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Four-point functions in the CFT-AdS correspondence
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We discuss the properties of four-point functions in the context of the correspondence between a classical
supergravity theory in the bulk of the anti—de SittddS) space and quantum conformal field the¢BFT) at
the boundary. The contribution to a four-point function from the exchange of a scalar field of arbitrary mass in
AdS space is explicitly identified with that of the corresponding operator in the conformal partial-wave
expansion of a four-point function on the CFT side. Integral representations are found for the massless vector
and graviton exchanges. We also discuss some aspects of the four-point functiofi€ ahtt trFF* (“di-
laton” and “axion”) operators inN=4 supersymmetric SU) Yang-Mills theory as predicted by type-1IB
supergravity in the five-dimensional AdS backgrouf#i0556-282(198)02324-§

PACS numbgs): 11.25.Hf, 04.65+e, 11.25.Mj, 11.25.Pm

[. INTRODUCTION been evaluated and shown to be equal to their free-field val-
ues, suggesting a nonrenormalization theorem in lafge-
There has been a recent revival of interest in the connedimit [17].
tion between largé Yang-Mills theory[1] and string theory In this paper we investigate the properties of the four-
[2] following, in particular, the conjectud@] that there is an  point functions in the context of the CFT-AdS correspon-
exact correspondence between stringvbtheory on the ¢ d_ence. _Four-point functi_ons from contact interactiégsar-
+1)-dimensional anti—de Sitter space (Ad$) and certain i vertices ‘were con_S|dered beforg inl0]. The scalar
superconformal field theory (CEY defined at the boundary €Xchange diagrams with some special values of mass were
of the AdS;, , (see alsd4]). According to the conjecture, also discussed ifiL8]. The exchange diagrams in AdS space

auanum=4 supersymmec Yang-MilsSYM) heory %1% ' 9Enera vy il o Evauate oplily a6 e,
with gauge group SWY) in the largeN and large t Hooft propag 9 q P '

SO . : low a different approach.
coupling limit can be described by the classical type-1I1B su- In CFT,, the Zfates generated by acting by a product of
pergravity on Ad$x S° space. ’

) ) .. the conformal operators on the vacuum can be decomposed
_ The formulation of the conjecture was made more explicitiyi, 5 direct sum of ireducible representations of the confor-
in [5,6], where it was proposed that the partition function of 14 group

supergravity or string theory with fixed boundary values of

the fields is to be identified with the generating functional of

the composite operators in CFT. There is a one-to-one cor- ¢1(X1)‘D2(X2)|0>:2k J d% Qu(x|xq,%2)[k,X),
respondence between certain local operatdrs of the (1.1)
boundary CFT and the bulk fields; in AdS spacd5,7,6,8.

The boundary CFT operatdp; and the associated bulk field wherek sums over all the irreducible representations in Hil-
¢; carry the same unitary, irreducible, and highest weighbert space and statéls,x)=®,(x)|0) span the space of ir-
representation of the conformal group $X), where the reducible representatior . This conformal partial-wave ex-
scale dimension; of ®; is identified with the lowest energy pansion(CPWE was obtained in the early 1970s by several
value of ¢; and can be further related to the massppf The  authorg19,2( (see[21,22,23 for reviews. Using Eq.(1.1),
correlation functions of the CFT operators are identified withthe four-point functions can be written as

the classical ‘Smatrix elements” of the bulk fields with
their boundary values fixed. Two-and three-point functions
follow simply from the quadratic terms and cubic vertices of
the bulk theory, while the four-point functions, in general,
contain the contact contributions as well as the exchanges @fhereG, is the contribution to the four-point function from

virtual particles. the intermediate states generated by the operhajor
Using this proposal, some “model” and “realistic” two-

<0|<I>1<x1><1>2(x2><1>3<x3>cb4<x4>|0>=§ Gy, (1.2

and three-point functions have been computed in de e
[9,10,11,12,13,14,15,16In particular, a family of three- szf d d% Q (x1,%2|X)(K,X|K,y)Qi(Y[X3,Xs).
point functions of chiral primary operators.ifi=4 SYM has (1.3
Since the bulk propagator of the fietbl, in AdS;, ; associ-
*Email address: hong.liu@ic.ac.uk ated with the conformal operatdr, by the AdS-CFT corre-
TAlso at the Lebedev Physics Institute, Moscow, Russia. Emaispondence can be also written as a sum over normal modes
address: tseytlin@ic.ac.uk in AdSy, 1 which span the same irreducible representafipn
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approach zero as some inverse powers ahd thus may not

1 3 i 3 contribute in thex— limit. But if there is a very large
>&< number of such vertices, their total contribution to the sum
= (1.2 may not vanish. This would correspond to the presence
2 4 2 4 of contact interactions in supergravityAs there are many
contact terms in type-lIB supergravity on Ag8S°, such a
CPWE AdS possibility deserves a detailed investigation.

