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Positivity constraints on chiral perturbation theory pion-pion scattering amplitudes
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We test the positivity property of the chiral perturbation theory~ChPT! pion-pion scattering amplitudes
within the Mandelstam triangle. In the one-loop approximationO(p4) the positivity constrains only the coef-
ficientsb3 andb4 ; namely, one obtains thatb4 and the linear combinationb313b4 are positive quantities. The
two-loop approximation gives inequalities involving all six arbitrary parameters entering ChPT amplitude, but
the corrections to the one-loop approximation results are small. ChPT amplitudes pass unexpectedly well all
the positivity tests, giving strong support to the idea that ChPT is a good theory of low-energy pion-pion
scattering.@S0556-2821~99!04407-0#

PACS number~s!: 13.75.Lb, 11.30.Rd, 11.55.Fv, 12.39.Fe
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I. INTRODUCTION

Chiral perturbation theory~ChPT! is considered a low-
energy effective approximation of QCD. In particular it pr
vides a representation of the elastic pion-pion scattering
plitudes that is crossing symmetric and has good analyti
properties. In a seminal paper@1# Gasser and Leutwyler de
veloped ChPT which allows one to compute many Gre
functions involving low-energy pions. It is well known tha
the physical pion-pion scattering amplitudes can be
pressed in terms of a single functionA(s,t,u) whose form
was obtained as a series expansion in powers of the exte
momenta and of the light quark masses. The first term of
series was given by Weinberg@2#, the second by Gasser an
Leutwyler @1#, and only recently a two-loop calculation@3,4#
was obtained. In this approximation the functionA(s,t,u)
has the following form:

A~s,t,u!5a~s21!1a2@b11b2s1b3s21b4~ t2u!2#

1a2@F ~1!~s!1G~1!~s,t !1G~1!~s,u!#

1a3@b5s31b6s~ t2u!2#1a3@F ~2!~s!1G~2!~s,t !

1G~2!~s,u!#1O~a4!, ~1.1!

wherea5(Mp /Fp)2, Mp is the mass of the physical pion
Fp the pion decay constant,s,t,u are the usual Mandelstam
variables, expressed in units of the physical pion m
squaredMp

2 ,

s5~p11p2!2/Mp
2 , t5~p12p2!2/Mp

2 ,

u5~p12p3!2/Mp
2 ,

F ( i )(s) and G( i )(s,t) are known functions, andbi , i
51, . . . ,6, arearbitrary parameters which cannot be det
mined by ChPT@1,3,4#. In any realistic comparison with
experiment we have to provide some numerical values fo
these parameters obtained from other sources. One h
that by using unitarity this can be done, although, until no
no program for implementing this property has been p
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sented. The common belief is that imposing unitarity is no
simple matter since its implementation in one channel
stroys crossing symmetry in other channels. However, th
is a weak form of unitarity, the positivity of the absorptiv
parts, which is a linear property and which can be impos
This property was used 30 years ago to obtain constraint
the p0p0s-wave partial amplitudef 0(s) in the unphysical
region 0,s,4 and on thed-wave scattering lengths. Thes
constraints were useful because at that time almost not
was known about the explicit form of the scattering amp
tudes and they were used in testing models for pion-p
partial-wave amplitudes. The advantage of ChPT is tha
furnishes an explicit form for the pion-pion scattering amp
tudes whose unknown part is contained in a few numer
coefficients. Thus it is of certain interest to see how the
properties reflect on the constraints on thebi coefficients
entering Eq.~1.1!.

Beginning with Ref.@5#, Martin has used the positivity
analyticity, and crossing symmetry to obtain constraints
the p0p0s-wave partial amplitudef 0(s) in the unphysical
region 0,s,4; a few of them have the following form@6#:

f 0~4!. f 0~0!. f 0~3.15!, f 0~0!.
1

2E2

4

f 0~s! ds,

FF0,2S 11
1

A3
D G. f 0F2S 11

1

A3
D G , ~1.2!

whereF(s,t) denotes thep0p0 elastic scattering amplitude
A more complete set is found in Ref.@7#. The most elaborate
form of these constraints is the following result: th
p0p0s-wave amplitudef 0(s) has a minimum located a
1.218989,s,1.696587@6–12# and this result can be im
proved only by unitarity. These results can be translated
constraints on the parametersbi entering ChPT pion-pion
scattering amplitudes. As we will see later all the above
equalities are equivalent in the one-loop approximat
O(p4) to a single constraint on the coefficientsbi whose
typical form is

b313b4>
37

1920p2 ,
©1999 The American Physical Society07-1
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PETRE DIŢĂ PHYSICAL REVIEW D 59 094007
the only difference being the numerical value appearing
the right hand side. This is the explanation of the ineffica
of these apparently distinct constraints which was obser
from the beginning by physicists constructing models
pion-pion partial waves.

