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Breaking of the flavor permutational symmetry: Mass textures and the CKM matrix
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Different Ansätze for the breaking of flavor permutational symmetry according toSL(3)^ SR(3).SL(2)
^ SR(2) give different Hermitian mass matrices of the same modified Fritzsch type, which differ in the
symmetry breaking pattern. In this work we obtain a clear and precise indication on the preferred symmetry
breaking scheme from a fit of the predicteduVthu to the experimentally determined absolute values of the
elements of the CKM matrix. The preferred scheme leads to simple mass textures and allows us to compute the
CKM mixing matrix, the Jarlskog invariantJ, and the three inner angles of the unitarity triangle in terms of
four quark mass ratios and only one free parameter: theCP violating phaseF. Excellent agreement with the
experimentally determined absolute values of the entries in the CKM matrix is obtained
for F590°. The corresponding computed values of the Jarlskog invariant and the inner angles are
J53.0031025, a584°, b524°, andg572° in very good agreement with current data onCP violation in
the neutral kaon-antikaon system and oscillations in theBs

0-B̄s
0 system.@S0556-2821~99!01309-0#

PACS number~s!: 12.15.Ff, 11.30.Er, 11.30.Hv, 12.15.Hh
ng
op
a
n
io

a

i-
i

if

i

o
s

ar
a

es
th

s

x-
s
a-
he
or

hi
s

tion

w
nal
e

ec-
for

ng

n-

he
The

d
ur
ons.

he

nt

ak,
of
and
ht
he
hen
ark
um
u-
I. INTRODUCTION

Recent interest in flavor or horizontal symmetry buildi
~mass textures! has been spurred mainly by the large t
quark mass and hence, the strong hierarchy in the qu
masses@1–8#. A permutational flavor symmetry has bee
advocated by many authors in order to constrain the ferm
mass matrices and mixing parameters@9–14#. Recently, vari-
ous symmetry breaking schemes have been proposed b
on the discrete non-Abelian groupSL(3)^ SR(3), which is
broken according to SL(3)^ SR(3).SL(2)^ SR(2)
.Sdiag(2). The group S(3) treats three objects symmetr
cally while the hierarchical nature of the Yukawa matrices
a consequence of the representation structure,1% 2, of S(3)
which treats the generations differently. DifferentAnsätzefor
the breaking of the permutational symmetry give rise to d
ferent Hermitian mass matricesMq of the same modified
Fritzsch type which, in a symmetry adapted basis, differ
the numerical value of the ratioZ1/25M23/M22. In the ab-
sence of a physically motivated argument to fix the value
Z1/2, different values forZ1/2 have been proposed by variou
authors@1–3,6,7,15–19#.

In this paper, different symmetry breaking schemes
classified in terms of the irreducible representations of
auxiliary S̃(2) group. Then, diagonalizing the mass matric
we obtain exact explicit expressions for the elements of
mixing matrix,VCKM , the Jarlskog invariantJ, and the inner
angles of the unitarity triangle in terms of the quark ma
ratios, the symmetry mixing parameter, and oneCP violat-
ing phase. Ax2 fit of the theoretical expressions to the e
perimentally determined absolute values of the element
the VCKM

exp mixing matrix gives a clear and precise indic
tion on the preferred pattern for the breaking of t
SL(3)^ SR(3) symmetry. Simple, explicit expressions f
the corresponding best mass textures are obtained from
best value of the mixing parameterZ1/2. In this way we ob-
tain an explicit parametrization of the Cabibbo-Kobayas
Maskawa~CKM! matrix in terms of the four quark mas
0556-2821/99/59~9!/093009~13!/$15.00 59 0930
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ratiosmu /mt ,mc /mt ,md /mb ,ms /mb and oneCP violating
phase in good agreement with the experimental informa
about quark mixings andCP violation in theK0-K̄0 system
and the most recent data on oscillations of theBs

0-B̄s
0 system.

The plan of this paper is as follows: In Sec. II we revie
some previous work on the breaking of the permutatio
flavor symmetry. A brief group theoretical analysis of th
modified Fritzsch texture is made in Sec. III. The next s
tion is devoted to the derivation of explicit expressions
the elements of theCKM mixing matrix and the Jarlskog
invariantJ in terms of the quark mass ratios and the mixi
parameterZ1/2. In Sec. V, we extract the best value ofZ1/2

from ax2 fit of our theoretical expressions to the experime
tally determined absolute values of the entries inuVCKM

exp u.
The interpretation of the best value ofZ1/2 in terms of the
analysis made in Secs. II and III and the derivation of t
corresponding best mass textures is made in Sec. VI.
resulting parametrization of theCKM matrix in terms of
four mass ratios and oneCP violating phase is compare
with the relevant experimental information in Sec. VII. O
paper ends with a summary of results and some conclusi

II. FLAVOR PERMUTATIONAL SYMMETRY

In this section, we review some previous work on t
breaking of the permutational flavor symmetry.

In the standard model, analogous fermions in differe
generations, sayu, c, andt or d, s, andb, have completely
identical couplings to all gauge bosons of the strong, we
and electromagnetic interactions. Prior to the introduction
the Higgs boson and mass terms, the Lagrangian is chiral
invariant with respect to any permutation of the left and rig
quark fields. The introduction of a Higgs boson and t
Yukawa couplings give mass to the quarks and leptons w
the gauge symmetry is spontaneously broken. The qu
mass term in the Lagrangian, obtained by taking the vacu
expectation value of the Higgs field in the quark Higgs co
pling, gives rise to quark mass matricesMd andMu:
©1999 The American Physical Society09-1
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LY5q̄d,LMdqd,R1q̄u,LMuqu,R1H.c. ~2.1!

