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Electromagnetic duality and light-front coordinates
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We review the light-front Hamiltonian approach for the Abelian gauge theory in 311 dimensions, and then
study electromagnetic duality in this framework.@S0556-2821~99!02608-9#

PACS number~s!: 11.10.Ef, 11.15.Tk
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I. INTRODUCTION

In recent years we have witnessed a resurrection of in
est in light-front Hamiltonian physics in two areas. The fi
one, the new nonperturbative approach to QCD@1#, is related
to the original application of light-front coordinates@2#, i.e.
hadron spectroscopy, and the other comes from string th
@3#. The popular M-theory@4# is formulated in light-front
coordinates@5#. With the rise of the second application, som
rather academic questions became of interest. For exam
dualities in string theories are one of the most powerful too
yet not much is known about how they work on the lig
front. In this paper, we attempt to study one of the simpl
cases of known dualities — the electromagnetic duality in
Abelian gauge field theory in 311 dimensions.

Susskind has conjectured@6# that since light-front coordi-
nates are non-local in the longitudinal direction, it might
possible to formulate a light-front theory with both electr
and magnetic sources without having to introduce any a
tional non-localities corresponding to Dirac strings@7#. He
observed that the role of electric and magnetic fields reve
in the light-front Hamiltonian ~which contains only the
physical, transverse fields! when the original fields are re
placed by~transverse! fields perpendicular to them. He con
cluded that the above described transformation of field
the electromagnetic duality on the light front. Then he su
gested that magnetic sources be added to the Hamiltonia
symmetry.

Here we investigate this idea. The paper is organized
follows: In Sec. II we summarize the formalisms of fre
Abelian fields, show how classical electric sources can
added to the theory, and establish the connection betwee
components of theFmn tensor and electric and magnet
fields. For completeness, we list the surface terms e
though they do not enter the calculation presented here,
we list some manipulations with the (]1)21 operator. Fur-
ther, we wish to mention that there are, in general, proble
regarding other than1 components of light-front currents
even though this does not affect our calculation since
restrict ourselves to external classical currents. Section
rather formal; a reader familiar with the light front may wa
to skip most of it. Section III is devoted to Susskind’s ide
The last section contains our conclusions.

II. LIGHT-FRONT FIELD THEORY: FORMALITIES

In a light-front quantum field theory, fields are quantiz
at an equal light-front timex15t1z @8#. The remaining co-
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ordinates,x25t2z andx'[(x1, x2), are spatial.1

Let p5(p2, p1, p1, p2) be the four-momentum of a
free particle with massm in light-front coordinates. Then

pmxm5
1

2
p1x21

1

2
p2x12p'

•x'. ~1!

p1 is the longitudinal momentum,p1 and p2 are thetrans-
versemomenta, andp2 is the light-front energy:

p25
p'21m2

p1 . ~2!

The light-front energy is well defined apart from peculi
modes which have zero longitudinal momentum~so-called
zero modes!. p1, which is equal to p01p3, satisfies
p1>0. This means that in the vacuum all particles mu
have precisely zero longitudinal momentum. From the
pression for the light-front energy one can see that the ene
diverges asp1→0 for massive particles. For massless p
ticles, the light-front energy can be finite even atp150, but
the vacuum can be made trivial by imposing a small lon
tudinal momentum cutoff, e.g. requiring that all longitudin
momenta satisfypi

1.e. Another frequently used method o
regularization is a discretized light-cone quantizati
~DLCQ! @11# which removes both ultraviolet and infrare
divergences. The physics ofp150 cannot be recovered b
renormalization with respect to high energy states, and ha
be added~at present! by hand using counterterms which ca
be functions ofx'. The so-called ‘‘constraint zero mode
@12# is a specific counterterm consequent of DLCQ, and
does not require a nontrivial vacuum structure.

A. Abelian gauge fields

Let us start with pure electromagnetism. The Lagrang
density is

L52 1
4 FmnFmn, ~3!

where

Fmn5]mAn2]nAm. ~4!

1There are two slightly different conventions regarding the1,2
components. The other one differs from the one used here b
factor ofA2, a65(a06a3)/A2, so that the12 component of the
metric tensor isg1251. In the conventiona65(a06a3) used
here,g1252.
©1999 The American Physical Society02-1
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In a light-front formulation, indicesm,n run through1,2,
and'5(1, 2).

In the light-front gauge, A150, and the Lagrangian den
sity reduces to

L5
1

8
~]1A2!21

1

2
]1Ai]2Ai2

1

2
]1Ai] iA2

2
1

4
~] iAj2] jAi !2. ~5!

The Lagrangian density does not contain a time derivative
A2, and so it is immediately obvious that this component
Am is not dynamical.A2 can be eliminated using the equ
tions of motion

~]1!2A252]1] iAi . ~6!

