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Four-point functions in the CFT-AdS correspondence

Hong Liu* and A. A. Tseytlin†
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~Received 24 July 1998; published 3 March 1999!

We discuss the properties of four-point functions in the context of the correspondence between a classical
supergravity theory in the bulk of the anti–de Sitter~AdS! space and quantum conformal field theory~CFT! at
the boundary. The contribution to a four-point function from the exchange of a scalar field of arbitrary mass in
AdS space is explicitly identified with that of the corresponding operator in the conformal partial-wave
expansion of a four-point function on the CFT side. Integral representations are found for the massless vector
and graviton exchanges. We also discuss some aspects of the four-point functions of trF2 and trFF* ~‘‘di-
laton’’ and ‘‘axion’’ ! operators inN54 supersymmetric SU(N) Yang-Mills theory as predicted by type-IIB
supergravity in the five-dimensional AdS background.@S0556-2821~98!02324-8#

PACS number~s!: 11.25.Hf, 04.65.1e, 11.25.Mj, 11.25.Pm
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I. INTRODUCTION

There has been a recent revival of interest in the conn
tion between large-N Yang-Mills theory@1# and string theory
@2# following, in particular, the conjecture@3# that there is an
exact correspondence between string orM theory on the (d
11)-dimensional anti–de Sitter space (AdSd11) and certain
superconformal field theory (CFTd) defined at the boundar
of the AdSd11 ~see also@4#!. According to the conjecture
quantumN54 supersymmetric Yang-Mills~SYM! theory
with gauge group SU(N) in the large-N and large ’t Hooft
coupling limit can be described by the classical type-IIB s
pergravity on AdS53S5 space.

The formulation of the conjecture was made more expl
in @5,6#, where it was proposed that the partition function
supergravity or string theory with fixed boundary values
the fields is to be identified with the generating functional
the composite operators in CFT. There is a one-to-one
respondence between certain local operatorsF i of the
boundary CFT and the bulk fieldsf i in AdS space@5,7,6,8#.
The boundary CFT operatorF i and the associated bulk fiel
f i carry the same unitary, irreducible, and highest wei
representation of the conformal group SO(d,2), where the
scale dimensionl i of F i is identified with the lowest energ
value off i and can be further related to the mass off i . The
correlation functions of the CFT operators are identified w
the classical ‘‘S-matrix elements’’ of the bulk fields with
their boundary values fixed. Two-and three-point functio
follow simply from the quadratic terms and cubic vertices
the bulk theory, while the four-point functions, in gener
contain the contact contributions as well as the exchange
virtual particles.

Using this proposal, some ‘‘model’’ and ‘‘realistic’’ two
and three-point functions have been computed
@9,10,11,12,13,14,15,16#. In particular, a family of three-
point functions of chiral primary operators inN54 SYM has
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been evaluated and shown to be equal to their free-field
ues, suggesting a nonrenormalization theorem in largN
limit @17#.

In this paper we investigate the properties of the fo
point functions in the context of the CFT-AdS correspo
dence. Four-point functions from contact interactions~quar-
tic vertices! were considered before in@10#. The scalar
exchange diagrams with some special values of mass w
also discussed in@18#. The exchange diagrams in AdS spa
are, in general, very difficult to evaluate explicitly, as th
propagators and integrals are quite complicated. Here we
low a different approach.

In CFTd , the states generated by acting by a product
the conformal operators on the vacuum can be decompo
into a direct sum of irreducible representations of the conf
mal group

F1~x1!F2~x2!u0&5(
k
E ddx Qk~xux1 ,x2!uk,x&,

~1.1!

wherek sums over all the irreducible representations in H
bert space and statesuk,x&5Fk(x)u0& span the space of ir
reducible representationTk . This conformal partial-wave ex
pansion~CPWE! was obtained in the early 1970s by seve
authors@19,20# ~see@21,22,23# for reviews!. Using Eq.~1.1!,
the four-point functions can be written as

^0uF1~x1!F2~x2!F3~x3!F4~x4!u0&5(
k

Gk , ~1.2!

whereGk is the contribution to the four-point function from
the intermediate states generated by the operatorFk :

Gk5E ddx ddy Qk* ~x1 ,x2ux!^k,xuk,y&Qk~yux3 ,x4!.

~1.3!

Since the bulk propagator of the fieldfk in AdSd11 associ-
ated with the conformal operatorFk by the AdS-CFT corre-
spondence can be also written as a sum over normal m
in AdSd11 which span the same irreducible representationTk

il
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HONG LIU AND A. A. TSEYTLIN PHYSICAL REVIEW D 59 086002
of the isometry-conformal group SO(d,2), one is tempted to
conjecture thatGk represents the contribution of thefk ex-
change diagram in AdSd11 . Diagrammatically, this equiva
lence can be expressed as in Fig. 1.

One of the aims of the present paper is to prove that
is indeed the case for the intermediate states correspon
to the scalar operators. It should be possible to generalize
method also to operators of higher spin. We shall attemp
consider the two cases which are of particular interest: m
less vector and massless tensor~graviton! exchanges. They
correspond to the conserved current vector and the en
momentum tensor operators in CFT. The explicit demons
tion of the equivalence between the CPWE representation
the CFT correlator and the AdS amplitude here appears t
more difficult and will not be given in the present paper. T
expressions for the propagators for the photon and grav
in AdS space are quite involved~useful expressions for them
which are suitable for explicit calculations were not pre
ously given in the literature; cf.@24,25#!. There are also com
plications related to the presence of the gauge degree
freedom and the fact that the current and the energy mom
tum tensor carry indecomposable representations of the
formal group. In this paper we shall use a noncovari
gauge fixing and will be able to write down the AdS amp
tudes with the photon and graviton exchanges in a comp
integral form. The detailed analysis of these amplitudes
establishing their relation to the CPWE will not be attemp
here.

