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We review the light-front Hamiltonian approach for the Abelian gauge theory+h 8imensions, and then
study electromagnetic duality in this framewof&0556-282(99)02608-9

PACS numbes): 11.10.Ef, 11.15.Tk

l. INTRODUCTION ordinatesx” =t—z andx-=(x!, x?), are spatial.
Let p=(p~, p*, p’ p? be the four-momentum of a

In recent years we have witnessed a resurrection of inteffree particle with massn in light-front coordinates. Then
est in light-front Hamiltonian physics in two areas. The first
one, the new nonperturbative approach to Q@Dis related p x“zlp*x* + }p*x+ —ptoxt (1)
to the original application of light-front coordinat¢2], i.e. 2 2
hadron spectroscopy, and the other comes from string theo
[3]. The popular M-theonf4] is formulated in light-front
coordinate$5]. With the rise of the second application, some
rather academic questions became of interest. For example, pl2+m?
dualities in string theories are one of the most powerful tools, p =—7. 2
yet not much is known about how they work on the light P

front. In this paper, we attempt to study one of the simplestrhe jight-front energy is well defined apart from peculiar
cases of known dualities —the electromagnetic duality in thenodes which have zero longitudinal momentigso-called
Abelian gauge field t_heory in81 d|men5|_ons. ~ zero modes p*, which is equal top®+p? satisfies
Susskind has conjecturgfl] that since light-front coordi- *=0. This means that in the vacuum all particles must
nates are non-local in the longitudinal direction, it might bep,5ye precisely zero longitudinal momentum. From the ex-
possible to formulate a light-front theory with both electric yression for the light-front energy one can see that the energy
a_md magnetic sources without h_avmg to mtrodqce any add'diverges ap*—0 for massive particles. For massless par-
tional non-localities correspondmg to Dirac .stn'n[(ﬁ. He ticles, the light-front energy can be finite everpdt=0, but
observed that the role of electric and magnetic fields reversgge vacuum can be made trivial by imposing a small longi-
in the light-front Hamiltonian(which contains only the yginal momentum cutoff, e.g. requiring that all longitudinal
physical, transverse flel)jsrvhen the_ original fields are re- momenta satisf)pi*>e. Another frequently used method of
placed by(transverspfields perpendicular to them. He Con'.regularization is a discretized light-cone quantization

cluded that the above described transformation of fields '?DLCQ) [11] which removes both ultraviolet and infrared

the electromagnetic duality on the light front. Then he Sug'divergences. The physics pf" =0 cannot be recovered by

g;r?;i:rr]yat magnetic sources be added to the Hamiltonian ti%normalization with respect to high energy states, and has to

. . o . . be addedat presentby hand using counterterms which can
Here we investigate this idea. The paper is organized 88a functions ofx:. The so-called “constraint zero mode”

Etl)lo?;vsﬁ ]lln Idsec.r:lv\\,/v?n s\,ltljmlmarlizelthle ftcr)irmalls:ns of f;\e% 12] is a specific counterterm consequent of DLCQ, and it
elian Tields, show how classical €lectric sources ca ges not require a nontrivial vacuum structure.

added to the theory, and establish the connection between th
components of thé=#" tensor and electric and magnetic
fields. For completeness, we list the surface terms even
though they do not enter the calculation presented here, and Let us start with pure electromagnetism. The Lagrangian
we list some manipulations with the’{) ~! operator. Fur- density is

ther, we wish to mention that there are, in general, problems

regarding other than- components of light-front currents, L=~ 3F, F*, ©)
even though this does not affect our calculation since we
restrict ourselves to external classical currents. Section Il i¥vhere
rather formal; a reader familiar with the light front may want

to skip most of it. Section Il is devoted to Susskind’s idea.

The last section contains our conclusions.

ry, . -
B/+ is the longitudinal momentump! andp? are thetrans-
versemomenta, ang ™~ is the light-front energy

A. Abelian gauge fields

Far= gAY = 3"A%, @)