In this expression,qd,L,R(x) andqu,L,R(x) denote the left
and right quarkd andu fields in the current or weak basis
qq(x) is a column matrix, its componentsqq,k(x) are the
quark Dirac fields,k is the flavor index. In this basis, th
charged hadronic currents are

Jm;q̄u,Lgmqd,L , ~2.2!

where

qu,W5S u1~x!

u2~x!

u3~x!
D

W

, qd,W5S d1~x!

d2~x!

d3~x!
D

W

, ~2.3!

and the subindexW means weak basis.
As is evident from Eq.~2.2!, the charged hadronic cur

rents are not changed if both, thed-type and theu-type fields
are transformed with the same unitary matrix.

A number of authors@9–14,20# have pointed out that re
alistic quark mass matrices result from the flavor permu
tional symmetrySL(3)^ SR(3) and its spontaneous or ex
plicit breaking. The group S(3) treats three object
symmetrically, while the hierarchical nature of the mass m
trices is a consequence of the representation structure1% 2 of
S(3), which treats the generations differently. Under ex
SL(3)^ SR(3) symmetry, the mass spectrum, for either up
09300
-

-

t
r

down quark sectors, consists of one massive particle~top and
bottom quarks! in a singlet irreducible representation and
pair of massless particles in a doublet irreducible represe
tion. In the weak basis, the mass matrix with the ex
SL(3)^ SR(3) symmetry reads

M3q,W8 5
m3q

3 S 1 1 1

1 1 1

1 1 1
D

W

, ~2.4!

wherem3q denotes the mass of the third family quark,t or b.
To generate masses for the second family, one ha

break the permutational symmetrySL(3)^ SR(3) down to
SL(2)^ SR(2). This may be done by adding toq̄L(M3q,W8 )qR

a term q̄L(M2q,W8 )qR which is invariant underSL(2)
^ SR(2) but breaksSL(3)^ SR(3). Themost general form of
a matrixM2q,W8 which is invariant under the permutations
the first two rows or two columns is

M2q,W8 5m3qS a8 a8 b8

a8 a8 b8

b8 b8 g
D

W

. ~2.5!

Without loss of generality, this matrix may be decom
posed in the sum of aSL(3)^ SR(3) invariant term plus a
traceless matrixM2q,W invariant underSL(2)^ SR(2):
M2q,W8 5
m3q

3 H ~2a81g!S 1 1 1

1 1 1

1 1 1
D

W

1S a82g a82g 3b822a82g

a82g a82g 3b822a82g

3b822a82g 3b822a82g 22~a82g!
D

W

J . ~2.6!
ng

es,
The first term in the right hand side of Eq.~2.6! is added to
the termM3q,W8 :

M3q,W5
m3q

3
~12Dq!S 1 1 1

1 1 1

1 1 1
D

W

, ~2.7!

whereDq stands for the factor2(2a81g).
The second term on the right hand side of Eq.~2.6! gives

the most general form of the traceless matrixM2q,W that
breaksSL(3)^ SR(3) down toSL(2)^ SR(2) and gives mass
to the second family:

M2q,W5
m3q

3 S a a b

a a b

b b 22a
D

W

. ~2.8!
In this expression we have simplified the notation by calli
a and b in Eq. ~2.8!, the terms (a82g) and (3b822a8
2g) in Eq. ~2.6!.

From expression~2.8! it is evident thatM2q,W is a linear
combination of two linearly independent numerical matric
M2q

A andM2q
S ,

M2q,W5
m3q

3
~A8aM 2q,W

A 12bM2q,W
S ! , ~2.9!

where

M2q,W
A 5

1

A8S 1 1 0

1 1 0

0 0 22
D

W

9-2
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and M2q,W
S 5

1

2S 0 0 1

0 0 1

1 1 0
D

W

. ~2.10!

Later on, this property will be used to characterize the sy
metry breaking pattern.

We may now turn our attention to the question of brea
ing theSL(2)^ SR(2) symmetry. In order to give mass to th
first family, we add another termMq1 to the mass matrix. It
will be assumed thatMq1 transforms as the mixed symmet
term of the doublet complex tensorial representation of
S(3)d diagonal subgroup ofSL(3)^ SR(3). Putting the first
family in a complex representation will allow us to have
CP violating phase in the mixing matrix. Then, in the we
basis,Mq1 is given by

Mq1,W5
m3q

A3
S A1 iA2 2A12 iA2

2 iA2 2A1 A11 iA2

2A11 iA2 A12 iA2 0
D

W

.

~2.11!

Finally, adding the three mass terms,~2.7!, ~2.8!, and
~2.11!, we get the mass matrixMq in the weak basis.

III. MODIFIED FRITZSCH TEXTURE

To make explicit the assignment of particles to irreduci
representations ofSL(3)^ SR(3), it will be convenient to
make a change of basis from the weak basis to a symm
adapted or hierarchical basis. In this basis, the quark fi
are

q1q,H~x!5
1

A2
„q1q,W~x!2q2q,W~x!…, ~3.1!

q2q,H~x!5
1

A6
„q1q,W~x!1q2q,W~x!22q3q,W~x!…,

~3.2!

FIG. 1. The square root of the parametersdu ,dd is shown as a
function of the ratioZq . The valueZ'5/2 which satisfies the con
straining condition~5.11! may be read from the figure.
09300
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q3q,H~x!5
1

A3
„q1q,W~x!1q2q,W~x!1q3q,W~x!…, ~3.3!

the subindexH denotes the hierarchical basis. In the hier
chical basis the third family quarks,t or b, are assigned to
the invariant singlet irreducible representationq3q,H(x), the
other two families are assigned toq2q,H(x) andq1q,H(x), the
two components of the doublet irreducible representation
Sdiag(3).

The mass matrixMq,H in the symmetry adapted basis
related to the mass matrix in the weak basis by the unit
transformation

Mq,H5U†Mq,WU, ~3.4!

where

U5
1

A6S A3 1 A2

2A3 1 A2

0 22 A2
D . ~3.5!

