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Different Ansdze for the breaking of flavor permutational symmetry accordindSt¢3)® Sg(3)DS,(2)
®Sg(2) give different Hermitian mass matrices of the same modified Fritzsch type, which differ in the
symmetry breaking pattern. In this work we obtain a clear and precise indication on the preferred symmetry
breaking scheme from a fit of the predictpdl"| to the experimentally determined absolute values of the
elements of the CKM matrix. The preferred scheme leads to simple mass textures and allows us to compute the
CKM mixing matrix, the Jarlskog invariart, and the three inner angles of the unitarity triangle in terms of
four quark mass ratios and only one free parameterCtReviolating phased. Excellent agreement with the
experimentally determined absolute values of the entries in the CKM matrix is obtained
for ®=90°. The corresponding computed values of the Jarlskog invariant and the inner angles are
J=3.00x10" %, @=84°, B=24°, andy=72° in very good agreement with current data®R violation in
the neutral kaon-antikaon system and oscillations inBB@Q system[S0556-282(99)01309-7

PACS numbgs): 12.15.Ff, 11.30.Er, 11.30.Hv, 12.15.Hh

[. INTRODUCTION ratiosm,/m;,m./m,,myq/my,ms/m, and oneCP violating
phase in good agreement with the experimental information
Recent interest in flavor or horizontal symmetry building about quark mixings an€ P violation in theK-KO system
(mass texturgshas been spurred mainly by the large top ang the most recent data on oscillations of B3eB? system.
quark mass and hence, the strong hierarchy in the quark The plan of this paper is as follows: In Sec. Il we review
masseq1-8]. A permutational flavor symmetry has been some previous work on the breaking of the permutational
advocated by many authors in order to constrain the fermiofiavor symmetry. A brief group theoretical analysis of the
mass matrices and mixing parametgs14. Recently, vari-  modified Fritzsch texture is made in Sec. Ill. The next sec-
ous symmetry breaking schemes have been proposed basgsh is devoted to the derivation of explicit expressions for
on the discrete non-Abelian grouf (3)® Sg(3), which is  the elements of th€ KM mixing matrix and the Jarlskog
broken according to S (3)®Si(3)DS. (2)®Sg(2) invariantJ in terms of the quark mass ratios and the mixing
D Syiag(2). The group S(3) treats three objects symmetri- parametez'2 In Sec. V, we extract the best value of?
cally while the hierarchical nature of the Yukawa matrices isfrom a x? fit of our theoretical expressions to the experimen-
a consequence of the representation structiee?, of S(3)  tally determined absolute values of the entries|\fg,
which treats the generations differently. Differéntsdzefor ~ The interpretation of the best value &t in terms of the
the breaking of the permutational symmetry give rise to dif-analysis made in Secs. Il and lll and the derivation of the
ferent Hermitian mass matriced, of the same modified corresponding best mass textures is made in Sec. VI. The
Fritzsch type which, in a symmetry adapted basis, differ inresulting parametrization of th€ KM matrix in terms of
the numerical value of the ratid/>=M,3/M,,. In the ab-  four mass ratios and on€P violating phase is compared
sence of a physically motivated argument to fix the value otwvith the relevant experimental information in Sec. VII. Our
Z*2, different values foZ*? have been proposed by various paper ends with a summary of results and some conclusions.
authors[1-3,6,7,15-19
In this paper, different symmetry breaking schemes are
classified in terms of the irreducible representations of an Il. FLAVOR PERMUTATIONAL SYMMETRY

auxiliary S(2) group. Then, diagonalizing the mass matrices, |n this section, we review some previous work on the
we obtain exact explicit expressions for the elements of théyreaking of the permutational flavor symmetry.

mixing matrix,Vcgw , the Jarlskog invariant, and the inner In the standard model, analogous fermions in different
angles of the unitarity 'tr|'angle in terms of the qugrk massgenerations, say, ¢, andt or d, s, andb, have completely
ratios, the symmetry mixing parameter, and @@ violat- identical couplings to all gauge bosons of the strong, weak,

ing phase. Ay? fit of the theoretical expressions to the ex- and electromagnetic interactions. Prior to the introduction of
perimentally determined absolute values of the elements ahe Higgs boson and mass terms, the Lagrangian is chiral and
the V&i&y mixing matrix gives a clear and precise indica- invariant with respect to any permutation of the left and right
tion on the preferred pattern for the breaking of thequark fields. The introduction of a Higgs boson and the
S (3)®Sg(3) symmetry. Simple, explicit expressions for Yukawa couplings give mass to the quarks and leptons when
the corresponding best mass textures are obtained from thlke gauge symmetry is spontaneously broken. The quark
best value of the mixing paramet&t2. In this way we ob- mass term in the Lagrangian, obtained by taking the vacuum
tain an explicit parametrization of the Cabibbo-Kobayashi-expectation value of the Higgs field in the quark Higgs cou-
Maskawa(CKM) matrix in terms of the four quark mass pling, gives rise to quark mass matridélgy and M :
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_ P down guark sectors, consists of one massive paiiofgand
£v=Ga.tMala.* G Myt Hee. @ bottonﬁI quarksin a singlet irreducible represepntatiotfl and a
In this expressiongy . r(x) andd, r(X) denote the left pair of massless patrticles in a doublet irreducible representa-
and right quarkd andu fields in the current or weak basis, tion. In the weak basis, the mass matrix with the exact
0q(X) is a column matrix, its componentg, (x) are the S (3)®Sgr(3) symmetry reads
quark Dirac fieldsk is the flavor index. In this basis, the

