativistic string shape

f ~s!52
v̇R2

6
s~12s2!, ~3.5!

which is illustrated in Fig. 1.

FIG. 1. The solution to the non-relativistic string shape.~a!
Force balance on a small elementdx. ~b! Transverse and radia
momentum of an element.
1-3
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IV. RELATIVISTIC STRING SHAPE

In order to find the relativistic string shape, in this secti
we consider the nature of small string deflections. We ag
consider adiabatic solutions generalizing the non-relativi
concept of the previous section to the Nambu-Goto case.
straightforwardly perturb about the straight string soluti
~2.13! to take

X0~t,s!5t,

X~t,s!5
1

A2
„sR~ t !1F~s!…exp@ i „vt1f~ t !…#, ~4.1!

where the functionF(s) is assumed complex. We also a
sume thatF(s), ḟ(t), f̈[v̇, andṘ are small, and therefore
we drop terms likeFv̇, FṘ, ḟṘ, etc. Using Eq.~2.9!, we
find in this approximation

htt52
1

g2 12sv2R ReF22s2v2R2ḟ,

hts5hst5sRṘ2vR ImF1sv ImF8,
~4.2!

hss5R212R ReF8.

The assumed string position~4.1! and the metrichab
above must satisfy the equations of motion~2.10! for the
time and spatial components

~A2h hat! ,a50, ~4.3!

~A2h habX,b! ,a50. ~4.4!

Upon substitution, and with considerable but straightforw
algebra, we find that each equation is satisfied whenF(s)
satisfies

~12s2v'
2 !

d2~ ImF !

ds2
1sv'

2 d~ ImF !

ds
2v'

2 ImF5sR3v̇.

~4.5!

There are no constraints on the real part ofF, which is a
consequence of the reparametrization invariance of
Nambu-Goto-Polyakov action~2.1!. In terms of a dimension-
less quantity

f [ImF/R, ~4.6!

we find that the displacement from the straight string satis

~12s2v'
2 !

d2f

ds2 1sv'
2 d f

ds
2v'

2 f 5sR2v̇. ~4.7!

For small rotational velocitiesv' , the string shape equa
tion ~4.7! reduces to
09401
in
ic
e

d

e

s

d2f

ds2 5sR2v̇, ~4.8!

which is identical to the non-relativistic result, Eq.~3.4!. The
Nambu-Goto shape must then reduce to the previous re
Eq. ~3.5!.

With the choice of independent variable

j5sv' , ~4.9!

the shape equation~4.7! reduces to the simpler form

~12j2!
d2f

dj2 1j
d f

dj
2 f 5jS v̇R2

v'
3 D , ~4.10!

whose exact analytic solution,

f ~s!5
v̇R2

v'
3 F1

2
jarcsinj1A12j2Garcsinj1C1j

1C2~A12j21jarcsinj!, ~4.11!

is discussed in Appendix B. The constantsC1 and C2 are
fixed by the end conditions thatf (s) vanish ats50 and
s51. The final result is

f ~s!5
v̇R2

6
shape~s!, ~4.12!

shape~s!52
6

v'
3 F1

2
sv'„~arcsinv'!2

2~arcsinsv'!2
…

1sA12v'
2 arcsinv'

2A12s2v'
2 arcsinsv'G . ~4.13!

By comparison of the above expression with Eq.~3.5! we
see that the only difference from the non-relativistic resul
in the shape function. From the power series expansion
straightforward to verify that

shape~s! →
v'!1

2s~12s2!, ~4.14!

and, hence,f (s) reduces to the non-relativistic limit. In Fig
2 we showshape(s) for non-relativistic, intermediate, an
fully relativistic speeds. One can observe that even for a v
rapid rotation,v'5vR→1, the string shape does not chan
dramatically with respect to the non-relativistic result.