Then, in this basis,Mq takes the form

MqH5m3qF S 0 Aqe2 ifq 0

Aqeifq 0 0

0 0 0
D

H

1S 0 0 0

0 2Dq1dq Bq

0 Bq Dq2dq

D
H

G
1m3qS 0 0 0

0 0 0

0 0 12Dq

D
H

5m3qS 0 Aqe2 ifq 0

Aqeifq 2Dq1dq Bq

0 Bq 12dq

D
H

, ~3.6!

where

dq5Dq2
2

9
~a12b! and Bq5

2

9S A8a2
1

A8
b D .

~3.7!

From the strong hierarchy in the masses of the qu
families,m3q@m2q.m1q , we expect 12dq to be very close
to unity.

The entries in the mass matrix may be readily expres
in terms of the mass eigenvalues (m1q ,2m2q ,m3q) and the
small parameterdq . Computing the invariants ofMq ,
tr Mq , tr Mq

2, and detMq , we get

Aq
25m̃1qm̃2q~12dq!21, Dq5m̃2q2m̃1q , ~3.8!
9-3
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Bq
25dq„~12m̃1q1m̃2q2dq!2m̃1qm̃2q~12dq!21

… ,
~3.9!

wherem̃1q5m1q /m3q andm̃2q5m2q /m3q .
If each possible symmetry breaking pattern is now ch

acterized by the ratio

Zq
1/25Bq /~2nq1dq!, ~3.10!

the small parameterdq is obtained as the solution of th
cubic equation

dq@~11m̃2q2m̃1q2dq!~12dq!2m̃1qm̃2q#

2Zq~12dq!~2m̃2q1m̃1q1dq!250 , ~3.11!

which vanishes whenZq vanishes.
Equation~3.11! may be written as
09300
r-

dq
32

1

~Zq11!
@Zq„2~m̃2q2m̃1q!11…1~m̃2q2m̃1q!12#dq

2

1
1

Zq11
@Zq~m̃2q2m̃1q!~m̃2q2m̃1q12!

1~12m̃1q!~11m̃2q!#dq2
Zq~m̃2q2m̃1q!2

Zq11
50. ~3.12!

The last term in the left hand side of Eq.~3.12! is equal to
the product of the three roots of Eq.~3.11!. Therefore, the
root of Eq.~3.11! which vanishes whenZq vanishes may be
written as

dq~Zq!5
Zq

Zq11

~m̃2q2m̃1q!2

W~Zq!
, ~3.13!

whereW(Zq) is the product of the two roots of Eq.~3.12! or
Eq. ~3.11! which do not vanish whenZq vanishes.

The productW(Zq) is given by
d

e.
W~Zq!5$@2q21p312qAq21p3#1/21@2q21p322qAq21p3#1/3%1
1

3

1

Zq11
@Zq„2~m̃2q2m̃1q!11…1~m̃2q2m̃1q!12#

3$@q1Aq21p3#1/31@q2Aq21p3#1/3%2upu1
1

9

1

~Zq11!2
@Zq„2~m̃2q2m̃1q!11…1~m̃2q2m̃1q!12#2, ~3.14!

where

2q52
2

27

1

~Zq11!3
@Zq„2~m̃2q2m̃1q!11…1~m̃2q2m̃1q!12#31

1

3

1

~Zq11!2
@Zq„2~m̃2q2m̃1q!11…1~m̃2q2m̃1q!12#

3$Zq~m̃2q2m̃1q!„~m̃2q2m̃1q!12…1~12m̃1q!~11m̃2q!%2
Zq

Zq11
~m̃2q2m̃1q!2, ~3.15!

and

3p52
1

3

1

~Zq11!2
@Zq„2~m̃2q2m̃1q!11…1~m̃2q2m̃1q!12#21

1

~Zq11!
@Zq~m̃2q2m̃1q!~m̃2q2m̃1q12!

1~12m̃1q!~11m̃2q!#. ~3.16!

Then, the vanishing ofZq implies thatdq(Zq) vanishes and so doesBq , or equivalently, there is no mixing of singlet an
doublet irreducible representations ofSL(3)^ SR(3) and the heaviest quark in each sector,t or b, is in a pure singlet
representation.

In Fig. 1,dq
1/2 is shown as function ofZq . It may be seen that, asZq increases,Adq(Zq) increases with decreasing curvatur

For very large values ofZq , Adq(Zq) goes to the asymptotic limitm̃2q2m̃1q ,

lim
zq→`

dq
1/2~Zq!5m̃2q2m̃1q . ~3.17!

Hence,dq(Zq) is a small parameter

dq~Zq!!1, ~3.18!

for all values ofZq . For large values ofZq , sayZq>20, dq(Zq) is not sensitive to small changes inZq .
From Eqs.~3.11! or ~3.12! we derive an approximate solution fordq(Zq) valid for small values ofZq (Zq<10). Computing

in the leading order of magnitude we obtain
9-4
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dq~Zq!'
Zq~m̃2q2m̃1q!2

~12m̃1q!~11m̃2q!12Zq~m̃2q2m̃1q!S 11
1

2
~m̃2q2m̃1q! D . ~3.19!
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A. Symmetry breaking pattern

In the symmetry adapted basis,M3q,H is a singlet tenso-
rial irreducible representation ofSL(3)^ SR(3),

M3q,H5m3q~12Dq!S 0 0 0

0 0 0

0 0 1
D

H

. ~3.20!

In this same basis, the termM2q,H which breaks
SL(3)^ SR(3) down toSL(2)^ SR(2) is given by

M2q,H5m3q„2Dq1dq~Zq
1/2!…S 0 0 0

0 1 Zq
1/2

0 Zq
1/2 21

D
H

.

~3.21!

The symmetry breaking pattern is characterized by
parameterZq

1/2 which is a measure of the mixing of single
and doublet irreducible representations ofSL(3)^ SR(3).
The decomposition ofM2q,W in a linear combination of two
numerical matrices, given in Eqs.~2.9! and~2.10!, now takes
the form

M2q,H5m3q~2Dq1dq!F3A2NAqMH
A1

3

2
NSqMH

S G ,

~3.22!

where the matrices

M2,H
A 5

1

3A2S 0 0 0

0 1 2A8

0 2A8 21
D

H

, ~3.23!