. o The existence of the AdS-CFT correspondence puts by
FIG. 1. Equivalence between the CPWE and scattering in AdSself strong constraints on the theories on both sides. Since
space. conformal field theories always contain the energy-
momentum tensor which generates the conformal algebra,
of the isometry-conformal group S@@), one is tempted to  the theory in AdS space must be a gravitational theory. If the
conjecture thaGy represents the contribution of thi ex-  theory in AdS space is a field theofyupergravity, then on
change diagram in AdS,. Diagrammatically, this equiva- the CFT side the possible three-point functions and interme-
lence can be expressed as in Fig. 1. diate states contributing to E({L.2) are highly constrained as
One of the aims of the present paper is to prove that thignly vertices which can be written as local invariants in AdS
is indeed the case for the intermediate states correspondingpace are allowed. For example, consider a correlation func-
to the scalar operators. It should be possible to generalize otibn of four scalars. In general, symmetric tensor operators of
method also to operators of higher spin. We shall attempt tgpin greater than 2 can contribute to it as intermediate states
consider the two cases which are of particular interest: massn Eq. (1.2). However, there is no local covariant interaction
less vector and massless tenggraviton exchanges. They vertex for two scalars and a higher spin tensor in supergrav-
correspond to the conserved current vector and the energyy theory (though it may be present in string theirgo it
momentum tensor operators in CFT. The explicit demonstrashould vanish also on the CFT side. Assuming the equiva-
tion of the equivalence between the CPWE representation fgence between the CPWE in CFT and the scattering ampli-
the CFT correlator and the AdS amplitude here appears to bgde in AdS space, we see also that different channels for the
more difficult and will not be given in the present paper. TheCPWE in CFT should correspond ®t-u channels in the
expressions for the propagators for the photon and gravitogcattering amplitudes in AdS space, which seems to imply
in AdS space are quite involvedseful expressions for them that the scattering amplitudes in AdS space should have
which are suitable for explicit calculations were not previ-s-t-u crossing symmetry.
ously given in the literature; cf24,25]). There are also com- In case of the N'=4 SYM-type-lIB supergravity on
plications related to the presence of the gauge degrees NdSSXSS” correspondence, the supergravity four-point
freedom and the fact that the current and the energy momemgnctions in genera| are quite Compﬁcat%m this paper we
tum tensor carry indecomposable representations of the coRhall focus on the dilaton-axion sector, where the corre-
formal group. In this paper we shall use a noncovarianponding four-point functions are given by a relatively small
gauge fixing and will be able to write down the AdS ampli- number of diagrams. We will show that the main nontrivial
tudes with the photon and graviton exchanges in a completgontribution in this sector comes from a graviton exchange
integral form. The detailed analySiS of these amplitudes anqhe “mixed” scalar four-point function contains also a con-
eStab”Shing their relation to the CPWE will not be attemptEdtact Contributiom_ Using the graviton propagator found here
here. in the noncovarianh,, =0 gauge, we will be able to present

Having identified the exchange diagrams with the CPWE the complete expressions for the scalar four-point functions
a question that naturally arises is the interpretation of contact

interactions(quartic or higher verticgson the CFT side, as

there is no obvious counterpart for them in the CPWE. One | ] ) o

possibility is that since contact terms can always be formally | N€S€ contact supergravity vertices may be thought of as origi-

written as special exchange diagrams, e.g., nating from string field thc_eor)(wnh only cubic mteractlons_ be-
tween massless and massive mgdeshe low-energy approxima-
tion in which all massive string modes are integrated out.

f dd+t1x Dr1ad3ba 20ne could think that this might be an indication that the theory
on the AdS side should actually be a string-type theory. One does
not expect to find crossing symmetry in the bulk supergravity am-

_ d+1y 4d+1 2 plitudes, but this is less clear when the bulk-to-boundary propaga-
- _f a7 X AT 102G (XY) I (bsba), (14 tors are attached. Duality is, of course, restored in the bulk ampli-
tudes once one replaces the supergravity amplitudes by the full
where G is the massless field propagator ard”>G=5(x  string amplitudes, i.e., includes all corrections. At the same time,

—y), they might be contained in the CPWE. Another possi-the boundary theory at large and largeg®N corresponding just to

bility could be that the boundary CFT is not closed. Let ussupergravity with noa’ corrections is also a CFT which should

consider, for example\V/=4 SYM theory in the largiN and  have a CPWE.

large t Hooft coupling\=g?N limit. Suppose that a four-  3Higher-ordera’ and nonperturbative string-theory contributions

point function at finitex is expanded in the form of Egs. to four-point functions inN=4 largeN SYM theory were dis-

(1.2) and (1.3). As we increase\, certain correlators may cussed if26].
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in terms of the formal integrals. We shall discuss briefly
certain properties of the integrals, leaving their evaluation (boi(xl)(baj(XZ):Zk f d% Qiji(XX1,%2) @ 5 (X).
and establishing the correspondence with the CPWE in CFT 2.3
for the future. '
The structure of the paper is as follows. In Sec. Il we shallThe standard OPE in the nearby points can be obtained from
review some aspects of CFT thdimensions, in particular, Eq. (2.3) by expanding the integrand iy=x; — X,
the conformal partial-wave expansion for the four-point
functions. In Sec. Il we shall discuss the scattering diagrams
involving scalar exchanges in AdS space. We will show that (I)tfi(y)q)vj(o)|>H0~g1 Aak,m(y)q)vk’m(o)' 2.4
they can be identified with the contributions to the CPWE '
coming from the corresponding operators on the CFT SldQNhereA,, e~y Mt TAEM gng q)o mare mth-order de-
In Sec. IV we shall study the scattering amplitudes 'nVOlV'ngnvaUves of the fleld<I>
exchanges of massless vectors and gravitons. In Sec. V w , .
shall consider the dilaton and axion four-point functions in ® Whend,’s are orthogonal to each othdps are just the
D=5 supergravity corresponding to the correlators of the?MPutated ‘three-point functions:
tr F2 and trFF* operators inV=4 SYM theory. Appendix
A contains the notation and some technical details about the Qijk(x|x1,x2)=f d%" W, Y(x—x")
scalar propagator in AdS:. In Appendix B we recall the «
expressiorf19] (see alsd27]) for the scalar operator contri- X{(0|®, (X" )P, (x1) D, (X2)]0),
bution to the scalar four-point function in CET : ' ‘

