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R-parity-violating supersymmetry~with a conserved baryon numberB! provides a framework for particle
physics with lepton-number-~L-! violating interactions. We examine in detail the structure of the most general
R-parity-violating ~B-conserving! model of low-energy supersymmetry. We analyze the mixing of Higgs
bosons with sleptons and the mixing of charginos and neutralinos with charged leptons and neutrinos, respec-
tively. Implications for neutrino and sneutrino masses and mixing andCP-conserving sneutrino phenomena are
considered.L-violating low-energy supersymmetry can be probed at future colliders by studying the phenom-
enology of sneutrinos. Sneutrino-antisneutrino mass splittings and lifetime differences can provide new oppor-
tunities to probe lepton number violation at colliders.@S0556-2821~99!04709-8#

PACS number~s!: 14.60.Pq, 12.60.Jv
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I. INTRODUCTION

There is no fundamental principle that requires the the
of elementary particle interactions to conserve lepton nu
ber. In the standard model, lepton number conservation
fortuitous accident that arises because one cannot write d
renormalizable lepton-number-violating interactions th
only involve the fields of the standard model@1#. In fact,
there are some experimental hints for nonzero neut
masses@2# that suggest that lepton number is not an ex
symmetry.

In low-energy supersymmetric extensions of the stand
model, lepton number conservation is not automatically
spected by the most general set of renormalizable inte
tions. Nevertheless, experimental observations imply
lepton-number-violating effects, if they exist, must be rath
small. If one wants to enforce lepton number conservation
the tree-level supersymmetric theory, it is sufficient to i
pose one extra discrete symmetry. In the minimal supers
metric standard model~MSSM!, a multiplicative symmetry
calledR parity is introduced, such that theR quantum num-
ber of a MSSM field of spinS, baryon numberB, and lepton
numberL is given by (21)@3(B2L)12S#. By introducingB-L
conservation modulo 2, one eliminates all dimension
lepton-number- and baryon-number-violating interactio
Majorana neutrino masses can be generated in anR-parity-
conserving extension of the MSSM involving newDL52
interactions through the supersymmetric seesaw mecha
@3,4#.

In a recent paper@4# ~for an independent study, see Re
@5#!, we studied the effect of such aDL52 interaction on
sneutrino phenomena. In this case, the sneutrino (ñ) and
antisneutrino (nD ), which are eigenstates of lepton numb
are no longer mass eigenstates. The mass eigenstate
therefore superpositions ofñ and nD , and sneutrino mixing
effects can lead to a phenomenology analogous to tha
K-K̄ and B-B̄ mixing. The mass splitting between the tw
0556-2821/99/59~9!/093008~15!/$15.00 59 0930
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sneutrino mass eigenstates is related to the magnitude of
ton number violation, which is typically characterized by t
size of neutrino masses.1 As a result, the sneutrino mas
splitting is expected generally to be very small. Yet it can
detected in many cases if one is able to observe the le
number oscillation@4#.

Neutrino masses can also be generated inR-parity-
violating ~RPV! models of low-energy supersymmetr
@7–11#. However, all possible dimension-4 RPV interactio
cannot be simultaneously present and unsuppressed; o
wise, the proton decay rate would be many orders of mag
tude larger than the present experimental bound. One wa
avoid proton decay is to impose eitherB or L separately. For
example, if B is conserved, butL is not, then the theory
would violateR parity but preserve aZ3 baryon ‘‘triality.’’

In this paper we extend the analysis of Ref.@4# and study
sneutrino phenomena in models withoutR parity ~but with
baryon triality!. Such models exhibitDL51 violating inter-
actions at the level of renormalizable operators. One can t
generateDL52 violating interactions, which are responsib
for generating neutrino masses. In general, one neut
mass is generated at the tree level via mixing with the n
tralinos, and the remaining neutrino masses are generate
one loop.

In Sec. II we introduce the most general RPV model w
a conserved baryon number and establish our notation
Sec. III we obtain the general form for the mass matrix in t
neutral fermion sector~which governs the mixing of neutrali
nos and neutrinos! and in the neutral scalar sector~which
governs the mixing of neutral Higgs bosons and sneutrin!.
From these results, we obtain the tree-level masses of
trinos and squared-mass splittings of the sneutri
antisneutrino pairs. In Sec. IV we calculate the neutr

1In some cases the sneutrino mass splitting may be enhanced
factor as large as 103 compared to the neutrino mass@4,6#.
©1999 The American Physical Society08-1
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masses and sneutrino-antisneutrino squared-mass split
generated at one loop. The phenomenological implication
these results are addressed in Sec. V along with our summ
and conclusions. An explicit computation of the scalar p
tential of the model is presented in Appendix A. For co
pleteness, we present in Appendix B the general form for
mass matrix in the charged fermion sector~which governs
the mixing of charginos and charged leptons! and in the
charged scalar sector~which governs the mixing of charge
Higgs bosons and charged sleptons!. The relevant Feynman
rules for the RPV model and the loop function needed for
one-loop computations of Sec. IV are given in Appendixe
and D.

II. R-PARITY VIOLATION FORMALISM

In R-parity-violating low-energy supersymmetry, there
no conserved quantum number that distinguishes the le
supermultipletsL̂m and the down-type Higgs supermultipl
ĤD . Here m is a generation label that runs from 1
ng53. Each supermultiplet transforms as aY521 weak
doublet under the electroweak gauge group. It is there
convenient to denote the four supermultiplets by one sym
L̂a (a50,1,...,ng), with L̂0[ĤD . We consider the mos
general low-energy supersymmetric model consisting of
MSSM fields that conserves aZ3 baryon triality. As re-
marked in Sec. I, such a theory possesses RPV interac
that violate lepton number.

The Lagrangian of the theory is fixed by the superpot
tial and the soft-supersymmetry-breaking terms~supersym-
metry and gauge invariance fix the remaining dimensio
terms!. The theory we consider consists of the fields of t
n
m
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MSSM, i.e., the fields of the two-Higgs-doublet extension
the standard model plus their superpartners. The most
eral renormalizable superpotential respecting baryon tria
is given by

W5e i j @2maL̂a
i ĤU

j 1 1
2 labmL̂a

i L̂b
j Êm1lanm8 L̂a

i Q̂n
j D̂m

2hnmĤU
i Q̂n

j Ûm#, ~2.1!

where ĤU is the up-type Higgs supermultiplet, theQ̂n are
doublet quark supermultiplets,Ûm @D̂m# are singlet up-type
@down-type# quark supermultiplets, and theÊm are the sin-
glet charged lepton supermultiplets.2 Without loss of gener-
ality, the coefficientslabm are taken to be antisymmetri
under the interchange of the indicesa andb. Note that them
term of the MSSM@which corresponds tom0 in Eq. ~2.1!# is
now extended to an (ng11)-component vectorma ~while
the latin indicesn andm run from 1 tong!. Then the trilinear
terms in the superpotential proportional tol andl8 contain
lepton-number-violating generalizations of the down qua
and charged lepton Yukawa matrices.

Next, we consider the most general set of~renormaliz-
able! soft-supersymmetry-breaking terms. In addition to t
usual soft-supersymmetry-breaking terms of theR-parity-
conserving MSSM, one must also add newA and B terms
corresponding to the RPV terms of the superpotential.
addition, new RPV scalar squared-mass terms also exist
above, we can streamline the notation by extending the d
nitions of the coefficients of theR-parity-conserving soft-
supersymmetry-breaking terms to allow for an index of ty
a which can run from 0 tong . Explicitly,
Vsoft5~M
Q̃

2
!mnQ̃m

i* Q̃n
i 1~M

Ũ

2
!mnŨm* Ũn1~M

D̃

2
!mnD̃m* D̃n

1~M
L̃

2
!abL̃a

i* L̃b
i 1~M

Ẽ

2
!mnẼm* Ẽn1mU

2 uHUu22~e i j baL̃a
i HU

j 1H.c.!