In this paper we work only in the unphysical regio
us,t,uu,4, i.e., where the amplitude~1.1! is considered to be
a very good approximation to the true amplitude. Other
proaches use information from the physical region to obt
constraints on the same parametersbi @13–15#. In the one-
loop approximationO(p4), the positivity property constrain
only the coefficientsb3 andb4 . By taking into account the
O(p6) contributions one gets constraints involving all s
parameters entering Eq.~1.1!.

By using the unitarity bounds onp0p0 scattering ampli-
tude in the unphysical region@16# one gets upper and lowe
bounds on some linear combinations of the parametersbi .
These unitarity bounds are not very constraining; to see
we give the one obtained from the bound onF(2,0), where
as aboveF(s,t) denotes thep0p0 amplitude. The bound is
23.5<F(2,0)<2.9 and it is equivalent to the following
lower and upper bounds:

23.5332p<a1a2S 3b114b218b318b41
9

32p2D
1a3F16b5116b61

~42p!

p2 S 5b1

16
1

b2

2
1

11b3

12
1

5b4

12 D
1

965

3456p4 2
251

3456p3 1
41

6144p2G
<2.9332p.

Because of the factor 32p appearing on the left and righ
hand sides, the bounds are not very strong and we will
consider them here.

The physical isospin amplitudesFI can be expressed i
terms of the single functionA(s,t,u) as follows:

F0~s,t,u!53A~s,t,u!1A~ t,u,s!1A~u,s,t !,

F1~s,t,u!5A~ t,u,s!2A~u,s,t !,

F2~s,t,u!5A~ t,u,s!1A~u,s,t !,

whereA(s,t,u) is given by Eq.~1.1!.
Having only three independent amplitudes one gets o

three independent constraints since the crossing symmet
an exact symmetry for the ChPT amplitudes. The constr
tion of our positivity constraints is outlined in the next se
tion where we present an overdetermined system of c
straints. Their implications on the coefficientsbi are
discussed in Sec. III. The paper concludes in Sec. IV.

II. POSITIVITY CONSTRAINTS

Let FI(s,t) denote thepp scattering amplitude with iso
topic spinI in the s channel. In matrix notationF(s,t) satis-
fies the following crossing relation@17#:
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F~s,t !5CstF~ t,s!5CsuF~u,t !,

where the notation is

F~s,t !5S F0~s,t !

F1~s,t !

F2~s,t !
D ,

Cst5S 1/3 1 5/3

1/3 1/2 25/6

1/3 21/2 1/6
D ,

Csu5S 1/3 21 5/3

21/3 1/2 5/6

1/3 1/2 1/6
D .

From the results of axiomatic field theory we know that t
amplitudesFI(s,t) satisfy fixed-t dispersion relations with
two subtractions@18# for utu,4. We may write them as

F~s,t !5Cst@a~ t !1~s2u!b~ t !#

1
1

pE4

`dx

x2 S s2

x2s
1

u2

x2u
CsuDA~x,t !, ~2.1!

whereA(x,t) is the absorptive part ofF(s,t) and the sub-
traction constants are of the form

a~ t !5S a0~ t !

0

a2~ t !
D , b~ t !5S 0

b1~ t !

0
D ,

as a result of crossing symmetry.
In the following we shall consider thats,t,u take values

in the unphysical regionus,t,uu,4. We calculate the differ-
ence

F~s,t !2F~s1 ,t !,

and we are looking for those combinations of isospin am
tudes for which this difference does not depend on the s
traction constants. From Eq.~2.1! we find

1

s2s1
@F~s,t !2F~s1 ,t !#52Cstb~ t !1 f ~A!, ~2.2!

where f (A) denotes a complicated term containing the in
gration over the absorptive parts. The first term on the ri
hand side of Eq.~2.2! is

Cstb~ t !5S b~ t !