Having identified the exchange diagrams with the CPW
a question that naturally arises is the interpretation of con
interactions~quartic or higher vertices! on the CFT side, as
there is no obvious counterpart for them in the CPWE. O
possibility is that since contact terms can always be form
written as special exchange diagrams, e.g.,

E dd11x f1f2f3f4

52E dd11x dd11y f1f2G~x,y!]2~f3f4!, ~1.4!

where G is the massless field propagator and2]2G5d(x
2y), they might be contained in the CPWE. Another pos
bility could be that the boundary CFT is not closed. Let
consider, for example,N54 SYM theory in the large-N and
large t Hooft couplingl5g2N limit. Suppose that a four-
point function at finitel is expanded in the form of Eqs
~1.2! and ~1.3!. As we increasel, certain correlators may

FIG. 1. Equivalence between the CPWE and scattering in A
space.
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approach zero as some inverse powers ofl and thus may not
contribute in thel→` limit. But if there is a very large
number of such vertices, their total contribution to the su
~1.2! may not vanish. This would correspond to the prese
of contact interactions in supergravity.1 As there are many
contact terms in type-IIB supergravity on AdS53S5, such a
possibility deserves a detailed investigation.

The existence of the AdS-CFT correspondence puts
itself strong constraints on the theories on both sides. S
conformal field theories always contain the energ
momentum tensor which generates the conformal alge
the theory in AdS space must be a gravitational theory. If
theory in AdS space is a field theory~supergravity!, then on
the CFT side the possible three-point functions and interm
diate states contributing to Eq.~1.2! are highly constrained a
only vertices which can be written as local invariants in A
space are allowed. For example, consider a correlation fu
tion of four scalars. In general, symmetric tensor operator
spin greater than 2 can contribute to it as intermediate st
in Eq. ~1.2!. However, there is no local covariant interactio
vertex for two scalars and a higher spin tensor in superg
ity theory ~though it may be present in string theory!; so it
should vanish also on the CFT side. Assuming the equ
lence between the CPWE in CFT and the scattering am
tude in AdS space, we see also that different channels for
CPWE in CFT should correspond tos-t-u channels in the
scattering amplitudes in AdS space, which seems to im
that the scattering amplitudes in AdS space should h
s-t-u crossing symmetry.2

In case of the ‘‘N54 SYM–type-IIB supergravity on
AdS53S5’’ correspondence, the supergravity four-poi
functions in general are quite complicated.3 In this paper we
shall focus on the dilaton-axion sector, where the cor
sponding four-point functions are given by a relatively sm
number of diagrams. We will show that the main nontriv
contribution in this sector comes from a graviton exchan
~the ‘‘mixed’’ scalar four-point function contains also a co
tact contribution!. Using the graviton propagator found he
in the noncovarianth0m50 gauge, we will be able to presen
the complete expressions for the scalar four-point functi

1These contact supergravity vertices may be thought of as o
nating from string field theory~with only cubic interactions be-
tween massless and massive modes! in the low-energy approxima-
tion in which all massive string modes are integrated out.

2One could think that this might be an indication that the theo
on the AdS side should actually be a string-type theory. One d
not expect to find crossing symmetry in the bulk supergravity a
plitudes, but this is less clear when the bulk-to-boundary propa
tors are attached. Duality is, of course, restored in the bulk am
tudes once one replaces the supergravity amplitudes by the
string amplitudes, i.e., includes alla8 corrections. At the same time
the boundary theory at largeN and largeg2N corresponding just to
supergravity with noa8 corrections is also a CFT which shoul
have a CPWE.

3Higher-ordera8 and nonperturbative string-theory contribution
to four-point functions inN54 large-N SYM theory were dis-
cussed in@26#.
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FOUR-POINT FUNCTIONS IN THE CFT-AdS . . . PHYSICAL REVIEW D 59 086002
in terms of the formal integrals. We shall discuss brie
certain properties of the integrals, leaving their evaluat
and establishing the correspondence with the CPWE in C
for the future.

The structure of the paper is as follows. In Sec. II we sh
review some aspects of CFT ind dimensions, in particular
the conformal partial-wave expansion for the four-po
functions. In Sec. III we shall discuss the scattering diagra
involving scalar exchanges in AdS space. We will show t
they can be identified with the contributions to the CPW
coming from the corresponding operators on the CFT s
In Sec. IV we shall study the scattering amplitudes involvi
exchanges of massless vectors and gravitons. In Sec. V
shall consider the dilaton and axion four-point functions
D55 supergravity corresponding to the correlators of
tr F2 and trFF* operators inN54 SYM theory. Appendix
A contains the notation and some technical details about
scalar propagator in AdSd11 . In Appendix B we recall the
expression@19# ~see also@27#! for the scalar operator contri
bution to the scalar four-point function in CFTd .

