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Non-Markovian effects in strong-field pair creation
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We analyze a quantum kinetic equation describing both boson and fermion pair production and explore
analytically and numerically the solution of the non-Markovian kinetic equation. In the low density limit of the
kinetic equation we find an analytical solution for the single particle distribution function of bosons and
fermions. The numerical investigation for a homogeneous, constant electric field shows an enhancement
(boson$ or a suppressiorifermiong of the pair creation rate according to the symmetry character of the
produced particles. For strong fields non-Markovian effects are important while they disappear for weak fields.
Hence it is sufficient to apply the low density limit for weak fields but necessary to take into account memory
effects for strong fieldd.S0556-282(199)04607-X]

PACS numbsgps): 12.38.Mh, 05.60.Gg, 25.75.Dw

I. INTRODUCTION A generalized treatment allowing for a time dependent
field was given in[21,22. Therein we derived a kinetic

A proper description of the preequilibrium evolution of equation containing both boson and fermion pair production.
the quark-gluon plasmegQGP), believed to be created in an For the case of a constant field our results agree with those of
ultrarelativistic heavy-ion collision can start from a transport[19,23. The properties of the source term itself such as the
equation that incorporates a source term and a collision intenomentum dependence and the time structure have been
gral[1]. The source term describes the production of pairs ostudied[22—24 for a constant and a time dependent field. A
particles and antiparticles while the collisions lead to ther-detailed analysis of the boson pair creation combined with a
malization. systematic numerical study of the time structure of the solu-

The formation of the QGP is assumed to proceed via théion was provided in the approach §23]. These studies
creation of a strong chromoelectric field in the region be-employ an asymptotic expansion of the non-local source
tween the two receding nuclei after the collision. The fieldterm which results in a local source term for particle cre-
subsequently decays by emitting quark-antiquark pairs acation.
cording to the nonperturbative tunneling process of the In order to give a complete picture of the pair creation
Schwinger mechanisif2—4]. Within the flux tube model a process in terms of a kinetic equation alternatively to a field
lot of promising research has been carried [@14)]. theoretical solution it is necessary to study besides the weak

The process of pair production within the Schwingerfield limit also the strong field behavior where the appear-
mechanism has been addressed by many aufbd@sl0,13  ance of non-Markovian aspects of the pair creation process is
in recent years, with the back reaction scenario also considxpected. Therefore the main goal of this article is the study
ered[16]. A recent application of the Schwinger mechanismof the time evolution of the system in a regime where
of pair creation to the QCD case, solving a transport equatiomemory effects become important. As an illustrative ex-
in boost invariant variables with a simple collision and ample we consider pair creation in QED. Attention will be
source term, has been performed 1i7]. Another interesting paid to the numerical analysis of the evolution of the distri-
calculation was provided b}18] where the polarization of bution function for both bosons and fermions. We explore
the created quark-antiquark pair in a string fragmentatiorihe influence of the different quantum statistical properties of
model for inclusive reactions was discussed. boson and fermion pair creation and how the differences de-

The pair creation process as a field theoretical problem ipend on the strength of the external field.
solved by analyzing the Dirac equation with an external field In Sec. Il A we discuss the kinetic equation with a new
coupled to the Maxwell equations, e[d6]. In recent studies source term for pair production. In Sec. || B we explore the
the open question as to how to link the field theoretical treathumerical solution of the hon-Markovian kinetic equation for
ments with a kinetic theory has been addressed. Investigaveak and strong fields. We also study the influence of the
tions performed for QED have shown that a consistent fieldymmetry character of fermions and bosons on the evolution
theoretical approach leads to a kinetic equation with a modief the distribution function. In Sec. Il C we discuss the ana-
fied source term, providing a non-Markovian evolution of thelytic solution in the Markovian and the low density limits,
distribution function. This result was first obtained by Raurespectively. We compare the results with the non-
[19] for the case of fermion pair creation for a constant elecMarkovian solution and discuss the differences. The results
tric field using a projection methd@0]. are summarized in Sec. Ill. Within this study we neglect any
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influence due to collisions as well as back reactions of the 0.40
produced charged particles on the initial electric field.