(2.9
Il. FOUR-POINT FUNCTIONS AND CONFORMAL with W, (x—x")=(0|®,(x)®,(x")|0) and its inversav 1
PARTIAL-WAVE EXPANSION IN CFT defined by
Let us first review certain aspects of the conformal field
theory ind dimensiong21,22,23. Denote the space of an f d¢ X)W, H(x—x2) =1, (X,—Xp), (2.6

irreducible representatio, of the conformal group as

M., o=(\,S), where\ is the conformal dimension arglis 1

a set of quantum numbers labeling the spin degrees of free- | (X)= =—3 f ddp (p%) S(p?)ePx. (2.7)
dom. We assume that Hilbert space can be represented as a

direct sum of spacehl, i.e., . . . .
i Thatl . (instead of the Dira@ function) appears on the right

side of Eq.(2.6) follows from the spectrality condition.
States involving higher-order products &f,’s can be
written in the basig2.1) by repeatedly using Eq2.3). The
oi=(\;,S), 1=12,.... (2.1 problem of solving the theory thus becomes equivalent to
finding the spectrum and the couplings for the infinite set of
Conformal fields®,, (x) are defined as the operators which fields @,

generate spacdd o Applying Eq. (2.3 to the four-point functions, we find

H=M, + Mg+ +Mg +-

M, ={lo,x) for all x}={®, (x)[0) for all x}. Wijia (X1, X2, X3.X)

: =(0| D, (X)) D 4. (X2) D, (X3) P, (X4)|0)
States of the typ@Ui(x1)¢gj(x2)|O> can be decomposed in !

terms of the basis in Ed2.1):
2.0 :% fddx dly Qijm(X1,X2|X)

<I>ai(><1)<l>aj(><z)|0>=2k fddx Qijk(X|X1,%p)| o7, X). X W, (X=Y)Qmi(Y|Xa.Xa). (2.8
2.2 We now switch to the Euclidean signature. The conformal
partial-wave expansion of the four-point function in Euclid-

This implies th t duct i@P
is implies the operator product expansi@PE) ean region takes the fofio= (\,5)]

“For the Minkowskian signature, the representations under consid- G(X1,X2,X3,X4) = Z f da Ga(lexz X3,X4), (2.9
eration are those of the infinite covering group of 8], which
are unitary and satisfy the spectrality conditipg>0, p>>0. For
the Euclidean signature, they are the irreducible representations of
SO(d+1,1), which can be analytically continued from the SWe denote the Euclidean correlators Gyand omit some sub-
Minkowskian counterparts. scripts to simplify the notation.
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where the integral is a contour integral in the complex plane

of the conformal dimension (see below and

Go(X1,X2,X3,Xg)

=n(a)j d% Gij5(X1,X2,X) Gy (X, Xg,Xg). (2.10

Here
leo’(XIX3 =X4) = <(I)G.(X)(I)k(X3)(I)|(X4)>,
Gija(X1,X2,X) =(D@i(X1) (%) P5(x))

are the Euclidean three-point functions widh=(d—\,$)
and n(o) is some normalization constant. The field; is
called the conformal partndior shadow operatorof @,
related to it by

@500= [ o a0 yb,(y),

AG(x=y) =(Pz(X)D5(Y)). (2.1

ég includes the contributions from both, and its confor-
mal partnerd . The integration contour in E¢2.9) is cho-
sen in order to select only the contribution froby,. One

can decompos&,, into the parts coming frond, andds :

G,=G,+G;. (2.12)
Since G, and Gz have different pole structurex{—x,
—0),

1 1

G |)\i+)\j+>\—dv
2

10 TN Gijz~ X —x
the decompositioif2.12) is unique. Using Eq(2.12) instead
of the contour integral, we can rewrite E@.9) as

(2.13

G(X11X2,X3,X4)=2 Go._(Xl,Xz,Xg,X4).

i
aj

In addition to Eqs(2.8) and(2.9), there are two other ways
to write partial-wave expansions: in terms ofi thannel”

and “t channel.” The equivalence of the three channels is

guaranteed by the associativity of the operator algébia.
This is usually called therossing symmetrgf the four-point

functions. As was already mentioned in the Introduction, the
crossing symmetry of the CFT four-point functions should
have interesting implications for the structure of the corre

sponding scattering amplitudes in AdS space.

PHYSICAL REVIEW D 59 086002

[ll. FOUR-POINT FUNCTIONS IN CFT-AdS
CORRESPONDENCE: SCALAR EXCHANGE

In this section we consider the contribution to a four-point
function of the exchange of a scalar field of an arbitrary
mass. For definiteness, we shall study the “model” four-
point functions of scalar fields and consider scattering in
AdS space resulting from vertices of the typep, ¢, and
dPs3d,. The scattering amplitude is given kgee Appendix
A for our notation

S,(X1,X2,X3,X4)

g

XG(u,v) K, ,(v,%3) Ky, (v,Xa),

dued?u dvod%
T ot K (UX) K (U X;)
0 Vo

(3.2

wherek, (u,x) is the boundary propagatf8] corresponding
to a conformal field with dimensionR,

Ky (u,x)=c, (3.2

A
Uo
|u—><|z) ’
andG(x,y) is the bulk propagator for a scalar field of mass
m (see Appendix A[10]:

d% - . .
GOy =0y | 553 €10 K (0.
(3.3

Herel andK are the modified Bessel functions, the param-

eter v is related to the mass by= \m?+ d?, andxg (xy)

is the smallel(largep number among, andy,. The ampli-
tude (3.1 with Eq. (3.9 inserted is not manifestly confor-
mally invariant. Its conformal invariance can be seen by us-
ing an alternative representation fGi(x,y) [24]:

1
Nv—=:2v+1z71,

— -\
G(x,y)=rz"*F 5

(3.9

wherer is a normalization constanE is a hypergeometric
function, andz=[(Xy+Yo)?+ (X—V)?]/4xoy,. It is clear
from Eq.(3.4) thatG(x,y) is invariant under the transforma-
tion x—x/|x|2, y—y/|y|?.

