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Non-Markovian effects in strong-field pair creation
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We analyze a quantum kinetic equation describing both boson and fermion pair production and explore
analytically and numerically the solution of the non-Markovian kinetic equation. In the low density limit of the
kinetic equation we find an analytical solution for the single particle distribution function of bosons and
fermions. The numerical investigation for a homogeneous, constant electric field shows an enhancement
~bosons! or a suppression~fermions! of the pair creation rate according to the symmetry character of the
produced particles. For strong fields non-Markovian effects are important while they disappear for weak fields.
Hence it is sufficient to apply the low density limit for weak fields but necessary to take into account memory
effects for strong fields.@S0556-2821~99!04607-X#

PACS number~s!: 12.38.Mh, 05.60.Gg, 25.75.Dw
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I. INTRODUCTION

A proper description of the preequilibrium evolution
the quark-gluon plasma~QGP!, believed to be created in a
ultrarelativistic heavy-ion collision can start from a transp
equation that incorporates a source term and a collision i
gral @1#. The source term describes the production of pairs
particles and antiparticles while the collisions lead to th
malization.

The formation of the QGP is assumed to proceed via
creation of a strong chromoelectric field in the region b
tween the two receding nuclei after the collision. The fie
subsequently decays by emitting quark-antiquark pairs
cording to the nonperturbative tunneling process of
Schwinger mechanism@2–4#. Within the flux tube model a
lot of promising research has been carried out@5–14#.

The process of pair production within the Schwing
mechanism has been addressed by many authors@5,6,10,15#
in recent years, with the back reaction scenario also con
ered@16#. A recent application of the Schwinger mechanis
of pair creation to the QCD case, solving a transport equa
in boost invariant variables with a simple collision an
source term, has been performed in@17#. Another interesting
calculation was provided by@18# where the polarization o
the created quark-antiquark pair in a string fragmentat
model for inclusive reactions was discussed.

The pair creation process as a field theoretical problem
solved by analyzing the Dirac equation with an external fi
coupled to the Maxwell equations, e.g.@16#. In recent studies
the open question as to how to link the field theoretical tre
ments with a kinetic theory has been addressed. Inves
tions performed for QED have shown that a consistent fi
theoretical approach leads to a kinetic equation with a mo
fied source term, providing a non-Markovian evolution of t
distribution function. This result was first obtained by R
@19# for the case of fermion pair creation for a constant el
tric field using a projection method@20#.
0556-2821/99/59~9!/094005~7!/$15.00 59 0940
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A generalized treatment allowing for a time depende
field was given in@21,22#. Therein we derived a kinetic
equation containing both boson and fermion pair producti
For the case of a constant field our results agree with thos
@19,23#. The properties of the source term itself such as
momentum dependence and the time structure have b
studied@22–24# for a constant and a time dependent field.
detailed analysis of the boson pair creation combined wit
systematic numerical study of the time structure of the so
tion was provided in the approach of@23#. These studies
employ an asymptotic expansion of the non-local sou
term which results in a local source term for particle c
ation.

In order to give a complete picture of the pair creati
process in terms of a kinetic equation alternatively to a fi
theoretical solution it is necessary to study besides the w
field limit also the strong field behavior where the appe
ance of non-Markovian aspects of the pair creation proces
expected. Therefore the main goal of this article is the stu
of the time evolution of the system in a regime whe
memory effects become important. As an illustrative e
ample we consider pair creation in QED. Attention will b
paid to the numerical analysis of the evolution of the dis
bution function for both bosons and fermions. We explo
the influence of the different quantum statistical properties
boson and fermion pair creation and how the differences
pend on the strength of the external field.

In Sec. II A we discuss the kinetic equation with a ne
source term for pair production. In Sec. II B we explore t
numerical solution of the non-Markovian kinetic equation f
weak and strong fields. We also study the influence of
symmetry character of fermions and bosons on the evolu
of the distribution function. In Sec. II C we discuss the an
lytic solution in the Markovian and the low density limits
respectively. We compare the results with the no
Markovian solution and discuss the differences. The res
are summarized in Sec. III. Within this study we neglect a
©1999 The American Physical Society05-1
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influence due to collisions as well as back reactions of
produced charged particles on the initial electric field.