1e i j @
1
2 aabmL̃a

i L̃b
j Ẽm1aanm8 L̃a

i Q̃n
j D̃m2~aU!nmHU

i Q̃n
j Ũm1H.c.#

1 1
2 @M3g̃g̃1M2W̃aW̃a1M1B̃B̃1H.c.#. ~2.2!
ove

s

f

Note that the singleB term of the MSSM is extended to a
(ng11)-component vectorba , the single squared-mass ter
for the down-type Higgs boson and theng3ng lepton scalar
squared-mass matrix are combined into an (ng11)3(ng

11) matrix, and the matrixA parameters of the MSSM ar
extended in the obvious manner@analogous to the Yukawa
coupling matrices in Eq.~2.1!#. In particular,aabm is anti-
symmetric under the interchange ofa andb. It is sometimes
convenient to follow the more conventional notation in t
literature and define theA andB parameters as follows:

aabm[labm~AE!abm , ~aU!nm[hnm~AU!nm ,
aanm8 [lanm8 ~AD!anm , ba[maBa , ~2.3!

where repeated indices are not summed over in the ab
equations. Finally, the Majorana gaugino massesMi are un-
changed from the MSSM.

The total scalar potential is given by

Vscalar5VF1VD1Vsoft. ~2.4!

2In our notation,e1252e2151. The notation for the superfield
~extended to allowa50 as discussed above! follows that of Ref.
@12#. For example, (ẽL

2)m@(ẽR
1)m# are the scalar components o

L̂m
2 @Êm#, etc.
8-2
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In Appendix A, we present the complete expressions forVF
„which is derived from the superpotential@Eq. ~2.1!#… and
VD . It is convenient to write out the contribution of th
neutral scalar fields to the full scalar potential@Eq. ~2.4!#:

Vneutral5~mU
2 1umu2!uhUu21@~M

L̃

2
!ab1mamb* #ñañb*

2~bañahU1ba* ña* hU* !

1 1
8 ~g21g82!@ uhUu22uñau2#2, ~2.5!

where hU[HU
2 is the neutral component of the up-typ

Higgs scalar doublet andña[L̃a
1. In Eq. ~2.5!, we have in-

troduced the notation

umu2[(
a

umau2. ~2.6!

In minimizing the full scalar potential, we assume th
only neutral scalar fields acquire vacuum expectation valu
^hU&[vu /A2 and^ña&[va /A2. From Eq.~2.5!, the mini-
mization conditions are

~mU
2 1umu2!vu* 5bava2 1

8 ~g21g82!~ uvuu22uvdu2!vu* ,

~2.7!

@~M
L̃

2
!ab1mamb* #vb* 5bavu

1 1
8 ~g21g82!~ uvuu22uvdu2!va* ,

~2.8!

where

uvdu2[(
a

uvau2. ~2.9!

The normalization of the vacuum expectation values
been chosen such that

v[~ uvuu21uvdu2!1/25
2mW

g
5246 GeV. ~2.10!

Up to this point, there is no preferred direction in th
generalized generation space spanned by theL̂a . It is con-
venient to choose a particular ‘‘interaction’’ basis such th
vm50 (m51, . . . ,ng), in which casev05vd . In this basis,
09300
t
s:

s

t

we denoteL̂0[ĤD . The down-type quark and lepton ma
matrices in this basis arise from the Yukawa couplings
HD , namely,3

~md!nm5
1

&
vdl0nm8 , ~ml !nm5

1

&
vdl0nm , ~2.11!

while the up-type quark mass matrices arise as in the MSS

~mu!nm5
1

&
vuhnm . ~2.12!

In the literature, one often finds other basis choices. For
ample, the most common is one wherem05m and mm50
(m51, . . . ,ng). Of course, the results for physical obser
ables ~which involve mass eigenstates! are independent o
the basis choice.4 In the calculations presented in this pape
when we need to fix a basis, we find the choice ofvm50 to
be the most convenient.

III. NEUTRINOS AND SNEUTRINOS AT THE TREE
LEVEL

We begin by recalling the calculation of the tree-lev
neutrino mass that arises due to theR-parity violation. We
then evaluate the corresponding sneutrino mass splitting
all the subsequent analysis presented in this paper, we
assume for simplicity that the parameters (M

L̃

2
)ab , ma , ba ,

the gaugino mass parametersMi , andva are real. In particu-
lar, the ratio of vacuum expectation values,

tanb[
vu

vd
, ~3.1!

can be chosen to be positive by convention@with vd defined
by the positive square root of Eq.~2.9!#. That is, we neglect
new supersymmetric sources ofCP violation that can con-
tribute to neutrino and sneutrino phenomena. We shall
dress the latter possibility in a subsequent paper@14#.

A. Neutrino mass

The neutrino can become massive due to mixing with
neutralinos @7#. This is determined by the (ng14)3(ng
14) mass matrix in a basis spanned by the two neu
gauginosB̃ andW̃3, the Higgsinosh̃U and h̃D[n0 , andng
generations of neutrinosnm . The tree-level fermion mas
matrix, with rows and columns corresponding
$B̃,W̃3,h̃U ,nb (b50,1, . . . ,ng)%, is given by@8,9#

3As shown in Appendix B, (ml)nm is not precisely the charged
lepton mass matrix, as a result of a small admixture of the char
Higgsino eigenstate due to RPV interactions.

4For a general discussion of basis-independent parametrizatio
R-parity violation, see Refs.@13# and @11#.
8-3
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M ~n!5S M1

0
mZsWvu /v

2mZsWva /v

0
M2

2mZcWvu /v
mZcWva /v

mZsWvu /v
2mZcWvu /v

0
ma

2mZsWvb /v
mZcWvb /v

mb

0ab

D , ~3.2!
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wherecW[cosuW, sW[sinuW, v is defined in Eq.~2.10!,
and 0ab is the (ng11)3(ng11) zero matrix. In a basis
independent analysis, it is convenient to introduce

cosj[
(avama

vdm
, ~3.3!

where m is defined in Eq.~2.6!. Note thatj measures the
alignment ofva andma . It is easy to check thatM (n) pos-
sessesng21 zero eigenvalues. We shall identify the corr
sponding states withng21 physical neutrinos of the stan
dard model@8#, while one neutrino acquires mass throu
mixing. We can evaluate this mass by computing the prod
of the five nonzero eigenvalues ofM (n) @denoted below by
det8 M(n)#5

det8 M ~n!5mZ
2m2M g̃ cos2 b sin2 j, ~3.4!

whereM g̃[cos2 uWM11sin2 uWM2. We compare this resul
with the product of the four neutralino masses of t
R-parity-conserving MSSM~obtained by computing the de
terminant of the upper 434 block of M (n) with m0 ,v0 re-
placed bym,vd , respectively!:

detM0
~n!5m~mZ

2M g̃ sin 2b2M1M2m!. ~3.5!

To first order in the neutrino mass, the neutralino masses
unchanged by theR-parity-violating terms, and we end u
with @9#

mn5
det8 M ~n!

detM0
~n! 5

mZ
2mM g̃ cos2 b sin2 j

mZ
2M g̃ sin 2b2M1M2m

. ~3.6!

Thus mn;mZ cos2 b sin2 j, assuming that all the relevan
masses are at the electroweak scale.

Note that a necessary and sufficient condition formnÞ0
~at the tree level! is sinjÞ0, which implies thatma andva
are not aligned.6 This is generic in RPV models. In particu
lar, the alignment ofma andva is not renormalization group
invariant @9,10#. Thus exact alignment at the low-energ
scale can only be implemented by a fine-tuning of the mo
parameters.

5To compute this quantity, calculate the characteristic polynom
det(lI2M(n)) and examine the first nonzero coefficient ofln (n
50,1, . . . ). In thepresent case, det8 M(n) is given by the coefficient
of lng21.