M2,H
S 5

2

3S 0 0 0

0 1
1

A8

0
1

A8
21D

H

, ~3.24!

are of the same form asM2q,H with mixing parameters
2A8 and 1/A8, respectively. The coefficientsNA andNS are
given by
09300
e

NA5
2A2

9 S 1

A8
2Zq

1/2D ~3.25!

and

NS5
2A2

9
~A81Zq

1/2!. ~3.26!

From Eqs.~3.21!–~3.24!, it is evident that there is a cor
responding decomposition of the mixing parameterZq

1/2

Zq
1/25NAqZA

1/21NSqZS
1/2 , ~3.27!

with

15NAq1NSq, ~3.28!

where ZA
1/252A8 is the mixing parameter in the matri

M2,H
A , andZS

1/251/A8 is the mixing parameter inM2,H
S . In

this way, a unique linear combination ofZA
1/2 and ZS

1/2 is
associated to the symmetry breaking pattern characterize
Zq

1/2.
We notice that the symmetry breaking term in t

Yukawa Lagrangianq̄LM2qqR depends only on two fields
According to Eqs. ~3.22!, ~3.23!, and ~3.24!, the term
q̄LM2q,HqR splits into the sum of a term proportional t
q̄LM2

AqR , which changes sign under the exchange of th

two fields, and a term proportional toq̄LM2
SqR , which re-

mains invariant under the same exchange. Therefore, the
composition ofM2q,H given in Eq.~3.22! is equivalent to a
decomposition of the termq̄LM2qqR into its symmetric and
antisymmetric parts under the exchange of those two fie
Thus, the characterization ofM2q andZq

1/2 as a linear com-
bination, of M2

A and M2
S , and ZA

1/2 and ZS
1/2, respectively

@given in Eqs.~3.22!–~3.28!#, is equivalent to a classification
of the symmetry breaking pattern defined byM2q,H in terms
of the irreducible representations of the groupS̃(2) of per-
mutations of the two fields inq̄LM2qqR .

Lehmann, Newton, and Wu@3# observed that in the cas
of only two families~the first two generations!, the term that
breaks theSL(2)^ SR(2) symmetry changes sign when pe
muting the two quark fields. By analogy, they extended t
observation to the case of three families and postulated
the symmetry breaking termM2q should change sign unde
the exchange of the two fields inq̄LM2qqR . This assumption
amounts to choosing a fixed value for the mixing parame
Zq

1/2 equal to 2A8. In this paper, the pair of number
(NA ,NS) enters as a convenient mathematical label of
9-5
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symmetry breaking pattern without introducing any assum
tion about the actual pattern ofSL(3)^ SR(3) symmetry
breaking realized in nature.

IV. THE CKM MIXING MATRIX

The Hermitian mass matrixMq may be written in terms of
a real symmetric matrixM̄q and a diagonal matrix of phase
Pq as follows:

Mq5PqM̄qPq
† . ~4.1!

The real symmetric matrixM̄q may be brought to diago
nal form by means of an orthogonal transformation

M̄q5OqMq diagOq
T , ~4.2!

where
09300
- Mq diag5m3q diag@m̃1q ,2m̃2q,1#, ~4.3!

with subscripts 1,2,3 referring tou,c,t in the u-type sector
and d,s,b in the d-type sector. After diagonalization of th
mass matricesMq , one obtains the CKM mixing matrix as

VCKM5Ou
TP~u2d!Od , ~4.4!

whereP(u2d) is the diagonal matrix of the relative phases
In the hierarchical basis, whereMq is given by Eqs.

~3.6!–~3.8!, P(u2d) is

P~u2d!5diag@1,eiF,eiF#, ~4.5!

where

F5fu2fd , ~4.6!

and the orthogonal matrixOq is given by@21#
ich
Oq5S ~m̃2qf1 /D1!1/2 2~m̃1qf2 /D2!1/2 ~m̃1qm̃2qf3 /D3!1/2

„~12dq!m̃1qf1 /D1…
1/2

„~12dq!m̃2qf2 /D2…
1/2

„~12dq!f3 /D3…
1/2

2~m̃1qf2f3 /D1!1/2 2~m̃2qf1f3 /D2!1/2 ~ f1f2 /D3!1/2 D , ~4.7!

where

f1512m̃1q2dq , f2511m̃2q2dq , f35dq , ~4.8!

D15~12dq!~12m̃1q!~m̃2q1m̃1q!, ~4.9!

D25~12dq!~11m̃2q!~m̃2q1m̃1q!, ~4.10!

D35~12dq!~11m̃2q!~12m̃1q!. ~4.11!

From Eqs.~4.1!–~4.11!, all entries in theVCKM matrix may be written in terms of four mass ratios: (m̃u ,m̃c ,m̃d ,m̃s) and
three free real parameters:du , dd, andF5fu2fd . The phaseF measures the mismatch in theSL(2)^ SR(2) symmetry
breaking in theu- andd-sectors. In this picture of theVCKM matrix, it is this phase, and consequently, that mismatch, wh
is responsible for the violation ofCP.

The Jarlskog invariant,J, may be computed directly from the commutator of the mass matrices@22#:

J52
det$2 i @Mu,H ,Md,H#%

F
, ~4.12!

where

F5~11m̃c!~12m̃u!~m̃c1m̃u!~11m̃s!~12m̃d!~m̃s1m̃d!. ~4.13!

Substitution of the expression~3.6! for Mu andMd , in Eq. ~4.12!, with Zu
1/25Zd

1/25Z1/2, gives

J5

ZAm̃u /m̃c

12du
Am̃d /m̃s

12dd
sinF

~11m̃c!~12m̃u!~11m̃u /m̃c!~11m̃s!~12m̃d!~11m̃d /m̃s!
H @~2Du1du!~12dd!2~2Dd1dd!~12du!#2

2S m̃um̃c

12du
D ~2Dd1dd!22S m̃dm̃s

12dd
D ~2Du1du!212Am̃um̃c

12du
Am̃dm̃s

12dd
~2Du1du!~2Dd1dd!cosFJ . ~4.14!
9-6
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Explicit expressions forDq anddq in terms of the quark
masses are given in Eqs.~3.8! and ~3.13!–~3.16!.