1

2
b~ t !

2
1

2
b~ t !

D .
7-2
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The last relation shows that there are three combinat
of isospin amplitudes for which the difference~2.2! has no
dependence on the subtraction constants. They areF0

12F2, F11F2, andF022F1 and we shall denote them a
Fi , i 51,2,3, in this order. The first one is the well-know
p0p0 elastic amplitude. One easily obtains from Eq.~2.2!
the relation

Fi~s,t !2Fi~s1 ,t !5
~s2s1!~s2u1!

p

3E
4

` ~2x1t24!Ai~x,t ! dx

~x2s!~x2s1!~x2u!~x2u1!
,

i 51,2,3. From this relation we get

]Fi~s,t !

]s
5

s2u

p E
4

`~2x1t24!Ai~x,t ! dx

~x2s!2~x2u!2 .

Because the absorptive partsA1 and A2 are positive, we
find that
s
th

ee
e-
w
.
q
p

th
fro
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s 1

s2u

]Fi~s,t !

]s
>0, i 51,2.

The third combination involves the absorptive pa
A0(x,t)22A1(x,t) whose sign is not defined and we cann
say anything about the sign of the derivatives ofF3(s,t).
The preceding relations show us that on the lines
5u, Fi(s,t), i 51,2, attain their minimum values. Indee
we obtain from them the second derivatives

]2Fi~s,t !

]s2 5
2

pE4

`S 1

~x2s!3 1
1

~x2u!3D
Ai~x,t !dx>0, i 51,2, ~2.3!

which are positive definite, implying that the function
Fi(s,t) have a minimum on the lines5u. From the last
relation we obtain also
]2n21Fi~s,t !

]s2n21
5

~2n21!!

p E
4

`S 1

~x2s!2n
2

1

~x2u!2nD
Ai~x,t ! dx5

~2n21!! ~s2u!

p E
4

`

@~x2s!n1~x2u!n#F ~x2s!n211~x2s!n22~x2u!1•••1~x2u!n21

~x2s!2n~x2u!2n GAi~x,t !dx.
ive

la-
er

art
ites
ac-
In this way we obtain the set of positivity constraints

1

s2u

]2n21Fi~s,t !

]s2n21
>0,

]2nFi~s,t !

]s2n
>0, ~2.4!

i 51,2, n51,2, . . . .
A first remark is the following: if the positivity constraint

have to be satisfied, it is sufficient to test them only on
line s5u, i.e., 2s1t2450, where the functionsFi(s,t) at-
tain their minimum values. In this way we have only one fr
parameter 0,usu,4, and on this line the odd and even d
rivatives give the same information. From the point of vie
of computation it is simpler to work with even derivatives

Up to now we have obtained two constraints given by E
~2.3!. Because we have three independent isospin am
tudes, it follows that we can obtain another one at most.

The positivity constraints can be imposed even on
isospin amplitudes themselves. This can be easily seen
the relation~2.1! for F2(s,t) which after derivation gives

]2F2~s,t !

]s2 5
2

pE4

`

dxF S 1

~x2s!3 1
1

6

1

~x2u!3DA2~x,t !

1
1

3

1

~x2u!3 A0~x,t !1
1

2

1

~x2u!3 A1~x,t !G .
e

.
li-

e
m

The right hand side of the previous relation is a posit
quantity and by iteration we obtain that

]2nF2~s,t !

]s2n
>0, n51,2, . . . . ~2.5!

Unfortunately numerical calculations show that this re
tion is not independent of the previous two ones. Anoth
way to obtain them is to make use of the Gribov-Froiss
representation for the partial-wave amplitudes. One wr
dispersion relations for the isospin amplitudes, the subtr
tion constants being given by thes- andp-wave partial am-
plitudes, and one finds

FI~s,t !5 f 0
I ~s!1

1

pE0

`

AI~x,s!g~x,s,t ! dx, I 50,2,

~2.6!

where

g~x,s,t !5
1

x2t
1

1

x2u
1

2

42s
lnS 11

s24

x D .