II. FOUR-POINT FUNCTIONS AND CONFORMAL
PARTIAL-WAVE EXPANSION IN CFT

Let us first review certain aspects of the conformal fie
theory in d dimensions@21,22,23#. Denote the space of a
irreducible representationTs of the conformal group4 as
Ms , s5(l,sW), wherel is the conformal dimension andsW is
a set of quantum numbers labeling the spin degrees of f
dom. We assume that Hilbert space can be represented
direct sum of spacesMs i

, i.e.,

H5Ms1
1Ms2

1¯1Ms i
1¯ ,

s i5~l i ,sW i !, i 51,2, . . . . ~2.1!

Conformal fieldsFs i
(x) are defined as the operators whi

generate spacesMs i
:

Ms i
5$us i ,x& for all x%5$Fs i

~x!u0& for all x%.

States of the typeFs i
(x1)Fs j

(x2)u0& can be decomposed i
terms of the basis in Eq.~2.1!:

Fs i
~x1!Fs j

~x2!u0&5(
k
E ddx Qi jk~xux1 ,x2!usk ,x&.

~2.2!

This implies the operator product expansion~OPE!

4For the Minkowskian signature, the representations under con
eration are those of the infinite covering group of SO(d,2), which
are unitary and satisfy the spectrality conditionp0.0, p2.0. For
the Euclidean signature, they are the irreducible representation
SO(d11,1), which can be analytically continued from th
Minkowskian counterparts.
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Fs i
~x1!Fs j

~x2!5(
k
E ddx Qi jk~xux1 ,x2!Fsk

~x!.

~2.3!

The standard OPE in the nearby points can be obtained f
Eq. ~2.3! by expanding the integrand iny5x12x2 :

Fs i
~y!Fs j

~0!uy→0;(
k,m

Ask,m
~y!Fsk ,m~0!, ~2.4!

whereAsk,m
;y2(l i1l j 2lk2m) and Fsk,m

are mth-order de-

rivatives of the fieldFsk
.

WhenFs’s are orthogonal to each other,Q’s are just the
amputated three-point functions:

Qi jk~xux1 ,x2!5E ddx8Wsk

21~x2x8!

3^0uFsk
~x8!Fs i

~x1!Fs j
~x2!u0&,

~2.5!

with Ws(x2x8)5^0uFs(x)Fs(x8)u0& and its inverseW21

defined by

E ddx Ws~x12x!Ws
21~x2x2!5I 1~x12x2!, ~2.6!

I 1~x!5
1

~2p!d E ddp q~p0!q~p2!eipx. ~2.7!

That I 1 ~instead of the Diracd function! appears on the righ
side of Eq.~2.6! follows from the spectrality condition.

States involving higher-order products ofFs’s can be
written in the basis~2.1! by repeatedly using Eq.~2.3!. The
problem of solving the theory thus becomes equivalent
finding the spectrum and the couplings for the infinite set
fields Fs i

.
Applying Eq. ~2.3! to the four-point functions, we find

Wi jkl ~x1 ,x2 ,x3 ,x4!

5^0uFs i
~x1!Fs j

~x2!Fsk
~x3!Fs l

~x4!u0&

5(
m

E ddx ddy Qi jm~x1 ,x2ux!

3Wsm
~x2y!Qmkl~yux3 ,x4!. ~2.8!

We now switch to the Euclidean signature. The conform
partial-wave expansion of the four-point function in Eucli
ean region takes the form5 @s5(l,sW)#

G~x1 ,x2 ,x3 ,x4!5(
sW
E

C
dl Ĝs~x1 ,x2 ,x3 ,x4!, ~2.9!d-

of
5We denote the Euclidean correlators byG and omit some sub-

scripts to simplify the notation.
2-3
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HONG LIU AND A. A. TSEYTLIN PHYSICAL REVIEW D 59 086002
where the integral is a contour integral in the complex pla
of the conformal dimensionl ~see below! and

Ĝs~x1 ,x2 ,x3 ,x4!

5n~s!E ddx Gi j s̃~x1 ,x2 ,x!Gkls~x,x3 ,x4!. ~2.10!

Here

Gkls~x,x3 ,x4!5^Fs~x!Fk~x3!F l~x4!&,

Gi j s̃~x1 ,x2 ,x!5^F i~x1!F j~x2!Fs̃~x!&

are the Euclidean three-point functions withs̃5(d2l,sW)
and n(s) is some normalization constant. The fieldFs̃ is
called the conformal partner~or shadow operator! of Fs ,
related to it by6

Fs̃~x!5E ddy Ds̃~x2y!Fs~y!,

Ds̃~x2y!5^Fs̃~x!Fs̃~y!&. ~2.11!

Ĝs includes the contributions from bothFs and its confor-
mal partnerFs̃ . The integration contour in Eq.~2.9! is cho-
sen in order to select only the contribution fromFs . One
can decomposeĜs into the parts coming fromFs andFs̃ :

Ĝs5Gs1Gs̃ . ~2.12!

Since Gs and Gs̃ have different pole structure (x12x2
→0),

Gi j s;
1

ux12x2ul i1l j 2l , Gi j s̃;
1

ux12x2ul i1l j 1l2d ,

the decomposition~2.12! is unique. Using Eq.~2.12! instead
of the contour integral, we can rewrite Eq.~2.9! as

G~x1 ,x2 ,x3 ,x4!5(
s i

Gs i
~x1 ,x2 ,x3 ,x4!. ~2.13!

In addition to Eqs.~2.8! and ~2.9!, there are two other way
to write partial-wave expansions: in terms of ‘‘u channel’’
and ‘‘t channel.’’ The equivalence of the three channels
guaranteed by the associativity of the operator algebra~2.3!.
This is usually called thecrossing symmetryof the four-point
functions. As was already mentioned in the Introduction,
crossing symmetry of the CFT four-point functions shou
have interesting implications for the structure of the cor
sponding scattering amplitudes in AdS space.