charged hadronic currents are 111
, Mgl 1 1 1
- M =— , 2.4
Ju~Au,LYud,L s (2.2 W3 11 1 @9
where W
uy(x) dy(x) wherems, denotes the mass of the third family quatror b.
! ! To generate masses for the second family, one has to
quw=| Y22 |, quu=| 92X | | (2.3 break the permutational symmetsy (3)®Sg(3) down to
' uz(x) ’ da(x) SL(2)®Sg(2). This may be done by adding th (M 34 ) dr
W W a term qL(Méq'W)qR which is invariant underS; (2)
and the subinde}V means weak basis. ® Sg(2) but breakss, (3)® Sg(3). Themost general form of

As is evident from Eq(2.2), the charged hadronic cur- & ma}trixMéq’W which is invariant under the permutations of
rents are not changed if both, theype and ther-type fields ~ the first two rows or two columns is
are transformed with the same unitary matrix.

A number of author§9—14,24 have pointed out that re- a o B
alistic quark mass matrices result from the flavor permuta- M. o=ma| @ B (2.5)
tional symmetryS, (3)® Sg(3) and its spontaneous or ex- 2qwW 173 8 By ' '
plicit breaking. The groupS(3) treats three objects W

symmetrically, while the hierarchical nature of the mass ma-

trices is a consequence of the representation strutthiof Without loss of generality, this matrix may be decom-
S(3), which treats the generations differently. Under exactposed in the sum of & (3)®Sg(3) invariant term plus a
S.(3)® Sr(3) symmetry, the mass spectrum, for either up ortraceless matrisM ,q \y invariant underS, (2)® Sg(2):

a' —y a' —vy 3'—2a’'—vy
+ a' —y a'—y 38" —2a'—vy . (2.6

3 —2a'—y 3B'—2a'—y —2(a'—vy) W
w

The first term in the right hand side of E@.6) is added to  In this expression we have simplified the notation by calling

the termM 3, a and B in Eq. (2.8), the terms &' —v) and (3B’ —2a’
—v) in Eq. (2.6).
111 From expressiori2.8) it is evident thatM,, y is a linear
Msq 1 1 1 combination of two linearly independent numerical matrices,
Maqw="—"73 (1-4) o 2D mA andMS,,
1 11 a q
w
’ _% A S
whereA,, stands for the factor- (2a’ + ). M2qw="3 (VBaM %, w+2B8M3,w) . (2.9

The second term on the right hand side of Ejj6) gives
the most general form of the traceless mathi \y that
breaksS, (3)® Sg(3) down toS, (2)® Sg(2) and gives mass \where
to the second family:

a a P 1 1 O
ms 1111 o
Maqw=s" ; ; /Z . (2.9 Maw="= S
P _
W W
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0 01 1
1 Gaq,H(X) = —=(G1q,w(X) + U2qW(X) + Q3q (X)), (33
and ngvwzi 001 (2.10 ar 3 wat o
110
W the subindexH denotes the hierarchical basis. In the hierar-

chical basis the third family quarks,or b, are assigned to

Later on, this property will be used to characterize the symthe invariant singlet irreducible representatipg, 14(X), the
metry breaking pattern. other two families are assigneddg, 1(x) andg,q 1(x), the

We may now turn our attention to the question of break-fwo components of the doublet irreducible representation of
ing theS, (2)® Sg(2) symmetry. In order to give mass to the Suiag(3)- _ _ o
first family, we add another tertil,; to the mass matrix. It~ The mass matriM ,, in the symmetry adapted basis is
will be assumed thal ; transforms as the mixed symmetry related to the mass matrix in the weak basis by the unitary
term of the doublet complex tensorial representation of thdransformation
S(3)q4 diagonal subgroup 08 (3)® Sg(3). Putting the first t
family in a complex representation will allow us to have a Mgu=UMqwU, 3.4
CP violating phase in the mixing matrix. Then, in the weak

basis,Mg, is given by where

1
m Al |A2 - Al_ |A2 1 \/§ \/E
Mgw=—o| —iA —AL AHIA | U= NG “3 1z 3.5
V3 —AHIA, A—iA, 0 " 0 -2 42
(2.11
Then, in this basisM, takes the form
Finally, adding the three mass term®.7), (2.8, and N
(2.11), we get the mass matrid, in the weak basis. 0 A % 0
M gn= Mg Aqe' bq 0 0
[Il. MODIFIED FRITZSCH TEXTURE 0 0 0
H
To make explicit the assignment of particles to irreducible 0 0 0
representations 08, (3)® Sg(3), it will be convenient to
make a change of basis from the weak basis to a symmetry +| 0 —Aqt 4y Bq
adapted or hierarchical basis. In this basis, the quark fields 0 B A—8
are q a~ %/ y
0 0 0
1 00 O
U1 H(X) = = O1gw(X) ~Goqw(¥), (3. Mg
V2 0 0 1-4,/,
1 0 Aqe "% 0
O2g,H(X)= %(qlq,w(x)"_QZq,W(X)_2Q3q,W(X))a =mg, Aqei‘f’q —Aqt+8, By , (3.6
(3.2 0 Bq 1-64/
0.09 T T T T where
0.08 - 0y =
0.07 . 2 2 1
006 1 i %=Aq—g(a+2p) and By=3 V8a— ﬁﬁ :
0.05 |- 4 (3.7
Vv
0.04 - 4
0.03 F - From the strong hierarchy in the masses of the quark
i 0.04 e i famili_es, M34>My>Myg, We expect -, to be very close
0.01 2 - to unlty-
0 L . . . The entries in the mass matrix may be readily expressed
0 2 7+ 4 6 8 10 in terms of the mass eigenvaluas,(;, —m,q,M3q) and the
z small parameters,. Computing the invariants oM,
2
FIG. 1. The square root of the parametés 6, is shown as a  F Mg, trMg, and deMg, we get
function of the ratiaZ, . The valueZ~5/2 which satisfies the con- o ~ ~
straining condition(5.11) may be read from the figure. Aq2= My gMpq(1— 5q)’1, Ag=My—Myy, (3.9
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= 8q((1=Myq+ Maq— Jg) ~MigMag(1= 8¢) ™), S