Apart from zero modes~i.e. p150 states introduced above!,
]1 can be inverted, andA2 is then given by

A25
2

]1 ] iAi . ~7!

To proceed further, some manipulations with (]1)21 are
needed. Up to a constant inx2 which can depend on remain
ing coordinates, the operator (]1)21 is defined as follows:

1

]1 f ~x2![E dy2

4
e~x22y2! f ~y2!,

wheree(x)51, if x.0, ande(2x)52e(x), and f (x2) is
an arbitrary function. Using the properties ofe(x) it is
straightforward to find

E d3xS 1

]1 f ~x! D 2

52E d3x f~x!S 1

]1D 2

f ~x!,

E d3x f~x!S 1

]1 g~x! D52E d3xS 1

]1 f ~x! Dg~x!.

Substituting forA2, and using the properties of the op
erator (]1)21 shown above, gives the Lagrangian in terms
physical degrees of freedom:

L5
1

2
]1Ai]2Ai2

1

2
~] iAi !22

1

4
~] iAj2] jAi !2

1surface terms, ~8!

where the surface terms

2H ]1S Aj] j
1

]1 ] iAi D2] j~Aj] iAi !J
are traditionally dropped. The light-front Hamiltonian de
sity is found to be

H5 1
2 ~] iAi !21 1

4 ~] iAj2] jAi !2, ~9!

not dependent on the longitudinal derivative of the fields
08770
f
f

f

The field strength tensorFmn in terms ofAi is

F1252] iAi , F1 i5]1Ai ,

F2 i5]2Ai2] i
2

]1 ] jAj , Fi j 5] iAj2] jAi . ~10!

Let us also introduce the dual tensorF̃mn51/2emnlrFlr ,
whereemnlr is totally antisymmetric,e1212[2:

F̃125e i j F
i j , F̃1 i5e i j F

1 j ,

F̃ i j 52
1

2
e i j F

12, F̃2 i52e i j F
2 j , ~11!

wheree1251 is antisymmetric. Let us note thatF andF̃ are
related by electromagnetic dualityBW→EW , EW→2BW . The con-
nection between electric and magnetic fieldsEW andBW and the
tensorFmn given in light-front coordinates is shown in th
next section.

Finally, we briefly describe what happens in the prese
of classical electric sources. As in the free case,A2 is not
dynamical and can be eliminated using the equations of
tion. The interaction term in the Lagrangian,2 j mAm, pro-
duces an additional term in the expression forA2, viz.

A25Afree
2 2

2

~]1!2 j 1, ~12!

whereAfree
2 is given in Eq.~7!. Consequently,Fmn is modi-

fied also. In particular, the1 component of the current is
absorbed intoF12 andF2 i :

F125F free
122

2

]1 j 1,

F2 i5F free
2 i 2] i

2

~]1!2 j 1, ~13!

whereF free
mn is given Eq.~10!. The remaining two component

of Fmn are unchanged.
The Lagrangian equations of motion are

]mFm i5 j i , ~14!

]mFm15 j 1 is satisfied identically, and using equations
motion it can be shown that

]mFm252
2

]1F1

2
]2 j 12] i j i G ,

which implies a continuity equation forj m.
The Hamiltonian density in the presence of classi

sources is

H5
1

2S ] iAi2
1

]1 j 1D 2

1
1

4
~] iAj2] jAi !22 j'A', ~15!

and the fieldsAi can be quantized as if they were free.
2-2



th

in

a

to

t i
fo
h
rs
fo

nd

ic
ry
om-

f

of

e-
of

he

th

sor

ic

the
du-

al

not

BRIEF REPORTS PHYSICAL REVIEW D 59 087702
B. Connection between electric and magnetic fieldsE¢ and B¢

and the tensorF µn in light-front coordinates

The connection betweenBW , EW andFmn can be established
using the definition of the potential:

EW 52¹W A02
]

]t
AW ,

BW 5¹W 3AW . ~16!

Substituting

A05 1
2 ~A11A2!,

A35 1
2 ~A12A2!,

]

]t
5]05 1

2 ~]11]2!,

]

]z
52]352 1

2 ~]12]2!, ~17!

we obtain

Ei52 1
2 ~F1 i1F2 i !, Ez5 1

2 F12,

Bi5e i j
1
2 ~F1 j2F2 j !, Bz52 1

2 e i j F
i j , ~18!

or

F1252Ez, F̃12522Bz,

F1 i52~Ei1e i j B
j !, F̃1 i5~Bi2e i j E

j !,

Fi j 52e i j B
z, F̃ i j 52e i j E

z,

F2 i52~Ei2e i j B
j !, F̃2 i5~Bi1e i j E

j !, ~19!

where i , j are transverse indices@ i , j 5(1,2)#. These defini-
tions ensure that the Lagrangian equations of motion give
correct set of Maxwell’s equations. In Ref.@10# the magnetic
and electric fields are defined differently, in particular,
analogy with equal time,Em51/2F1m andB25F12, but this
is misleading, because these definitions do not lead to M
well’s equations. Moreover,EW and BW are not four-vectors,
andE0 andB0 are not defined; so there is no natural way
form the minus and plus components.