6Note that there is no spectrality condition in Euclidean space
that Ds̃ andDs can be chosen to satisfy

E ddx Ds~x12x!Ds̃
21~x2x2!5d~x12x2!.
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III. FOUR-POINT FUNCTIONS IN CFT-AdS
CORRESPONDENCE: SCALAR EXCHANGE

In this section we consider the contribution to a four-po
function of the exchange of a scalar field of an arbitra
mass. For definiteness, we shall study the ‘‘model’’ fou
point functions of scalar fields and consider scattering
AdS space resulting from vertices of the typeff1f2 and
ff3f4 . The scattering amplitude is given by~see Appendix
A for our notation!

Sn~x1 ,x2 ,x3 ,x4!

5E du0ddu

u0
d11

dv0ddv

v0
d11 Kl1

~u,x1!Kl2
~u,x2!

3G~u,v !Kl3
~v,x3!Kl4

~v,x4!, ~3.1!

whereKl(u,x) is the boundary propagator@6# corresponding
to a conformal field with dimensionl,

Kl~u,x!5clS u0

uu2xu2D
l

, ~3.2!

andG(x,y) is the bulk propagator for a scalar field of ma
m ~see Appendix A! @10#:

G~x,y!5~x0y0!d/2E ddk

~2p!d eikW•~xW2yW !I n~kx0
,!Kn~kx0

.!.

~3.3!

Here I andK are the modified Bessel functions, the para

etern is related to the mass byn5Am21 1
4 d2, andx0

,(x0
.)

is the smaller~larger! number amongx0 andy0 . The ampli-
tude ~3.1! with Eq. ~3.3! inserted is not manifestly confor
mally invariant. Its conformal invariance can be seen by
ing an alternative representation forG(x,y) @24#:

G~x,y!5rz2lFS l,n2
1

2
;2n11,z21D , ~3.4!

where r is a normalization constant,F is a hypergeometric
function, and z5@(x01y0)21(xW2yW )2#/4x0y0 . It is clear
from Eq.~3.4! thatG(x,y) is invariant under the transforma
tion x→x/uxu2, y→y/uyu2.

Let us first look at the ‘‘pseudopropagator,’’ given by

Ĝ~x,y!5~x0y0!d/2E ddk

~2p!d eikW•~xW2yW !Kn~kx0!Kn~ky0!.

~3.5!

The value of Eq.~3.1! with Eq. ~3.5! inserted instead of Eq
~3.3! will be denotedŜ. After the substitution of boundary
propagators and Eq.~3.5!, it can be written as

Ŝn~x1 ,x2 ,x3 ,x4!5E ddk

~2p!d F12* ~k;xW1 ,xW2!F34~k;xW3 ,xW4!,

~3.6!

where

o

2-4



it

re

ons

dS

out

g
pon-
d the
the

tor

n
ns

ring

des
ex-
iant

licit
ges,

ave

FOUR-POINT FUNCTIONS IN THE CFT-AdS . . . PHYSICAL REVIEW D 59 086002
F12~k;xW1 ,xW2!5E du0ddu

u0
d11 u0

d/2e2 ikW•uW

3Kn~ku0!Kl1
~u,x1!Kl2

~u,x2!. ~3.7!

The Fourier transformation for the boundary propagator w
l5n1d/2 is

Kl~u,x!5clS u0

uu2xu2D l

5E ddk

~2p!d eikW•~uW 2xW ! f ~k,u0!,

~3.8!

with

f ~k,u0!5
1

bl
u0

d/2knKn~ku0!, bl52n21G~n!.

Thus

u0
d/2Kn~ku0!5blk2nE ddx e2 ikW•~xW2uW !Kl~u,x!.

Plugging this into Eq.~3.7!, we find

F12~k;xW1 ,xW2!5blk2nE du0ddu

u0
d11 E ddx e2 ikW•xW

3Kl~u,x!Kl1
~u,x1!Kl2

~u,x2!

5blk2nE ddx e2 ikW•xWGll1l2
~x,x1 ,x2!

5blk2nGll1l2
~k,x1 ,x2!,

where

Gll1l2
~x,x1 ,x2!5E du0ddu

u0
d11 Kl~u,x!Kl1

~u,x1!Kl2
~u,x2!

~3.9!

is the three-point function according to the CFT-AdS cor
spondence. Similarly, we find

F34~k;xW3 ,xW4!5blk2nGll3l4
~k,x3 ,x4!.

Then it follows from Eq.~3.6! that

Ŝn5bl
2E ddk

~2p!d Gll1l2
* ~k,x1 ,x2!k22nGll3l4

~k,x3 ,x4!.

~3.10!

From Eqs.~3.8! and ~3.9! we can see that

Gl̃l1l2
~k,x1 ,x2!5

bl

bl̃
k22nGll1l2

~k,x1 ,x2!. ~3.11!

Thus Eq.~3.10! can be written as

Ŝn5blbl̃E ddk

~2p!d G
l̃l1l2

* ~k,x1 ,x2!Gll3l4
~k,x3 ,x4!,
08600
h
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and in coordinate space it becomes

Ŝn5blbl̃E ddx Gl1l2l̃~x1 ,x2 ,x!Gll3l4
~x,x3 ,x4!.

~3.12!