6A necessary and sufficient condition for the alignment ofma and
va is given in Eq.~3.11!.
09300
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B. Sneutrino mass splitting

In RPV low-energy supersymmetry, the sneutrinos m
with the Higgs bosons. Under the assumption ofCP conser-
vation, we may separately consider theCP-even andCP-odd
scalar sectors. For simplicity, consider first the case of
sneutrino generation. IfR parity is conserved, theCP-even
scalar sector consists of two Higgs scalars (h0 andH0, with
mh0,mH0) and ñ1 , while theCP-odd scalar sector consist
of the Higgs scalarA0, the Goldstone boson~which is ab-
sorbed by theZ!, and one sneutrinoñ2 . Moreover, theñ6

are mass degenerate, so that the standard practice is to d
eigenstates of lepton number:ñ[( ñ11 i ñ2)/& and nD
[ñ* . WhenR parity is violated, the sneutrinos in eachCP
sector mix with the corresponding Higgs scalars, and
mass degeneracy ofñ1 and ñ2 is broken. We expect the
RPV interactions to be small; thus, we can evaluate the c
comitant sneutrino mass splitting in perturbation theory. F
ng.1 generations of sneutrinos, one can consider nontri
flavor mixing among sneutrinos~or antisneutrinos! in addi-
tion to ng sneutrino-antisneutrino mass splittings.

The CP-even andCP-odd scalar squared-mass matric
are most easily derived as follows. InserthU5(1/&)(vu
1 iau) and ña5(1/&)(va1 iaa) into Eq. ~2.5! and call the
resulting expressionVeven1Vodd. The CP-even squared-
mass matrix is obtained fromVeven, which is identified by
replacing the scalar fields in Eq.~2.5! by their corresponding
real vacuum expectation values~or, equivalently, by setting
au5aa50 in Veven1Vodd). Then,

Veven5
1
2 muu

2 vu
21 1

2 mab
2 vavb2bavuva

1 1
32 ~g21g82!~vu

22vd
2!2, ~3.7!

Vodd5
1
2 muu

2 au
21 1

2 mab
2 aaab1baauaa

1 1
32 ~g21g82!@~au

22ad
2!212~au

22ad
2!~vu

22vd
2!#,

~3.8!

where muu
2 [(mU

2 1m2) and mab
2 [(M

L̃

2
)ab1mamb . The

minimization conditions dVeven/dvp50 (p5u,a) yield
Eqs.~2.7! and~2.8!, with all parameters assumed to be re
In particular, it is convenient to rewrite Eq.~2.8!. First, we
introduce the generalized (ng11)3(ng11) sneutrino
squared-mass matrix

~M ñ ñ*
2

!ab[~M
L̃

2
!ab1mamb2 1

8 ~g21g82!~vu
22vd

2!dab .

~3.9!

Then Eq.~2.8! assumes a very simple form

~M ñ ñ*
2

!abvb5vuba . ~3.10!

l

8-4
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As an aside, we note that Eq.~3.10! can be used to derive
the necessary and sufficient condition for sinj50 ~corre-
sponding to the alignment ofma and va). If there exists
some numberc such that

~M ñ ñ*
2

!abmb5cba , ~3.11!

then it follows thatma andva are aligned.7 To prove that Eq.
~3.11! implies the alignment ofma andva , simply insert Eq.
~3.11! into Eq.~3.10! ~thereby eliminatingba), and note that
(M ñ ñ*

2 )ab must be nonsingular@otherwise, Eq.~3.10! would
not yield a unique nontrivial solution forva#.

Naively, one might think that ifma andva are aligned, so
that all tree-level neutrino masses vanish, then one wo
also find degenerate sneutrino-antisneutrino pairs at the
level. This is not generally true. Instead, the absence of
generate sneutrino-antisneutrino pairs is controlled by
alignment ofba and va . To see how this works, note tha
Eq. ~3.10! implies thatba and va are aligned ifvb is an
eigenvector of (M ñ ñ*

2 )ab . One can then rotate to a basis
which vm5bm50 ~wherem51, . . . ,ng); in this basis, the
t

i

re

l.

09300
ld
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matrix elements (M ñ ñ*
2 )0m5(M ñ ñ*

2 )m050. It then follows
„using the explicit forms for the scalar squared-mass ma
ces @Eqs. ~3.13! and ~3.15! given below#… that there is no
mixing between the Higgs bosons and sneutrinos. Thus
though some RPV effects still remain in the theory, theCP-
even andCP-odd sneutrino mass matrices are identical. Co
sequently, the conditions for the absence of tree-le
neutrino masses~alignment ofma and va) and the absence
of sneutrino-antisneutrino mass splitting at the tree le
~alignment ofba andva) are different.

Returning to the computation of the tree-level sneutrin
antisneutrino mass splittings, we must first calculate theCP-
even and CP-odd scalar spectrum. TheCP-even scalar
squared-mass matrix is given by

~Meven
2 !pq5

d2Veven

dvpdvq
. ~3.12!

After using the minimization conditions of the potential, w
obtain the following result for theCP-even squared-mas
matrix:
Meven
2 5S 1

4 ~g21g82!vu
21brvr /vu

2 1
4 ~g21g82!vuva2ba

2 1
4 ~g21g82!vuvb2bb

1
4 ~g21g82!vavb1~M ñ ñ*

2
!ab

D , ~3.13!
-

el

th
ac-

o-
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e

where (M ñ ñ*
2 )ab is constrained according to Eq.~3.10!. The

CP-odd scalar squared-mass matrix is determined from

~Modd
2 !pq5

d2Vodd

dapdaq
U

ap50

, ~3.14!

where Vodd is given by Eq. ~3.8!. The resultingCP-odd
squared-mass matrix is then

Modd
2 5S brvr /vu

ba

bb

~M ñ ñ*
2

!ab
D . ~3.15!

Note that the vector (2vu ,vb) is an eigenvector ofModd
2

with zero eigenvalue; this is the Goldstone boson tha

7It is interesting to compare this result with the one obtained
Ref. @8#, where it was shown thatma and va are aligned if two
conditions hold: ~i! ba}ma and ~ii ! ma is an eigenvector of
(M

L̃

2
)ab . From Eq. ~3.11!, we see that these two conditions a

sufficient for alignment@since conditions~ii ! and ~iii ! imply the
existence of a constantc in Eq. ~3.11!#, but are not the most genera
is

absorbed by theZ. One can check that the following tree
level sum rule holds:

Tr Meven
2 5mZ

21Tr Modd
2 . ~3.16!

This result is a generalization of the well-known tree-lev
sum rule for theCP-even Higgs masses of the MSSM@see
Eq. ~3.21!#. Equation~3.16! is more general in that it also
includes contributions from the sneutrinos which mix wi
the neutral Higgs bosons in the presence of RPV inter
tions.

To complete the computation of the sneutrin
antisneutrino mass splitting, one must evaluate the nonz
eigenvalues ofMeven

2 andModd
2 , and identify which ones cor-

respond to the sneutrino eigenstates. To do this, one m
first identify the small parameters characteristic of the R
interactions. We find that a judicious choice of basis sign
cantly simplifies the analysis. Following the discussion at
end of Sec. II, we choose a basis such thatvm50 ~which
implies thatvd5v0).

To illustrate our method, we exhibit the calculation in th
case ofng51 generation. In the basis wherev150, Eq.
~3.10! implies that (M ñ ñ*

2 )a05ba tanb (a50,1). Then the
squared-mass matrices, Eqs.~3.13! and ~3.15!, reduce to

n

8-5
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Meven
2 5S b0 cotb1 1

4 ~g21g82!vu
2

2b02 1
4 ~g21g82!vuvd

2b1

2b02 1
4 ~g21g82!vuvd

b0 tanb1 1
4 ~g21g82!vd

2

b1 tanb

2b1

b1 tanb

mñ ñ*
2 D ~3.17!
a

b
in
ng
e
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Modd
2 5S b0 cotb

b0

b1

b0

b0 tanb
b1 tanb

b1

b1 tanb

mñ ñ*
2 D , ~3.18!

where

mñ ñ*
2 [~M ñ ñ*

2
!115~M

L̃

2
!111m1

22 1
8 ~g21g82!~vu

22vd
2!.