II. NON-MARKOVIAN KINETIC EQUATION

A. Source term with non-Markovian character

We consider particle production in a strong external el
tric field which leads to an unstable vacuum that can de
by creation of electron-positron pairs. Using the fie
theoretical model of charged particles in an external, hom
geneous, time-dependent field characterized by the ve
potentialAm5„0,0,0,A(t)… with A(t)5A3(t) and the result-
ing electric fieldE(t)5E3(t)52Ȧ(t)52dA(t)/dt, the ki-
netic equation is derived starting from the Dirac~Klein-
Gordon! equation for fermions~bosons!. The transition from
the in-state to the instantaneous, quasiparticle state a
time t has been achieved by a time-dependent Bogoliu
transformation.

As the final result we obtain the kinetic equation for t
single particle distribution function f ( P̄,t)
5^0uaP̄

† (t)aP̄(t)u0& defined as the vacuum expectation val
in the time dependent basis of creation and annihilation
eratorsaP̄

† (t),aP̄(t) for electron states at the timet and the

3-momentumP̄:

d f6~ P̄,t !

dt
5

] f 6~ P̄,t !

]t
1eE~ t !

] f 6~ P̄,t !

]Pi~ t !

5
1

2
W6~ t !E

2`

t

dt8W6~ t8!

3@162 f 6~ P̄,t8!#cos@x~ t8,t !#, ~1!

where the upper sign~lower sign! in Eq. ~1! corresponds to
boson~fermion! pair creation. Details of the derivation ar
given in @21–23#. The momentum is defined asP̄
5„p1 ,p2 ,Pi(t)…, with the longitudinal momentumPi(t)
5pi2eA(t) wherepi5p3 . For fermion creation we find, in
agreement with@19#,

W2~ t !5
eE~ t !«'

v2~ t !
, ~2!

and for boson production our result agrees with@23#

W1~ t !5
eE~ t !Pi~ t !

v2~ t !
5

Pi~ t !

«'

W2~ t !. ~3!

We define the total energyv(t)5A«'
2 1Pi

2(t), the trans-

verse energy«'5Am21 p̄'
2 and the transverse momentu

p̄'5(p1 ,p2). Furthermore x(t8,t)52@Q(t)2Q(t8)# de-
notes the difference of the dynamical phases which are
fined as
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Q~ t !5E
2`

t

dt8v~ t8!. ~4!

Equation~1! is characterized by the following properties.
~i! The particles are produced not only at restpi50 as

assumed in more phenomenological approaches, e.g.@16#. In
Fig. 1 the dependence of the source term in low density li
for fermion production on the parallel momentum,

S6
0 ~ P̄,t !5

1

2
W6~ t !E

2`

t

dt8W6~ t8!cos@x~ t8,t !#, ~5!

is shown. This calculation has been performed for a stro
and weak constant electric field,E(t)5const. The produc-
tion rate is peaked at about zero momentum; for posit
momenta it approaches zero, and for negative momenta
dominated by oscillations due to the choice of a const
electric field. It increases with increasing strength of the
ternal field. Similar results have been obtained recently
different authors@19,21–23#.

~ii ! The source term and the distribution function have
momentum dependence accounted for by the transverse
ergy «' and by the kinetic momentumPi(t); i.e., once a
solution for pi50 and p'50 is obtained, the solution fo
nonvanishing momenta can be generated by simple vari
transformations. Therefore, we drop the explicit notation
the dependence onP̄ in the distribution function and in the
source term.

~iii ! Furthermore, the kinetic equation~1! has non-
Markovian character. The source term contains a time in
gration over the statistical factor@162 f 6( P̄,t)# and over
the non-local cosine function which causes memory effe
This important property will be discussed within this articl
Investigating the differences of boson and fermion pair c

FIG. 1. The dependence of the source term in low density li
on the parallel momentum for fermion pair creation for a stro
field ~upper panel:E051.5) and a weak field~lower panel:E0

50.5).
5-2
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NON-MARKOVIAN EFFECTS IN STRONG-FIELD PAIR . . . PHYSICAL REVIEW D59 094005
ation for weak and strong fields, we go beyond recent st
ies, e.g. by@22,23#, in the following subsections.