We notice that the above expression~3.12! for Ŝn is precisely
the same as the CFT expression~2.10! with s5(l,0). Thus
we have identified the amplitudeŜn with the CFT correlator
Ĝs in Eq. ~2.9!.

Let us now look at the relation betweenSn , Eq.~3.1!, and
Ŝn , Eq. ~3.6!. Using that

Kn5
p

2

1

sin np
~ I 2n2I n!

and

E
0

`

dx0E
0

`

dy05E
0

`

dx0E
0

x0
dy01E

0

`

dy0E
0

y0
dx0 ,

it is easy to see that

Ŝn5Sn1S2n , ~3.13!

which can be understood as the sum of the contributi
from the fields of dimensionsl and d2l, respectively.
Comparing Eq.~3.13! with Eq. ~2.12! and assuming thatSn

has an analytic dependence onn, we find that withŜn iden-
tified with Ĝs in Eq. ~2.10!, Sn andS2n are equal toGs and
Gs̃ , demonstrating the required relation between the A
amplitudeSn and the CFT correlator.

It is easy to see that the above procedure applies with
change to other types of three-point interactions~e.g.,
f]f1]f2) and to scattering of higher-spin fields involvin
scalar exchange. Thus we have established the corres
dence between the exchange diagrams in AdS space an
conformal partial-wave expansion in CFT for the case of
scalar intermediate states.

We mention here that the contribution of a scalar opera
to the CPWE@Eqs.~2.8!, ~2.9!# of a four-point function was
evaluated a while ago in@19#. The expression can be writte
in a closed form in terms of double hypergeometric functio
~see Appendix B!. From the identification of Eqs.~3.1! and
~2.8!, we see that it can also be interpreted as the scatte
amplitude~3.1! in AdS space.

IV. PHOTON AND GRAVITON PROPAGATORS
IN AdSd11

In this section we shall consider the scattering amplitu
in AdS space involving massless vector and graviton
changes. The photon and graviton propagators in covar
gauges were discussed before in@25#. The expressions found
were complicated and do not seem to be useful in exp
calculations. Here we shall choose the noncovariant gau
A050 for the vector andh0m50 for the graviton. It turns out
that the resulting AdS propagators are quite simple and h
structure similar to that of their flat space counterparts.
2-5



c

n

on

d a

is-

a-

sible
ct

HONG LIU AND A. A. TSEYTLIN PHYSICAL REVIEW D 59 086002
A. Massless vector

Let us start with the case of a vector field in AdS spa
described by the action

I 5E daS 1

4
FmnFmn1AmTmD , E da5E dd11xAg0.

~4.1!

We fix the Coulomb gaugeA050. In this gauge the equatio
for Ai ( i 51, . . . ,d) becomes

~]0
21] j

2!Ai2] j] iAj2
d23

x0
]0Ai52

1

x0
2 Ti . ~4.2!

The equation forA0 gives the constraint

]0] iAi5
1

x0
2 T0 . ~4.3!

We decomposeAi as

Ai5Ai
'1] ij,

whereAi
' is the transverse part andj5(1/]2)] iAi , with ]2

5] i] i . Then Eqs.~4.2! and ~4.3! reduce to

]0j5
1

x0
2

1

]2 T0 , ~]0
21]2!Ai

'2
d23

x0
]0Ai

'52
1

x0
2 T i

' ,

whereT i
' is the transverse part ofTi , i.e.,] iT i

'50. Thus the
equation forx0Ai

' reduces to that for a free scalar ofm25

2(d21) in AdSd11 space with a sourcex0T i
' . It can be

easily solved to obtain

x0Ai
'~x!5E da G~x,y!y0T i

'~y!, ~4.4!

whereG(x,y) is the propagator for a free scalar withm25
2(d21).

Then

I 5
1

2 E da AiT i5
1

2 E da~Ai
'T i1] ijT i !. ~4.5!

Note that the conservation of the current gives

DmT m50⇒] iT i52
1

Ag0

]0~Ag0T 0!.

After a partial integration, use of the current conservati
and the substitution of Eq.~4.4! into Eq. ~4.5!, we get
08600
e

,

I 5
1

2 E dx0dxW

x0
d11

dy0dyW

y0
d11 x0y0T i

'~x!G~x,y!T i
'~y!

2
1

2 E dx0dxW

x0
d11 T0

1

]2 T0 . ~4.6!

This expression determines the photon propagator.7

B. Graviton

We consider the metric as a sum of the AdS metric an
graviton perturbationgmn5(1/x0

2)(dmn1hmn) and consider
the action~see also@13#!

I 5E daS R22L1
1

2
hmnTn

mD .

In the following we shall assume that there is no index ra
ing for h, but for the energy-momentum tensorTmn the indi-
ces will be raised byg0

mn5x0
2dmn. We shall consider the

gaugeh0m50. In this gauge, the linearized Einstein equ
tions for hi j become~see also@28#!

]0
2~hi j 2d i j h!2

d21

x0
]0~hi j 2d i j h!

1]k
2h̃i j 2] l] i h̃ j l 2] l] j h̃i l 1d i j ] l]mh̃lm522Ti j ,

~4.7!

where h5d i j hi j and h̃i j 5hi j 2
1
2 d i j h. There are also two

constraints following from the 00 and 0i components of the
Einstein equations:

]0~] jhi j 2] ih!52T0i , ~4.8!

2] i] jhi j 1] i
2h2

d21

x0
]0h52T00. ~4.9!