In this way, an exact closed expression forJ in terms of
the quark masses, the symmetry breaking parameterZ and
the CP violating phaseF is obtained. Let us recall that th
non-vanishing ofJ is a necessary and sufficient condition f
the violation ofCP @22#. From Eq.~4.14!, it is apparent that
J vanishes whenZ, sinF and m̃u or m̃d vanish. Therefore,
the violation ofCP and the consequent non-vanishing ofZ
necessarily implies a mixing of singlet and doublet repres
tations ofSL(3)^ SR(3).

V. THE BEST VALUE OF Zq
1/2

At this stage in our argument, a question comes natur
to mind. Does a comparison of the theoretical mixing mat
VCKM

th with the experimentally determinedVCKM
exp give any

clue about the actual pattern ofSL(3)^ SR(3) symmetry
breaking realized in nature? or phrased differently: What
the best values forZu andZd? What is the best value forF?
Do these values correspond to some well defined symm
breaking pattern?

As a first step in the direction of finding an answer
these questions, we made ax2 fit of the exact expressions fo
the absolute value of the entries in the mixing matrix, tha
uVCKM

th u and the Jarlskog invariantJth to the experimentally
determined values ofuVCKM

exp u andJexp. Since the value of the
observed CKM matrix parametersuVCKM

exp u are given atm
5mt , in the calculation we used the values of the runn
quark masses evaluated atmt . These values were taken from
the work of Fritzsch@20#, see also Fusaoka and Koide@23#
09300
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and Yndura´in @24#. We kept the mass ratiosm̃c5mc /mt and
m̃s5ms /mb fixed at their central values

m̃c50.0048 and m̃s50.03437 , ~5.1!

but, for reasons which will be apparent later, we took t
values

m̃u50.000042 and m̃d50.00148, ~5.2!

which are close to the upper and lower bounds ofm̃u

5mu /mt and m̃d5md /mb respectively, and we looked fo
the best values of the three parametersdu ,dd, and F. We
found the following results@25#: ~I! excellent fits of similar
quality, x2<0.33, were obtained for a continuous family
values of the parameters (du ,dd); ~II ! in each good quality
fit, the best value ofF was fixed without ambiguity;~III ! the
best value ofF was nearly stable against large changes
the values of (du ,dd) which produced fits of the same goo
quality; ~IV ! in all good quality fits, the differenceAdd

2Adu takes the same value

Add2Adu.0.040. ~5.3!

These results may be understood if we notice that not
entries in VCKM

th are equally sensitive to variations of th
different parameters. Some entries, likeVus , are very sensi-
tive to changes inF but are almost insensitive to changes
(du ,dd) while, some others, likeVcb are almost insensitive
to changes inF but depend critically on the parametersdu
anddd .

From Eqs.~4.1!–~4.11!, we obtain
Vus52S m̃cm̃d

~12m̃u!~m̃c1m̃u!~11m̃s!~m̃s1m̃d!
D 1/2S ~12m̃u2du!~11m̃s2dd!

~12du!~12dd!
D 1/2

1H S ~12m̃u2du!~11m̃s2dd!

~11m̃s!
D 1/2

1S ~11m̃c2du!du

12du
D 1/2S ~12m̃d2dd!dd

~12dd!~11m̃s!
D 1/2J S m̃um̃s

~12m̃u!~m̃c1m̃u!~m̃d1m̃s!
D 1/2

eiF. ~5.4!

In the leading order of magnitude,

uVusu'uAm̃d /m̃s2Am̃u /m̃ce
iFu~11m̃u /m̃c1m̃d /m̃s!

21/2. ~5.5!

Hence,

cosF'
m̃d /m̃s1m̃u /m̃c2uVusu2~11m̃u /m̃c1m̃d /m̃s!

2A~m̃d /m̃s!~m̃u /m̃c!
. ~5.6!

Substitution ofuVus
expu2 for uVusu2 and the numerical value of the mass ratios,~5.1! and ~5.2!, in Eq. ~5.6! gives

87°<F<92° ~5.7!

with a mean value

F̄589.5°, ~5.8!

in good agreement with the best value extracted from the preliminaryx2 fits @25#.
9-7
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Similarly, Vcb
th is given by

Vcb
th 52S m̃u~11m̃c2du!

~12du!~11m̃c!~m̃c1m̃u!

m̃dm̃sdd

~12dd!~11m̃s!~12m̃d!
D 1/2

1H S m̃c~11m̃c2du!

~m̃c1m̃u!~11m̃c!

dd

~11m̃s!~12m̃d!
D 1/2

2S m̃c~12m̃u2du!du~12m̃d2dd!~11m̃s2dd!

~12du!~11m̃c!~m̃c1m̃u!~12dd!~11m̃s!~12m̃d!
D 1/2J eiF. ~5.9!

Therefore, in the leading order of magnitude,uVcbu is independent ofF and given by

uVcbu'Add2Adu. ~5.10!

Hence, good agreement withuVcb
expu'0.039@26# requires that

Add2Adu'0.040, ~5.11!

at least for one pair of values (du ,dd).
Finally, let us notice that the matrix elementsVub andVdt , as well as the Jarlskog invariant@see Eq.~4.14!#, are sensitive

to small changes in the masses of the light quarksm̃u andm̃d . For instance,

Vub5S m̃c~12m̃u2du!

~12du!~12m̃u!~m̃c1m̃u!

m̃dm̃sdd

~12dd!~11m̃s!~12m̃d!
D 1/2

1H S m̃u~12m̃u2du!dd

~12m̃u!~m̃c1m̃u!~11m̃s!~12m̃d!
D 1/2

2S m̃u~11m̃c2du!du~12m̃d2dd!~11m̃s2dd!