1
(3.9 ¢l (Z +1)[Z (2(m2q mlq)-l-l)—l-(mzq mlq)+2]5

~ ~ 1
wheremlqzmlq./m3q and mzqzmzq/msq. _ Z +1[Zq(m2q mlq)(mzq m1q+ 2)
If each possible symmetry breaking pattern is now char-
acterized by the ratio ~ ~
Y = ~ . Zq(qu_ mlq)2
+(1=myg)(1+myq)]6q B e E—
ZM=By/(— Lg+ 3y), (3.10 q

The last term in the left hand side of H8.12 is equal to
the small parametes, is obtained as the solution of the the product of the three roots of E(B.11). Therefore, the

=0. (3.12

cubic equation root of Eq.(3.11) which vanishes whei, vanishes may be

written as
5q[(1+ Fan_ Fnlq_ 5q)(1_ 5q) - ﬁ:11q’|:{»|2q] Zq (Fnzq— Fnlq)z
- - 2 %Z)=Z 1T Wizy @13
Zy(1—8g)(—Mygt+myq+,)°=0, (3.11 q q

whereW(Z,) is the product of the two roots of E(8.12 or

which vanishes whei, vanishes. Eq. (3.11) which do not vanish whe#, vanishes.

Equation(3.11) may be written as The productW(Z,) is given by
W(Zg) ={[20%+ p*+ 207"+ p*]*2+[2q° + p*~ 2q\g*+ p ]1’3}+3 2 +1[Zq(2(ﬁ1zq—ﬁuq)+1)+(r~nzq—ﬁhq)+2]

x{[aq+Vo?+ p31"3+[g— Vo2 + 313 — |

1 ~ ~ - ~
( )Z[Zq(z(qu_mlq)+1)+(m2q_mlq)+2]2a (3-14)
where

2 1 ~ ~ ~ ~ 1 1 ~ ~ ~ ~
2q= Y —[Zq(z(qu_mlq)+ 1)+(m2q_mlq)+2]3+ a —[Zq(z(qu_mlq)+ 1)+(m2q_ mlq)+2]

27(Z4+1)° 3 (Z4+1)2
~ ~ ~ ~ ~ ~ Zy
X{Zq(qu_mlq)((qu_mlq)+2)+(1_mlq)(l+m2q)} Z +1(m2q mlq) (313
and
~ ~ ~ ~ 1 ~ ~ ~ ~
3p:_§m[zq(z(qu_mlq)+1)+(m2q_mlq)+2]2+(Zq—_l_l)[zq(mm_mlq)(qu_mlq—"z)
+(1-my)(1+myy) 1. (3.16

Then, the vanishing af, implies thatd,(Z,) vanishes and so do&,, or equivalently, there is no mixing of singlet and
doublet irreducible representations 8f(3)® Sg(3) and the heaviest quark in each sectonr b, is in a pure singlet
representation.

In Fig. 1, 5#2 is shown as function o, . It may be seen that, &, increasesy 64(Z,) increases with decreasing curvature.
For very large values of, \d4(Z,) goes to the asymptotic Iimﬁhq—anlq,

lim 84Zq)=Mpq—Myg. (3.17

Zqﬂoo

Hence,54(Z,) is a small parameter
0q(Zg) <1, (3.18

for all values ofZ,. For large values oZ,, sayZ,=20, §,4(Z,) is not sensitive to small changes 2y .
From Eqgs(3.11 or (3.12 we derive an approximate solution f6§(Z,) valid for small values o (Z4=<10). Computing
in the leading order of magnitude we obtain
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O4(Zg)~ 1 (3.19
(1=myq) (14 myq) +2Z(Myg—Myg)| 1+ E(mzq—mlq))
|
A. Symmetry breaking pattern 2 JE 1 0
In the symmetry adapted basM;, 4 is a singlet tenso- Na= 9 ﬁ_zq (3.29
rial irreducible representation & (3)® Sg(3),
0 0 O and
0 0 O
Mg =Maq(1—Aq) (3.20 22

3q,H= Maq N o1 Ns=—g— (V8+Z33). (3.26

H

In this same basis, the ternM,,y which breaks
S (3)®Sg(3) down toS (2)® Sg(2) is given by

0 0 0
0 1 Z 1/2

M2q,H:m3q(_Aq+5q(qu/2)) q
qu/Z -1

H
(3.2)

The symmetry breaking pattern is characterized by thé/IQH, andZ

From Egs.(3.21)—(3.24), it is evident that there is a cor-
responding decomposition of the mixing paramﬁé‘?