B. Solution of the non-Markovian kinetic equation

In the previous subsection we have discussed general
tures of the source term. Now we want to study the ti
structure of the non-Markovian solution in detail by solvin
the kinetic equation

d f6~ t !

d t
5

1

2
W6~ t !E

2`

t

dt8W6~ t8!

3@162 f 6~ t8!#cos@x~ t8,t !# ~6!

numerically. The non-Markovian character is obvious a
has two different origins. On the one hand coherent ph
oscillations are contained, induced by the cosine funct
with a non-local argument. This non-locality in time leads
non-Markovian effects itself. On the other hand the appe
ance of a statistical factor under the time integral means
the solution of the differential equation depends on the
time evolution of the distribution function and henc
memory effects are included.

The complicated structure requires a self-consist
scheme for the numerical solution. As initial conditions w
use limt→2` f 6(t)50. We solve the differential equatio
within the standard methods and obtain the self-consis
solution by iteration. Another possibility to solve this equ
tion is direct solution by integration. Numerical investig
tions have shown that this method leads to the same re
but more iteration steps are needed to find the solution
thus we decided to solve Eq.~6! in its differential form. In
order to demonstrate the numerical solution of the kine
equation we choose the simple case of a constant ele
field E(t)5E5const. On the one hand this is the mo
simple possible case also for the numerical treatment s
this assumption leads to a reduction of the number of in
grations. On the other hand this is the standardAnsatzfor the
case that back reactions are not included@19,23# and there-
fore permits us to compare the results. The vector poten
is, in this case,

Ã~t!5A~t!/«'52tE0 /e, ~7!

where the dimensionless variableE05eE/«'
2 does not de-

pend on time and the energy is given as

v0~t!5A11E0
2~t2Dt!2. ~8!

In our calculations we keep the transverse momentum fi
and hence normalize in units of a constant«' . In Eqs.~7!
and~8! we have introduced the dimensionless time variab

t5t«' ~9!

and
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Dt5Dt~pi ,p̄'!5
pi«'~ p̄'!

eE
. ~10!

This notation is also convenient to distinguish the weak fi
(E0,1) and strong field (E0.1) limits.

For such a simple model case, we can solve the integra
the dynamical phase~4! and obtain

Q~t!5
1

2
~t2Dt!v0~t!1

1

2E0
ln@E0~t2Dt!1v0~t!#.

~11!

In the following we discuss the numerical solution of th
kinetic equation for bosons and fermions for different fie
strengths. In Fig. 2 we plot the distribution function fo
bosons for weak fields and strong fields. The particles
produced at about zero kinetic momentum. Because of
fact that we have no damping mechanism, the distribut
oscillates around a constant value. The oscillations to be s
in the figure are due to the choice of a constant electric fie
In response to strong fields the frequencies of these osc
tions increase while the amplitudes decrease compared
the limit at large times. OtherAnsätze for the time depen-
dence of the external field such as a Gaussian shape@22# may
lead to a damping of these oscillations. But it is important
note that in order to describe a more realistic situation
back reaction of the produced particles on the initial fie
should be included@16,23#. The curves are normalized to th
large time limit

f ~t→`!5expS 2p

E0
D . ~12!

We observe that for all plotted field strengths the curv
converge to this limit. In other words, one can conclude t
for large times we obtain the old result given by Schwinge
formula for weak fields as well as for strong fields. Th
absolute value of the distribution function att→` is larger
for strong fields than it is for weak fields.

FIG. 2. The boson distribution function as a solution of t
non-Markovian equation as function of time for different fie
strengths atpi50.
5-3
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We obtain a similar result for fermion pair creation; s
Fig. 3. As a result of the different amplitudes for fermion a
boson pair production, Eqs.~2! and ~3!, the shapes of the
curves are slightly different, in particular around zero kine
momenta. We can compare the distribution function for f
mions and bosons for a given field strength, Figs. 2 and
The onset of particle creation~first maximum! is earlier for
fermions than it is for bosons. Both curves reach the sa
limit for large times and oscillate with the same frequen
for a givenE0 . The results which we obtain for the boso
case are in agreement with those of@23# for the case of weak
fields, wherein the Markovian limit was employed. But t
numerical solution introduced in this section allows us
addition to consider pair creation for strong fields.