0.20
1. NON-MARKOVIAN KINETIC EQUATION

A. Source term with non-Markovian character 0.0 [

production rate

We consider particle production in a strong external elec-
tric field which leads to an unstable vacuum that can decay
by creation of electron-positron pairs. Using the field-
theoretical model of charged particles in an external, homo-, 001 |
geneous, time-dependent field characterized by the vecto®
potential A ,= (0,0,0A(t)) with A(t)=A;(t) and the result-
ing electric fieldE(t) =E;(t) = —A(t) = —dA(t)/dt, the ki-
netic equation is derived starting from the Diréi€lein-
Gordon equation for fermiongboson$. The transition from
the in-state to the instantaneous, quasiparticle state at th ‘ ‘ ‘ ‘ ‘
time t has been achieved by a time-dependent Bogoliubov -30 -20 -10 0.0 1.0 2.0 3.0
transformation. Pi/Eperp

As the final result we obtain the kinetic equation for the

FIG. 1. The dependence of the source term in low density limit

single  particle  distribution  function  f(P,t) . ) .

B + . ) on the parallel momentum for fermion pair creation for a strong
=(0lap(t)ap(t)|0) defined as the vacuum expectation valuefi|q (ypper panelEy=1.5) and a weak fieldlower panel:E,

in the time dependent basis of creation and annihilation op=0.5).

eratorsa%(t),a;(t) for electron states at the tinteand the

0.0

-0.01 |

production

-0.02

— t
3-momentumP: @(t):f dt’w(t’). (4)
df.(P,0) _ If(P,1) eE(t) If(P,1) Equation(1) is characterized by the following properties.
dt gt aP(t) (i) The particles are produced not only at rest=0 as
1 . assumed in more phenomenological approaches|¥6§.In
:_Wt(t)f dt' W, (t') Fig. 1 the dependence of the source term in low density limit
2 — for fermion production on the parallel momentum,

x[1x2f.(Pt)Jeogx(t' D], (1) 1 :
Sg(P,t)=§Wi(t)f dt'W.(t")cogx(t',t)], (5
where the upper sigtlower sign in Eq. (1) corresponds to e

b.oson(f_ermlon) pair creation. Details Of_ the dt_arlvatlon_are is shown. This calculation has been performed for a strong
given in [21-23. The momentum is defined a® 4,9 weak constant electric fieléi(t)=const. The produc-
=(P1,P2,Py(t)), with the longitudinal momentun®(t)  tion rate is peaked at about zero momentum:; for positive
=p,—eA(t) wherep,=p;. For fermion creation we find, in - momenta it approaches zero, and for negative momenta it is
agreement witti19), dominated by oscillations due to the choice of a constant
electric field. It increases with increasing strength of the ex-
ternal field. Similar results have been obtained recently by

W_(t)= % 2) different author§19,21-23.
w?(t) (i) The source term and the distribution function have a
momentum dependence accounted for by the transverse en-
and for boson production our result agrees 28] ergy £, and by the kinetic momentur®|(t); i.e., once a
solution forpy=0 andp, =0 is obtained, the solution for
nonvanishing momenta can be generated by simple variable
eE()P|(t) Pyt transformations. Therefore, we drop the explicit notation of
W)= w?(1) T e W-(1). @ the dependence oR in the distribution function and in the

source term.

i (i) Furthermore, the kinetic equatiofil) has non-

We define the total e”ejzgw(t): Vel +P(1), the rans-  \arkovian character. The source term contains a time inte-
— 2 . . =

verse energy, =\ym“+p} and the transverse momentum gration over the statistical factgrl+2f. (P,t)] and over
p.=(p1,p,). Furthermorex(t’,t)=2[O(t)—O(t')] de- the non-local cosine function which causes memory effects.
notes the difference of the dynamical phases which are deFhis important property will be discussed within this article.
fined as Investigating the differences of boson and fermion pair cre-
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ation for weak and strong fields, we go beyond recent stud- 3
ies, e.g. bhy[22,23, in the following subsections.