ZP=NpagZR*+NsZ&?, (3.27
with
1=Npq+Nsg, (3.29
where 7%= — /8 is the mixing parameter in the matrix

é/zz 1/{/8 is the mixing parameter iM%H- In

parameteiZ, 2 which is a measure of the mixing of singlet this way, a unique linear combination @? and Z%? is

and doublet irreducible representations §f(3)® Sg(3).
The decomposition o 54\ in a linear combination of two
numerical matrices, given in EgR.9) and(2.10, now takes
the form

3
qu’Hngq(—Aq-I— 5C|) 3\/§NAqMﬁ+ _NSqMa} y

2
(3.22
where the matrices
0 0 0
1 0 1 _
Moy=—"= Bl (323
320 —y8 -1
H
0O O 0
0 1 !
) il
M3n=3 B (3.24
0 ! -1
V8

are of the same form abl,, with mixing parameters
— /8 and 14/8, respectively. The coefficienté, andNg are
given by

associated to the symmetry breaking pattern characterized by
21/2.

q

We notice that _the symmetry breaking term in the
Yukawa Lagrangiarg, M,4gr depends only on two fields.
According to EQs.(3.22, (3.23, and (3.24), the term

iM 2q,H0r Splits into the sum of a term proportional to
q,_Mé\qR, which changes sign under the exchange of those

two fields, and a term proportional tqq_ngR, which re-
mains invariant under the same exchange. Therefore, the de-
composition ofM,q y given in Eq.(3.22 is equivalent to a
decomposition of the terrg M ,,gg into its symmetric and
antisymmetric parts under the exchange of those two fields.
Thus, the characterization ®,, andZ}” as a linear com-
bination, of M4 and M3, and Z3? and Z&?, respectively
[given in Egs(3.22—(3.28)], is equivalent to a classification
of the symmetry breaking pattern defined My, ,; in terms

of the irreducible representations of the grds(®) of per-
mutations of the two fields i M40 -

Lehmann, Newton, and WiB] observed that in the case
of only two families(the first two generationsthe term that
breaks the5 (2)® Sg(2) symmetry changes sign when per-
muting the two quark fields. By analogy, they extended this
observation to the case of three families and postulated that
the symmetry breaking termil,, should change sign under
the exchange of the two fields @ M 40r . This assumption
amounts to choosing a fixed value for the mixing parameter
ZY? equal to —\8. In this paper, the pair of numbers
(Na,Ng) enters as a convenient mathematical label of the
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symmetry breaking pattern without introducing any assump-

My diag=Maq diad Myq, — Myq,1], 4.3
tion about the actual pattern @ (3)®Sg(3) symmetry q diag™= Maq 1ag My~ Mzq 1] “3
breaking realized in nature. with subscripts 1,2,3 referring to,c,t in the u-type sector
andd,s,b in the d-type sector. After diagonalization of the
IV. THE CKM MIXING MATRIX mass matriced!,, one obtains the CKM mixing matrix as
The Hermitian massEatqu may be written in terms of Verm= OIP(U*d)Od , (4.9
a real symmetric matrid, and a diagonal matrix of phases ) ) ) )
P, as follows: whereP(~9 is the diagonal matrix of the relative phases.
In the hierarchical basis, wher®l, is given by Egs.
—pm pt (u—d)
Mg=PqMqP; . 4.1 (3.6-3.9,P is
_ (u—d) _ s i LD
The real symmetric matrif, may be brought to diago- P diad 1.e™",e™], (4.5
nal form by means of an orthogonal transformation where
M¢=0gMg diagOq (4.2 =~ da, (4.6
where and the orthogonal matri® is given by[21]
|
(FnzqfllD )2 - (%mfz /D, (ﬁqu‘hzqfs/Ds)llz
0= (- S)Mgf1 /DY (1 85)Mygf2 /D)2 (1= 8¢)fs/Dg)™ | @.7)
—(Myqfafs /DY = (Mygfsfs/Dy) Y2 (f1f2/Dg)™2
where
fi=1-Myg— 8, fo=14+my—38,, f3=4,, 4.9
D1=(1— 8)(1—Myq)(Myq+My), 4.9
D= (1— 8)(1+ Myg) (Myq+Myyy), (4.10
D= (1—85)(1+Mye)(1—myy). (4.1)

From Egs.(4.1)—(4.11), all entries in theV ¢y matrix may be written in terms of four mass ratios(,m.,my,ms) and
three free real parameter§;, 64, and® = ¢,— ¢4. The phaseb measures the mismatch in ti(2)® Sg(2) symmetry
breaking in theu- andd-sectors. In this picture of theky matrix, it is this phase, and consequently, that mismatch, which
is responsible for the violation o P.

