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Induced parity breaking term in arbitrary odd dimensions at finite temperature

C. D. Foscé
Centro Afanico Bariloche, 8400 Bariloche, Argentina

G. L. Rossinf and F. A. Schaposnik
Departamento de Bica, Universidad Nacional de La Plata, C.C. 67, 1900 La Plata, Argentina
(Received 23 October 1998; published 24 March 1999

We calculate the exact parity-odd part of the effective actiﬁﬁﬂgl) for massive Dirac fermions in@
+1 dimensions at finite temperature, for a certain class of gauge field configurations. We consider first Abelian
external gauge fields, and then we deal with the case of a non-Abelian gauge group containing an Abglian U
subgroup. For both cases, it is possible to show that the result depends on topological invariants of the gauge
field configurations, and that the gauge transformation propertiE%ﬂijf1 depend only on those invariants and
on the winding number of the gauge transformati®0556-282(199)04506-3

PACS numbds): 11.10.Wx, 11.30.Er

I. INTRODUCTION temperature-dependent parity breaking terms are also in-
duced by integrating fermionic degrees of freedom, in such a
The issue of parity breaking at finite temperature in threeform that their zerdF limit coincides, as we shall see, with
dimensional gauge theories with massive fermions posed #e CS actiorj18,19.
puzzle concerning the induced effective action: perturbative The clue in the approach ¢6] to the three-dimensional
calculations indicated that it was simply a Chern-Simonscase was to choose a particular gauge background in which
(C9S term times a coefficient that was a smoothly varyingthe temperature dependence in the parity breaking part of the
function of the temperature but this was in contradiction witheffective action can be factored out, leaving all the spatial
gauge invarianc¢l—3]. information encoded in the form of the two-dimensional chi-
A crucial advance was made jd4] by studying aD=1  ral anomaly. The main point in the present paper is to show
solvable model for which theexact effective action was that the same holds iD=2d+1 dimensions. Namely, for
gauge invariant although perturbative expansions producegarticular gauge field backgrounds, the temperature depen-
gauge-noninvariant results. Subsequently, it was shown tha&ence is isolated in a factor that can be related to the Polya-
the same phenomenon also takes place-rlZimensions. kov loop and the spatial components of the gauge configu-
This was proved through nonperturbative calculations of théation give rise to a factor which is nothing but the chiral
effective action in the Abelian cag®] and of its explicit, ~anomaly, now in & dimensions. This is done both in the
exact, temperature-dependent parity breaking part both in thébelian casegSec. 1) and in the non-Abelian oneSec. Il)
Abelian and non-Abelian casd$], for particular gauge for a particular choice of the gauge background which is,
backgrounds. however, sufficiently general as to allow to infer qualitative
These results were discussed in connection with reductioproperties in the general case. We give a summary and dis-
of CS terms by a symmetr}7,8] and also confirmed by cussion of our results in Sec. IV.
several alternative calculatiof8—17.
It is the purpose of the present work to extend the results Il. ABELIAN CASE
in [6] to the case ofrbitrary odd dimensionsp =2d+ 1. . ) ) ) )
Indeed, of the many interesting properties enjoyed by odd Let us start by stressing that in thg imaginary time form_al—
dimensional quantum field theories, not the least important (&M Of finite-temperature quantum field theory, the effective
the possibility of equipping a gauge field with a Chern- action forD=2d+1 dlmen5|onal Dlrgc fermions with mass
Simons action. This parity breaking object is invariant unde! ¢an be a nonextensive quantity whoseiemperature—
gauge transformations connected to the identity, but not neclependent, parity-odd part, will be called h&ti;*(A,M).
essarily so for “large” ones. Demanding invariance of the It is defined as
partition function under large gauge transformations has im-
portant consequences, particularly for the cases of nontrivial
spacetimegeven in the Abelian cageor when the gauge
group is non-Abelian.
As in theD =3 case, for arbitrarfp =2d+ 1 dimensions where
the CS action arises as the result of integrating out fermionic
degrees of freedom at zero temperature. At finikg

FEHAM) = S[T%AM) -T2 (A, M), (D

exr{—r"‘“l(A,M)]:f Dy Dipexi — Se(A,M)],

. _ _ _ (2
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The Euclideany matrices in 21+1 dimensions are denoted \yhere ¢ = (2n+ 1)/ is the usual Matsubara frequency
as Y0,Y1,---+Y2q- From the point of view of the for fermions, the Euclidean action becomes an infinite series
2d-dimensional theoriedwith coordinatesq) that will arise o gecoupled @-dimensional actions, one for each Matsub-
below, y, will act as ays chirality matrix. ara mode:

The fermionic fields in Eq(2) obey antiperiodic bound-
ary conditions in the timelike direction: to
_ _ Se(Aj Ao, M)= 2 [ d¥xyn(x)
YBX)==9(0.X), P(B.X)=—¢(0x) Vx. (4 "~