There are two slightly different conventions regarding the-

Il. LIGHT-ERONT FIELD THEORY: FORMALITIES components. The other one differs from the one used here by a
factor of \2,a* =(a’+a®%//2, so that ther — component of the
In a light-front quantum field theory, fields are quantizedmetric tensor isg* ~=1. In the conventiora®=(a’+a3 used

at an equal light-front time* =t+z [8]. The remaining co- here,g* " =2.
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In a light-front formulation, indicegt, v run through+, —, The field strength tensd¥*” in terms ofAl is
and.l =(1,2). +—_oaipi i gt Al
In the light-front gauge A* =0, and the Lagrangian den- FP=2dA, F"'=d"A,

sity reduces to 5
Fl=g"Al—g —dlAl, Fli=gA-gA. (10
1 i 1 P
= g(a+A*)2+ E&*A'&’A'—EWA%?'A’
Let us also introduce the dual tensEt“”-l/Ze“V“PFk ,
B %(&iAj—ﬁin)z. ®) where e*"? is totally antisymmetrice™ ~1?=2:
. . o o Fto=¢F, Fl=¢F",
The Lagrangian density does not contain a time derivative of
A~, and so it is immediately obvious that this component of . 1 . ‘
A* is not dynamicalA~ can be eliminated using the equa- Fl=—ZeF™", Fl=—gF", (19)
tions of motion
(9F)2A" =29 G Al. (6) wheree;,=1 is antisymmetric. Lgt us n9te thétandhli are
. . _ related by electromagnetic dualiB~— E, E— —B. The con-
Apart from zero modegi.e. p* =0 states introduced above  pection between electric and magnetic fieftlandB and the

d" can be inverted, and™ is then given by tensorF#” given in light-front coordinates is shown in the
2 next section.
A—:a_+(yiAi_ (7) Finally, we briefly describe what happens in the presence

of classical electric sources. As in the free cahe,is not
dynamical and can be eliminated using the equations of mo-
tion. The interaction term in the Lagrangian,j, A*, pro-
duces an additional term in the expression Aor, viz.

To proceed further, some manipulations with'j ! are
needed. Up to a constantx1 which can depend on remain-
ing coordinates, the operatof{) ~* is defined as follows:

- 2
1 3 dy o B -_A— _ .
Six )EJTE(X —y)f(y), A" =Atree @2 (12
where A is given in Eq.(7). ConsequentlyF#” is modi-
fied also. In particular, the- component of the current is
absorbed intd=*~ andF "

wheree(x)=1, if x>0, ande(—x)=—e(x), andf(x™) is
an arbitrary function. Using the properties efx) it is
straightforward to find

J e oo
1 1 =i —i i 2 P+
f d3xf(x)<a—+g(x)>=—fdSX(&Tf(x)>g(x). F o =Ffeed @2 (13

Substituting forA~, and using the properties of the op- whereF{ . is given Eq.(10). The remaining two components
erator @) 1 shown above, gives the Lagrangian in terms ofof F#” are unchanged.
physical degrees of freedom: The Lagrangian equations of motion are

9uFH=], (14

1 _ _ 2
fdf*xf (—+) f(x), Fr =Ffee= 71"

1 . 1 5 i )
L= NG A = 3 (F'A)? = 2 (FA = GIA))
d,F*"=j" is satisfied identically, and using equations of
+ surface terms, (8) motion it can be shown that

&+

1 .
T o=t i
59| aj},

where the surface terms P =T
ot AiﬁjioﬂAl _al(AJO"iAi) L. . L . .
at which implies a continuity equation fgr*.
The Hamiltonian density in the presence of classical
are traditionally dropped. The light-front Hamiltonian den- sources is

sity is found to be 5

T
+Z(a'AJ—alA')2—jiAi, (15)

1 1
L(FA)2+L(FAI- A2, © = 2(“ i
not dependent on the longitudinal derivative of the fields. and the fieldsA' can be quantized as if they were free.
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B. Connection between electric and magnetic field& and B Indeed, under this transformation the first and second
and the tensor F** in light-front coordinates terms in the free Hamiltonian “interchange”:
The connection betwee®, E andF*#” can be established H=1 (9 A - giAHN2+ L (§A})2, (21)

using the definition of the potential: ) _ o ) i )
By comparison with the Hamiltonian including electric

g . sourcegsee Eq(15)], it appears that one can by symmetry

E=—-VA’— —A, add magnetic sources, as well as the electric sources. In com-
ot
plete analogy one could then expect that theomponent of
> > > 1 -y 1 niti
B=VxA. (16) the magnetic current* was absorbed into the definition of

the field strength tensor and/or the dual ten&r Taking
advantage of the kinematical boost invariartfe a review
seg[9)), it would be sufficient to consider the simple case of
AC=L1(A*+A7), a magnetic current with only the componentthe so-called
good componentbeing non-zero, viz.

