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Compactification for a three-brane universe

Raman Sundrum*
Department of Physics, Boston University, Boston, Massachusetts 02215

~Received 5 October 1998; published 22 March 1999!

A fully realistic and systematic effective field theory model of a 3-brane universe is constructed. It consists
of a six-dimensional gravitating spacetime, containing several, approximately parallel~311!-dimensional de-
fects, or ‘‘3-branes.’’ The standard model particles are confined to live on one of the 3-branes while different
four-dimensional field theories may inhabit the others, in literally a case of ‘‘parallel universes.’’ The effective
field theory is valid up to the six-dimensional Planck scale, where it must be replaced by a more fundamental
theory of gravity and 3-brane structure. Each 3-brane induces a conical geometry in the two dimensions
transverse to it. Collectively, the curvature induced by the 3-branes can compactify the extra dimensions into
a space of spherical topology. It is possible to take the six-dimensional Planck scale to be not much larger than
the weak scale, and the compact space not much smaller than a millimeter, thereby realizing the recent
proposal by Arkani-Hamed, Dimopoulos and Dvali for eliminating the gauge hierearchy problem. In this case,
an extra force is required to stabilize the compact space against collapse. This is provided by a six-dimensional
~compact! U~1! gauge field with a magnetic flux quantum trapped in the compact space. The nature of the
cosmological constant problem in this scenario is discussed.@S0556-2821~99!00408-7#

PACS number~s!: 11.10.Kk, 11.25.Mj
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I. INTRODUCTION

It is usually assumed that the fundamental dynam
scale underlying gravity is the Planck scale,

M Pl;1018 GeV, ~1!

set by the observed value of Newton’s constant. If so, on
faced with the problem of understanding the mechan
which stabilizes the very large hierarchy between this sc
and the electroweak scale,v5246 GeV. Recently however
it has been proposed@1# that the dynamical scale of gravity
M, is not much larger than the weak scale, thereby elimin
ing the usual hierarchy problem. This is accomplished
taking general relativity to be fundamentallysix-
dimensional, with two large compact dimensions, and id
tifying M with the six-dimensional Planck mass. Using t
standard relation@1# ~also see Sec. VI within!

M Pl
2 ;AM4, ~2!

whereA is the area of the compact two-dimensional spa
one finds that ifM is not much larger than the weak sca
then the typical~linear! dimension of the compact space
not much smaller than a millimeter. That is, the compact
cation mass scale is not much larger than 1024 eV. Refer-
ence@1# proposed that the reason we do not experiment
observe finely spaced Kaluza-Klein excitations of the st
dard model~SM! particles is because the entire SM is co
fined to a (311)-dimensional defect, which we will refer t
as a ‘‘3-brane,’’ which is point-like in the two-dimensiona
compact space and extended in the non-compact direct
On the other hand, gravity is not confined in this manner a
light Kaluza-Klein excitations of the graviton are prese
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The net result is that gravity is effectively described by fou
dimensional general relativity at distances larger than a m
limeter, but at shorter distances the Kaluza-Klein excitatio
propagate and gravity reveals its six-dimensional nature.
date, gravity has only been tested down to a distance
centimeter with no sign of extra dimensions, but if we a
lucky the six-dimensional transition may appear in upcom
sub-millimeter tests of gravity@1,2#.

There is an ongoing effort to theoretically realize a ph
nomenologically acceptable version of the above scena
either within quantum field theory or within string theor
@1,3–5#. Related ideas involving 3-brane universes and
relatively low compactification mass scales appear in R
@6–15# The purpose of the present paper is to construc
realistic model of a 3-brane universe using the effective fi
theory methods developed in Ref.@16#, focussing on the
compactification mechanism. This approach is analogou
the chiral Lagrangian approach to the soft pion sector of
strong interactions. Just as the chiral lagrangian describe
most general structure of the low-energy interactions am
~pseudo! Nambu-Goldstone bosons, without explicitly d
scribing the mechanism that gave rise to the associated s
taneous symmetry-breaking, the effective field theory we
here will describe the general structure of low-energy int
actions among the 3-brane fluctuations, six-dimensio
gravity and the SM fields, without explictly describing th
mechanism that gave rise to the 3-brane and the fields liv
on it. Just as the chiral Lagrangian description is valid up
energies at which the detailed QCD mechanism for ch
symmetry-breaking becomes important, the effective the
we will use is valid up to energies of orderM, at which point
the internal structure of the 3-brane and the physics
strongly-coupled gravity become important.