X[d+M +iyo( @+ €Ag) 1ihn(X).
(12)

The gauge field, instead, is periodic in the same direction:

AulBX)=Au(0X), V. ® Here,d is the A4 Euclidean Dirac operator corresponding to

the spatial coordinates and the spatial components of the

The effective actiod?9*1(A,M) is, as usual, written in -
gauge field:

terms of a fermionic determinant:
T20+1(A M) = — log det -+ ieA+M). ©) d=y;(d;FieA). (13
As the Matsubara modes introduced in Efjl) are de-
oupled, the 8+ 1 determinant arising from fermion inte-

ration becomes an infinite product of the determinants of
2d Euclidean Dirac operators:

In order to get an exact result we choose a particular
gauge field background which corresponds to a vanishin
electric field and a time-independent magnetic field,

Ag=Ao(7), () detd+ieAtM)og,
A=A (j=1,2,...,3), tS) - H defd+M+iyo(wn+eAg)lag. (14)

or any equivalent configuration obtained from this by a

gauge transformation. Remarkably, the parity odd piece of defined by Egs.

Using the same arguments as in R we can always (1) () can then be factorized, for arbitrary odd space-time
perform a(nonanomalousgauge transformation of the fer- dimensionD, following the procedure discussed in RES]

mionic fields in the functional integral defining the fermionic 5, p =3 |ndeed. for any given mode, one can factorize the
determinant in Eq(2), so that as the zero component of the 5§ geterminant into mass-even and mass-odd pieces through

gauge field becomes a constant that will be caligd a chiral transformation as
y Y f P drag(). @  deld+M+iyo(wn+eho)]ou=Jn[AM]de(d+pylz,
Blo (15
After redefining the fermionic fields according to this pre- Where
scription, we get
pn=VMZ+ (wn+ePy)? (16
~ B _
— 2d
Sr(Aj A0 M) = fo de d“xy andJ,[A,M] is the anomalous Jacobian of a chiral transfor-
mation in 2 dimensions,
. . . . Pn ,
where there is now no explicit dependence in the back- Pn(X)=exp —i 2 Y0 Pn(X),
ground. Then, if one perfgms a Fourier transformation on
the time variable fory and ¢, s
. En<x>=$,2(x>exp( —i 7”70), (17)
1 .
Prx)=—= 2, e“nyy(x), _
JB nF " with phase
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w,tehy (18)
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nents of the gauge field, it is just given by the 2hiral
anomaly. As we shall see below, all these features are also

bn= arctar( TV
valid in the non-Abelian case.
The D=2d+1=3 case was discussed in detail in Ref.

It is important to stress at this point the reason why thi 61 L h n | ite d h h
procedure can be pursued in more than three dimension ). Let us then, as another example, write down here the

The Jacobian for a constant chiral transformation is exactl xphutfexprg_ssmns foD|= ﬁd-ﬁ 1=5. Irr thls case ;{)he well-
known for any even dimension, and this is all we need to KNOWnN four-dimensional chiral anomaly 1S given by
evaluate the parity-odd part of the effective action. In fact,

from the definition(1),(6) we see thal’,44 depends solely on 2

the Jacobiand,,, Ay=— rcﬂ_zFij* Fij, (25)
" so that
Togq== 2 10gJ[AM]. (19
5 . BM e(s
Now, each Fujikawa Jacobian can be seen to give ['gq= —i arctantan — |t Efo drAy(7)
eZ
J[AM]= exp( —i¢, J d2dxA2d[A]), (20) X o2 f d*xF;*Fj; . (26)

with A,4[A] denoting the #-dimensional chiral anomaly.

h Let us note that the anomaly factor in E6) can be non-
en

trivial in the Abelian case according to the properties of the
2d manifold M on which A, is integrated. For example, if
M=5*xS? [ A,d*x=2, the smallest value it can take for
spin manifolds(for nonspin manifolds it can take also odd
values[21]).

In arbitrary dimensiorD =2d, we quote the form of the
Abelian chiral anomaly, which is simply given by

Pt [ dxdal (21

where

n=-4ow

b= E bn.

n=—oo

(22) (_e)d 1

a _(47)d ar Srama T L I (27)
Note that the phaseg,, contain at this stagall the depen-

dence on the Matsubara frecuencigs. Moreover, they are (see, for instancg20]).

independentof the number of spacetime dimensions, and Let us check that thB =5 expression in Eq26) has the
hence the sum ovep, is the same as the one already calcu-properT=0 limit; i.e., it reduces to the usual Chern-Simons
lated in Ref.[6] for the D=3 case, term. This limit reads