III. ELECTROMAGNETIC DUALITY

In this section we investigate the question of whether i
possible to formulate electromagnetic duality as a trans
mation of the potentialA' itself rather than the field strengt
tensor and its dual. Given the Hamiltonian in the transve
degrees of freedom, a natural starting point is the trans
mation

Aj→Ãi[2e i j A
j . ~20!
08770
e
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Indeed, under this transformation the first and seco
terms in the free Hamiltonian ‘‘interchange’’:

H5 1
4 ~] i Ã j2] j Ãi !21 1

2 ~] i Ãi !2. ~21!

By comparison with the Hamiltonian including electr
sources@see Eq.~15!#, it appears that one can by symmet
add magnetic sources, as well as the electric sources. In c
plete analogy one could then expect that the1 component of
the magnetic currentj̃ m was absorbed into the definition o
the field strength tensor and/or the dual tensor@6#. Taking
advantage of the kinematical boost invariance~for a review
see@9#!, it would be sufficient to consider the simple case
a magnetic current with only the1 component~the so-called
good component! being non-zero, viz.

H5
1

2S ] iAi2
1

]1 j 1D 2

1
1

2S ] i Ãi2
1

]1 j̃ 1D 2

2 j'A'.

It is straightforward to show that if one proceeds as d
scribed, the Hamiltonian leads to the desired equations
motion, including the continuity equation for the2 compo-
nent of j̃ .2

The catch is that the Hamiltonian itself isnot equivalent
to the complete set of Maxwell equations. It is, rather, t
Hamiltonian and the gauge conditions@13#. In parti-
cular, only with the gauge conditionsA150 and
A252(]1)21] iAi are all components of the field streng
tensor defined unambiguously.

Let us look at what happens with the field strength ten
and its dual under the transformation~20!. In order for the
transformation~20! to be the operation of electromagnet
duality, it has to lead to

2F̃mn~A'!5Fmn~Ã'!,

Fmn~A'!5F̃mn~Ã'!. ~22!

However,

2F̃1252] i Ãi ,

2F̃1 i5]1Ãi ,

2F̃2 i5]2Ãi2] i~2/]1! ]kÃk2~2/]1! hÃi ,

2F̃ i j 5] i Ã j2] j Ãi ~23!

shows that the transformation~20! is not quite electromag-
netic duality: It works for all components exceptF2 i . The
F̃2 i contains an additional term22(]1)21hÃi .

For free fields, the additional term is zero, and Eq.~20! is
therefore electromagnetic duality. Is it possible to remove
additional term in general, realizing the electromagnetic

2It is not really a mystery—as a result of the definition of the du

tensor asF̃mn[1/2emnlrFlr , it follows that ]mF̃mn[0. However,

absorbing thej̃ 1 appropriately into the definition ofF̃ produces a
non-zero right-hand side. Note that in our case this trick does

work for j̃ iÞ0.
2-3
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BRIEF REPORTS PHYSICAL REVIEW D 59 087702
ality as a generalization of the original Susskind’s sugg
tion, e.g. Eq.~20! plus a gauge transformation?

After fixing the gauge, there is still a residual gauge fre
dom. In order not to disturb the gauge conditions used
derive the Hamiltonian, the residual gauge functionL has to
satisfy

]1L50, ]2L5~2/]1! ~] i !2L. ~24!

Ignoring for a moment the question of zero modes, this
plies that

~2/]1! hL50

and thus cannot cancel the unwanted term22(]1)21hÃi .
We now return to the question of zero modes. Since t

correspond to a constant inx2, they cannot cancel the
22(]1)21hÃi term which, in general, does depend onx2.

IV. CONCLUSION AND SUMMARY

We reviewed the formalism of Abelian gauge theory
light-front coordinates. We argued that while the poten
Am can be described in light-front coordinates, there is
light-front analogue to electric and magnetic fieldsEW , BW in
the sense that if one defines electric and magnetic field
components of the light-front field strength tensor, the d
nitions do not lead to Maxwell equations, and electrom
netic duality is not realized asBW→EW , EW→2BW .