The basic model proposed in this paper consists of a
dimensional gravitating spacetime, containing several,
proximately parallel 3-branes. They act as sources for
curvature needed to compactify the extra dimensions int
©1999 The American Physical Society10-1
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RAMAN SUNDRUM PHYSICAL REVIEW D 59 085010
space of spherical topology. Each of the 3-branes may
inhabited by a separate four-dimensional quantum fi
theory, one of which is the familiar SM. These parallel, fou
dimensional sub-universes interact weakly with each ot
via the bulk six-dimensional gravity, so that they can
considered as hidden sectors relative to each other. Th
qualitatively similar to the ideas put forth in Refs.@10#.

This paper is organized so as to progressively build up
a fully realistic model. Section II briefly reviews the nece
sary effective field theory formalism detailed in Ref.@16#.
Section III describes the effective field theory that resu
from integrating out the massive SM physics. Section
deals with the case of a single 3-brane in six fully no
compact dimensions. The classical equations of motion
veal that the 3-brane induces a conical geometry in the
transverse dimensions. In Sec. V, the cones from sev
3-branes are patched together to fully compactify the e
dimensions. In Sec. VI, the effective field theory below t
compactification mass scale is derived. It is pointed out t
when the VEV of the effective field corresponding to the s
of the compact space is large, this field can mediate effec
conflict with experimental post-Newtonian gravitation
tests. This problem is resolved in Sec. VII by introducing
six-dimensional Abelian gauge field with a non-trivial ma
netic flux through the compact space. Section VIII discus
the nature of the cosmological constant problem in
present scenario. Section IX contains the final discussion

II. THE STANDARD MODEL ON A 3-BRANE

This section summarizes some of the key aspects of
3-brane effective field theory formalism described in R
@16#.

Our starting point will be the action governing the S
fields on a 3-brane, which in turn is coupled to si
dimensional ‘‘bulk’’ gravity @16#:

S5S3-brane1Sbulk , ~3!

S3-brane5E d4xA2gH 2 f 0
42gmnDmH* DnH2V~H,H* !

2
1

4
gmrgnsFmnFrs1c̄Liea

msaDmcL1yHcLcL

1H.c.1•••J , ~4!

Sbulk5E d6XA2GH 2L022M0
4R2

1

4
FMNFMN1•••J .

~5!

The SM scalar, chiral spinor and vector fields are deno
H,cL ,Am respectively, the last of these being used to fo
the covariant derivatives and the gauge field strength,Fmn .
~Gauge and flavor indices have not been explicitly writte!
The SM fields are functions of intrinsic coordinates on t
3-brane, xm50, . . . ,3. The gravitational field is the six
dimensional metric,GMN , used to construct the six
08501
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dimensional curvature scalar,R, and is a function of coordi-
nates for the bulk spacetime,XM50, . . . ,5. A six-dimensional
compact U(1) gauge field is also included, with fiel
strengthFMN(X). It will not play an important role until Sec
VII. The 3-brane embedding in the bulk spacetime is giv
by fields,YM(x). The SM fields ‘‘feel’’ a four-dimensional
metric on the 3-brane induced by this embedding, given

gmn~x!5GMN„Y~x!…]mYM]nYN. ~6!

~The case of chiral fermions is more subtle, involving
induced vierbein,em

a . It is given careful treatment in Ref
@16#, but we will not need the details here.! The dimensionful
constants,f 0

4 , L0 andM0 , are the ‘‘bare’’ 3-brane tension
six-dimensional cosmological constant and six-dimensio
Planck mass respectively. In this paper we will consider
case wheref 0;O(M0).