For I 51 we can write similarly
7-3
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PETRE DIŢĂ PHYSICAL REVIEW D 59 094007
F1~s,t !53 f 1
1~s!S 11

2t

s24D1
1

pE0

`

A1~x,s!h~x,s,t ! dx,

~2.7!

where

h~x,s,t !5
1

x2t
2

1

x2u
1

6~2t1s24!

~42s!2

3F2x1s24

42s
lnS 11

s24

x D12G .
The absorptive parts entering Eqs.~2.6!,~2.7! are the
t-channel ones and in the following we make use of thet↔u
crossing symmetry. From the relation~2.6! we find formulas
analogous to Eq.~2.4!, namely,

1

t2u

]2n21FI~s,t !

]t2n21
>0,

]2nFI~s,t !

]t2n
>0, ~2.8!

n51,2, . . . ,I 50,2, which are not numerically independe
of the previous ones. More interesting is the relation~2.7!
which can be written as

F1~s,t !

t2u
5F 1̂~s,t !5

3 f 1
1~s!

s24
1

1

pE0

`

A1~x,s!

3H 1

~x2t !~x2u!
1

6

~42s!2F2x1s24

42s

3 lnS 11
s24

x D12G J dx.

This relation provides us with another independent relati

BecauseF1(s,t) is antisymmetric int↔u, F 1̂(s,t) is an
analytic function within the Mandelstam triangle. Deriving
with respect oft we obtain

]F 1̂~s,t !

]t
5

t2u

p E
0

` A1~x,s!

~x2t !2~x2u!2 dx.

From this relation we obtain formulas similar to Eq.~2.4!,
namely,

1

t2u

]2n21FI~s,t !ˆ

]t2n21
>0,

]2nFI~s,t !ˆ

]t2n
>0. ~2.9!

Finally the positivity may also be expressed as the positiv
of the partial-wave amplitudes

f l
I~s!5

1

42sE4

`

AI~x,s!Ql S 2x

42s
21D dx ~2.10!

for l>2 inside the unphysical region 0<s<4, but the nu-
merical calculations show that these last constraints
weaker than those derived above.
09400
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III. NUMERICAL RESULTS

In the previous section we derived a complete set of po
tivity constraints. In an exact theory many of them are
consequence of the others as we will see later. Beca
ChPT does not completely specify the amplitude and on
other hand the power of different constraints is not the sa
it is useful to derive as many constraints as possible. Si
all of them have to be satisfied, we will select the strong
one in every case.

To test the method we worked first in the one-loop a
proximationO(p4); i.e., we retained terms up toa2 in Eq.
~1.1!. In this order the obtained constraints do not depend
the value taken bya; in the two-loop approximation the con
straints will be linear ina. We consider first the constraint
on thep0p0 scattering amplitude.

The first two constraints~1.2! on the p0p0,s-wave
f 0(4). f 0(0). f 0~3.15! are equivalent to

b313b4>2
9

1024
2

29

384p2 '21.6431022

and

b313b4>21.4731022,

respectively. The third relationf 0(0). 1
2 *2

4f 0(s) ds is
equivalent to

b313b4>24.6431024,

the strongest result being the last one. Already the last r
tion ~1.2! furnishes a better result; the above combination
coefficients becomes positive:

b313b4>7.3631024.

The derivative of thes wave has the form

f 08~s!5
2

3
~b313b4!~5s28!1h~s!,

where the functionh(s) has a long expression which we d
not write here. Since 5s28,0, for s,1.6, the upper and
lower bounds on the derivativef 08(s) describing the position
of the minimum are equivalent to a single lower bound
the combinationb313b4 . The best result is obtained ats
51.696587 and is

b313b4>6.6731023.

The last result is the strongest constraint upon the com
nation b313b4 obtained from inequalities satisfied by th
p0p0s-wave amplitudes within the unphysical region 0<s
<4. We have given all the above results to understand w
these constraints were easily satisfied by the phenomeno
cal models for partial-wave amplitudes constructed in
past years; satisfying a few of them, the others are autom
cally fulfilled.