~3.19!

In the R-parity-conserving limit (b15m150), one obtains
the usual MSSM tree-level masses for the Higgs bosons
the sneutrinos.

In both squared-mass matrices@Eqs. ~3.17! and ~3.18!#,
b1!mZ

2 is a small parameter that can be treated pertur
tively. We may then compute the sneutrino mass splitt
due to the small mixing with the Higgs bosons. Usi
second-order matrix perturbation theory to compute the
genvalues, we find

mñ1

2 5mñ ñ*
2

1
b1

2

cos2 b F sin2~b2a!

~mñ ñ*
2

2mH0
2

!
1

cos2~b2a!

~mñ ñ*
2

2mh0
2

!G ,

mñ2

2 5mñ ñ*
2

1
b1

2

~mñ ñ*
2

2mA0
2

!cos2 b
. ~3.20!

Above, we employ the standard notation for the MSS
Higgs sector observables@15#. Note that at leading order in
b1

2, it suffices to use the values for the Higgs parameter
the R-parity-conserving limit. In particular, the~tree-level!
Higgs boson masses satisfy

mh0
2

1mH0
2

5mZ
21mA0

2 , ~3.21!

mh0
2 mH0

2
5mZ

2mA0
2 cos2 2b, ~3.22!

while the ~tree-level! CP-even Higgs mixing angle satisfies

cos2~b2a!5
mh0

2
~mZ

22mh0
2

!

mA0
2

~mH0
2

2mh0
2

!
. ~3.23!

After some algebra, we end up with the following express
at leading order inb1

2 for the sneutrino squared-mass spl
ting Dmñ

2[mñ1

2 2mñ2

2 :

Dmñ
25

4b1
2mZ

2mñ ñ*
2 sin2 b

~mñ ñ*
2

2mH0
2

!~mñ ñ*
2

2mh0
2

!~mñ ñ*
2

2mA0
2

!
.

~3.24!
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We now extend the above results to more than one g
eration of sneutrinos. In a basis wherevm50 (m
51,...,ng), the resultingCP-even andCP-odd squared mas
matrices are obtained from Eqs.~3.17! and~3.18! by replac-
ing b1 with the ng-dimensional vectorbm and mñ ñ*

2 by the
ng3ng matrix (M ñ ñ*

2 )mn . In general, (M ñ ñ*
2 )mn need not be

flavor diagonal. In this case, the theory would pred
sneutrino flavor mixing in addition to the sneutrino
antisneutrino mixing exhibited above. The relative stren
of these effects depends on the relative size of the RPV
flavor-violating parameters of the model. To analyze the
sulting sneutrino spectrum, we choose a basis in wh
(M ñ ñ*

2 )mn is diagonal:

~M ñ ñ*
2

!mn5~mñ ñ*
2

!mdmn . ~3.25!

In this basis,bm is also suitably redefined.~We will continue
to use the same symbols for these quantities in the new
sis.! The CP-even andCP-odd sneutrino mass eigenstat
will be denoted by (ñ1)m and (ñ2)m , respectively.8 It is a
simple matter to extend the perturbative analysis of the sc
squared-mass matrices if the (mñ ñ*

2 )m are nondegenerate. W
then find that (Dmñ

2)m[(mñ1

2 )m2(mñ2

2 )m is given by Eq.

~3.24!, with the replacement ofb1 and mñ ñ*
2 by bm and

(mñ ñ*
2 )m , respectively. That is, while in general only on

neutrino is massive, all the sneutrino-antisneutrino pairs
generically split in mass.9 If we are prepared to allow for
special choices of the parametersma and ba , then these
results are modified. The one massive neutrino beco
massless ifmm50 for all m ~in the basis wherevm50). In
contrast, the number of sneutrino-antisneutrino pairs that
main degenerate in mass is equal to the number of thebm
that are zero.~Of course, all these tree-level results are mo
fied by one-loop radiative corrections as discussed in S
IV.!

8The indexm labels sneutrino generation, although one sho
keep in mind that in the presence of flavor violation, the sneutr
mass basis is not aligned with the corresponding mass bases
evant for the charged sleptons, charged leptons, or neutrinos.

9This is a very general tree-level result. Consider models withng

generations of left-handed neutrinos in which some of the neut
mass eigenstates remain massless. One finds that generically,all ng

sneutrino-antisneutrino pairs are split in mass. For example, in
three-generation seesaw model with one right-handed neutrino,
one neutrino is massive, while all three sneutrino-antisneutr
pairs are nondegenerate.~At the one-loop level, the nondegenerac
of the sneutrino-antisneutrino pairs will generate small masses
neutrinos that were massless at the tree level@16#.!
8-6
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If some of the (mñ ñ*
2 )m are degenerate, the analysis b

comes significantly more complicated. We will not provid
the corresponding analytic expressions~although they can be
obtained using degenerate second-order perturbation the!.
However, one can show that for two or more generation
ndeg of the (mñ ñ*

2 )m are equal~by definition,ndeg>2), and if
bmÞ0 for all m, then onlyng2ndeg12 of the CP-even–CP
odd sneutrino pairs are split in mass. The remainingndeg
22 sneutrino pairs are exactly mass degenerate at the
level. Additional cases can be considered if some of thebm
vanish.

IV. ONE-LOOP EFFECTS

In Sec. III, we showed that in the three-generation mo
for a generic choice of RPV parameters, mass for one n
trino flavor is generated at the tree level due to mixing w
the neutralinos, while mass splittings of three generation
sneutrino-antisneutrino pairs at the tree level are a co
quence of mixing with the Higgs bosons. Special choices
the RPV parameters can leave all neutrinos massless a
tree level and/or less than three sneutrino-antisneutrino p
with nondegenerate tree-level masses.

Masses for the remaining massless neutrinos and m
splittings for the remaining degenerate sneutrin
antisneutrino pairs will be generated by one-loop effec
Moreover, in some cases, the radiative corrections to
tree-level generated masses and mass splittings can be
nificant ~and may actually dominate the corresponding tr
level results!. As a concrete example, consider a model
which RPV interactions are introduced only through the
perpotentiall andl8 couplings@Eq. ~2.1!#. In this case,ma ,
ba , andva are all trivially aligned and no tree-level neutrin
masses or sneutrino mass splittings are generated. In a
istic model, soft-supersymmetry-breaking RPV terms will
generated radiatively in such models, thereby introducin
small nonalignment amongma , va , andba . However, the
resulting tree-level neutrino masses and sneutri
antisneutrino mass splittings will be radiatively suppress
in which case the tree-level and one-loop radiatively gen
ated masses and mass splittings considered in this se
would be of the same order of magnitude.

In this section, we compute the one-loop generated n
trino mass and sneutrino-antisneutrino mass splitting ge
ated by the RPV interactions. However, there is another
fect that arises at one loop fromR-parity-conserving effects
Once a sneutrino-antisneutrino squared-mass splitting is
tablished, its presence will contribute radiatively to neutri
masses through a one-loop diagram involving sneutrinos
neutralinos~with R-parity-conserving couplings!. Similarly,
a nonzero neutrino mass will generate a one-loop sneutr
antisneutrino mass splitting. In Ref.@4#, we considered thes
effects explicitly. The conclusion of this work was that

1023&
Dmñ

mn
&103. ~4.1!

This result is applicable to all models in which there is
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unnatural cancellation between the tree-level and one-l
contributions to the neutrino mass or to the sneutrin
antisneutrino mass splitting.