~12du!~12m̃u!~m̃c1m̃u!~12dd!~11m̃s!~12m̃d!
D 1/2J eiF ~5.12!
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computing in the leading order of magnitude, we get

Vub'Am̃u

m̃c

~Add2Adu!eiF. ~5.13!

A similar computation gives forVtd

Vtd'2Am̃d

m̃s

~Add2Adu!eiF. ~5.14!

However, since the masses of the light quarks are the
well determined, and the moduliuVub

expu and uVtd
expu have the

largest error bars, relatively large changes in the value
m̃u and m̃d produce only very small variations in the goo
ness of fit of the thoretical matrix of moduliuVthu to the
experimentally determineduVexpu. The sensitivity of the ma-
trix elementsuVubu and uVtdu to changes inm̃u and m̃d is
reflected in the shape of the unitarity triangle which chan
appreciably when the masses of the light quarks cha
within their uncertainty bounds, as may be seen from
following expressions:

a5argS 2
Vub* Vud

Vtb* Vtd
D 'argH S m̃u

m̃c

m̃s

m̃d
D 1/2

e2 iFJ 5F,

~5.15!
09300
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b5argS 2
Vtb* Vtd

Vcb* Vcd
D 'arctan5 Am̃u

m̃c

sinF

Am̃d

m̃s

2Am̃u

m̃c

cosF6 ,

~5.16!

and

g5argS 2
Vcb* Vcd

Vub* Vud
D 'arctan5 Am̃d

m̃s

sinF

Am̃u

m̃c

2Am̃d

m̃s

cosF6 ,

~5.17!

a, b, and g are the inner angles of the unitarity triangl
When the central values ofm̃u50.000018 andm̃d50.0019
@20# are used in the fitting procedure, the agreement ofuVthu
with uVexpu is very good,x250.33, but we systematically
obtain g th.a th in stark disagreement with the most rece
data on theK0-K̄0 system and the most recent data on t
Bs,d

0 oscillations @26# and @27#. We could not change the
values ofAdd2Adu without spoiling the good overall agree
ment of uVthu to uVexpu. Therefore, we let the masses of th
light quarks vary within their uncertainty ranges. The be
9-8
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BREAKING OF THE FLAVOR PERMUTATIONAL . . . PHYSICAL REVIEW D 59 093009
simultaneousx2 fit of uVthu, Jth anda th, b th andg th to the
experimentally determined quantitiesuVexpu, Jexp andaexp,
bexp andgexp @26,27# was obtained when the value ofm̃u is
taken close to its upper bound,m̃u'0.000042, and the valu
of m̃d'0.00148, which is close to its lower bound. Notic
that, the chosen high value ofm̃u gives for the ratio
uVubu/uVcbu the value

uVubu
uVcbu

'Am̃u

m̃c

50.093 ~5.18!

in very good agreement with its latest world average@27#.
We may now return to our discussion of the determinat

of the best pattern of symmetry breaking. As explain
above, in the preliminaryx2 fit to the data it was found tha
Add2Adu'0.04, Eq.~5.11!, is satisfied almost exactly eve
when we let the masses of the light quarks vary, not just
one pair of values (du ,dd) but for a continuous range o
values ofdu and dd in which these parameter change
more than one order of magnitude.

Therefore, Eq.~5.11! may be used as a constraining co
dition on the possible values of (du ,dd). In this way, we
eliminate one free parameter inVCKM

th without spoiling the
good quality of the fit. However, fixing the numerical valu
of this free parameter is not enough to get a clear indica
on what is the actual pattern of flavor symmetry break
realized in nature. This is so because according to E
~3.11!–~3.16!, dq is a function of the mass ratios (m̃1q ,m̃2q)
and the parameterZq

1/2 which characterizes the pattern
SL(3)^ SR(3) symmetry breaking in theq sector. Hence, a
convenient way to isolate the information about the patt
of symmetry breaking carried by the constraining conditio
~5.11! from the information on the numerical values of th
quark mass ratios, is to change the parametrization ofVCKM

th

by writing dq as function of Zq
1/2 with fixed values of

(m̃1q ,m̃2q). In this wayVCKM
th becomes a function of the tw

free parameters (Zu
1/2,Zd

1/2) instead of (du ,dd).
A simple approximate expression for the constrain

condition ~5.3!, ~5.11! in terms of (Zu
1/2,Zd

1/2), valid for 0
<Zq<10, is obtained from Eq.~5.11!, writing dq(Zq) in the
leading order of magnitude

Add2Adu.
Zd

1/2~m̃s2m̃d!

A~11m̃s!~12m̃d!12Zd~m̃s2m̃d!

2
Zu

1/2~m̃c2m̃u!

A~11m̃c!~12m̃u!12Zu~m̃c2m̃u!
.0.040.

~5.19!

When the condition~5.19! is satisfied, to each value ofZu
1/2

corresponds one value ofZd
1/2. But, since we have only on

condition to fix the value of two parameters,Zu
1/2 would still

be a free parameter. Therefore, to avoid this continuous
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biguity, we will further assume that the up and down ma
matrices are generated following the same symmetry bre
ing pattern, that is,

Zu
1/25Zd

1/2[Z1/2. ~5.20!

Then, the value ofZ which satisfies the constraining cond
tions ~5.11! and~5.19! may be read directly from Fig. 1. We
find Z* .2.5.

A more precise numerical computation of the best va
of Z was made using the exact numerical solution of E
~3.11!, given in Eqs.~3.13!–~3.16!, to compute the entries in
VCKM

th as functions of only two free parameters,F andZ1/2.
As previously, we kept the mass ratios fixed at the valu
given in Eqs.~5.1! and~5.2!. Then, we made a newx2 fit of
the exact expressions for the absolute values of the entrie
the theoretical expressions foruVCKM

th u and the Jarlskog in-
variant Jth, to the experimentally determined values
uVCKM

exp u andJexp. We found the following best values forF
andZ,

F589.3° ~5.21!

and

2.40<Z* <2.55, ~5.22!

corresponding to a value ofx2<0.33.
When the best value of theCP violating phaseF

589.33° is changed by one degree, the computed value
all entries in the matrix of moduliuVCKM

th u change in the
fourth decimal place, exceptuVus

th u anduVcd
th u which change in

the third decimal place by an amount which is about o
fourth of the uncertainty in the experimentally determin
values ofuVus

expu and uVcd
expu as reported in Casoet al. @26#.