B. Solution of the non-Markovian kinetic equation

N

In the previous subsection we have discussed general fea-
tures of the source term. Now we want to study the time
structure of the non-Markovian solution in detail by solving
the kinetic equation

f (t)exp(~n/E,y)

[y

df.( 1 oo
Tszi(t)j_mdt W.(t)

X[1x2f.(t")]Jcog x(t',1)] (6) T

numerlca”y The non_MarkOVlan Character |S ObV'OUS and FIG. 2. The boson distribution function as a solution of the
has two different origins. On the one hand coherent phas@on-Markovian equation as function of time for different field
oscillations are contained, induced by the cosine functiorstrengths ap;=0.

with a non-local argument. This non-locality in time leads to .

non-Markovian effects itself. On the other hand the appear- —  PEL(PL)

ance of a statistical factor under the time integral means that Ar=A7(py,pL)= eE (10
the solution of the differential equation depends on the full

time evolution of the distribution function and hence This notation is also convenient to distinguish the weak field
memory effects are included. (Eo<1) and strong field E,>1) limits.

The complicated structure requires a self-consistent For such a simple model case, we can solve the integral of
scheme for the numerical solution. As initial conditions wethe dynamical phasét) and obtain
use lim_, _.f.(t)=0. We solve the differential equation
within the standard methods and obtain the self-consistent
solution by iteration. Another possibility to solve this equa- @ (7)== (7— A7) wy(7) + iln[Eo( T— A7)+ wo(7)].
tion is direct solution by integration. Numerical investiga- 2 2Eg
tions have shown that this method leads to the same result (11
but more iteration steps are needed to find the solution and ) , , ,
thus we decided to solve E¢) in its differential form. In I the following we discuss the numerical solution of the
order to demonstrate the numerical solution of the kineticinetic equation for bosons and fermions for different field
equation we choose the simple case of a constant electrﬁre”gths' In Fig. 2 we plot the distribution function for
field E(t)=E=const. On the one hand this is the most osons for weak fields and strong fields. The particles are

simple possible case also for the numerical treatment Sim%roduced at about zero kinetic momentum. Because of the
this assumption leads to a reduction of the number of inteact that we have no damping mechanism, the distribution
grations. On the other hand this is the stand&mdatzor the _oscnlat_es around a constant va!ue. The oscillations to _be_seen
case that back reactions are not includizd,23 and there- N the figure are due to the choice of a constant electric field.

fore permits us to compare the results. The vector potentia{P response to strong fields the frequencies of these oscill_a—
is. in this case tions increase while the amplitudes decrease compared with

the limit at large times. OtheAnsaze for the time depen-
dence of the external field such as a Gaussian sfgg}enay
"A( 7)=A(71)le, = —7Ey /e, (7) lead to a damping of these oscillations. But it is important to
note that in order to describe a more realistic situation the
where the dimensionless variatigy=eE/=? does not de- back reaction of the produced particles on the initial field
pend on time and the energy is given as should be includefl16,23. The curves are normalized to the
large time limit

wo(r) = T+ EZr= A 77, ®

In our calculations we keep the transverse momentum fixed
and hence normalize in units of a constant. In Egs.(7)
and(8) we have introduced the dimensionless time variable

. — T
f(7—o)=ex E_o . (12

éNe observe that for all plotted field strengths the curves
converge to this limit. In other words, one can conclude that
for large times we obtain the old result given by Schwinger’s
T=te, (9 formula for weak fields as well as for strong fields. The
absolute value of the distribution function at>« is larger
and for strong fields than it is for weak fields.
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5 ‘ ‘ ‘ ‘ ' ' ‘ Taking into account the initial condition lim, _.fY(7)
=0, we obtain the following solution of the kinetic equation
) — E,=07 (13):
,,,,,,,,,,, - E,=1.0 :
~ ]\ E,=1.5
--— E,=3.0 r
%3 ’ ‘ f'ftﬂ(r):i%(l—ex;{iZf dr' S () ) (14)
& This result is exact in the Markovian limit and holds for any
- time-dependent homogeneous electric field. In the lowest or-
1 C der of the expansion of Eq14) we obtain
0

3 4 s f%<r>=jf dr'S2(7). (15)

FIG. 3. Fig. 2 for fermions. . . . . e
G. 3. Same as Fig. 2 for fermions This solution is equivalent to the low density limit where

effects due to the symmetry character of the created particles
are neglected in the source term. Note that both the low
density limit and the Markovian approximation are restricted
to weak fields Eq<1.