Let us first look at the “pseudopropagator,” given by

. di% - .

G(x,y)=(xoyo)d’zf 2 e YK, (kxg) K, (KYo).
(3.9

The value of Eq(3.1) with Eqg. (3.5) inserted instead of Eq.

(3.3 will be denotedS. After the substitution of boundary
propagators and E@3.5), it can be written as

. dd
®Note that there is no spectrality condition in Euclidean space so Sy(X1,X2,X3,X4) = f —(Zw)a FIa(k; X1, X0) Faa(K;X3,X,),

thatA; andA, can be chosen to satisfy

J d% A, (X —X)A H(X—Xp) = &Xq —Xo).

(3.6

where

086002-4
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d .
dugd®™ ik

FiAkiXy %)= | —gv1 Up €
0

XK (kug) Koy (U x1) Ky, (U,x2). (3.7)

The Fourier transformation for the boundary propagator wit

A=v+d/2is
u \* d’k ik (G—%)
K\ (u,x)=c, Tu—x? Zf 2md © f(k,up),
(3.8
with
1
f(k,uo)zb—ug/zk”KV(kuo), b,=2""1T(v).
A
Thus
ug’zKV(ku0)=bAk"’J’ dix e K -0, (u,x).
Plugging this into Eq(3.7), we find
o L dudu o
Fia(k;Xq,X2) =byk Vf —uded x e X
0
XK (U,x) Ky, (U, x1) Ky, (U,X2)
:bxkﬂ}f d’x eiilz')anlxz(X,XLXz)
=0, k™G, (K X1, X2),
where
dupdu
G)\AIAZ(X|X11X2)ZJ TJT’CA(U,X)’CM(U'X1)’C>\2(U,X2)
0
(3.9

is the three-point function according to the CFT-AdS corre-

spondence. Similarly, we find
Faa(kiX3,Xq) = Dyk™ "Gy 0 (Ko X3,X4).
Then it follows from Eq.(3.6) that
< 2 ddk * —2v
Suszf (2m)d Gm\lxz(klxlixz)k Gagn,(KiX3,Xg).

(3.10
From Egs.(3.8) and(3.9) we can see that
~ b)‘ —2v
Gmlxz(kyxlixz):b_;\k G, (KiX1,xz). (3.11)

Thus Eq.(3.10 can be written as

. d%
S,=b,b; f e Gf)\lxz(k,xl,x2)GM3M(k,x3,x4),

PHYSICAL REVIEW D 59 086002

and in coordinate space it becomes

S,= bxbif d’x G pon (X1, X2,X) Gy (X X3,Xg).

(3.12

r\Ne notice that the above expressi@nl2) for S, is precisely

the same as the CFT expressi@il0 with o= (\,0). Thus
we have identified the amplitud®, with the CFT correlator
G, in Eq. (2.9.

Let us now look at the relation betwe&p, Eq.(3.1), and
S,, Eq.(3.6). Using that

o 1
T2 sinvw

(va_lv)

14

and

f dxof dy0=f dxof dy0+f dyof dxg,
0 0 0 0 0 0

it is easy to see that

S,=S,+S_,, (3.13
which can be understood as the sum of the contributions
from the fields of dimensiona. and d—X\, respectively.
Comparing Eq(3.13 with Eq. (2.12 and assuming th&$,

has an analytic dependence mnwe find that withS, iden-
tified with G, in Eq. (2.10, S, andS_, are equal t&G, and

Gz, demonstrating the required relation between the AdS
amplitudeS, and the CFT correlator.

It is easy to see that the above procedure applies without
change to other types of three-point interactiofesg.,
ddp19¢,) and to scattering of higher-spin fields involving
scalar exchange. Thus we have established the correspon-
dence between the exchange diagrams in AdS space and the
conformal partial-wave expansion in CFT for the case of the
scalarintermediate states.

We mention here that the contribution of a scalar operator
to the CPWHEQgs.(2.8), (2.9)] of a four-point function was
evaluated a while ago if19]. The expression can be written
in a closed form in terms of double hypergeometric functions
(see Appendix B From the identification of Eq€3.1) and
(2.8), we see that it can also be interpreted as the scattering
amplitude(3.1) in AdS space.

IV. PHOTON AND GRAVITON PROPAGATORS
IN AdSq, 1

In this section we shall consider the scattering amplitudes
in AdS space involving massless vector and graviton ex-
changes. The photon and graviton propagators in covariant
gauges were discussed beforg¢25]. The expressions found
were complicated and do not seem to be useful in explicit
calculations. Here we shall choose the noncovariant gauges,
A= 0 for the vector anth,, =0 for the graviton. It turns out
that the resulting AdS propagators are quite simple and have
structure similar to that of their flat space counterparts.
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A. Massless vector

Let us start with the case of a vector field in AdS space

described by the action

1
=J da(ZFWFﬂuAﬂﬂ), fda=j d**x+/go

4.1

We fix the Coulomb gaugl,= 0. In this gauge the equation

for A, (i= . d) becomes
2, 22 — 1
0
The equation forAy gives the constraint
1
dodiA=2 To. 4.3
Xo
We decomposé,; as
A=A; + ¢,

whereA? is the transverse part argd=(1/6%) 9;A; , with 5°
=3;d;. Then Eqs(4.2) and(4.3) reduce to

7

11 d-3 1
do¢= 2 2 To. (d5+)AF = o DA == 2

0 0

whereT is the transverse part 6f, i.e.,d;7; =0. Thus the
equation forxoA; reduces to that for a free scalar wf=

—(d—1) in AdS;,, space with a sourcg,7; . It can be
easily solved to obtain
KA 0= [ da GOy TiY), @4

whereG(x,y) is the propagator for a free scalar witht =
—(d—1).
Then

=%fda AiT%fda(AfTwigT). (4.5

Note that the conservation of the current gives

D, T#=0=dT = — — do(1/go7°).