We decomposehi j as

hi j 5h̄i j
'1] iBj

'1] jBi
'1] i] jh1

1

d21 S d i j 2
] i] j

]2 Dh8,

with ]25] i] i and

Bi
'5

1

]2 ]khik2
] i

~]2!2 ]k] lhkl ,

h5
1

~]2!2 ]k] lhkl , h85h2
1

]2 ]k] lhkl .

It is easy to check that

7In Eq. ~4.6! there is also a boundary term2 1
2 *]Mddx x0

12djT0 .
In the noncovariant gauge we are choosing, this term is respon
for the Ward identity of three-point functions, but we do not expe
it to contribute to higher-point functions.
2-6
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d i j h̄i j
'50, ] i h̄i j

'50, ] iBi
'50.

Then Eqs.~4.7! and ~4.8! become

~]0
21]k

2!h̄i j
'2

d21

x0
]0h̄i j

'522t i j , t i j [Pi jkl Tkl ,

~4.10!

]0Bi
'5

1

]2 ~2T0i1]0] ih8!, ]0h852
2

]2 ] jT0 j ,

~4.11!

]0h52
2x0

d21
T001

x0

d21
]2h8, ~4.12!

wherePi jkl is the transverse traceless projector in flat spa
Thus the equations for the transverse traceless parh̄i j

'

5Pi jkl hkl reduce to that of a free massless scalar, so tha
get @db5dd11yAg0(y)#

hi j
'~x!52E db y0

2G~x,y!t i j ~y!. ~4.13!

Using the conservation of the energy-momentum tensor
Eqs. ~4.11! and ~4.12!, we find that the quadratic~graviton
propagator! part of the Einstein action takes the form

I 5
1

2 E da hi j Tj
i 5E da db~x0y0!2t i j ~x!G~x,y!t i j ~y!

22E da x0
2T0i

1

]2 T0i2
2

d21 E da x0
2] iT0i

1

]2 T00

2
d22

d21 E da x0
2] iT0i S 1

]2D 2

] iT0i , ~4.14!

where we have ignored boundary terms resulting from pa
integration.

V. SCALAR FOUR-POINT FUNCTIONS IN AdS 5

SUPERGRAVITY/N54 SYM THEORY

In this section we shall consider the four-point functio
involving the scalar operatorsO5tr F2 andO85tr FF* in
N54 SYM theory in the large-N and large ’t Hooft coupling
limit as predicted by the type-IIB supergravity in AdS53S5.
HereO andO8 correspond to the massless fieldsf andC in
AdS5 coming from the dilaton and axion of type-IIB supe
gravity on AdS53S5. The four-point functions of interest ar
^O(x1)O(x2)O(x3)O(x4)&, ^O8(x1)O8(x2)O(x3)O(x4)&,
and ^O8(x1)O8(x2)O8(x3)O8(x4)&. They correspond in
AdS5 to the tree-level scattering amplitudes of four dilaton
two dilatons and two axions, and four axions, respective
Thus we need to look for vertices in the Lagrangian of typ
IIB supergravity on AdS53S5 involving two dilatons~ax-
ions! and one other field or quartic vertices involving on
dilatons and axions. For this purpose it is sufficient to co
08600
e.

e

d

al

,
.
-

-

centrate on the graviton-dilaton-axion sector of t
supergravity8

Î 5
1

2k10
2 E

AdS5

d5xE
S5

d5yA2ĝ

3F R̂2
1

2
~]f̂ !22

1

2
e2f̂~]Ĉ!2G . ~5.1!

Since the fieldsf and C are associated with the zerot
spherical harmonics off̂ and Ĉ on S5, it is clear that the
desired vertices cannot involve fields from higher spheri
harmonics. Thus the fields in Eq.~5.1! can be assumed to
have onlyx dependence, i.e.,

f̂~x,y!5f~x!, Ĉ~x,y!5C~x!,

ĥm̂n̂~x,y!5$hmn~x!,hma~x!,hab~x!%.

After dimensional reduction to AdS5 and a Weyl scaling,9

the relevant part of Eq.~5.1! becomes

I 5
1

2k2 E
AdS5

d5xA2g8FR2
1

2
~]f!22

1

2
e2f~]C!2G ,

~5.2!

whereR5R(h8) is the 5D Ricci scalar. Thef2C sector of
the type-IIB supergravity on AdS53S5 is thus very simple.
The only cubic vertex involving twof is ]f ]f h8. In par-
ticular, there is noha

aff vertex, whereha
a is the trace of the

internal (S5) part of the metric~massive fixed scalar! which
in N54 SYM theory corresponds to the operator of t
structureO85tr F42 1

4 tr(F2)2. Since in the free Maxwell
theory there is a nonvanishing three-point function^OOO8&
@29#, this three-point function must have nontrivial depe
dence on thet Hooft coupling~cf. @17#!.

Following the same reasoning, we can see that the
grams contributing to the four-graviton scattering may co
only from theR term in Eq.~5.2!. In particular, there is no
cubic vertex involving two gravitons and other fields. This
consistent with the expectation@30# that the OPE of the en
ergy momentum tensor inN54 SYM theory closes on
itself.10

Starting with Eq.~5.2!, we can write down the scatterin
diagrams in AdS5 contributing to the four-point functions
under consideration~see Figs. 2 and 3!. Let us first look at
the diagrams which do not involve graviton exchange. T
scattering amplitude with the dilaton or axion exchange, e
f(1)C(2)f(3)C(4) in Fig. 3, can be written as

8Our notation will be as follows. All fields inD510 will be
written with carets and their indices.m,n, . . . will refer to the indi-
ces of AdS5, while a,b, . . . will refer to those of S5.