(D—arttnﬂt 1 A (23) 5 M e s Ay E. *
=arctanta 2 a ZEB 0 |- Foddﬁ_lmﬁfo dTAo(T)jd XFij F” (28)
Thus the parity-odd part df finally reads This is exactly the form taken by the Chern-Simons term
M [with a coefficient that is half the value necessary for making
e(s i i -
2441 arctan tan AM ta _f drAg(7) pr(SCQ gauge invariant even under large gauge transforma
2 2)o tions|
X f d2x A, Al (24) s ie
SCS= J de4X6,u,Vpa')\A,u.aVAp(90'A)\ (29)

487
This is one of the main results in our paper. We have been

able to compute thexacttemperature-dependent parity-odd when evaluated on the configurations restricted by Egjs.

piece of the effective action for massive fermions in a gaugénd (8). It is interesting to note that in th& -0 limit

field backgroundn arbitrary dimensions Remarkably, the exp(—l“gdd) is nothing but the Polyakov loop with a coeffi-

temperature-dependent factor is universal in the sense it doegent that corresponds to a topological invariant for the

not depend on the numb&=2d+1 of the space-time di- 2d-dimensional gauge theory.

mensions. The particular background we have chosen makes Notice that, in order to take into account all contributions

evident the role of Polyakov loop in the temperature-to the above-mentioned configurations, one must approach

dependent factor of the effective action as will be discussethem from a general one. Some terms that naively vanish for

below. Concerning the dependence on the spatial compdhese configurations are actually finite since the liAytx)
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—-const is undetermined. The same kind of indetermination I1l. NON-ABELIAN CASE
is found in theD =3 case; we explain here the correct pro-
cedure for that simplest examplsee Ref[6]), since com-
plications arising in higher dimensions are unessential. W
write S35 in momentum space,

The analysis performed in the previous section can be
extended to certain class of non-Abelian background gauge
fields. The model is defined by its Euclidean action

stdeTf A2 (D + M), (32)
e2 dsp 0
K=~ 7= LnAL(—P)PA(P), (30

47) (2m)° € where now

D,=d,+dA 33
and explicitly separate the=0 index, ARG AT (33

and the anti-Hermitian gauge connectidp corresponds to
the Lie algebra of some group.
e? g3 We consider configurations satisfying
fm[ejkAO(_p)ijk(p)

+ €A (= P)PrA(P) — €jkA; (= P)PoAK(P) ]
(31 Aj=A(x), [A;,n]=0, (j=1,...,2), (35

S?:s: 7y 5
Ao=|Aq|(7)n, (34

wheren is a fixed direction in the Lie algebra. Then, follow-

It is immediately seen that the first two terms contribute bying exactly the same steps as those describé@lirone can

Z‘e sahme amcl)ur_n, ?nﬁ tlhat this amc_)ur?t 'E finite becausgjve at a natural generalization of the result therein. We

A(p) has a pole irp; ; the last term vanishes becaus€p)  gha| skip details and just present the final answer,

is also proportional t&5(py) (see[9] for details.
In other words, a safe procedure in coordinate space is the

iy d
following: we first write the integrand without spatial deriva- [ odd= 9 il tr{ arctar{ tanl‘(@
tives acting onA,, by means of integrations by parts, and 4z d 2
only then use the fact thatA;=0. This gives twice the 8
rezult of the naive restriction given by usingA;=d;Aq Xta”(gJ dTAO(T))
=0. 0
The same check can be done in the general
(2d+1)-dimensional case. The correct evaluation of the x| d%%e; . . E. . ...FE . 36
; ; ; ; X€jipiad inio Jod—1l2d| (36)
Chern-Simons term gives thait1 times the naive result.
In particular, one gets full agreement between E8) and o ) ) ) _ ) )
(29). It is interesting at this point to consider in some detail a

Let us end this section by discussing the issue of gaug&ubset of configurationt34),(35 which generate dogqt

invariance undetarge gauge transformations, a question With nice topological properties. Consider tii@has an Abe-
which, as explained in the Introduction, was put in doubt bylian U(1) factor so that we can decompoég as

perturbative calculations fd = 3. For the particular Abelian

background we are considering, such transformatifns A,= iAz+AZra, (37
wind around the cyclic time directionQ(8,x)=Q(0x)