1
V9o

PHYSICAL REVIEW D 59 086002

dxodXx dyydy
f ST I XoYoTi (X)G(X,Y)Ti (Y)

1 dxpdx 1

> ?(d)ﬁ%?’fo- (4.6

This expression determines the photon propagdator.

B. Graviton

We consider the metric as a sum of the AdS metric and a
graviton perturbatiorgw=(1/x(2,)(5w,+ h,,) and consider
the action(see alsd13])

[0

In the following we shall assume that there is no index rais-
ing for h, but for the energy momentum tenspy, the indi-
ces will be raised byg§”=xg 2s#v. We shall consider the
gaugehg,=0. In this gauge, the linearized Einstein equa-
tions for h;; become(see alsd28])

R-2A+ 2 5 s |

g5(hij = 8ih) — —— dp(hy; — &ijh)

+ dghij = 10y = 019;hy + 89 dhim= — 2T},

4.7

where h= g;;h;; and Fij =hj; —%6” h. There are also two
constraints following from the 00 and @omponents of the
Einstein equations:

&0(&Jh” —&ih)=2T0i y (48)
) -1
- (?,ﬁjh,] + (?i h_ aoh: 2T00. (49)
0
We decomposé;; as
— 1 0id;
1 1 1 e
hij=hij + 8B} + ;B +didin+ g7 1(5 az)h’

with 2= 9,4, and

L1 9
Bi =2 dhi— 7 ddihy,

1 1
77=W<9k¢9|hk|, h’=h—?ak¢9|hk|.

It is easy to check that

"In Eq. (4.6) there is also a boundary term3 [ ;,,d% X3 9¢7;.
In the noncovariant gauge we are choosing, this term is responsible

After a partial integration, use of the current conservationjor the Ward identity of three-point functions, but we do not expect

and the substitution of Ed4.4) into Eq. (4.5, we get

it to contribute to higher-point functions.
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S:hE=0. ohi=0. oBL=0. centrate on the graviton-dilaton-axion sector of the
=S alli=4, b supergravit§
Then Eqgs(4.7) and(4.8) become A 1
41 I= 2.2 Adssdsxf§d5y\/__@
_ — _ 10
(&S-l—aﬁ)h,ij—x—oaohﬁ:—Zt” y tijEPijk|Tk|' 1 1 .
(4.10 X|R=5 (9¢)%=5 e2¢(a€:>2}. (5.0

Since the fields¢ and C are associated with the zeroth

spherical harmonics o and C on &, it is clear that the
(4.11 desired vertices cannot involve fields from higher spherical
harmonics. Thus the fields in E¢.1) can be assumed to
Xo have onlyx dependence, i.e.,
Toot g—7 N’ (4.12 )

d(x.y)=¢(x), C(xy)=C(x),
hereP;;, is the transverse traceless projector in flat space. ¢
WRETEijia 15 e Tansy projector in . P A0 Y) = {1,000, 1,0 (X0, (X))
Thus the equations for the transverse traceless hq?rt
= Pjjihi reduce to that of a free massless scalar, so that wafter dimensional reduction to AdSand a Wey! scaling,

1 2
aQB%:?(ZTOi‘l‘ao(gih,), ﬁoh’=—a7(9jT0]-,

2Xq

%h="4-1

get[dB=d""1y\gy(y)] the relevant part of Eq5.1) becomes
1 2 |—i dSx\/— /R_E J 2_1 260 9C)?
hi(x)=2 | dB ygG(x.y)tij(y). (4.13 ~ 267 Jpas, XV—g 5 (09)"— 5 e7%(9C)%),

(5.2
Using the conservation of the energy-momentum tensor and " .
Egs. (4.11) and (4.12, we find that the quadratitgraviton ~ WhereR=R(h’) is the 5D Ricci scalgr. The—C sector of
propagator part of the Einstein action takes the form the type-IIB supergravity on AdXS” is thus very simple.
The only cubic vertex involving tw@ is d¢ d¢ h'. In par-
1 . ticular, there is nd% ¢ ¢ vertex, whereh?, is the trace of the
=3 f da hijT}=f da dB(XoYo)*tij (X)G(X,Y)t;;(y) internal (S°) part of the metrigmassive fixed scalamhich
in =4 SYM theory corresponds to the operator of the
1 2 1 structureOg=tr F*— % tr(F?)2. Since in the free Maxwell
—2f da x3To; =2 Toi— a—1 f da x50, To; 72 Too theory there is a nonvanishing three-point func{@0Og)
[29], this three-point function must have nontrivial depen-
d—2 5 2 dence on the Hooft coupling(cf. [17]).
“i-1 j do XO&iTOi<?) 9 Toi (4.14 Following the same reasoning, we can see that the dia-
grams contributing to the four-graviton scattering may come
a?nly from theR term in Eq.(5.2). In particular, there is no

where we have ignored boundary terms resulting from parti . ; . K ! g
9 y 9 P cubic vertex involving two gravitons and other fields. This is

integration. . . ;
g consistent with the expectatidB0] that the OPE of the en-
ergy momentum tensor inV=4 SYM theory closes on
V. SCALAR FOUR-POINT FUNCTIONS IN AdS itself 10
SUPERGRAVITY/N=4 SYM THEORY Starting with Eqg.(5.2), we can write down the scattering

diagrams in Ad$ contributing to the four-point functions
under consideratiofsee Figs. 2 and)3Let us first look at
the diagrams which do not involve graviton exchange. The
scattering amplitude with the dilaton or axion exchange, e.g.,
#(1)C(2)(3)C(4) in Fig. 3, can be written as