The Jarlskog invariant], may be computed directly from the commutator of the mass matf&&s

J:_del{—i[M;,H'Md,H]}’ (4.12

where
F=(14m)(1—my)(Me+my)(1+mg)(1—mg)(Mg+mg). (4.13

Substitution of the expressia®.6) for M, andMy, in Eq. (4.12), with Z?=7Y2=712 gives

mu/mc\/md/ﬁg _
\/ 1_5do|n<1>

B <1+r”nc><1—mu><1+mu/mc><1+r”ns><1—r”nd)<1+r”nd/r”ns>

)( A +5u)2+2\/
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Explicit expressions folA, and , in terms of the quark and Yndurén [24]. We kept the mass ratigs,=m./m, and

masses are given in Eqs.8) and(3.13—('3.16).. ms=mg/m,, fixed at their central values
In this way, an exact closed expression Join terms of

the quark masses, the symmetry breaking parameiznd m.=0.0048 and m¢=0.03437, (5.1

the CP violating phased is obtained. Let us recall that the

non-vanishing ofl is a necessary and sufficient condition for but, for reasons which will be apparent later, we took the
the violation of CP [22]. From Eq.(4.14), it is apparent that values

J vanishes wherZ, sin® andm, or my vanish. Therefore, ~ ~
the violation of CP and the consequent non-vanishingZof m,=0.000042 and mq=0.00148, (5.2

necessarily implies a mixing of singlet and doublet represengnich are close to the upper and lower bounds naf

tations ofS, (3)®Sx(3). =m,/m, and my=my/m, respectively, and we looked for
2 the best values of the three paramet8iséy, and ®. We
V. THE BEST VALUE OF Z found the following result§25]: (1) excellent fits of similar

. . . . 2 . . .
At this stage in our argument, a question comes naturallfluality, x“<0.33, were obtained for a continuous family of
to mind. Does a comparison of the theoretical mixing matrixvalues of the parameters(,&y); (Il) in each good quality
exp fit, the best value o was fixed without ambiguity(lll ) the

v\ with the experimentally determined}f, give any b | - | o st h .
clue about the actual pattern & (3)®Sg(3) symmetry Pest value o W;? \?v?w?ér? psrtc‘;jldu?:ea:jgzlgszt)f ?r:ges;mingﬁ(s)dm
d

breaking realized in nature? or phrased differently: What ardhe values of §,, auce :
the best values fdZ, andZ,? What is the best value fp?  quality; (IV) in all good quality fits, the differenca/dq

Do these values correspond to some well defined symmetry V4, takes the same value

breaking pattern?

As agfi‘:st step in the direction of finding an answer to ‘/5—d_ \/5—“:0'040' 53
these questions, we madgfit of the exact expressions for  These results may be understood if we notice that not all
the absolute Value Of the entl’ies in the miXing matriX, that iSentries ithChKM are equa“y Sensitive to Variations Of the
V&l and the Jarlskog invariat" to the experimentally  different parameters. Some entries, Ig,, are very sensi-
determined values gV ¢\fy| andJ®*P. Since the value of the tive to changes i but are almost insensitive to changes in
observed CKM matrix parametet¥&dy| are given atu  (8,,8,) while, some others, lik&/,, are almost insensitive
=m;, in the calculation we used the values of the runningto changes inb but depend critically on the parametess

quark masses evaluatedmt. These values were taken from and &y .

the work of Fritzsch 20|, see also Fusaoka and Koifiz3] From Egs.(4.1)—(4.11), we obtain
|
~ o~ 1/2 ~ ~ 1/2 ~ ~ 1/2
:_( memq ((1—mu—5u>(1+ms—5d>) ((1—mu—5u><1+ms—5d>
U (a—my) (Mgt my) (14 mg) (M+ my) (1= 8u)(1—8q) (1+my)
~ 112 ~ 1/2 ~ ~ 112
I (1+mc_5u)5u) ( (l_md_5d)5d) ]( myMs ) el ® (5.4
1=ay (1= 8g)(1+m) (1=my)(Me+m,)(Mg-+my) ' '
In the leading order of magnitude,
IV = VMg /ms— \m, /m.e'®| (1 + M, /Me+ mqy/mg) ~ Y2 (5.5
Hence,
My /Mg+ My /ms— |V, 2(1+ my/mg+mg/mg)
cosd ~ — . (5.6)
2\/(md/ms)(mu/mc)
Substitution of|VEXP? for |V,J? and the numerical value of the mass rati@}) and(5.2), in Eq. (5.6) gives
87°=P=<92° (5.7
with a mean value
d=89.5°, (5.8

in good agreement with the best value extracted from the prelimigafits [25].
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Similarly, V! is given by

1/2

_ my(1+m.— 8,) MyMed, ) 1’2+ [ Mu(1+Me— 8,) 84
P (- 8) (14 Mo (Mt My) (1 89)(1+ M) (1—g) (Me+My)(1+Me) (1+mg)(1—mg)
_( Mo(1—My— 8,) 84(1—My— 84) (1 + My— 8y) 1’2} o 59
(1= 6u)(1+me)(me+my)(1—8g)(1+mg)(1—mg)
Therefore, in the leading order of magnitud¥.,| is independent of® and given by
[Veo| = V4= V3, (5.10
Hence, good agreement with/c;" ~0.039[26] requires that
V64— \/6,~0.040, (5.11)

at least for one pair of valuesi(, 8y).
Finally, let us notice that the matrix elemeitg, andVy;, as well as the Jarlskog invarigigee Eq(4.14)], are sensitive