+(2m/e)k, with ke Z. The exact result we have obtained where A’ is the component corresponding to the Abelian
for the temperature-dependent, parity-odd effective actionfactor U(1), while AZ denotes the ones for the non-Abelian
Eq. (24), shows that large gauge transformations may changsubgroup that for definiteness we shall take to be NU(
the temperature-dependent factor if its winding number isThe matricesr, are the generators for SNJ, satisfying the
odd. Indeed, such a transformation, say, with a winding numrelations

ber k=2p+1, shifts the argument of the tangent inp(2

+1)m. One has to keep track of this shift by shifting the Sab

branch used for the arctan definition. Now, if the integral of [7a:75]= fapcTeTa= —Ta,  tH(7aTp)=— - - (39
the anomaly is an even integer=2m, the total change of

the effective action is @(2p+1)mi and hence exp{l'iad  We now fix the class of gauge configurations we consider to
remains unchanged. In contrastnif 2m+1, it changes its those verifying the conditions

sign. However, as is well known, there is a mass- and

temperature-independent parity anomaly contribution which A%=A%(7), A%=0

we have not included in Eq24) [22—24 which precisely L

changes its sign so that the exponential of the complete ef- a A ra

fective action is indeed gauge invariant. Ao=0, A7=A((X). (39
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The 7 dependence oA, , present only througihd, may be (i) Using a certain class of gauge field configurations, the
eliminated by an Abelian gauge transformation just as in théemperature-dependent parity-odd part of the effective action
Abelian case. Then the fermionic action becomes (i.e., the relevant part to investigate possible gauge-invariant
violations at finite temperaturean be calculatedxactly in

S-(AZ AQ M) = deTf a2y arbitrary odd dimensionsThe result is a gauge-invariant ac-

0 tion which is not just a Chern-Simons term with a
a =0 temperature-dependent coefficient but which reduces, in the

X[0+9(¥jAjTativoAg) T M]Y. low-temperature regime, to this product and confirmsT at

(40) =0, that massive fermions induce a CS action.

(iii) An exact calculation was possible becaygein 2d
Now, as a result of the commutativity @, with A;j, the  +1 dimensions can be always taken as the chigainatrix
same steps leading to the calculationIgf);* may be per- in 2d dimensions so that the temperature-dependent part of
formed here, with trivial modifications, except for the fact the effective action could be decoupled througpyaotation
that the anomalyA will be the one corresponding to a with constant phase. As is well known, the resulting chiral
2d-dimensional Abelian chiral rotation for a Dirac fermion Fujikawa Jacobian can be exactly computed and yields to the
in presence of a non-Abelian connectisfi(x). This gauge 2d-dimensional chiral anomaly. This gives another example
field is to be regarded as an arbitrary $j(gauge field for of the connection between CS terms in odd dimensions and

the 2d-dimensional sector of the theory. The anomaly is therfven-dimensional topological invariants connected to chiral

of course the well-known “singlet” anomalf20] anomalied18,19.
(iv) Although our result is obtained for a particular class
(ig)? 1 of gauge field backgroundgvanishing electric field and
Azq= _(47)(1 g1 iz JagMF i, Fiagoiggl- (4D time-independent magnetic field in the Abelian gasenilar

to those considered in the pioneering works at zero tempera-
Now, as the integral afd,4 is proportional to the Pontryagin ture[22,23, there is no doubt that the same gauge-invariant

index of the configuration answer should be confirmed for general gauge field configu-
rations, using, for example, d&-function regularization
2d _ analysis.
f d"xAzg(x)=n, (42) (v) Remarkably, the temperature dependence of the

M
oga =i arctar{tanl‘(% n.

parity-odd effective action is the same irrespective of the
we may writel“f)gg1 as number of space-time dimensions. This could be attributed to
the particular background we considered but the topological
tar( QJ"BdTA (T)) nature of the result suggests that a similar result should hold
2Jo 0 in general. This is also sustained by the fact that the depen-
(43 dence on the @-dimensional components of the gauge field
background occurs through the axial anomaly, also a quan-
Some remarks about this expression are in order. Firstity of topological nature.
note that it is nontrivial only folD =2d+1>3 dimensions We would like to end this work by noting that the results
since for 21=2 the singlet anomaly vanishes. Depending onwe derived in a finite-temperature quantum field theory lan-
the gauge group and thed2manifold over which the guage could also be interpreted in terms of a compactified
anomaly is integrated the Pontryagin indexan be a non- Euclidean theory in an odd number of dimensions, where the
trivial integer. Second, it is an object which is sensitive tocurled coordinate is not necessarily the Euclidean time, but it
large gauge transformations imi2 1 spacetime, putting to- may be a compact dimension of lendtt= 8. If this inter-
gether the winding associated with the timelike direction pretation is adopted, and one takes only the lowest Kaluza-
(reflected inAJ), with the usual winding transformations in Klein modes for the parity conserving part of the effective
2d. However, the restrictions on the background gauge fieldaction, one then has alZ2educed theory, where the odd part
that we have imposed do not allow us to analyze generadf the effective action we evaluated plays the role of a
large gauge transformations although we expect that, as ia-vacuum term(we assume, of course, that there is also a
the Abelian case, gauge invariance is respected. Yang-Mills action for the gauge field

IV. SUMMARY AND DISCUSSION
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