In this section we shall consider the four-point functions
involving the scalar operato®=tr F2 and ©’ =tr FF* in
N=4 SYM theory in the largeN and large 't Hooft coupling
limit as predicted by the type-lIB supergravity in AgSS°.
Here© and O’ correspond to the massless fiellendC in
AdS; coming from the dilaton and axion of type-1IB super-
gravity on AdgxS°. The four-point functions of interest are
(O(x1) O(X2) O(x3) O(X4)), (O (X1) O’ (X2) O(x3) O(X4)), 80ur notation will be as follows. All fields irD=10 will be
and (O’ (x1)O'(x2)O'(x3)O'(X4)). They correspond in  written with carets and their indiceg, v, . . . will refer to the indi-
AdS; to the tree-level scattering amplitudes of four dilatons,ces of AdS, while a3, . .. will refer to those of &
two dilatons and two axions, and four axions, respectively. °The resulting gravitorh;,, differs fromh,,, by a Weyl scaling,
Thus we need to look for vertices in the Lagrangian of type-.e., h}’w=hw+%gowhg, whereg,,,, is the background metric in
lIB supergravity on Ad$xS® involving two dilatons(ax-  AdSs.
ions) and one other field or quartic vertices involving only °This is not so in most four-dimensional theories. For a discus-
dilatons and axions. For this purpose it is sufficient to con-sion of the case alv=1 supersymmetric theories, sg&i].

086002-7



HONG LIU AND A. A. TSEYTLIN PHYSICAL REVIEW D 59 086002

¢ ¢ c c cC C ¢ ¢
+ ’ ‘ +
¢ ¢ c cC cC C C C

FIG. 2. Scattering diagrams fapdpdpép and CCCC Only s FIG. 3. Scattering diagrams fafCC.
channel diagrams are displayed here.

terms, we conclude tha#§),m should contain only contact

_( dugd dvd ) terms, i.e., should vanish for separated potfts.
A= T T (Ugv0)“d,,KCq(U,X1) 9, Kg(U,Xp) The fact that £2) syr= — 2(As) sym="0 implies, in particu-
lar, that as in the case of thg¢ddpd amplitude, the only
XG(U,v)d,Ky4(v,X3) 3, K4(v,Xs). (5.3 nontrivial contribution to theCCCC amplitude comes from

the sum of thes,t,u graviton exchanges, so that tleppe

and CCCCamplitudes are actually equsiThe structure of
The contacipC¢C interaction gives the $C»C amplitude is more complicated as in addition to

the graviton exchange it contains also the sum of the axion

exchange and the contact contributions given by a combina-

duyddu ) tion of A, amplitudes with different orders of end poirisee
A= | — @t UpKa(U,X1)d,Kq(U,X5) also[32]).
0 The formal integral expression for the graviton contribu-
X Kg(U,X3)d,Kq(U,Xyg). (5.4)  tion to the four-point functions can be written down by sub-

stituting into Eq.(4.14 the appropriate expression for the
energy-momentum tensor corresponding to the massless sca-

Here/Cy(d=4) andG(u,v) [see Eqs(3.2 and(3.3] are the 12" fields:
boundary and bulk propagators for the massless scalars. _
Since these propagators satisfy T = ,Kq(U,X1)9,Kq(u,X2)

1
1 3 0, Ka(U,X1) ) Ky(U,X3).
—— 9u(N9og5"9,)Ka=0,
Here K4 is again the boundary propagatevith d=4). The
resulting expression is quite long and will not be explicitly
4 1 presented here. We leave its detailed analysis for future
—J 59,)G(U,v)=——== 8(u—v), work. .
l \/g—ogo N G(Uv) (u—v) To conclude, let us make some speculative remarks on the
Y0 Yo ; :
consequences of the possible crossing symmetry of CFT
four-point functions for the structure of scattering amplitudes
we find by a partial integratidh thatA;(1,2,3,4) reduces to N AdS space. From the correspondence between the scatter-
—1A,(1,2,3,4). ing amplitudes in AdS space and correlators in CFT given by
Direct evaluation o, is quite tedious. It is easy to show, the CPWE's, we would expect that the amplitudes in Figs. 2
however, that the symmetric ixy,... x, part of Eq.(5.4, and 3 should possesst-u symmetry. That would imply, for
(A2)eym [and thus ;)] vanishes. One way to see that is example, that the, t, andu channel graviton exchanges in

to make a field redefinitions= —log(1+). Then the free € ¢P¢¢ amplitude are all equal. Then in tHECCCam-
action for ¢ becomes plitude (which does not contain contact contributiothe

s,t,udilaton exchanges would also need to be equal. Since
their sum @;)sym vanishes, each of them should also be
|:J A9 xgo( 1+ ¢) "2 (o). (5.5  vanishing, at least up to some singular contributigok

The ,neW action generates cubic ar,]d quartic_d“aton Vertic_es'lzln the original version of this paper, we were assuming that this

and '_t can_be seen _that the res“'t'”g four'd'la_ton Scatt(_ar'ngrgument demonstrates the triviality Af, but it actually applies

a_mplltude is proportional tOKZ)Sym' Since the field redefi- only to (A;)sym as the four legs here correspond to saenefield

nition changes the correlators only by unimportant contactwh”e y2(a9)? reduces after integration by parts tely3dy
which vanishes on shell, there is no similar rearrangement for
$?(9C)?]. We noticed this mistake after reading the recent paper in

HBoundary terms resulting from partial integration give only un- [32], with the conclusions of which we now agree.
important contact termgterms containing a Dirac delta function  **This may be viewed as a consequence of the St 8ymmetry
and its derivatives of the action(5.2).
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[32]) that would need to be subtracted as part of a definition Considering the Euclidean action for a massive scalar,
of the CFT-AdS correspondent&To be able to draw any L

conclusions from the assumption of crossing symmetry in _- d+1 20 242

the case of thebhC¢C amplitude(Fig. 3), one needs first to ! 2 f d X@[(a“@ e,

interpret the contact bulk diagram contributing to it. For ex-

ample, we may replace it by a massless scalar exchange Yie are to solve

the t channel using that, as shown abowg,(1,2,3,4»= 1

—2A,(1,3,2,4) 1 Given that in thepC#C case the graviton (D2—m?)G(X,y) = — — 8(x—V).