A. One-loop neutrino mass

At one loop, contributions to the neutrino mass are g
erated from diagrams involving a charged lepton-slep
loop ~shown in Fig. 1! and an analogous down-type quar
squark loop@7#. We first consider the contribution of th
charged lepton-slepton loop. We shall work in a specific
sis, in whichvm50 ~i.e., v05vd) and the charged lepton
mass matrix is diagonal. In this basis, the distinction betw
charged sleptons and Higgs bosons is meaningful. Never
less, in a complete calculation, we should keep track
charged-slepton–Higgs-boson mixing and the charg
lepton–chargino mixing which determine the actual ma
eigenstates that appear in the loop. For completeness
write out in Appendix B the relevant mass matrices of t
charged fermion and scalar sectors. In order to simplify
computation, we shall simply ignore all flavor mixing~this
includes mixing between charged Higgs bosons and s
tons!. However, we allow for mixing between theL-type and
R-type charged sleptons separately in each generation, s
this is necessary in order to obtain a nonvanishing effect

It therefore suffices to consider the structure of a
32 (LR) block of the charged slepton squared-mass ma
corresponding to one generation. The corresponding cha
slepton mass eigenstates are given by

l̃ i5Vi1 l̃ L1Vi2 l̃ R , i 51,2, ~4.2!

where

V5S cosf l

2sinf l

sinf l

cosf l
D . ~4.3!

The mixing anglef l can be found by diagonalizing th
charged slepton squared-mass matrix

M slepton
2 5S L21ml

2

Aml

Aml

R21ml
2D , ~4.4!

where L2[(M
L̃

2
) l l 1(T32e sin2 uW)mZ

2 cos 2b, R2[(M
Ẽ

2
) l l

1(e sin2 uW)mZ
2 cos 2b, with T3521/2 ande521 for the

down-type charged sleptons, andA[(AE)0l l 2m0 tanb. In
terms of these parameters, the mixing angle is given by

sin 2f l5
2Aml

A~L22R2!214A2ml
2

. ~4.5!

FIG. 1. One-loop contribution to the neutrino mass.
8-7
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The two-point amplitude corresponding to Fig. 1 can be computed using the Feynman rules given in Appendix C. Th
is given by

iMqm5(
l ,p

(
i 51,2

E d4q

~2p!4 ~2 ilqlp!C21PLVi2

i ~q”1ml !

q22ml
2 ~ ilmpl!PLVi1

i

~q2p!22M pi

2 , ~4.6!

whereml is the lepton mass,M pi
, are the sleptons masses, and theVi j are the slepton mixing matrix elements@Eq. ~4.3!#. The

charge conjugation matrixC appears according to the Feynman rules given in Appendix D of Ref.@17#. The integral above can
be expressed in terms of the well-known one-loop integralB0 ~defined in Appendix D!. The corresponding contributions to th
one-loop neutrino mass matrix is obtained via (mn)qm52Mqm(p250). The end result is

~mn!qm
~ l ! 5

1

32p2 (
l ,p

lqlplmplml sin 2f l@B0~0,mn
2,M p1

2 !2B0~0,mn
2,M p2

2 !#

.
1

32p2 (
l ,p

lqlplmplml sin 2f l lnS M p1

2

M p2

2 D , ~4.7!
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where the superscript~l! indicates the contribution of Fig. 1
As expected, the divergences cancel and the final resu
finite. In the last step, we simplified the resulting express
under the assumption thatml!M p1

,M p2
.

The quark-squark loop contribution to the one-loop ne
trino mass may be similarly computed. Employing the sa
approximations as described above, the final result can
immediately obtained from Eq.~4.7! with the following ad-
justments: ~i! multiply the result by a color factor o
Nc53, ~ii ! replace the Yukawa couplingsl with l8 and the
lepton massml by the corresponding down-type quark ma
md , and ~iii ! replace the slepton mixing anglef l by the
corresponding down-type squark mixing anglefd . Note that
fd is computed using Eqs.~4.3! and ~4.5!, after replacing
ml , e521, M

L̃

2
, M

Ẽ

2
, and (AE)0l l with md , e521/3, M

Q̃

2
,

M
D̃

2
, and (AD)0dd , respectively. Here and below,d @r # la-

bels the generations of down-type quarks@squarks#. Then,

~mn!qm
~d!.

3

32p2 (
d,r

lqdr8 lmrd8 md sin 2fd lnS Mr 1

2

Mr 2

2 D .

~4.8!

The final result for the neutrino mass matrix is the sum
Eqs.~4.7! and~4.8!. Clearly, for generic choices of thel and
l8 couplings, all neutrinos~including those neutrinos tha
were massless at the tree level! gain a one-loop generate
mass.

B. One-loop sneutrino-antisneutrino mass splitting

We next consider the computation of the one-loop con
butions to the sneutrino masses under some simplifying
sumptions~which are sufficient to illustrate the general for
of these corrections!. Since the totalR-parity-conserving
contribution to the sneutrino and antisneutrino mass is eq
and large~of order the supersymmetry breaking mass!, it is
sufficient to evaluate the one-loop corrections to theDL52
sneutrino squared masses. Flavor-nondiagonal contribut
09300
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e
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are significant only if sneutrinos of different flavors are ma
degenerate. The one-loop generated mass splitting is rele
only when the tree-level contributions vanish or are high
suppressed. In the simplest case, for one generation
sneutrinos and without tree-level sneutrino-antisneutr
splitting, we get

~Dmñ
2!n52uMnn~p25mñ

2!u, ~4.9!

where iMnm is the sum of all contributing one-loop Feyn
man diagrams computed below andmñ is the R-parity-
conserving tree-level sneutrino mass. In the more com
cated case, where there arendeg flavors of mass-degenerat
sneutrinos, sneutrino-antisneutrino mass eigenstates are
tained by diagonalizing the 2ndeg32ndeg sneutrino squared
mass matrix:

M sneutrino
2 5S mñ

2dmn

Mqn* ~p25mñ
2!

Mmp~p25mñ
2!

mñ
2dqp

D ,

~4.10!

where m,n51, . . . ,ndeg and p,q5ndeg11, . . . ,2ndeg. In
the case that there are small mass splittings between sne
nos of different flavors, we can treat such effects pertur
tively by simply including such flavor nondegeneracies
the diagonal blocks above. Likewise, a small tree-level sp
ting of the sneutrino and antisneutrino can be accommod
perturbatively by an appropriate modification of the o
diagonal blocks above.

As discussed in Sec. IV A, we need only consider in de
the contribution of lepton and slepton loops.~In particular,
we neglect flavor mixing, but allow for mixing between th
L-type andR-type charged sleptons separately in each g
eration.! The corresponding contributions of the quark a
squark loops are then easily obtained by appropriate su
tution of parameters. The relevant graphs with an interme
ate lepton and slepton loops are shown in Figs. 2 and
respectively.
8-8
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Using the Feynman rules of Appendix C~including a mi-
nus sign for the fermion loop!, the contribution of the lepton
loop ~Fig. 2! is given by

iMpq
~ f !52(

m,n
lpmnlqnmE d4q

~2p!4

3
Tr@~q”1mm!PL~p”1q”1mn!PL#

@q22mm
2 #@~q1p!22mn

2#

5
2 i

8p2 (
m,n

lpmnlqnmmmmnB0~p2,mm
2 ,mn

2!.

~4.11!

The contribution of the slepton loop~Fig. 3! contains two
distinct pieces. In the absence ofLR slepton mixing, we have
LL and RR contributions in the loop proportional to thel
Yukawa couplings. When we turn on theLR slepton mixing,
we find additional contributions proportional to the corr
spondingA terms. First, consider the contributions propo
tional to Yukawa couplings. For simplicity, we neglect th
LR slepton mixing in this case. As before, we work in a ba
where vm50 ~i.e., v05vd) and we choose a flavor bas
corresponding to the one where the charged lepton mass
trices are diagonal. Then, the contribution of the slepton lo
~Fig. 3!, summing overi 5L,R type sleptons, is given by

iMpq
~l!5 (

i ,m,n
lpmnlqnmmmmnE d4q

~2p!4

3
1

@q22Mmi

2 #@~q1p!22Mni

2 #

5
i

16p2 (
mn

lpmnlqnmmmmn@B0~p2,MmR

2 ,MnR

2 !