V. VALIDITY OF THE PERTURBATIVE APPROACH

As we have seen from Eq.~4.12!, the actual size of the
displacement from the straight string is controlled by a fac
of 1

6 v̇R2. Its magnitude for meson states can be estima
using the heavy-light version of the relativistic~straight! flux
tube ~RFT! model @2#. Since the numerical solution of th
1-4
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model provides us with a matrix representation for thev'

operator in a particular basis, it is convenient to rewritev̇R2

as

v̇R25 v̇'R2v'Ṙ. ~5.1!

The above classical expression can be quantized by the
propriate symmetrization procedure, and by promotingv'

and R to quantum-mechanical operators, for which one c

useV̇52 i @V,H#. In this way, once the model is solved an
matrix representations forv' and the HamiltonianH are
found, it is straightforward to compute the expectation va
of v̇R2 for a given quantum state.

Figures 3 and 4 show the dependence of the quan
1
6
A^(v̇R2)2& on the light quark mass and angular mome

tum, respectively. These results indicate that the actual
of the displacement from the straight string in real meson
smaller than 10%, which illustrates the validity of th
straight string approximation. Note that numerical estima

FIG. 2. The relativistic string shape function given in Eq.~4.13!
for various transverse velocitiesv'5vR.

FIG. 3. The dependence of1
6
A^(v̇R2)2& on the light quark mass

m. These results were obtained for theP-wave states in the heavy
light RFT model, with string tensiona50.2 GeV2. Then51 line
denotes the ground state, while the other lines correspond to the
four radially excited states.
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shown in those figures were obtained using only the con
ing part of the heavy-light RFT model with string tensio
a50.2 GeV2. Addition of the short-range one gluon ex
change interaction would further reduce our results.

VI. STRING ANGULAR MOMENTUM, ENERGY, AND
LINEAR MOMENTUM

We now compute the effects of the deformation aw
from straightness on string dynamics. To this end we co
pare the angular momentum, energy, and linear momen
of the actual string with that of the straight string. The sim
larities and differences are quite interesting. We proceed
each case by substituting the perturbed string form~4.1! and
the consequent perturbed metric into the desired dynam
quantities.

A. Angular momentum

The expression~2.12! for the angular momentum to firs
order in small quantities becomes

J35Jstraight
3 1

aRv'

A12v'
2

ReF~1!

1
aḟR3

v'
2 S 1

A12v'
2

2
arcsinv'

v'
D , ~6.1!

where we refer to Eq.~2.16! for the straight string result. To
compare with the straight string angular momentum we m
have strings of the same length and with the same end
locity which requires that both ReF(1) and ḟ vanish. We
then conclude that for small deviations from straightness
angular momentum of the curved string is the same as tha
the straight string,

rst

FIG. 4. The dependence of1
6
A^(v̇R2)2& on the angular momen

tum. These results were obtained in the heavy-light RFT mo
with string tensiona50.2 GeV2 and light quark massm50. The
n51 line corresponds to the ground state. Also shown are the
two radially excited states.
1-5
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J35Jstraight
3 . ~6.2!

B. Energy

Similarly, when we evaluate Eq.~2.11! with m50 we
obtain

E5Estraight1
a ReF~1!

A12v'
2

2a ReF~0!

1
aR2ḟ

v'
S 1

A12v'
2

2
arcsinv'

v'
D . ~6.3!

Again requiring the accelerating string to have the sa
length and angular velocity as the straight string, ReF(1)
5ReF(0)5ḟ[0, we have

E5Estraight. ~6.4!

C. Linear momentum

Finally we compute the linear momentum,

P[
1

A2
~PR1 iP'!, ~6.5!

of the curved string using the spatial part of Eq.~2.11!. The
transverse momentum component is

P'5P' straight1
av'

A12v'
2

ReF~1!

1
aḟR2

v'
2 S 1

A12v'
2

21D . ~6.6!

With the usual end conditions, we obtain

P'5P' straight, ~6.7!

whereP' straight is given in Eq.~2.19!. The curved string also
has radial momentum

PR52aR2vE
0

1

ds sg'

d f

ds
, ~6.8!

which, after integration by parts, becomes

PR5aRv'E
0

1

ds
f ~s!

~12s2v'
2 !3/2

. ~6.9!