to small changes in the masses of the light qua]lgand Fnd. For instance,

v W1-u-a) Mamsd, e my(1-m,— 8,) 3 .
(2 8 (1 My (Me+My) (1- 8)(1+Mg)(1—my) (1=my) (Mgt my) (1+mg)(1—mg)
_( My(1+ M= 8,) 8,(1—My— 8)(1+ My 5y) )1’2 Jo 512
(1= 8,)(1=my)(M+my) (1= 86)(1+Mg)(1—my) '
|
computing in the leading order of magnitude, we get ( = 3
. —sin®
~ Vi,V m
m . _ tb Vtd » C
Vir~ \/ = (og— Va,)e'®. (5.13 ﬁ—a@( T ey artan e = [
Me VebVed My my
—_—— ——cosd
L . . \ Mg me J
A similar computation gives fo¥q (5.16
~ and
d id
Vig~— \/ = (V84— V8,)e'?. (5.14 ) _ .
mg m
d
—sin®
i i V*bvcd ms
However, since the masses of the light quarks are the Iessyz ard — — ~arctary |
well determined, and the modyV; 5" and |V " have the V* Vg M M '
largest error bars, relatively large changes in the values of ~_”_ ~—dcos¢>
m, andmy produce only very small variations in the good- L 'm Ms J
ness of fit of the thoretical matrix of modulv'"| to the (5.17

experimentally determineld/¢*P. The sensitivity of the ma- _ S
trix elements|V,;| and |V, to changes irm, andmy is % B, and y are the inner angles of the unitarity triangle.

reflected in the shape of the unitarity triangle which changedVhen the central values @h,=0.000018 andn,=0.0019
appreciably when the masses of the light quarks changk0] are used in the fitting procedure, the agreemen/&f

within their uncertainty bounds, as may be seen from thevith [V®*% is very good,x*=0.33, but we systematically
following expressions: obtain y'">a'" in stark disagreement with the most recent

data on thek®-K° system and the most recent data on the
Vv S\ Bgd oscillations[26] and [27]. We could not change the
a=al’% - ib ud ~arg{ (~—”~—S) e i®
VibVid me My

—®, values of\/8,— /8, without spoiling the good overall agree-
ment of | V"] to |[V®*P. Therefore, we let the masses of the
(5.15 light quarks vary within their uncertainty ranges. The best
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simultaneousgy? fit of [V, 3" and ", B" and y'" to the
experimentally determined quantitifg®*?, J®*P and a®*P,

B*P and y**P[26,27] was obtained when the value u, is
taken close to its upper boungh,~0.000042, and the value
of myg=0.00148, which is close to its lower bound. Notice

that, the chosen high value ah, gives for the ratio
[Vupl/|Vep| the value

biguity, we will further assume that the up and down mass
matrices are generated following the same symmetry break-
ing pattern, that is,
5 g .

Then, the value o which satisfies the constraining condi-
tions(5.11) and(5.19 may be read directly from Fig. 1. We
find Z*=2.5.

A more precise numerical computation of the best value
of Z was made using the exact numerical solution of Eqg.

/m,
1~ \/==0.093 > e o
[Vl m, (3.1, given in Eqs(3.13—(3.16), to compute the entries in
v\, as functions of only two free parametefs,and z*2.

in very good agreement with its latest world aver§gd. As prgviously, we kept the mass ratios fixed at thg values
We may now return to our discussion of the determinatior@iven in Egs(5.1) and(5.2. Then, we made a new? fit of o

of the best pattern of symmetry breaking. As explainedih® €xact expressions for the absolute values of the entries in

above, in the preliminary? fit to the data it was found that the theoretical expressions f(\y| and the Jarlskog in-

V84— \8,~0.04, Eq.(5.11), is satisfied almost exactly even Variant J" to the experimentally determined values of

when we let the masses of the light quarks vary, not just fofVekul andJ®*P. We found the following best values fdr

one pair of values §,,54) but for a continuous range of andZ,

values of §, and &4 in which these parameter change by

Vbl (5.18

more than one order of magnitude. ©=89.3° (5.21
Therefore, Eq(5.11) may be used as a constraining con- and

dition on the possible values of5(,dy). In this way, we

eliminate one free parameter thhKM without spoiling the 2.40<Z*<2.55, (5.22

good quality of the fit. However, fixing the numerical value

of this free parameter is not enough to get a clear indicatiororresponding to a value of?<0.33.

on what is the actual pattern of flavor symmetry breaking When the best value of th€P violating phase®
realized in nature. This is so because according to Eqs=89.33° is changed by one degree, the computed values of
(3.1)—(3.16, &, is a function of the mass ratiosng,,m,,)  all entries in the matrix of moduljV¥, | change in the
and the parameteZ® which characterizes the pattern of fourth decimal place, exce ) and| VY| which change in
S.(3)®Sg(3) symmetry breaking in thg sector. Hence, a the third decimal place by an amount which is about one
convenient way to isolate the information about the patterrfourth of the uncertainty in the experimentally determined
of symmetry breaking carried by the constraining conditionsvalues of|V_:P and |VZi? as reported in Caset al. [26].
(5.11) from the information on the numerical values of the The value of y? changes from 0.33 to 0.44 which is not
guark mass ratios, is to change the parametrizatidm‘gka statistically significative. Therefore, we will adopt as the best

by writing &, as function of Z}* with fixed values of value ofd the simple figure
(Myq,Myg). I this wayVY,,, becomes a function of the two

4 12 S1x (5.23
free parametersZ, ,Zdz) instead of ¢,,8y).