We obtain a similar result for fermion pair creation; see
Fig. 3. As a result of the different amplitudes for fermion and
boson pair production, Eq$2) and (3), the shapes of the

curves are slightly different, in particular around zero kinetic . . .
o . Before we discuss the numerical results for the Markovian
momenta. We can compare the distribution function for fer-

mions and bosons for a given field strength, Figs. 2 and 3§pproﬁ_mati%ntﬁndd'_[hte_kl)ovt\( der;sityt_limitam;_e egp_lorcé(g_%neral
; o ; . ; properties of the distribution function defined in .

e e o e EGUIETentof a kintc thery is 1t he istution

o . o . function for bosons and for fermions must be positive defi-

limit for large times and oscillate with the same frequencynite for all times and momenta. In order to prove the validity

for a givenE,. The results which we obtain for the boson of this important property we réwrite EqL5) as

case are in agreement with thosd 28] for the case of weak

fields, wherein the Markovian limit was employed. But the

numerical solution introduced in this section allows us in NS L N
addition to consider pair creation for strong fields. fi(n)= Ef_xdT 9= (7 )f_ocdf 9=(7")
. L 1(t "
C. Low density and Markovian limit + Ef_de,g%—’(T,)f_mdflg%—’(%)’ (16)

1. Closed kinetic equation

In the previous subsection we have demonstrated how twhere the functiong’?(7) are given as
solve the kinetic equation in its non-Markovian form and
explored the numerical solutions. In this section we want to
discuss the solution of the kinetic equatiod) for weak gl,z(T):W+(T)|CO$2®(T)]]
fields where it is possible to apply approximations. The Mar- - - sin20(7)])"
kovian limit of the non-Markovian equatiofi) is defined by
the neglect of memory effects in the source term. This reitis easy to transform the integrél6) to the following form:
quires us to find a local approximation of the non-local ar-
gument of the time integral as well as to neglect the depen- 1/ [+ .
dence of the distribution function on the pre-history of the {9 (7)= —<f dr'gl(7) J dT’gi(T’))
evolution, f(7')—f(7). Herein we restrict ourselves to the - A= - - -
neglect of memory effects in the distribution function and (18
retain the phase oscillation effects. Hence we can compa
the results with the full non-Markovian solution of the pre-
vious section. Although we will call this the Markovian ap-
proximation within this article, it is important to note that the
complete Markovian solution was recently explored 23].

17

2 2

L1
4

r . . .

Erom this quadratic representation of E@5) we can con-
clude that the distribution function is positive definite as it
should be

We obtain the kinetic equation f2(n=0. (19
Y On the other hand this result is very useful for numerical
+(7) =[1=2f"(1)]12 (1) =SM(7) (13) calculations since Eq(18) just requires us to perform a
dr - - = single integration compared with E¢L5) in which it was

necessary to solve a double integration; hence it makes the
whereS‘i(r) is the source term in low density limit, E¢p). numerical treatment easier.
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FIG. 5. The time evolution of the distribution functions of fer-

FIG. 4. The time evolution of the distribution functions of mions (f-) compared with the low density Iimi’t‘.’_ atp=0 for a
bosons {,) compared with the low density limi atp;=0 fora  Strong field(upper panelE,=3.0) and a weak fieldlower panel:
strong field(upper panelE,=5.0) and a weak fieldlower panel:  Eo=0.5) is shown.

Ey=0.7) is sh . . . .
0 ) 1s shown wrong results. Technically the reason is clear. The statistical

factor[ 1+ 2f(7)] deviates from 1 and therefore it has to be
included in the kinetic equation. Physically this means that
the non-Markovian character becomes important.