1B0~p2,MmL

2 ,MnL

2 !#, ~4.12!

FIG. 2. Lepton pair loop contribution to the sneutrin
antisneutrino mass splitting.

FIG. 3. Slepton pair loop contribution to the sneutrin
antisneutrino mass splitting.
09300
s
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where themn areleptonmasses andMmi
are slepton masses

It is easy to check that the divergences cancel from the s
iMpq

( f )1 iMpq
(l) , which results in a finite correction to th

sneutrino mass. This serves as an important check of
calculation.

If LR slepton mixing is included, the above results a
modified. The corrections to Eq.~4.12! in this case are easily
obtained, but we shall omit their explicit form here. In add
tion, new slepton loop contributions arise that are prop
tional to theA parameters@defined in Eq.~2.2!#. We quote
only the final result:

iMpq
~A!5

i

64p2 (
m,n

apmnaqnmsin 2fm sin 2fn

3@B0~p2,Mm1

2 ,Mn1

2 !1B0~p2,Mm2

2 ,Mn2

2 !

2B0~p2,Mm1

2 ,Mn2

2 !2B0~p2,Mm2

2 ,Mn1

2 !#,

~4.13!

wherefn is the slepton mixing angle of thenth generation
and the corresponding slepton eigenstate masses areMn1

and

Mn2
. This result is manifestly finite. Note that this contrib

tion vanishes when theLR mixing is absent.
The total contribution of the lepton and slepton loops a

given by the sum of Eqs.~4.11!, ~4.12!, and~4.13!:

iMpq
~ l !5 iMpq

~ f !1 iMpq
~l!1 iMpq

~A! . ~4.14!

Finally, one must add the contributions of the quark a
squark loops. The results of this subsection can be used,
the substitutions described in Sec. IV A to derive the fin
expressions. Once again, we see that for generic choice
the l, A, l8, andA8 parameters, all sneutrino-antisneutrin
pairs~including those pairs that were mass degenerate at
tree level! are split in mass by one-loop effects.

V. PHENOMENOLOGICAL CONSEQUENCES

The detection of a nonvanishing sneutrino-antisneutr
mass splitting would be a signal of lepton number violatio
In particular, it serves as a probe ofDL52 interactions,
which also contributes to the generation of neutrino mas
Thus sneutrino phenomenology at colliders may provide
cess to physics that previously could only be probed by
servables sensitive to neutrino masses.

Some proposals for detecting the sneutrino-antisneut
mass splitting were presented in Ref.@4#. If this mass split-
ting is large~more then about 1 GeV!, one may hope to be
able to reconstruct the two masses in sneutrino pair prod
tion and measure their difference. In a RPV theory withL
violation, resonant production of sneutrinos becomes p
sible @18# and the sneutrino mass splitting may be detec
either directly@19# or by using tau-spin asymmetries@20#. If
the mass splitting is much smaller than 1 GeV, sneutri
antisneutrino oscillations can be used to measureDmñ . In
analogy with B-B̄ mixing, a same-sign lepton signal wi
indicate that the two sneutrino mass eigenstates are not m
8-9
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degenerate. In practice, one may only be able to measur
ratio xñ[Dmñ /Gñ . In order to be able to observe the osc
lation, two conditions must be satisfied:~i! xñ should not be
much smaller than 1, and~ii ! the branching ratio into a
lepton-number-tagging mode should be significant.

The sneutrino-antisneutrino mass splitting is proportio
to the RPV parametersbm ~for tree-level mass splitting! and
l, A, l8, andA8 ~for loop-induced mass splitting!. Generally
speaking, these parameters can be rather large, and the
gest bounds on them come from the limits on neutr
masses. In the following discussion, we will consider t
possible values of the relevant parameters:~i! the ratio of the
sneutrino-antisneutrino mass splitting to the neutrino m
(r n[Dmñ /mn), ~ii ! the sneutrino width (Gñ), and ~iii ! the
branching ratio of the sneutrino into a lepton-number-tagg
mode.

A. Order of magnitude of Dmñ /mn

To determine the order of magnitude ofDmñ /mn , we
shall take allR-parity-conserving supersymmetric paramet
to be of ordermZ . In the one-generation model, the neutri
acquires a mass of ordermn;m1

2 cos2 b/mZ via tree-level
mixing, where we have used sinj5m1 /m in a basis where
v150. The tree-level mass splitting of the sneutrin
antisneutrino pair is obtained from Eq.~3.24!, and we find
Dmñ

2;b1
2 sin2 b/mZ

2. Using Dmñ
252mñ ñ* Dmñ , it follows

that

r n[
Dmñ

mn
;

b1
2 tan2 b

mZ
2m1

2 . ~5.1!

To appreciate the implications of this result, we note that
~3.10! in the v150 basis yields

b15@~M
L̃

2
!101m1m0#cotb. ~5.2!

The natural case is the one where all terms in Eq.~5.2! are of
the same order. Thenb1;O(mZm1 cotb), and it follows that
r n;O(1). On theother hand, it is possible to haver n@1 if,
e.g., (M

L̃

2
)10@m1m0 . The upper boundr n&103 @see Eq.

~4.1!# still applies in the absence of unnatural cancellatio
between the tree-level and one-loop contributions tomn .

We do not discuss here any models that predict the r
tive size of the relevant RPV parameters. We only note t
while we are not familiar with specific one-generation mo
els that lead tor n@1, we are aware of models that lead
r n;1. One such example is a class of models based on h
zontal symmetry@8#.

In the three-generation model, there is at most one t
level nonzero neutrino mass, while all sneutrin
antisneutrino pair masses may be split. This provides
greater freedom for the possible values of (Dmñ)m

;bm
2 sin2 b/mZ

3, since in many cases these are not constrai
by the very small neutrino masses. In general, signific
regions of parameter space exist in whichr n@1 for at least
ng21 generations of neutrinos and sneutrinos.

Consider next the implications of the RPV one-loop c
rections. These are proportional to different RPV parame
09300
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as compared to those that control the tree-level neut
masses and sneutrino-antisneutrino mass splittings. Thus
may envision cases where the RPV one-loop results are
ther negligible, of the same order, or dominant with resp
to the tree-level results. If the RPV one-loop results are n
ligible, then the discussion above applies. In particular, in
three-generation model with generic model parameters,
typically expectsr n;O(1) for one of the generations, whil
r n@1 for the other two generations. In contrast, if the RP
one-loop corrections are dominant, then the results of S
IV imply that r n;O(1) for all three generations, for gener
model parameters.

B. Sneutrino width and branching ratios

Besides their effect on the sneutrino-antisneutrino mixi
the RPV interactions also modify the sneutrino decays. T
can happen in two ways. First, the presence of thel andl8
coupling can directly mediate sneutrino decay to qu
and/or lepton pairs. Second, the sneutrinos can de
through their mixing with the Higgs bosons~which would
favor decay into the heaviest fermion or boson pairs that
kinematically allowed!. These decays are relevant if th
sneutrino is the lightest supersymmetric particle~LSP! or if
the R-parity-conserving sneutrino decays are suppres
~e.g., if no two-bodyR-parity-conserving decays are kine
matically allowed!.