We then studied electromagnetic duality on the level
fields Am ~in the light-front gaugeA150). Our study was
n
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motivated by the fact that the light-front Hamiltonian is
this case expressed in terms of transverse fields only,
that by under a specific transformation of transverse fie
the electric and magnetic terms in the Hamiltonian int
change.

However, the electromagnetic duality in light-front coo
dinates cannot be realized by a transformation of transv
fields only. Neither can it be written as a transformation
transverse fields plus a gauge transformation, not even w
the gauge transformation has a zero mode. AlteringA2 in
addition toA' is not likely to fix the problem either, becaus
it is only one of the two components of the dual tensor
volving A2 ~i.e. F̃2 i) that does not transform as desire
fixing F̃2 i would spoil the transformation ofF̃21.

To include magnetic monopoles one would have to all
for additional non-localities~in the gauge function!, most
likely equivalent to Dirac strings in an equal-time theory@7#.
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thank Mária Barnášová for making this work possible.
and

y,
D
.
y
ent
o.

ob-
r

M.
@1# K. G. Wilson, T. S. Walhout, A. Harindranath, Wei-Mi
Zhang, R. J. Perry, and S. D. Gl”azek, Phys. Rev. D49, 6720
~1994!; R. J. Perry, inProceedings of Hadrons 94, edited by
V. Herscovitz and C. Vasconcellos~World Scientific, Sin-
gapore, 1995!, hep-th/9407056; R. J. Perry, inProceedings of
the Fourth International Workshop on Light-front Quantiz
tion and Non-Perturbative Dynamics, edited by S. D. Głazek
~World Scientific, Singapore, 1995!, hep-th/9411037, p. 56
M. Brisudova, R. Perry, and K. Wilson, Phys. Rev. Lett.78,
1227 ~1997!, and references therein.

@2# S. Weinberg, Phys. Rev.150, 1313~1966!; L. Susskind,ibid.
165, 1535 ~1968!; K. Bardacki and M. B. Halpern,ibid. 176,
1686~1968!; J. D. Bjorken, J. B. Kogut and D. E. Soper, Phy
Rev. D 3, 1382 ~1971!; S.-J. Chang, R. G. Root, and T. M
Yan, ibid. 7, 1133 ~1973!; G. ’t Hooft, Nucl. Phys.B75, 461
~1974! and others.

@3# Ch. B. Thorn, Phys. Rev. D59, 025005~1995!.
@4# T. Banks, W. Fischler, S. H. Shenker, and L. Susskind, Ph

Rev. D55, 5112~1997!.
@5# L. Motl and L. Susskind, hep-th/9708083; L. Susskin

hep-th/9704080; L. Motl~private communication!.
@6# L. Susskind, presented at the ‘‘International Workshop

Light-Front Quantization and Non-Perturbative QCD,’’ Ame
IA, 1996 ~unpublished!.

@7# P. Goddard and D. I. Olive, Rep. Prog. Phys.41, 1357~1978!;
s.

for a more recent review see J. Harvey, hep-th/9603086,
references therein.

@8# P. A. M. Dirac, Rev. Mod. Phys.21, 392 ~1949!.
@9# H. Leutwyler and J. Stern, Ann. Phys.~N.Y.! 112, 94 ~1978!;

F. Coester, Prog. Part. Nucl. Phys.29, 1 ~1992!.
@10# W. M. Zhang and A. Harindranath, Phys. Rev. D48, 4868

~1993!; 48, 4881~1993!; 48, 4903~1993!.
@11# T. Maskawa and K. Yamawaki, Prog. Theor. Phys.56, 1649

~1976!; K. Hornbostel, Ph.D. thesis, Stanford Universit
1988; T. Eller, H.-C. Pauli, and S. J. Brodsky, Phys. Rev.
35, 1493 ~1987!; K. Hornbostel, S. J. Brodsky, and H.-C
Pauli, ibid. 41, 3814 ~1990!. For a review see S. J. Brodsk
and H.-C. Pauli, in ‘‘Schladming 1991, Proceedings, Rec
aspects of quantum fields,’’ p. 51; SLAC Stanford Report N
SLAC-PUB-5558, and references therein.

@12# G. McCartor and D. G. Robertson, Z. Phys. C53, 657 ~1992!;
T. Heinzl, S. Krusche, and E. Werner, Phys. Lett. B272, 54
~1991!. For a recent review see S. J. Brodsky and D. G. R
ertson, in Proceedings of ELFE (European Laboratory fo
Electrons) Summer School on Confinement Physics, Cam-
bridge, England, 1995, edited by S. D. Bass and P. A.
Guichon ~Editions Frontieres, Gif-sur-Yvette, 1996!, and ref-
erences therein.

@13# J. D. Jackson,Classical Electrodynamics,2nd ed.~Wiley, New
York, 1975!, p. 220.
2-4