A simple approximate expression for the constrainingonce the best value @ has been found, the question posed
condition (5.3, (5.11) in terms of @;?,Z3?), valid for 0 4t the beginning of this section takes a new form: What is the

d*=90°.

<Z4=10, is obtained from Eq5.11), writing 54(Zg) in the
leading order of magnitude

Z4Y4(mg—mg)

V(14 M) (1= Mg) + 2Z4(Ms— M)

z,Y(m.—m,)
=(0.040.

V(14 Mo) (1= )+ 2Z(Me— My
(5.19

When the condition(5.19 is satisfied, to each value @

symmetry breaking pattern correspondingZfo=2.5?

An answer would be readily found #* 2 could be writ-
ten as a simple, non-trivial, linear combination 22 and
Z¥2, which, are equal to- /8 and 14/8, respectively. From
these numbers, we find that ¥? may indeed be written as

corresponds one value &. But, since we have only one The corresponding values @f,(Z) and 84(Z) are

condition to fix the value of two parametei}> would still

be a free parameter. Therefore, to avoid this continuous am-

1 1
z*P=2[z2%-Z"=5[1\B+\B],  (5.29
then
Z*—81—2 53125 5.2
=35-2 . (5.29
6,(Z*)=0.000056, &64(Z*)=0.0023. (5.2
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Let us remark again that the numerical valuZéf/?was  breaking ansatz in the form of the following assumption.
extracted from a fit oﬂVCKM| to the experimentally deter- The S (3)®Sg(3) flavor symmetry is broken down to
mined absolute values of the elements of @M mixing S (2)® Sg(2) according to a mixed symmetry breaking pat-
matrix. The identification oZ* /2 with the expressiofi5.24) tern, which, in the hierarchical basis, is characterized by
gives a clear and precise indication about the preferred pat-
tern for the breaking of th§ (3)® Sg(3) permutational fla-
vor symmetry by the quark mass matrices.

Z* 1/2_ (Zl/2 1/2) ) (61)
VI. MASS TEXTURES FROM THE “BEST” SYMMETRY
BREAKING SCHEME

Once the best value & has been determined, we may Then, the mass matrix with the modified Fritzsch texture
turn the argument around, and propose it as a symmetrakes the form

0 [MaM2q i, 0
1- 6

[mygm, ~ ~ 92 . ~
M;,H:mSQ 1 qa*qed) _I’an—'—I’nlq—'—5;'4c 8 (_m2q+mlq+5;) ) (6.2)
9
0 f( Mg+ Myg+ 5%) 1-6%
H
|
where &3 is the solution of the cubic equation The mixing parametery81/32 corresponds to what was
~ 5 called in Sec. I, a mixed symmetry breaking pattern, that is,
1135;;3—[194( Myq— Myq) + 145] 6;‘2 it may be split in the sum of a term?, 2. corresponding to

a purely antisymmetric, plus a teerq y corresponding to
a purely symmetric breaking pattern. The coefficients in each

o o o = o term,Ns= 22 andN,= — 15, are obtained solving the pair of

32myqMaq+32] 53 —81(Mzq = Myq) =0, 6.3 coupled equationé3.27 and(3.28 whenz*?=/81/32.
obtained from Eq.(3.12 when /81/32 is substituted for Hence,
Z* 1/2.
The mass matriM , y was built up adding three terms,

MigH, Magn, andMgzq 1. The termMg,  is a singlet ir-

+[81(Myq— Myq) 2+ 194 My — My )

;q,Hz m3q( —Mygt+ Mg+ 5:;)

reducible representation & (3)® Sg(3)2 Syiag(3) [
0 0 O 0 0 0
~/lo 1 -8
M 314 =(Mzq— Mg+ Myq) 000 . (6.9 X 18
1 0 -8 -1
H H
The matrix My, breaks S (3)®Sg(3) down to L
S (2)® Sg(2), mixing the singlet and doublet representation 0 o 0 7
of Syiag(3) in a proportion precisely determined by the mix-
ing parameteZ* ¥?= ,/81/32, 0 1 1
~ 5 25 J8
0 0 0 0 NG -1
«| O 1 \v81/32 _ (6.5 H
0 y81/32 -1
H The S (2)® Sg(2) symmetry of this term and its splitting in
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the sum of a purely symmetric plus a purely antisymmetricentries in the mass matricéd, are functions of the mass
breaking pattern term is evident in the weak representation,tjos (mlq mzq) and the phaSQSq which is a free param-

eter.
qu w= Mzq(— m2q+ m1q+ 5*) 1) After factorizing the phases, as in Eg.1), all entries in

24 the real symmetric matriced!, are functions of the mass
14 14 —-25 ratios (ﬁhq,ﬁg) only. Hence, the orthogonal matric€y,
14 14 -25 which bring My to diagonal form are also functions of

X : (6.7 (Myq,Myg) onl

—25 —25 —28 1q:M2q y. .

w According to Eq.(4.4), Vckw is given byO!PU~ 90y,

where PU~9 is the diagonal matrix of the relative phases.
Finally, the termM, ,, breaks the, (2)® Sg(2) symme-  Therefore, once the symmetry breakiAgisatzdetermines
try the value ofZ*2=/81/32, the theoretical expressions for
0 e 0 the entries in the mixing matrix/t, ,, are written in terms

= _ of the four mass ratiosnf, ,m,,my,Ms) and only one free
MigMq| €% 0 0 . (6.9  Pparameter, namely, th@ P violating phaseb.