Consider two limiting cases. First, suppose that the R
decays of the sneutrino are dominant~or that the sneutrino is
the LSP!. Then, in the absence ofCP-violating effects, the
sneutrino and antisneutrino decay into the same chan
with the same rate. Moreover, the RPV sneutrino decays
late lepton number by one unit. Hence one cannot iden
the decaying~anti!sneutrino state via a lepton tag, as in R
@4#. However, oscillation phenomena may still be observa
if there is a significant difference in theCP-even andCP-odd
sneutrino lifetimes. For example, if the RPV sneutrino d
cays via Higgs mixing dominate, then for sneutrino mas
between 2mW and 2mt the dominant decay channels for th
CP-even scalar would beW1W2, ZZ, andh0h0, while the
CP-odd scalar would decay mainly intobb̄. In this case, the
ratio of sneutrino lifetimes would be of ordermZ

2/mb
2. Add-

ing up all channels, one finds a ratio of lifetimes of ord
103. Moreover, the overall lifetimes are suppressed by sm
RPV parameters: so one can imagine cases where a
sneutrino would decay at colliders with a displaced vert
Oscillation phenomena similar to that of theK-K̄ system
would then be observable for the sneutrino-antisneutrino s
tem. Including all three generations of sneutrinos would le
to a very rich phenomenology that would provide a precis
probe of the underlying lepton number violation of th
theory.

Second, suppose that theR-parity-conserving decays o
the sneutrino are dominant. Then the considerations of R
@4# apply. In particular, in most cases, there are leptonic fi
states in sneutrino decays that tag the initial sneutrino st
Thus the like-sign dilepton signal of Ref.@4# can be used to
measurexñ5Dmñ /Gñ . Since only values ofxñ*1 are prac-
tically measurable, the most favorable case correspond
8-10
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very smallGñ . In typical models ofR-parity-conserving su-
persymmetry, the sneutrino decays into two-body final sta
with a width of order 1 GeV. This result can be suppress
somewhat by chargino-neutralino mixing angle and ph
space effects, but the suppression factor is at most a fact
104 in rate~assuming that the tagging mode is to be obse
able!. If the LSP is thet̃6, then supersymmetric models ca
be envisioned where two-body sneutrino decays are abs
and the three-body sneutrino decaysñ l→ t̃Rntl can serve as
the tagging mode. In Ref.@4#, we noted that a LSPt̃R is
strongly disfavored by astrophysical bounds on the ab
dance of stable heavy charged particles@21#. In R-parity-
violating supersymmetry, this is not an objection, since
LSP t̃R would decay through a RPV interaction. Three-bo
sneutrino decay widths can vary typically between 1 eV a
1 keV, depending on the supersymmetric parameters. T
in this case, the like-sign dilepton signature can also prov
a precision probe of the underlying lepton number violat
of the theory.

C. Conclusions

R-parity-violating low-energy supersymmetry wit
baryon number conservation provides a framework for p
ticle physics with lepton number violation. Recent expe
mental signals of neutrino masses and mixing may prov
the first glimpse of the lepton-number-violating world. Th
search for neutrino masses and oscillations is a difficult o
Even if successful, such observations will provide few hi
as to the nature of the underlying lepton number violation
supersymmetric models that incorporate lepton number
lation, the phenomenology of sneutrinos may provide ad
tional insight to help us unravel the mystery of neutri
masses and mixing. Sneutrino flavor mixing and sneutri
antisneutrino oscillations are analogous to neutrino fla
mixing and Majorana neutrino masses, respectively. Cru
observables at future colliders include the sneutri
antisneutrino mass splitting, sneutrino oscillation pheno
ena, and possible long sneutrino and antisneutrino lifetim
In this paper, we describedCP-conserving sneutrino phe
nomenology that can probe the physics of lepton num
violation. In a subsequent paper, we will address the im
cations ofCP violation in the sneutrino system. The obse
vation of such phenomena at future colliders would hav
dramatic impact on the pursuit of physics beyond the st
dard model.
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APPENDIX A: THE SCALAR POTENTIAL

In softly broken supersymmetric theories, the total sca
potential is given by Eq.~2.4!, whereVF and VD originate
from the supersymmetry-preserving sector, whileVsoft con-
tains the soft-supersymmetry-breaking terms.VF is obtained
from the superpotentialW by first replacing all chiral super
fields by their leading scalar components and then compu

VF5(
F

UdW

dFU2

, ~A1!

where the sum is taken over all contributing scalar fieldsF.
For the superpotential in Eq.~2.1! we obtain

dW

dDm
5lanm8 La

i Qn
j e i j ,

dW

dUm
52hnmHU

i Qn
j e i j ,

dW

dQm
j 5~lanm8 La

i Dm2hnmHU
i Um!e i j ,

dW

dEm
5

1

2
labmLa

i Lb
j e i j ,

dW

dLa
i 5~labmLb

j Em1lanm8 Qn
j Dm2maHU

j !e i j ,

dW

dHU
j 5~hnmQn

i Um2maLa
i !e i j . ~A2!

Inserting these results into Eq.~A1!, one ends up with
VF5lanm8 lgkm8* La
i Qn

j ~Lg
i* Qk

j* 2Lg
j* Qk

i* !1hnmhkm* HU
i Qn

j ~HU
i* Qk

j* 2HU
j* Qk

i* !

1lanm8 lgnk8* La
i Lg

i* DmDk* 1hnmhnk* uHUu2UmUk* 2~hnmlgnk8* HU
i Lg

i* UmDk* 1H.c.!1 1
2 labmlgdm* La

i Lg
i* Lb

j Ld
j*

1labmlagk* Lb
i Lg

i* EmEk* 1lanm8 lapk8* Qn
i Qp

i* DmDk* 1umau2uHUu21~labmlapk8* Lb
i Qp

i* EmDk* 1H.c.!

2~malagk* HU
i Lg

i* Ek* 1H.c.!2~malapk8* HU
i Qp

i* Dk* 1H.c.!1mamb* La
i Lb

i* 1hnmhpq* UmUq* Qn
i Qp

i*

2~mahpq* La
i Qp

i* Uq* 1H.c.!. ~A3!

VD is obtained from the following formula:
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VD5 1
2 @DaDa1~D8!2#, ~A4!

where

Da5
1

2
gFHU

i* s i j
a HU

j 1(
m

Q̃m
i* s i j

a Q̃m
j 1(

a
L̃a

i* s i j
a L̃a

j G ,

D85
1

2
g8F uHUu22(

a
uL̃au212(

m
uẼmu21

1

3 (
m

uQ̃mu22
4

3 (
m

uŨmu21
2

3 (
m

uD̃mu2G . ~A5!

Then,

VD5
1

8
g2H S uHUu22(

a
uL̃au22(

m
uQ̃mu2D 2

22 (
aÞb

ue i j L̃a
i L̃b

j u214(
a

uHU
i* L̃a

i u2

22 (
mÞn

ue i j Q̃m
i Q̃n

j u214(
m

uHU
i* Q̃m

i u224(
am

ue i j L̃a
i Q̃m

i u2J
1

1

8
g82F uHUu22(

a
uL̃au212(

m
uẼmu21

1

3 (
m

uQ̃mu22
4

3 (
m

uŨmu21
2

3 (
m

uD̃mu2G2

. ~A6!
to

c
s
th
l

f.

h
ze
-
-

di

-

ng

rs
Finally, the soft-supersymmetry-breaking contribution
the scalar potential has already been given in Eq.~2.2!.

APPENDIX B: THE CHARGED FERMION AND SCALAR
SECTORS

Using the same techniques discussed in Sec. III, one
evaluate the tree-level masses of charged fermions and
lars. For completeness, we include here the results for
generalR-parity-violating, baryon-triality-preserving mode
exhibited in Sec. II.~For related results in a minimal RPV
model in whichmm is the only RPV parameter, see Re
@22#.!