A similar analysis with analogous results was done in R
@19#, including in the analysis thes andd waves.
7-4
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Stronger constraints are obtained from the positivity
the second derivative of the full amplitudes. From Eq.~2.3!
we find for i 51, i.e., thep0p0, amplitude again, a relation
of the form

b313b41h1~s!>0,

whereh1(s) is a decreasing function fors,4. Thus a prob-
lem arises: at what point does the above relation have to
considered. We decided to limit the range ofs within the
interval usu,4 since we are aware that the amplitude~1.1! is
only an approximation of the true amplitude, an approxim
tion truly not valid for valuess.16 in the physical region
s524 is equivalent tot512 in the physical region of thet
channel. One gets

b313b4>
37

1920p2 '1.9231023 for s50

and

b313b4>8.2831023 for s524,

which is stronger than the previous inequality. In the follo
ing we will list numerical values ats50 ands524, the last
ones being a little better such as the previous relations sh

We will work now in the two-loop approximationO(p6)
and consider only the constraints derived in Sec. II wh
give the strongest results. The constraints have the form

(
i 51

6

ci
k~s,a!bi1 f k~s,a!>0, ~3.1!

where k51,2,3 labels the independent constraints. As
said before there are only three possible constraints from
positivity of the absorptive parts, because we have only th
independent amplitudes and the crossing symmetry is an
act symmetry for the ChPT amplitudes. In the previous s
tion we derived six constraints but only three are numerica
independent. The above inequalities are obtained for ev
value ofs within the unphysical region 0<usu<4. Each in-
equality defines a half space where the parametersbi can
reside. Thus the true result would be that obtained by c
structing the intersection of these half spaces. Unfortuna
the envelope cannot be found in an analytic form, the fu
tions f k(s,a) being very complicated.

The constraint~2.3! for i 51 ands50 is equivalent to

b313b42
37

1920p2 1aF 7b1

320p2 2
b2

60p2 2
2b3

45p2 1
b4

180p2

116b62
367

552960p2 1
6869

1658880p4G>0. ~3.2!

For s524 one obtains

b313b428.28310231a@1.253102319.731024b1

21.5631022b210.13b315.0331022b4212b5

152b6#>0. ~3.28!
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Taking a→0 one gets the one-loop result.
For i 52 we find the relations

b42
31

5760p2 2aF b1

240p2 1
43b2

2880p2 1
b3

24p2 1
23b4

180p224b6

2
67

276480p2 2
707

331776p4G>0 for s50 ~3.3!

and

b421.24310231a@2.853102422.0431024b1

22.6931023b221.8531022b320.143b4112b6#>0

~3.38!

for s524, respectively.
The inequality ~2.5! for n52 gives for s50 and s5

24, respectively,

b315b42
173

5760p2 1aF 13b1

960p2 2
67b2

1440p2 2
23b3

180p22
b4

4p2

124b62
11

61440p2 1
13939

1658880p4G>0, ~3.4!

b315b421.08310221a@5.6531024b122.0931022b2

19.1531022b320.236b4212b5176b6#>0, ~3.48!

and it is easily seen that both are a consequence of the
vious two being the sum of the first and of the second o
multiplied by 2. The relations~2.6!–~2.8! give us, in prin-
ciple, three new inequalities, but only one will be indepe
dent of the first two already obtained. ForI 50 we obtain

b317b42
47

1152p2 1aF b1

192p2 2
11b2

144p2 2
19b3

90p2 2
91b4

180p2

132b61
169

552960p2 1
7003

550960p4G>0,

b317b421.33310221a@1.5831024b122.6831022b2

15.4531022b320.522b4212b51100b6

21.131024#>0,

which again are linear combinations of the first two.
For I 51 the relations have the form

11

2688p2 1aF b1

224p2 1
17b2

1344p2 2
151b3

2016p2 2
653b4

2016p2 1b5

1b61
37

215040p2 1
4111

290304p4G>0, ~3.5!

1.6310241a@b51b611024b114.231024b2

22.931022b328.431022b412.7831024#

>0. ~3.58!
7-5
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This is the third independent relation as can easily be s
because the one-loop approximation gives a positive num
independent ofbi . More important is the fact that the func
tion f 3(t,a) appearing in the relation~3.1! in the one-loop
approximation is positive over~presumably! the entire nega-
tive real axis which proves that the positivity is very we
satisfied even by the lowest approximation of the ChPT a
plitudes.