9The resulting gravitonhmn8 differs from hmn by a Weyl scaling,
i.e., hmn8 5hmn1

1
3 g0mnha

a , whereg0mn is the background metric in
AdS5.

10This is not so in most four-dimensional theories. For a disc
sion of the case ofN51 supersymmetric theories, see@31#.
2-7
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A15E du0ddu

u0
d11

dv0ddv

v0
d11 ~u0v0!2]mKd~u,x1!]mKd~u,x2!

3G~u,v !]nKd~v,x3!]nKd~v,x4!. ~5.3!

The contactfCfC interaction gives

A25E du0ddu

u0
d11 u0

2Kd~u,x1!]nKd~u,x2!

3Kd~u,x3!]nKd~u,x4!. ~5.4!

HereKd(d54) andG(u,v) @see Eqs.~3.2! and~3.3!# are the
boundary and bulk propagators for the massless sca
Since these propagators satisfy

1

Ag0

]m~Ag0g0
mn]n!Kd50,

1

Ag0

]m~Ag0g0
mn]n!G~u,v !52

1

Ag0

d~u2v !,

we find by a partial integration11 that A1(1,2,3,4) reduces to
2 1

2 A2(1,2,3,4).
Direct evaluation ofA2 is quite tedious. It is easy to show

however, that the symmetric inx1 ,...,x4 part of Eq.~5.4!,
(A2)sym @and thus (A1)sym# vanishes. One way to see that
to make a field redefinitionf52 log(11c). Then the free
action forf becomes

I 5E dd11xAg0~11c!22~]c!2. ~5.5!

The new action generates cubic and quartic dilaton verti
and it can be seen that the resulting four-dilaton scatte
amplitude is proportional to (A2)sym. Since the field redefi-
nition changes the correlators only by unimportant cont

11Boundary terms resulting from partial integration give only u
important contact terms~terms containing a Dirac delta functio
and its derivatives!.

FIG. 2. Scattering diagrams forffff and CCCC. Only s-
channel diagrams are displayed here.
08600
rs.

s,
g

t

terms, we conclude that (A2)sym should contain only contac
terms, i.e., should vanish for separated points.12

The fact that (A2)sym522(A1)sym50 implies, in particu-
lar, that as in the case of theffff amplitude, the only
nontrivial contribution to theCCCC amplitude comes from
the sum of thes,t,u graviton exchanges, so that theffff
andCCCCamplitudes are actually equal.13 The structure of
the fCfC amplitude is more complicated as in addition
the graviton exchange it contains also the sum of the ax
exchange and the contact contributions given by a comb
tion of A2 amplitudes with different orders of end points~see
also @32#!.

The formal integral expression for the graviton contrib
tion to the four-point functions can be written down by su
stituting into Eq.~4.14! the appropriate expression for th
energy-momentum tensor corresponding to the massless
lar fields:

Tmn5]mKd~u,x1!]nKd~u,x2!

2
1

2
dmn]lKd~u,x1!]lKd~u,x2!.

HereKd is again the boundary propagator~with d54). The
resulting expression is quite long and will not be explicit
presented here. We leave its detailed analysis for fut
work.

To conclude, let us make some speculative remarks on
consequences of the possible crossing symmetry of C
four-point functions for the structure of scattering amplitud
in AdS space. From the correspondence between the sca
ing amplitudes in AdS space and correlators in CFT given
the CPWE’s, we would expect that the amplitudes in Figs
and 3 should possesss-t-u symmetry. That would imply, for
example, that thes, t, andu channel graviton exchanges i
the ffff amplitude are all equal. Then in theCCCC am-
plitude ~which does not contain contact contribution! the
s,t,u dilaton exchanges would also need to be equal. Si
their sum (A1)sym vanishes, each of them should also
vanishing, at least up to some singular contributions~cf.

12In the original version of this paper, we were assuming that t
argument demonstrates the triviality ofA2 , but it actually applies
only to (A2)sym as the four legs here correspond to thesamefield
@while c2(]c)2 reduces after integration by parts to2 1

3 c3]2c,
which vanishes on shell, there is no similar rearrangement
f2(]C)2#. We noticed this mistake after reading the recent pape
@32#, with the conclusions of which we now agree.

13This may be viewed as a consequence of the SL(2,R) symmetry
of the action~5.2!.

FIG. 3. Scattering diagrams forffCC.
2-8
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@32#! that would need to be subtracted as part of a definit
of the CFT-AdS correspondence.14 To be able to draw any
conclusions from the assumption of crossing symmetry
the case of thefCfC amplitude~Fig. 3!, one needs first to
interpret the contact bulk diagram contributing to it. For e
ample, we may replace it by a massless scalar exchang
the t channel using that, as shown above,A2(1,2,3,4)5
22A2(1,3,2,4).15 Given that in thefCfC case the graviton
exchange contributes only to thet channel, one would be led
to the conclusion that the scalar and graviton exchange
plitudes should be proportional to each other~up to possible
subtractions mentioned above!. That would, in turn, imply
that all these massless scalar four-point amplitudes shoul
vanishing. Given these somewhat surprising conclusion
remains to be seen if crossing symmetry can actually be
alized in a four-dimensional CFT.