We have to distinguish different time scales: the memory
time and the production timg9,22—24. While the memory

At large times,7— o, the distribution function is in the
asymptotic regime. In the low density limit it is easy to show
the feature thafy(«)#0. The distribution function evolves
from zero atr— — to an asymptotic nonzero value. In the

%%Si:]gshgzibs?;I;v;e3%22?\/2”2;;&';:%”5'gggnog}fegc?ampthetime ha_s guantum mechanical origin _and can be conside_red
next subsection we will elucidate these properties With nuas the time needed to tunnel the barner,_ the production time
merical results is the tlme |n.terval between tw_o creation processes. The
' memory time is now for strong fields of the same order of
magnitude as the production time. A separation of the time
scales, which is necessary for the approximation discussed in
Using the results of Eq$18) we can explore the solution the previous subsection, is no longer possible. The pre-
of Eq. (14) for the distribution functions in the Markovian history affects the evolution of the distribution function and
limit and in the low density approximation. therefore memory effects become important. This is taken
In Figs. 4 and 5 we compare the distribution functions ofinto account by the time integration over the statistical factor
the non-Markovian solutions with the low density limit so- in the full non-Markovian equation.
lutions for fermions and bosons, respectively. In the lower In the previous subsection we have also discussed the
panels we have chosen a weak field and observe that thdarkovian approximation understood as the neglect of
results agree with each other. This was expected since fanemory in the distribution function only. In Fig. 6 we com-
weak fields the absolute value of the distribution function ispare the three solutions of the kinetic equation for strong
small and consequently the statistical fagtbr-2f(7)] does fields for bosons(lower panel and for fermions(upper
not considerably deviate from 1. Hence the low density limitpane). Besides the already discussed non-Markovian solu-
is a good approxmation for relatively small field strengths,tion and the low density approximation, we also show the
Eo<1. Markovian limit. It is needless to point out that for weak
In the upper panels we have chosen large field strength$ields the Markovian solution also agrees with the non-
Both for fermions, Fig. 4, and for bosons, Fig. 5, the low Markovian solution. Although the Markovian solution is in
density limit solution shows a different limit for large times. better agreement with the correct solution than the low den-
The inclusion of a quantum statistical character in the nonsity limit, the error is visible and the Markovian limit fails
Markovian solution leads for fermion pair creation to a sup-for strong fields. For weak fields the low density limit pro-
pression and for boson pair creation to an enhancement comides exact results since non-Markovian effects disappear.
pared to the corresponding low density limit. These plotsFor strong fields it is unavoidable to solve the non-
elucidate two important things. On the one hand they demMarkovian equation. Just in a small band of field stengths of
onstrate the influence of the different symmetry character ofbout 1 the Markovian limit is a sensible approximation,
fermions and bosons. On the other hand we see that fdretter than the low density limit, but non-Markovian effects
strong fields the low density limit solution provides the are still very small. Hence for small fieldEy,<1, we sug-

2. Numerical results
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FIG. 6. The time evolution of the distribution functions of fer-

mions (upper panelEy,=3.0) and bosonglower panel:E;=5.0)

within different approximations for strong fields. Only the full non-

Markovian solution provides the correct limit for large times.

gest to use the low density limit, for strong field> 1, the
non-Markovian solution.

lIl. SUMMARY

PHYSICAL REVIEW D 59 094005

Markovian form for both weak and strong fields. We com-
pared these solutions with both the low density limit and the
Markovian approximation for which we found an analytic
solution in closed form.

In conclusion we can summarize that for weak fields it is
appropriate to use the low density limit while for strong
fields it is necessary to solve the non-Markovian kinetic
equation. In order to give a more complete picture of the
physics beyond the Markovian limit it is necessary to study
in a next possible step the momentum dependence of the
distribution functions.

Although the numerical analysis was performed for a con-
stant field, our results qualitatively hold for any time-
dependent field. This will be important when a more realistic
scenario is addressed where the electric field is determined
self-consistently. In order to incorporate back reactions it is
necessary to solve the Maxwell equation that determines the
electric field via the conduction current and the polarization
current due to the creation of the charged particle pairs
[16,23. Furthermore, it would be of great interest to extend
this approach to the QCD case in order to explore the con-
sequences of the new source term for the pre-equilibrium
physics in ultrarelativistic heavy-ion collisions.
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