It is worth noting that the expression for radial momentu
~6.8! ~and alsoP') can be directly read off of Fig. 1.

Referring back to our explicit solution~4.13! for f (s), we
find the analytic solutionPR to be

PR52aR
v̇R2

v'
4 F12A12v'

2 2
v'

2
arcsinv'Garcsinv' .

~6.10!
09401
e

For small orbital velocities we have

PR →
v'!1

2
aRv̇R2v'

24
. ~6.11!

To understand the size of the radial string momentum
will compare it to other ‘‘relativistic corrections’’ that aris
in meson dynamics. In a meson with a quark massm large
enough that the quark velocity is small, the quark’s angu
momentum dominates that of the string. In this caseJ

.mR2v.constant and we haveRv̇.22Ṙv. The radial
momentum is primarily due to the non-relativistic quark wi
corrections from relativity and the string;

PR
tot5mṘF11

1

2
v'

2 1
aR

12m
v'

2 1••• G . ~6.12!

The string radial momentum is smaller by a factor ofaR/6m
than the first relativistic correction.

In this section we have observed that to leading order
angular momentum, energy, and transverse momentum
the curved string are unchanged by small deviations from
straight string. The bending of the string will induce a rad
momentum but it is of higher order than the leading relat
istic corrections. In this way, we agree with the work
Brambilla et al. @3# who showed that in the Wilson loop
formalism relativistic corrections are correctly computed
suming a straight path between the quarks.

VII. CONCLUSIONS

We have considered here the shape of a QCD string w
one end fixed and the other moving with arbitrary veloci
but with a small angular acceleration. We calculated the
viation from a straight string and found it to reduce to
physically reasonable non-relativistic limit. The solutions w
have obtained are adiabatic in the sense that they dep
only on the end condition, and would be static in the end r
frame.

To find the shape of the curved string, we perturbed
exact straight solution to the Nambu-Goto-Polyakov str
equations and solved exactly the resulting equations of
tion to leading order in the perturbation. As long as the a
gular acceleration is sufficiently small this should provide
accurate picture of the string shape. We numerically solve
straight string model to estimate the angular acceleration
occurs in actual mesons. The result was that the string de
tion from a straight line is never very large, justifying the u
of our perturbative approach, and showing the validity of t
straight string approximation.

In addition we have computed the angular momentu
energy, and linear momentum of the curved string. In e
case but one, the perturbation drops out and the pertu
string behaves identically to the straight one. Only for t
radial momentum does the deviation from straightness h
an effect. In the semi-relativistic approximation this rad
momentum is smaller by a factor ofaR/6m than the first
relativistic correction. The straight string approximation
then justified for heavy quark mesons as previously poin
1-6
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out from a different point of view@3#. For relativistic mesons
the string radial momentum may have small, but perh
interesting and calculable consequences.
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APPENDIX A: CONSERVATION OF MOMENTUM
AND ANGULAR MOMENTUM

Here we consider the energy, momentum and angular
mentum of a string with a quark at each end. The relev
actions are the Nambu-Goto-Polyakov action, Eq.~2.1!, and
the quark action

Squark5
1

2 (
i 51,2

E dt ~ei
21ẋi

mẋim2eimi
2!, ~A1!

in which xi
m is the position of the ith quark of massmi , and

the auxiliary field ei is a one-dimensional metric densi
analogous to the string’s auxiliary field metrichab . The
boundary condition relating the two actions~2.1! and~A1! is
that the quarks sit at the ends of the string,

xi
m~t!5Xm~t,s i !, i 51,2. ~A2!

Variation of the sum of the actions~2.1! plus ~A1! with
respect toXm yields the equations of motion for the quark

ṗi
m5~21! iP msus5s i

, ~A3!

wherepi
m is the momentum of the quark ats i5(21)i , re-

lated to the quark velocity by

pi
m[

dSquark

d ẋim

5ei
21ẋi

m5mi

ẋi
m

A2 ẋi
mẋim

, ~A4!

and

P ma[
dS

dXm,a
52aA2h habX,b

m ~A5!

is the momentum current on the string worldsheet, which
related to the canonical string momentumPm by Pm5P mt.