The value ofx2 changes from 0.33 to 0.44 which is no
statistically significative. Therefore, we will adopt as the b
value ofF the simple figure

F* 590°. ~5.23!

Once the best value ofZ has been found, the question pos
at the beginning of this section takes a new form: What is
symmetry breaking pattern corresponding toZ* .2.5?

An answer would be readily found ifZ* 1/2 could be writ-
ten as a simple, non-trivial, linear combination ofZA

1/2 and
ZS

1/2, which, are equal to2A8 and 1/A8, respectively. From
these numbers, we find thatZ* 1/2 may indeed be written as

Z* 1/25
1

2
@Zs

1/22ZA
1/2#5

1

2
@1/A81A8#, ~5.24!

then

Z* 5
81

32
52.53125. ~5.25!

The corresponding values ofdu(Z) anddd(Z) are

du~Z* !50.000056, dd~Z* !50.0023. ~5.26!
9-9
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Let us remark again that the numerical value ofZ* 1/2 was
extracted from a fit ofuVCKM

th u to the experimentally deter
mined absolute values of the elements of theCKM mixing
matrix. The identification ofZ* 1/2 with the expression~5.24!
gives a clear and precise indication about the preferred
tern for the breaking of theSL(3)^ SR(3) permutational fla-
vor symmetry by the quark mass matrices.

VI. MASS TEXTURES FROM THE ‘‘BEST’’ SYMMETRY
BREAKING SCHEME

Once the best value ofZ1/2 has been determined, we ma
turn the argument around, and propose it as a symm
,

on
x-

09300
t-

ry

breaking ansatz in the form of the following assumptio
The SL(3)^ SR(3) flavor symmetry is broken down to
SL(2)^ SR(2) according to a mixed symmetry breaking pa
tern, which, in the hierarchical basis, is characterized by

Z* 1/25
1

2
~ZS

1/22ZA
1/2!. ~6.1!

Then, the mass matrix with the modified Fritzsch textu
takes the form
Mq,H* 5m3qS 0 Am̃1qm̃2q

12dq*
e2 ifq 0

Am̃1qm̃2q

12dq*
eifq 2m̃2q1m̃1q1dq*

9A2

8
~2m̃2q1m̃1q1dq* !

0
9A2

8
~2m̃2q1m̃1q1dq* ! 12dq*

D
H

, ~6.2!
s
is,

ach
f

wheredq* is the solution of the cubic equation

113dq*
32@194~m̃2q2m̃1q!1145#dq*

2

1@81~m̃2q2m̃1q!21194~m̃2q2m̃1q!

232m̃1qm̃2q132#dq* 281~m̃2q2m̃1q!250, ~6.3!

obtained from Eq.~3.12! when A81/32 is substituted for
Z* 1/2.

The mass matrixMq,H was built up adding three terms
M1q,H , M2q,H, andM3q,H . The termM3q,H is a singlet ir-
reducible representation ofSL(3)^ SR(3).Sdiag(3)

M3q,H5~m3q2m2q1m1q!S 0 0 0

0 0 0

0 0 1
D

H

. ~6.4!

The matrix M2q,H breaks SL(3)^ SR(3) down to
SL(2)^ SR(2), mixing the singlet and doublet representati
of Sdiag(3) in a proportion precisely determined by the mi
ing parameterZ* 1/25A81/32,

M2q,H* 5m3q~2m̃2q1m̃1q1dq* !

3S 0 0 0

0 1 A81/32

0 A81/32 21
D

H

. ~6.5!
The mixing parameterA81/32 corresponds to what wa
called in Sec. II, a mixed symmetry breaking pattern, that
it may be split in the sum of a termM2q,H

A corresponding to
a purely antisymmetric, plus a termM2q,H

S corresponding to
a purely symmetric breaking pattern. The coefficients in e
term,NS5 25

18 andNA52 7
18 , are obtained solving the pair o

coupled equations~3.27! and ~3.28! whenZ* 1/25A81/32.
Hence,

M2q,H* 5m3q~2m̃2q1m̃1q1dq* !

33 27

18S 0 0 0

0 1 2A8

0 2A8 21
D

H

1
25

18S 0 0 0

0 1
1

A8

0
1

A8
21D

H

4 . ~6.6!

TheSL(2)^ SR(2) symmetry of this term and its splitting in
9-10
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the sum of a purely symmetric plus a purely antisymme
breaking pattern term is evident in the weak representat

M2q,W* 5m3q~2m̃2q1m̃1q1dq* !S 1

24D
3S 14 14 225

14 14 225

225 225 228
D

W

. ~6.7!

Finally, the termM1q,H breaks theSL(2)^ SR(2) symme-
try

M1q,H* 5m3qAm̃1qm̃2q

12dq*
S 0 e2 ifq 0

eifq 0 0

0 0 0
D

H

. ~6.8!

Since dq* is a function of the mass ratios (m̃1q ,m̃2q) the
phasefq is the only free parameter left in the mass mat
Mq* .

VII. THE MIXING MATRIX, VCKM , FROM THE BEST
SYMMETRY BREAKING SCHEME

We have seen that, once the symmetry breakingAnsatz
fixes the value of the mixing parameterZ1/2 at A81/32, the
09300
centries in the mass matricesMq are functions of the mas
ratios (m̃1q ,m̃2q) and the phasefq which is a free param-
eter.

After factorizing the phases, as in Eq.~4.1!, all entries in
the real symmetric matricesM̄q are functions of the mas
ratios (m̃1q ,m̃2q) only. Hence, the orthogonal matricesOq

which bring M̄q to diagonal form are also functions o
(m̃1q ,m̃2q) only.