C. Low density and Markovian limit

1. Closed kinetic equation

In the previous subsection we have demonstrated how
solve the kinetic equation in its non-Markovian form a
explored the numerical solutions. In this section we wan
discuss the solution of the kinetic equation~1! for weak
fields where it is possible to apply approximations. The M
kovian limit of the non-Markovian equation~1! is defined by
the neglect of memory effects in the source term. This
quires us to find a local approximation of the non-local
gument of the time integral as well as to neglect the dep
dence of the distribution function on the pre-history of t
evolution, f (t8)→ f (t). Herein we restrict ourselves to th
neglect of memory effects in the distribution function a
retain the phase oscillation effects. Hence we can comp
the results with the full non-Markovian solution of the pr
vious section. Although we will call this the Markovian ap
proximation within this article, it is important to note that th
complete Markovian solution was recently explored in@23#.

We obtain the kinetic equation

d f6
M~t!

dt
5@162 f 6

M~t!#S6
0 ~t!5S6

M~t!, ~13!

whereS6
0 (t) is the source term in low density limit, Eq.~5!.

FIG. 3. Same as Fig. 2 for fermions.
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Taking into account the initial condition limt→2` f 6
M(t)

50, we obtain the following solution of the kinetic equatio
~13!:

f 6
M~t!57

1

2S 12expF62E
2`

t

dt8S6
0 ~t8!G D . ~14!

This result is exact in the Markovian limit and holds for an
time-dependent homogeneous electric field. In the lowest
der of the expansion of Eq.~14! we obtain

f 6
0 ~t!5E

2`

t

dt8S6
0 ~t8!. ~15!

This solution is equivalent to the low density limit whe
effects due to the symmetry character of the created parti
are neglected in the source term. Note that both the
density limit and the Markovian approximation are restrict
to weak fields,E0,1.

Before we discuss the numerical results for the Markov
approximation and the low density limit, we explore gene
properties of the distribution function defined in Eq.~14!.
One requirement of a kinetic theory is that the distributi
function for bosons and for fermions must be positive de
nite for all times and momenta. In order to prove the valid
of this important property we rewrite Eq.~15! as

f 6
0 ~t!5

1

2E2`

t

dt8g6
1 ~t8!E

2`

t8
dt9g6

1 ~t9!

1
1

2E2`

t

dt8g6
2 ~t8!E

2`

t8
dt9g6

2 ~t9!, ~16!

where the functionsg6
1,2(t) are given as

g6
1,2~t!5W6~t!H cos@2Q~t!#

sin@2Q~t!#
J . ~17!

It is easy to transform the integral~16! to the following form:

f 6
0 ~t!5

1

4S E
2`

t

dt8g6
1 ~t8! D 2

1
1

4S E
2`

t

dt8g6
2 ~t8! D 2

.

~18!

From this quadratic representation of Eq.~15! we can con-
clude that the distribution function is positive definite as
should be

f 6
0 ~t!>0. ~19!

On the other hand this result is very useful for numeri
calculations since Eq.~18! just requires us to perform a
single integration compared with Eq.~15! in which it was
necessary to solve a double integration; hence it makes
numerical treatment easier.
5-4
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At large times,t→`, the distribution function is in the
asymptotic regime. In the low density limit it is easy to sho
the feature thatf 0(`)Þ0. The distribution function evolves
from zero att→2` to an asymptotic nonzero value. In th
absence of back reaction and collisions~or any other damp-
ing mechanism! we observe an accumulation effect. In th
next subsection we will elucidate these properties with
merical results.

2. Numerical results

Using the results of Eqs.~18! we can explore the solution
of Eq. ~14! for the distribution functions in the Markovia
limit and in the low density approximation.

In Figs. 4 and 5 we compare the distribution functions
the non-Markovian solutions with the low density limit s
lutions for fermions and bosons, respectively. In the low
panels we have chosen a weak field and observe tha
results agree with each other. This was expected since
weak fields the absolute value of the distribution function
small and consequently the statistical factor@162 f (t)# does
not considerably deviate from 1. Hence the low density lim
is a good approxmation for relatively small field strength
E0,1.