exchange contributes only to thehannel, one would be led \/&

to the conclusion that the scalar and graviton exchange al

plitudes should be proportional to each otkp to possible rT?\/Iore explicitly, in the coordinate systefAl), this equation

subtractions mentioned abgverhat would, in turn, imply becomes

that all these massless scalar four-point amplitudes should be X33 [ Xg ”*23#G(x,y)] —m2G(X,y)
vanishing. Given these somewhat surprising conclusions, it

remains to be seen if crossing symmetry can actually be re- =—8(X—Y)8(Xo—Yo)Ys -

alized in a four-dimensional CFT. a2
Note added in proofAfter this paper was completed, it L€t G(X,y)=xg"H(xy). Then

became clear that the assumption made in the paragraph be- A 4 2V H(X.V) = — V8= 2125058 7} §( X — A2

low Eqg. (3.13 about analytic dependence 8f on v is not (A, FIDHEGY) =Y (X=¥)6(x0~Yo), (A2)

valid. Thus the argument presented in Sec. Il only leads tavhere »?’=m?+ d? and the operatod ,, defined by

the conclusion tha®,+S_,= G, + G For the same reason,

the identity presented in Fig. 1 in Sec. | is only correct up to A =2+ i P v
. v— Y0 0~ 2>

terms that are symmetric undes —v. Xg Xy

2

has Bessel functions as its eigenvalues:
ACKNOWLEDGMENTS

ALJ(WXg)=—W2J (WXp).
We acknowledge the support of PPARC and of European o (Wo) H(Wo)

Commission TMR program grant ERBFMRX-CT96-0045. The delta functions can be written in terms of orthonormal
We are grateful to S. Ferrara, D. Freedman, |. Klebanov, Rfunctions:
Metsaev, and A. Ritz for stimulating discussions.

5(X0_y0):y0J' dw wJ,(Wxg)J,(Wyo),
APPENDIX A: SCALAR PROPAGATOR IN AdS 441 0

As in [6], we consider the anti—de Sitter space of dimen- d’k iK-(3=Y) _ s(9_
. _ . ; : y ——e =8(X—Y).
sion D=d+ 1 with Euclidean signature and tlikealf-space (2m)
metric
We expand the Green function in a similar fashion:
ds’=g dx“dx”zi (dx2+dx?) (A1) LT b o
Opv Xg 0 i) H(x,y)=f —d(277) e J; dw wJ,(wxg)H(w,K;y).

The AdS, ; bulk indices will be denoted by,»,... and Then substitution into EqA2) leads to
will take values 0,1...,d. We shall use the notatior

:(XOY)Z))! ).(): (Xi)! |:1, e vd' H(W1k;y):yd/2 JV(WyO) *”2-)7

e
0 W2+k2

The scalar Green function in the anti—de Sitter spgdd is

Note that in Euclidean space the massless scalar exchange dﬁfus given by
grams are generated by a contact-tyféfunction vertex
(O(X)O'(y)O' (2))~[8(x—y) + 8(x=2) I 1(ly—2|®)]— 8(y a2 di [ 1
—2)[1/(|x—2|®)] represented in the bulk by thgdCaC interaction G(X,y) = (XoYo) f —d'(zﬂ_) fo dw W—W TK2
(its noncontact part vanishes since upon integration by parts it re-
duces to 3C2#2¢— #Ci3?C). However, the corresponding ikf(;,g)\] (Wxo) (W)
Minkowskian (Wightmarn) three-point function is zero and thus v 0)<,(W¥o

should not contribute to the CPWE of the four-point Wightman dik - . .
function in CFT. =(X0y0)d’2J ——g ek Y
5The massless scalar here may be identified with dilaton, as there (2m)
is a nonvanishing contact-type Euclidean three-point function in X1, (kxg)K,(kxg), (A3)

SYM theory: (O(X)O(y)O(2))~ s(x—y)[L/(ly—2|®) ]+ &(x
—2)[U(ly—x|®)]+8(y—2)[1/(|x—2/®)]. This is also suggested wherexg (Xg) is the smalleflarge) number among, and
by the field redefinition argument in E¢5.5). Yo-
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APPENDIX B: SCALAR CONTRIBUTION shall quote the result of19]. We will use the following
TO FOUR-POINT FUNCTIONS definitions: Zj;=N\;+X\j, Ajj=Ni—\j, X;;=[x—x;|, and
The contribution of a scalar operatdrof dimension\ to . XiX5a . X354
the CPWE of a four-point function of scalar operators P= X5 X5,' = X2,X5,'
(O] D 1(X1) P o(X5) P3(X3) P 4(X4)|0) was worked out a while
ago in[19]. The same expression should also correspond twhere;, i=1,2,3,4, are the conformal dimensions®f.

the scattering amplitude in AdS space, E8.1). Here we Then

(0@ 1(X1) D 5(Xp) D 5(Xg) D 4(X4)| Oy = x5 12 12y H127 Samyhaam Ragydaa™aag ()
with

C(A—Ap)2 1 1 1 1 _1 p
fo(p,m)=C17m 1209 F, 5 (A A3y, 5 ()\_Alz),)ﬁ‘l_i d, > (Ag—A)+1; 77

—(A—Agp)/2 1 1 1 1 9
;) F4(§ (A=Azg), 5 (A=A A+ 1= 5 d, 1= 5 (AgstAgy); . ;) :

+C,

When A ,=A3,=0, this simplifies into

1 1 1 1 p
F4 E)\, —7\,7\+1_§d,1; —

—\2
1 1 1 1
fO(p!ﬂ):Ciﬂ_)\/z > ;, 7 +c5 %) F4(—)\, —)\,)\+1—§d,1; ;, 2”

2 2 p

In the aboveg,,c,,c;,c, are some numerical constants dhgis a double hypergeometric function.