For I 52 the inequalities are

b31b42
49

5760p2 1aF 29b1

960p2 1
19b2

1440p2 1
7b3

180p2 1
47b4

180p2

18b62
127

110592p2 2
67

552960p4G>0, ~3.6!

b31b425.8310231~21.823102311.3831023b121.02

31022b210.165b310.336b4212b5128b6!>0.

~3.68!

We have written all the inequalities since they were usefu
checking the calculations.

A first remark is the following: ats50 the coefficientb5
appears only in the inequality~3.3!. Thus we can say that i
is unimportant arounds50 and make it vanish also in th
amplitudes. It is true that the above inequalities have b
obtained by an extremal property; they are calculated on
line where the corresponding amplitudes are taking th
minimal values. This may be a suggestion that the phys
partial waves satisfy also an extremal principle which has
be found. This is also supported by the findings of Wand
who could not obtain a reliable value for this parameter@15#.
What the above results suggest is that a good determina
of b5 can be obtained only fromI 51 data.

We have tested how the parametersbi found in the litera-
ture compare with the inequalities. Unfortunately there
only two papers that give values for allbi @14,20#. The val-
ues given by Bijnenset al. are almost good since all but th
last one inequality~3.6! are satisfied. The values of the le
hand side of Eq.~3.6! are 0.00329 ats50 and20.0058 at
s524 for the first set of the parametersbi ~corresponding to
the scalem51 GeV!, while for the second set correspondin
to the scalem5500 MeV the values are 0.00435 an
20.00256, respectively. The values obtained in Ref.@20#
strongly violate three of the above inequalities. Thus the
hand side of Eq.~3.2! is 0.0025 ats50 and20.0168 ats
524 and the corresponding values for Eq.~3.4! are 0.1244
and 20.0054, respectively. The last inequality Eq.~3.6! is
violated both at s50 and s524, the numbers being
20.0074 and20.0028. This shows that something is wro
with these numerical values and an independent checkin
them is welcome. The values obtained by Knechtet al. @3#
for the last four parameters can be used to obtain constra
on theb1 andb2 but the allowed domain is rather large; th
same is true for the values given by Wanders@15#.
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Using a Roy equation analysis of the availablepp phase
shift data Ananthanaryan and Bu¨ttiker @21# obtained values
for the chiral coupling constantsl̄ 1 , l̄ 2 and they can be trans
lated into constraints onbi . Since the parametersbi are lin-
ear combinations of all fourl̄ i , the constraints become con
straints on l̄ 3 and l̄ 4 ; so an independent determination
these last ones is necessary to check if the inequalites
satisfied or not. Unfortunately our results, being expres
by inequalities, cannot be directly used for predicting n
merical values forbi , but they can be used, such as t
above numerical analysis shows, for testing values forbi
obtained by other methods. We have tested also the ineq
ties ~2.4!, ~2.8!, ~2.9!, and~2.10! for a few valuesn>3 and
l>2, respectively, and we found that they are very well f
filled.

IV. CONCLUSION

We have tested the positivity properties of the ChPT pio
pion amplitudes and we have obtained a number of inequ
ties which express this property. We conclude that the pi
pion amplitudes given by the relation~1.1! satisfy this
property very well. In theO(p4) approximation the positiv-
ity implies two constraints:b4 is a positive quantity and so i
the combinationb313b4 . As concerns the positivity of the
I 51 amplitude this was tested numerically up tot52105

where the derivative is still positive. IncludingO(p6) contri-
butions one get constraints involving all six parametersbi ,
but the corrections to theO(p4) results are small which sup
port the idea that the expansion~1.1! is the best candidate fo
the true amplitude. It might seem surprising but we consi
that the main result of this study is the conclusion that
most important parameters to be determined areb3 andb4 ,
these parameters appearing in the one-loop results. This
consequence of the good properties near threshold of
Weinberg approximation together with the very power
property of the positivity of the scattering amplitudes. Let
recall that this property was essential in deriving the ana
icity domain of pion-pion amplitudes@22#. This means that
the amplitude~1.1! in which all butb3 ,b4 are zero will give
a fair description of the low-energy phenomenology up
about 6–700 MeV and the contribution of the other coe
cients will be seen at higher energies. In conclusion a g
determination of the above two parameters will be a go
starting point in the comparison of theory with experime
Work along this line is in progress.
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