Note added in proof. After this paper was completed,
became clear that the assumption made in the paragrap
low Eq. ~3.13! about analytic dependence ofSn on n is not
valid. Thus the argument presented in Sec. III only leads
the conclusion thatSn1S2n5Gs1Gs̃. For the same reason
the identity presented in Fig. 1 in Sec. I is only correct up
terms that are symmetric undern↔2n.
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APPENDIX A: SCALAR PROPAGATOR IN AdS d11

As in @6#, we consider the anti–de Sitter space of dime
sion D5d11 with Euclidean signature and the~half-space!
metric

ds25g0mndxmdxn5
1

x0
2 ~dx0

21dxi
2!. ~A1!

The AdSd11 bulk indices will be denoted bym,n, . . . and
will take values 0,1, . . . ,d. We shall use the notationx
5(x0 ,xW ), xW5(xi), i 51, . . . ,d.

14Note that in Euclidean space the massless scalar exchange
grams are generated by a contact-type~d-function! vertex
^O(x)O8(y)O8(z)&;@d(x2y)1d(x2z)#@1/(uy2zu8)#2d(y
2z)@1/(ux2zu8)# represented in the bulk by thef]C]C interaction
~its noncontact part vanishes since upon integration by parts i
duces to 1

2 C2]2f2fC]2C). However, the correspondin
Minkowskian ~Wightman! three-point function is zero and thu
should not contribute to the CPWE of the four-point Wightm
function in CFT.

15The massless scalar here may be identified with dilaton, as t
is a nonvanishing contact-type Euclidean three-point function
SYM theory: ^O(x)O(y)O(z)&;d(x2y)@1/(uy2zu8)#1d(x
2z)@1/(uy2xu8)#1d(y2z)@1/(ux2zu8)#. This is also suggested
by the field redefinition argument in Eq.~5.5!.
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Considering the Euclidean action for a massive scalar

I 5
1

2 E dd11xAg0@~]mf!21m2f2#,

we are to solve

~D22m2!G~x,y!52
1

Ag0

d~x2y!.

More explicitly, in the coordinate system~A1!, this equation
becomes

x0
n]m@x0

2n12]mG~x,y!#2m2G~x,y!

52d~xW2yW !d~x02y0!y0
n .

Let G(x,y)5x0
d/2H(x,y). Then

~Dn1] i
2!H~x,y!52y0

~d22!/2d~xW2yW !d~x02y0!, ~A2!

wheren25m21 1
4 d2 and the operatorDn , defined by

Dn5]0
21

1

x0
]02

n2

x0
2 ,

has Bessel functions as its eigenvalues:

DnJn~wx0!52w2Jn~wx0!.

The delta functions can be written in terms of orthonorm
functions:

d~x02y0!5y0E
0

`

dw wJn~wx0!Jn~wy0!,

E ddk

~2p!d eikW•~xW2yW !5d~xW2yW !.

We expand the Green function in a similar fashion:

H~x,y!5E ddk

~2p!d eikW•xWE
0

`

dw wJn~wx0!H̃~w,k;y!.

Then substitution into Eq.~A2! leads to

H̃~w,k;y!5y0
d/2 Jn~wy0!

w21k2 e2 ikW•yW .

The scalar Green function in the anti–de Sitter space~A1! is
thus given by

G~x,y!5~x0y0!d/2E ddk

~2p!d E
0

`

dw w
1

w21k2

eikW•~xW2yW !Jn~wx0!Jn~wy0!

5~x0y0!d/2E ddk

~2p!d eikW•~xW2yW !

3I n~kx0
,!Kn~kx0

.!, ~A3!

wherex0
, (x0

.) is the smaller~larger! number amongx0 and
y0 .

ia-

e-

re
n
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APPENDIX B: SCALAR CONTRIBUTION
TO FOUR-POINT FUNCTIONS

The contribution of a scalar operatorF of dimensionl to
the CPWE of a four-point function of scalar operato
^0uF1(x1)F2(x2)F3(x3)F4(x4)u0& was worked out a while
ago in @19#. The same expression should also correspon
the scattering amplitude in AdS space, Eq.~3.1!. Here we
83

tt

’’

s,

lli

08600
to

shall quote the result of@19#. We will use the following
definitions: S i j 5l i1l j , D i j 5l i2l j , xi j 5uxi2xj u, and

r5
x14

2 x23
2

x12
2 x34

2 , h5
x13

2 x24
2

x12
2 x34

2 ,

wherel i , i 51,2,3,4, are the conformal dimensions ofF i .
Then
^0uF1~x1!F2~x2!F3~x3!F4~x4!u0&5x12
S122D12x13

2D122D34x14
D342D12x34

D122S34f 0~r,h!,

with

f 0~r,h!5c1h2~l2D12!/2FF4S 1

2
~l1D34!,

1

2
~l2D12!,l112

1

2
d,

1

2
~D342D12!11;

1

h
,

r

h D
1c2S r

h D 2~l2D12!/2

F4S 1

2
~l2D34!,

1

2
~l2D12!,l112

1

2
d,12

1

2
~D341D12!;

1

r
,

h

r D G .
WhenD125D3450, this simplifies into

f 0~r,h!5c18h
2l/2FF4S 1

2
l,

1

2
l,l112

1

2
d,1;

1

h
,

r

h D1c28S r

h D 2l/2

F4S 1

2
l,

1

2
l,l112

1

2
d,1;

1

r
,

h

r D G .
In the above,c1 ,c2 ,c18 ,c28 are some numerical constants andF4 is a double hypergeometric function.
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