1-6 0 0O 0 We made a new? fit of the absolute value of the entries
H in the mixing matrix,| V¥, |, to the experimentally deter-
mined valuegVgyy|. We kept the mass ratios fixed at the

. values given in Eq95.1) and(5.2). We varied only theCP
Since &; is a function of the mass ratiosmq,myq) the  violating phase®. The best value ofp was found to be
phase¢q is the only free parameter left in the mass matrix89.3° corresponding to a minimum value gt equal to 0.33.

Mq . As explained at the end of Sec. V, we may round off to

* —
Mg H=M3q

VIl. THE MIXING MATRIX, Vckm, FROM THE BEST d*=90° (7.9

SYMMETRY BREAKING SCHEME ) )
without spoiling the good quality of the fit.

We have seen that, once the symmetry breakingatz The mixing matrixV¥,,, computed with this value ob
fixes the value of the mixing paramet&t? at /81/32, the s

0.9750+i0.0188 —0.2020+i0.0906 0.0003i0.0037

th _| —0.090A4i0.2019 0.0188i0.9742 —0.0000+i0.0396

Vekm= . (7.2
—0.0000-i0.0084 —0.0000-i0.0388 0.0008-i0.9992

The matrix of the moduli, computed from E€{.2), is

0.9752 0.2214 0.003¢7
|Vg1KM|: 0.2213 0.9744 0.039 ' 7.3
0.0084 0.0388 0.999

which is to be compared with the experimental valaé]

0.9745-0.9760 0.217#0.224 0.0018 0.004
0.217-0.224 0.9737#0.9753 0.036-0.042

|V€‘Xp .
0.004-0.013 0.035-0.042  0.999%0.9994

(7.9
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We see that the absolute values of the entries in the mixingbsolute values of the elements of the CKM matrix with the
matrix computed from the theoretical expressions\if,,,  experimentally determined values pfe,|, J®*P and the
with the values of the mass ratios given in E¢s.1) and inner angles of the unitarity triangle®*?, g¢*P, and »**P
(5.2 [20] reproduce the central values of the experimentallygives a clear and precise indication on the existence of a
determined entries iV&y|, almost exactly, well within the  preferred pattern for breaking tt8 (3)® Sg(3) flavor sym-
bounds of experimental error. metry down toS, (2)® Sg(2). Thepreferred or best symme-
We also computed the Jarlskog invaridff2]. The value try breaking pattern is characterized by
obtained from Eq(4.14) is

Jih=3.00x10 %, (7.5 z* 1/2:%(zé/2_ zi?) = 2_; (8.1)
in good agreement with current data 6P violation in the
KO-K® mixing system{26]. Once the numerical value @ *? s fixed at\/81/32, the

The three inner angles of the unitarity triangle may nowMass matricedq are functions of the quark masses and only
be readily computed from the expressidB<l5—(5.19. We € phase. In consequence, the resulting best theoretical

found the following values: Vekm rnatrB( is~par§metrized in terms of the four quark mass
ratios (n,,m.,my,ms) and only oneCP violating phaseb.
a=84°, pB=24°, y=72°. (7.6)  The best value o> was found to be
These three angles will be determined fr@® asymme- d=90°, (8.2
tries in a variety of wealB decays at the forthcoming
factories. The moduli of the matrix elements of the mixing matrix

An estimation of the range of values of these angles comeomputed from the theoretical expressidf, « are in excel-
patible with the experimental information on the absolutelent agreement with all the experimentally determined abso-
values of the matrix elements &2}y, is given by Mele |ute values of the CKM matriYVEd,|. For the Jarlskog
[27] and Ali [28]. According to these authors, 78% invariant we found the valugd=3.00< 10 and for the in-
<102°, 21°%<p=<28° and 55%y=<78°. We see that the ner angles of the unitarity triangle we found the values
value of g obtained in this work coincides almost exactly =84, 8=24, andy=72 also in very good agreement with

with the central value oB according to Mel¢27], while our current data orCP violation in the K°-K° mixing system

tjllqleséi:gjviéor;hne gp?\%r:'?'t tghl\é(seg gﬁthMoigzﬂ anda is in [26] and the most recent data on oscillations in B&E‘S’
g€ 9 y ' system[27] and[28].

In the standard electroweak model both the masses of the
quarks as well as the weak mixing angles appear as free
In this work we derived theoretical expressions for theparameters. In this work, we have shown that, starting from
mixing matrix V"¢ from quark mass matriced, with a  the flavor permutational symmetry, a simple and exphait
modified Fritzsch texture. The mass matrices were built upatzabout the pattern of symmetry breaking leads to a pa-
adding three termdls,, M,q, and My, corresponding to rametrization o_f the CKM mixing matrix in terms of four
stages of less symmetry in a simple scheme for breaking th@uark mass ratiosng, /m,m¢/my,my/my,ms/my) and one
flavor permutationa] symmetry. CP ViOlating phase in very gOOd agreement with all the
The breaking pattern of thé& (3)®Sr(3) symmetry available experimental information on quark mixings and
down to S, (2)®Sr(2) was characterized in terms of the CP violation.
parameteZ /2= (M q 1) 23/ (M 24 1) 22 Which is a measure of
the amount of mixing of singlet and doublet irreducible rep- ACKNOWLEDGMENTS
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