Substituting

Ad=3(AT—A"), 2

1.2
+§ &IAI_8_+J'+) _jLAL.

/.. 1.
H= —( J'A'— el | *
P 2 )
—==1(o"+07), . : .
at It is straightforward to show that if one proceeds as de-
scribed, the Hamiltonian leads to the desired equations of
motion, including the continuity equation for the compo-
nent ofj .2
The catch is that the Hamiltonian itself it equivalent
we obtain to the complete set of Maxwell equations. It is, rather, the
_ _ _ Hamiltonian and the gauge conditiong13]. In parti-
El=—2(F"'+F™, E*=%1iF*"", cular, only with the gauge conditionsA*=0 and
A~ =2(3%)"19'Al are all components of the field strength
i lieti_r—i z_ _ 1 . rFij tensor defined unambiguously.

Bi=ejz(F-F7), B Z €k (18) Let us look at what happens with the field strength tensor
and its dual under the transformati¢®0). In order for the
transformation(20) to be the operation of electromagnetic
duality, it has to lead to

d
it A GO ) (17

or

Ff~=2E?, F* =-2B?
. . L _ —Frr (AL =Fr(AL),
F+|:—(EI+6”B]), F+|:(BI—EijE]),

Frr (AL =Fr(Ah). (22)
ij—_ . . Rpz Fil—_ _ Fz
F 8. F & However,
Fl=—(E'-¢;B), F'=(B'+¢E), (19 —Et=2/Al,
wherei,j are transverse indicds,j=(1,2)]. These defini- B K

tions ensure that the Lagrangian equations of motion give the
correct set of Maxwell's equations. In R¢10] the magnetic
and electric fields are defined differently, in particular, in
analogy with equal timeE#=1/2F *# andB~ =F*?, but this

is misleading, because these definitions do not lead to Max-

well's equations. MoreoverE and B are not four-vectors, shows that the transformatid@0) is not quite electromag-
andE° andBP are not defined; so there is no natural way tonetic duality: It works for all components except'. The

—F =97 A—4'(2/6") Ak~ (2/67) OAT,

—Fi =g R - IR 23

form the minus and plus components. F ' contains an additional term 2(¢*) ~*0A!.
For free fields, the additional term is zero, and E§) is
Ill. ELECTROMAGNETIC DUALITY therefore electromagnetic duality. Is it possible to remove the

In this section we investigate the question of whether it isaddmonal term in general, realizing the electromagnetic du-

possible to formulate electromagnetic duality as a transfor-_
mation of the potentiah' itself rather than the field strength
tensor and its dual. Given the Hamiltonian in the transverse “It is not really a mystery—as a result of the definition of the dual
degrees of freedom, a natural starting point is the transfortensor as**=1/2e*"**F, ,, it follows that,F*’=0. However,
mation absorbing thg * appropriately into the definition df produces a
o _ non-zero right-hand side. Note that in our case this trick does not
Al—A'=—¢;Al (200 work forj'#0.
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ality as a generalization of the original Susskind’s suggesmotivated by the fact that the light-front Hamiltonian is in

tion, e.g. Eq.(20) plus a gauge transformation? this case expressed in terms of transverse fields only, and
After fixing the gauge, there is still a residual gauge free-that by under a specific transformation of transverse fields

dom. In order not to disturb the gauge conditions used tdhe electric and magnetic terms in the Hamiltonian inter-

derive the Hamiltonian, the residual gauge functiomas to ~ change. ) o
satisfy However, the electromagnetic duality in light-front coor-

dinates cannot be realized by a transformation of transverse
fields only. Neither can it be written as a transformation of
transverse fields plus a gauge transformation, not even when
the gauge transformation has a zero mode. AlteAngin
addition toA' is not likely to fix the problem either, because

it is only one of the two components of the dual tensor in-

and thus cannot cancel the unwanted ter@(o*) " 'OA!. volving A~ (i.e. F7') that does not transform as desired;
We now return to the question of zero modes. Since theyixing F ~' would spoil the transformation d& .
correspond to a constant i, they cannot cancel the To include magnetic monopoles one would have to allow

—2(9%)"*OAT term which, in general, does dependxon  for additional non-localities(in the gauge function most
likely equivalent to Dirac strings in an equal-time the@ry.

dTA=0, 9 A=(2/0")(d")?A. (24)
Ignoring for a moment the question of zero modes, this im
plies that

(2/167)OA=0
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