In the upper panels we have chosen large field streng
Both for fermions, Fig. 4, and for bosons, Fig. 5, the lo
density limit solution shows a different limit for large time
The inclusion of a quantum statistical character in the n
Markovian solution leads for fermion pair creation to a su
pression and for boson pair creation to an enhancement c
pared to the corresponding low density limit. These pl
elucidate two important things. On the one hand they de
onstrate the influence of the different symmetry characte
fermions and bosons. On the other hand we see that
strong fields the low density limit solution provides th

FIG. 4. The time evolution of the distribution functions o
bosons (f 1) compared with the low density limitf 1

0 at pi50 for a
strong field~upper panel:E055.0) and a weak field~lower panel:
E050.7) is shown.
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wrong results. Technically the reason is clear. The statist
factor @162 f (t)# deviates from 1 and therefore it has to b
included in the kinetic equation. Physically this means t
the non-Markovian character becomes important.

We have to distinguish different time scales: the mem
time and the production time@19,22–24#. While the memory
time has quantum mechanical origin and can be conside
as the time needed to tunnel the barrier, the production t
is the time interval between two creation processes. T
memory time is now for strong fields of the same order
magnitude as the production time. A separation of the ti
scales, which is necessary for the approximation discusse
the previous subsection, is no longer possible. The p
history affects the evolution of the distribution function an
therefore memory effects become important. This is tak
into account by the time integration over the statistical fac
in the full non-Markovian equation.

In the previous subsection we have also discussed
Markovian approximation understood as the neglect
memory in the distribution function only. In Fig. 6 we com
pare the three solutions of the kinetic equation for stro
fields for bosons~lower panel! and for fermions~upper
panel!. Besides the already discussed non-Markovian so
tion and the low density approximation, we also show t
Markovian limit. It is needless to point out that for wea
fields the Markovian solution also agrees with the no
Markovian solution. Although the Markovian solution is i
better agreement with the correct solution than the low d
sity limit, the error is visible and the Markovian limit fails
for strong fields. For weak fields the low density limit pro
vides exact results since non-Markovian effects disapp
For strong fields it is unavoidable to solve the no
Markovian equation. Just in a small band of field stengths
about 1 the Markovian limit is a sensible approximatio
better than the low density limit, but non-Markovian effec
are still very small. Hence for small fields,E0,1, we sug-

FIG. 5. The time evolution of the distribution functions of fe
mions (f 2) compared with the low density limitf 2

0 at pi50 for a
strong field~upper panel:E053.0) and a weak field~lower panel:
E050.5) is shown.
5-5
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gest to use the low density limit, for strong fields,E0.1, the
non-Markovian solution.

III. SUMMARY

We have analytically and numerically explored the so
tion of a quantum kinetic equation describing particle p
duction of boson and fermion pairs. The source term prov
ing the creation of pairs is characterized by its no
Markovian character. The time evolution of the distributi
function depends on the entire pre-history of the evoluti
We have numerically solved the kinetic equation in its no

FIG. 6. The time evolution of the distribution functions of fe
mions ~upper panel:E053.0) and bosons~lower panel:E055.0)
within different approximations for strong fields. Only the full no
Markovian solution provides the correct limit for large times.
09400
-
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-
-
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Markovian form for both weak and strong fields. We com
pared these solutions with both the low density limit and
Markovian approximation for which we found an analyt
solution in closed form.

In conclusion we can summarize that for weak fields it
appropriate to use the low density limit while for stron
fields it is necessary to solve the non-Markovian kine
equation. In order to give a more complete picture of t
physics beyond the Markovian limit it is necessary to stu
in a next possible step the momentum dependence of
distribution functions.

Although the numerical analysis was performed for a co
stant field, our results qualitatively hold for any time
dependent field. This will be important when a more realis
scenario is addressed where the electric field is determ
self-consistently. In order to incorporate back reactions i
necessary to solve the Maxwell equation that determines
electric field via the conduction current and the polarizat
current due to the creation of the charged particle pa
@16,23#. Furthermore, it would be of great interest to exte
this approach to the QCD case in order to explore the c
sequences of the new source term for the pre-equilibr
physics in ultrarelativistic heavy-ion collisions.
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