[1] G. 't Hooft, Nucl. Phys.B72, 461(1974. [14] G. Chalmers, H. Nastase, K. Schalm, and R. Siebelirg, “

[2] A. M. Polyakov, Nucl. Phys. BProc. Supp). 68, 1 (1998; Current Correlators in N=4SYM from AdS,”
Les Houches Summer School, 1992, hep-th/9304146, p. 783. hep-th/9805105.

[3] J. Maldacena, “The larghl limit of superconformal field theo- [15] W. Muck and K. S. Viswanathan, Phys. Rev. 98, 106006

ries and supergravity,” hep-th/9711200. (1998.

[4] I. R. Klebanov, Nucl. PhysB496, 231(1997; S. S. Gubser, I.  [16] A. M. Ghezelbash, K. Kaviani, S. Parvizi, and A. H. Fatollahi,
R. Klebanov, and A. A. Tseytlinpid. B499, 41 (1997; S. S. “Interacting Spinors-Scalars and the AdS/CFT Correspon-
Gubser and I. R. Klebanov, Phys. Lett.483 41 (1997). dence,” hep-th/9805162.

[5] S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, Phys. Lett.[17] S. Lee, S. Minwalla, M. Rangamani, and N. Seiberg, “Three-
B 428 105(1998. Point Functions of Chiral Operators D=4, N=4 SYM at

[6] E. Witten, “Anti de Sitter space and holography,” LargeN,” hep-th/9806074.
hep-th/9802150. [18] D. Z. Freedman, S. D. Mathur, A. Matusis, and L. Rastelli,

[7] G. Horowitz and H. Ooguri, Phys. Rev. Le#0, 4116(1998. presented at Strings 98, Santa Barbara, 1998.

[8] S. Ferrara, C. Fronsdal, and A. Zaffaroni, “Oi=8 Super- [19] S. Ferrara, R. Gatto, A. F. Grillo, and G. Parisi, Nucl. Phys.
gravity on AdS and N=4 Superconformal Yang-Mills B49, 77 (1972; Nuovo Cimenta26, 226 (1975.
theory,” hep-th/9802203. [20] S. Ferrara, R. Gatto, A. F. Grillo, and G. Parisi, Lett. Nuovo

[9]I. Ya. Aref'eva and I. V. Volovich, “On largeN conformal Cimento4, 115(1972; 5, 147 (1972; A. M. Polyakov, Sov.
theories, field theories in Anti de Sitter space and singletons,” Phys. JETP39, 10 (1974; M. Ya. Palchik, Phys. Lett66B,
hep-th/9803028; Phys. Lett. 833 49 (1998. 259 (1977; G. Mack, Commun. Math. Phy§3, 155(1977.

[10] W. Muck and K. S. Viswanathan, Phys. Rev.98, 041901 [21] E. S. Fradkin and M. Ya. PalchilConformal Quantum Field
(1998. Theory in D dimension&luwer, Dordrecht, 1996

[11] M. Henningson and K. Sfetsos, Phys. Lett4B1, 63 (1998. [22] E. S. Fradkin and M. Ya. Palchik, Phys. Rep., Phys. 14C,

[12] D. Z. Freedman, S. D. Mathur, A. Matusis, and L. Rastelli, 249(1978.

“Correlation functions in the CFJ/AdS;.; correspon- [23]I. T. Todorov, M. C. Mintchev, and V. B. Petkov&onformal
dence,” hep-th/9804058. Invariance in Quantum Field TheotBcuola Normale Superi-

[13] H. Liu and A. A. Tseytlin, “D=4 Super-Yang-Mills,D=5 ore, Pisa, 1978
Gauged Supergravity, anb=4 Conformal Supergravity,” [24] B. Allen and T. Jacobson, Commun. Math. Ph$63 669
hep-th/9804083. (1986.

086002-10



FOUR-POINT FUNCTIONS IN THE CFT-A8 . .. PHYSICAL REVIEW D 59 086002

[25] B. Allen, Phys. Rev. D34, 3670 (1986; B. Allen and M. [29] S. S. Gubser, A. Hashimoto, I. R. Klebanov, and M. Krasnitz,

Turyn, Nucl. PhysB292 813(1987). Nucl. Phys B526, 393(1998; S. S. Gubser and A. Hashimoto,
[26] T. Banks and M. B. Green, J. High Energy Ph@§ 002 “Exact absorption probabiliies for the D3-brane,”

(1998; M. Bianchi, M. B. Green, S. Kovacs, and G. Rossi, hep-th/9805140.

“Instantons in supersymmetric Yang-Mills ar-instantons  [30] P. S. Howe and P. C. West, Phys. Lett3B9, 273(1996.

in 1IB superstring theory,” hep-th/9807033. [31] D. Anselmi, M. Grisaru, and A. Johansen, Nucl. Ph3491,
[27] S. Ferrara and A. Zaffaroni, “Bulk gauge fields in AdS super- 221 (1997.

gravity and supersingletons,” hep-th/9807090. ~ [32] D. Z. Freedman, S. D. Mathur, A. Matusis, and L. Rastelli,
[28] G. E. Arutyunov and S. Frolov, “On the origin of supergravity

; . “Comments on 4-point functions in the CFT/AdS correspon-
boundary terms in the AdS/CFT correspondence, dence,” hep-th/9808006.

hep-th/9806216.

086002-11