According to Eq.~4.4!, VCKM is given byOu
TP(u2d)Od ,

whereP(u2d) is the diagonal matrix of the relative phase
Therefore, once the symmetry breakingAnsatzdetermines
the value ofZ* 1/25A81/32, the theoretical expressions f
the entries in the mixing matrix,VCKM

th , are written in terms

of the four mass ratios (m̃u ,m̃c ,m̃d ,m̃s) and only one free
parameter, namely, theCP violating phaseF.

We made a newx2 fit of the absolute value of the entrie
in the mixing matrix,uVCKM

th u, to the experimentally deter
mined valuesuVCKM

exp u. We kept the mass ratios fixed at th
values given in Eqs.~5.1! and~5.2!. We varied only theCP
violating phaseF. The best value ofF was found to be
89.3° corresponding to a minimum value ofx2 equal to 0.33.
As explained at the end of Sec. V, we may round off to

F* 590° ~7.1!

without spoiling the good quality of the fit.
The mixing matrixVCKM

th , computed with this value ofF
is
VCKM
th 5S 0.97501 i0.0188 20.20201 i0.0906 0.00031 i0.0037

20.09071 i0.2019 0.01881 i0.9742 20.00001 i0.0396

20.00002 i0.0084 20.00002 i0.0388 0.00001 i0.9992
D . ~7.2!

The matrix of the moduli, computed from Eq.~7.2!, is

uVCKM
th u5S 0.9752 0.2214 0.0037

0.2213 0.9744 0.0396

0.0084 0.0388 0.9992
D , ~7.3!

which is to be compared with the experimental value@26#

uVCKM
exp u5S 0.974520.9760 0.21720.224 0.001820.0045

0.21720.224 0.973720.9753 0.03620.042

0.00420.013 0.03520.042 0.999120.9994
D . ~7.4!
9-11
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We see that the absolute values of the entries in the mix
matrix computed from the theoretical expressions forVCKM

th ,
with the values of the mass ratios given in Eqs.~5.1! and
~5.2! @20# reproduce the central values of the experimenta
determined entries inuVCKM

exp u, almost exactly, well within the
bounds of experimental error.

We also computed the Jarlskog invariantJ @22#. The value
obtained from Eq.~4.14! is

Jth53.0031025, ~7.5!

in good agreement with current data onCP violation in the
K0-K̄0 mixing system@26#.

The three inner angles of the unitarity triangle may n
be readily computed from the expressions~5.15!–~5.17!. We
found the following values:

a584°, b524°, g572°. ~7.6!

These three angles will be determined fromCP asymme-
tries in a variety of weakB decays at the forthcomingB
factories.

An estimation of the range of values of these angles co
patible with the experimental information on the absolu
values of the matrix elements ofVCKM

exp , is given by Mele
@27# and Ali @28#. According to these authors, 79°<a
<102°, 21°<b<28° and 55°<g<78°. We see that the
value of b obtained in this work coincides almost exact
with the central value ofb according to Mele@27#, while our
g is close to the upper limit given by Mele@27# anda is in
the allowed range given by these authors.

VIII. SUMMARY AND CONCLUSIONS

In this work we derived theoretical expressions for t
mixing matrix Vth

CKM from quark mass matricesMq with a
modified Fritzsch texture. The mass matrices were built
adding three termsM3q , M2q, and M1q corresponding to
stages of less symmetry in a simple scheme for breaking
flavor permutational symmetry.

The breaking pattern of theSL(3)^ SR(3) symmetry
down to SL(2)^ SR(2) was characterized in terms of th
parameterZ1/25(M2q,H)23/(M2q,H)22 which is a measure o
the amount of mixing of singlet and doublet irreducible re
resentations ofSL(3)^ SR(3). This breaking pattern wa
classified in terms of the symmetric (ZS

1/251/A8), and anti-
symmetric (ZA

1/252A8) representations of an auxiliarl

groupS̃(2) of permutations of the two fields in the Yukaw
term q̄L,WM2q,WqR,W.

A careful comparison of the theoretical expression for
09300
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absolute values of the elements of the CKM matrix with t
experimentally determined values ofuVCKM

exp u, Jexp and the
inner angles of the unitarity triangleaexp, bexp, and gexp

gives a clear and precise indication on the existence o
preferred pattern for breaking theSL(3)^ SR(3) flavor sym-
metry down toSL(2)^ SR(2). Thepreferred or best symme
try breaking pattern is characterized by

Z* 1/25
1

2
~ZS

1/22ZA
1/2!5A81

32
. ~8.1!

Once the numerical value ofZ* 1/2 is fixed atA81/32, the
mass matricesMq are functions of the quark masses and on
one phase. In consequence, the resulting best theore
VCKM matrix is parametrized in terms of the four quark ma
ratios (m̃u ,m̃c ,m̃d ,m̃s) and only oneCP violating phaseF.
The best value ofF was found to be

F590°. ~8.2!

The moduli of the matrix elements of the mixing matr
computed from the theoretical expressionVCMK

th are in excel-
lent agreement with all the experimentally determined ab
lute values of the CKM matrixuVCKM

exp u. For the Jarlskog
invariant we found the valueJ53.0031025 and for the in-
ner angles of the unitarity triangle we found the valuesa
584, b524, andg572 also in very good agreement wit
current data onCP violation in theK0-K̄0 mixing system
@26# and the most recent data on oscillations in theBs

0-B̄s
0

system@27# and @28#.
In the standard electroweak model both the masses of

quarks as well as the weak mixing angles appear as
parameters. In this work, we have shown that, starting fr
the flavor permutational symmetry, a simple and explicitAn-
satzabout the pattern of symmetry breaking leads to a
rametrization of the CKM mixing matrix in terms of fou
quark mass ratios (mu /mt ,mc /mt ,md /mb ,ms /mb) and one
CP violating phase in very good agreement with all t
available experimental information on quark mixings a
CP violation.
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