First, we consider the sector of charged fermions. T
charginos and charged leptons mix: so we must diagonali
(ng12)3(ng12) matrix forng generations of leptons. Fol
lowing the notation of Ref.@23#, we assemble the two
component fermion fields as follows:

c15~2 il1,cHU

1 ,cEk

1 !,

c25~2 il2,cLa

2 !, ~B1!

where 2 il6 are the two-componentW-ino fields and the
remaining fields are the fermionic components of the in
cated scalar field. As before,m51, . . . ,ng and a
50,1, . . . ,ng , with L0[HD . The mass term in the Lagrang
ian then takes the form@8,9,24#
09300
an
ca-
e

e
a

-

Lmass52
1

2
~c1c2!S 0

X
XT

0 D S c1

c2 D , ~B2!

where10

X5S M2
1

&
gvu 0m

1

&
gva ma ~ml !am

D . ~B3!

In Eq. ~B3!, 0m is a row vector withng zeros and

~ml !am[
1

&
vrlram . ~B4!

Note that in the basis wherevn50, the definition of (ml)nm
reduces to the one given in Eq.~2.11!. The charged fermion
masses are obtained by either diagonalizingX†X ~with uni-
tary matrixV) or XX† ~with unitary matrixU* ), where the
two unitary matrices are chosen such thatU* XV21 is a di-
agonal matrix with the non-negative fermion masses alo
the diagonal. The following relation is noteworthy:

Tr~X†X!5Tr~XX†!5uM2u21umu212mW
2 1Tr~ml

†ml !,

~B5!

10The result given in Eq.~B3! corrects a minor error that appea
in Refs.@8# and @9#.
8-12



E

nd
-
the

~S!NEUTRINO PROPERTIES INR-PARITY- . . . PHYSICAL REVIEW D 59 093008
whereumu2 is defined in Eq.~2.6!. Note that in theR-parity-
conserving MSSM, TrMx

2[uM2u21umu212mW
2 is the sum

of the two chargino squared masses andml is the charged
lepton mass matrix. In the presence of RPV interactions,
a

a
i-

d
tin

09300
q.

~B5! remains valid despite the mixing between charginos a
charged leptons. Of course,ml no longer corresponds pre
cisely to a mass matrix of physical states. For example, in
vm50 basis,
all

d charged
ed
ass
X†X5S uM2u21 1
2 g2uvdu2

1

&
g~M2* vu1vd* m cosj! 0m

1

&
g~M2vu* 1vdm* cosj! umu21 1

2 g2uvuu2 mn* ~ml !nm

0k mn~ml* !nk ~ml
†ml !km

D , ~B6!

where cosj is defined in Eq.~3.3!. As expected, ifmmÞ0 ~but small!, then the physical lepton eigenstates will have a sm
admixture of the charged Higgsino eigenstate. It is amusing to note that in the exact limit ofml50, there areng massless
fermions~i.e., the charged leptons!, in spite of the mixing with the charged Higgsinos through the RPV terms.11

We next turn to the charged scalar sector. In this case, the charged sleptons mix with the charged Higgs boson an
Goldstone boson~which is absorbed by theW6). The resulting (2ng12)3(2ng12) squared-mass matrix can be obtain
from the scalar potential given by Eqs.~A3!, ~A6!, and ~2.2!. In the $HU

1 ,L̃b
2* ,Ẽm% basis, the charged scalar squared-m

matrix is given by

MC
2 5S muu

2 1D bb* 1Db mb* ~ml !bm

ba1Da* mab
2 1~mlml

†!ab1Dab
1

&
~aramvr2mr* lramvu* !

ma~ml* !ak
1

&
~arbk* vr* 2mrlrbk* vu! ~M

Ẽ

2
!km1~ml

†ml !km1Dkm

D , ~B7!
ing

s a

n

n

where the matrixml is defined in Eq.~B4! and

muu
2 [mU

2 1umu2,

mab
2 [~M

L̃

2
!ab1mamb* ,

Dab[ 1
4 g2va* vb1 1

8 ~g22g82!~ uvuu22uvdu2!dab ,

Dkm[ 1
4 g82~ uvuu22uvdu2!dkm ,

Da[ 1
4 g2vavu ,

D[ 1
8 ~g21g82!~ uvuu22uvdu2!1 1

4 g2uvdu2.
~B8!

As a check of the calculation, we have verified th
(2vu ,vb* ,0) is an eigenvector ofMC

2 with zero eigenvalue,
corresponding to the charged Goldstone boson that is
sorbed by theW6. The computation makes use of the min

11It may seem from Eq.~B6! that the charged leptons are unmixe
if ml50. But one can shown that this is not the case by compu
XX†. The mixing originates frommmÞ0 appearing in the matrixX
@Eq. ~B3!#.
t

b-

mization conditions of the potential@Eqs. ~2.7! and ~2.8!#
and the antisymmetry oflrbk andarbk under the interchange
of r andb.

A useful sum rule can be derived in the CP-conserv
limit. We find

Tr MC
2 5mW

2 1Tr Modd
2 1Tr M

Ẽ

2
12 Tr~ml

†ml !

2 1
4 ngmZ

2 cos 2b. ~B9!

This is the generalization of the well-known sum rulemH6
2

5mW
2 1mA

2 of the MSSM Higgs sector@15#. The charged
sleptons are also contained in the above sum rule. A
check, consider the one-generationR-parity-conserving
MSSM limit. Removing the Higgs sum rule contributio
from Eq. ~B9!, the leftover pieces are

mẽL

2 1mẽR

2 2mñ
252me

21M
Ẽ

2
2 1

4 mZ
2 cos 2b. ~B10!

The term in Eq.~B10! that is proportional tomZ
2 is simply

the D-term contribution to the combination of slepto
squared masses specified above.

g
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APPENDIX C: FEYNMAN RULES

The fermion-scalar Yukawa couplings take the form

LYukawa52
1

2 S ]2W

]f i]f j
Dc ic j1H.c., ~C1!

where superfields are replaced by their scalar co
ponents after taking the second derivative of the superpo
tial W @given in Eq. ~2.1!# and thec i are two-componen
fermion fields. Converting to four-component Feynm
rules ~see, e.g., the Appendixes of Ref.@17#! and defining
PR,L[ 1

2 (16g5), we obtain the Feynman rules listed in Fi
4. The charge conjugation matrixC appears in fermion-
number-violating vertices.

The Feynman rules for the cubic scalar interactions can
obtained from the scalar potential@Eqs. ~A3!, ~A6!, and
~2.2!# by putting L̃a

1→L̃a
11va /A2. The Feynman rules fo

the interaction of the sneutrinos with slepton pairs are gi
in Fig. 5, where (ml)gm is defined in Eq.~B4!. In Sec. IV, we
have applied the rules of Fig. 5 to theñpẽmẽn couplings
(p,m,n51,...,ng) in this basis wherevm50 and (ml)nm is
diagonal. In this basis, the terms in Fig. 5 proportional
gauge couplings do not contribute.

APPENDIX D: THE B0 FUNCTION

The B0 function is defined as follows:

i

16p2 B0~p2,M2,m2!5E dnq

~2p!n

1

~q22m2!@~q2p!22M2#
.

~D1!

One can expressB0 as a one-dimensional integral:

FIG. 4. Feynman rules for the scalar-fermion interactions.
09300
-
n-

e

n

B0~p2,M2,m2!

5D2E
0

1

dx lnS m2x1M2~12x!2p2x~12x!

m2 D , ~D2!

where

D[~4p!e G~e!5
1

e
2g1 ln~4p!1O~e!, e522

n

2
.

~D3!

Two limiting cases are useful for the calculations perform
in Sec. IV. In thep2→0 limit,

B0~0,M1
2,m2!2B0~0,M2

2,m2!5
M2

2

m22M2
2 lnS m2

M2
2D

2
M1

2

m22M1
2 lnS m2

M1
2D . ~D4!

If we furthermore take them→0 limit, we obtain

B0~0,M1
2,0!2B0~0,M2

2,0!5 lnS M1
2

M2
2D . ~D5!

FIG. 5. Feynman rules for the interactions of the sneutrinos
charged sleptons.
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