It is easy to show that the total momentum of the strin
quark system,

Pm5E
s1

s2
ds P mt1 (

i 51,2
pi

m , ~A6!

is conserved undert evolution,
09401
s

f
b

o-
nt

is

-

]tP
m5E

s1

s2
ds Ṗmt1 (

i 51,2
ṗi

m

52E
s1

s2
ds Pms81 (

i 51,2
ṗi

m

5 ṗ1
m1P msus5s1

1 ṗ2
m2P msus5s2

50.
~A7!

The equations of motionP ,a
ma50 are used to go from the

first to the second line, and the final result vanishes by
quark equations of motion~A3!.

The conservation of the angular momentum,

Jmn5E
s1

s2
ds X[mP n] t1 (

i 51,2
xi

[mpi
n] , ~A8!

is only slightly more complicated to demonstrate. Thet de-
rivative of Jmn is

]tJ
mn5E

s1

s2
ds ~Ẋ[mP n] t1X[mṖn] t!

1 (
i 51,2

~ ẋi
[mpi

n]1xi
[mṗi

n] !

5E
s1

s2
ds ~Ẋ[mP n] t2X[mPn]s8!1 (

i 51,2
xi

[mṗi
n]

5E
s1

s2
ds ~2X[m8P n]s2X[mPn]s8!1 (

i 51,2
xi

[mṗi
n]

52X[mP n]sus5s2
1X[mP n]sus5s1

1 (
i 51,2

xi
[mṗi

n] .

~A9!

In going from the second to the third equality, we have us

Ẋ[mP n] t52aA2h htaẊ[mX,a
n]

52aA2h htsẊ[mXn] 8

52X[m8P n]s.

Using the boundary conditions~A2! that place the quark a
the end of the string, we find

]tJ
mn5~x1

[mṗ1
n]1x1

[mP n]sus5s1
!1~x2

[mṗ2
n]2x2

[mP n]sus5s2
!

50. ~A10!

Finally, the quark mass-shell condition,

pi
mpim1mi

250, ~A11!

which follows identically from the relation of the quark mo
menta to quark velocities,
1-7
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pi
m5mi

ẋi
m

A2 ẋi
mẋi m

, ~A12!

must be preserved by the equations of motion~2.6!. We find
that

]t~pmpm1m2!52pmṗm

}pmhsaXm,a}ẊmhsaXm,a

5hsaXm,aX,t
m 5hsahat5dt

s50.
~A13!

The three conditions~A7!, ~A10!, and~A13! together im-
ply that the conservation of energy momentum, angular m
mentum, and the quark mass-shell relation are equivalen
the quark equations of motion, Eqs.~2.6! and ~A3!.

APPENDIX B: EXACT SOLUTION OF THE RELATIVISTIC
STRING SHAPE EQUATION

We consider here the details of the solution of Eq.~4.10!

~12j2!
d2f

dj2 1j
d f

dj
2 f 5bj ~B1!

to obtain the central result~4.13! of the paper. The solution
method follows standard procedures. First we define a n
function,g, so that

f ~j!5jg~j!, ~B2!

giving
09401
-
to

w

j~12j2!g91~22j2!g85bj. ~B3!

Now define

g8[H~j!I ~j! ~B4!

to obtain

j~12j2!I ~j!H81H@j~12j2!I 81~22j2!I #5bj.
~B5!

The integrating factorI (j) is chosen to make the coefficien
of H vanish and by quadrature,

I ~j!5
A12j2

j2
. ~B6!

Substituting into Eq.~B5!, we find

H~j!5bS j

A12j2
2arcsinj D 1C2 , ~B7!

and, by Eq.~B4!,

dg

dj
5bS 1

j
2

j

A12j2
arcsinj D 1C2~A12j21jarcsinj!.

~B8!

Finally by quadrature we haveg(j) and f 5jg is

f ~j!5bSA12j21
j

2
arcsinj Darcsinj1C1j

1C2~A12j21jarcsinj!. ~B9!
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