The terms in Eqs.~4! and ~5! are the lowest dimension
operators which are invariant under both gene
X-coordinate transformations andx-coordinate transforma
tions, the ellipses containing higher-dimension invaria
suppressed by powers ofM0 . The resulting theory, written
in terms of canonical fields, is necessarily no
renormalizable and must be treated by the methods of ef
tive field theory, the effective theory being valid up to ene
gies of orderM0 . This scale constrains both the allowe
energy-momenta in physical processes, and also the siz
metric fluctuations away from six-dimensional Minkows
space and 3-brane fluctuations away from a flat fo
dimensional hypersurface. Physics at higher energies
only be understood within a more fundamental theory,
scribing the internal structure of the 3-brane and strong
coupled gravity. The fact that SM experiments are not s
sitive to such exotic physics indicates thatM0 ~and hencef 0)
are at least larger than the weak scale@appearing in the SM
potential,V(H,H* )].

Finally, consider the embedding fields,YM(x). Because
of the coordinate invariances, not all of theYM are physical.
A convenient gauge-fixing~in the effective theory’s domain
of validity! is provided by choosing

Ym~x!5xm, Ym54,5~x! arbitrary. ~7!

The two physical fields,Ym, acquire explicit kinetic terms
and interactions upon expanding Eq.~4! for small fluctua-
tions, using Eq.~6!. They appear derivatively coupled be
cause they are the Nambu-Goldstone modes correspon
to spontaneous breaking of transverse translations by
3-brane. We will generally use lower-case Roman lette
m,n, . . . 54,5, to denote these transverse directions.

III. INFRARED DYNAMICS OF GRAVITY
AND THE 3-BRANE

Let us now imagine integrating out the physics of t
effective theory described above, down to the far infrared
particular, all the massive SM particles are completely in
grated out. We are left with an effective theory valid at ve
low energies, consisting of six-dimensional gravity and t
Abelian gauge field, the 3-brane embedding fields, and m
0-2
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COMPACTIFICATION FOR A THREE-BRANE UNIVERSE PHYSICAL REVIEW D59 085010
less SM particles. Now at these energies the massless
particles are essentially decoupled from each other and f
the gravitational and ~derivatively-coupled! embedding
fields. Therefore, since we are more interested in the dyn
ics of the 3-brane itself, we can drop reference to the ma
less SM fields since they have a negligible effect. Simila
we can ignore the six-dimensional gauge field~which has no
sources in this paper!. Then the general form of this infrare
effective theory is given by Eq.~3!, where now

S3-brane5E d4xA2g$2 f 41•••%, ~8!

Sbulk5E d6XA2G$2L22M4R1•••%. ~9!

The higher dimension terms in the ellipses are irrelevan
the far infrared. The dimensionful constants,f 4, L and M
are the bottom-line renormalized 3-brane tension, s
dimensional cosmological constant and six-dimensio
Planck constant respectively. The fact that we tookf 0
;O(M0) implies that, barring fine cancellations,f
;O(M ). For now we shall assume thatL50, but will take
it to be non-zero but small in Secs. VI and VII.

IV. A FLAT 3-BRANE SOLUTION

The dynamics of the 3-brane and six-dimensional grav
is weakly coupled in the far infrared, and well-approximat
by the classical equations of motion. We will look for a sta
solution of the following form:

Ym5Ȳm5const, Ym~x!5xm,

ds2[GMN dXM dXN5hmn dxm dxn1Gmn~X4,X5!dXm dXn.

~10!

That is, the bulk spacetime has the form, Mink43M2 ,
where Mink4 is four-dimensional Minkowski space andM2
is a two-dimensional manifold. In this section we will tak
M2 to have non-compact planar topology. The 3-brane
embedded along the Minkowski directions and at so
point, Ȳm, in M2 . Note that, by Eq.~6!, with such an em-
bedding the SM fields would feel an induced Minkows
metric gmn5hmn . Also notice that our ansatz forY satisfies
the gauge condition, Eq.~7!.

When obtaining the classical equations of motion by fu
tionally differentiating the action, it is legitimate to deriv
theYm equations of motion by first settingGMN to its ansatz
form, and then to derive the metric equations of motion
first settingY to its ansatz form. TheYm equations of motion
are then

]m@A2ggmnGmn„Y~x!…]nYn#50, ~11!

where

gmn5hmn1Gmn~Y!]mYm]nYn. ~12!
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Clearly, Yn5Ȳn5const provides a solution to these equ
tions.

The metric equations of motion~six-dimensional Einstein
equations! are

A2GS RMN2
1

2
RGMND ~X!

5
f 4

4M4
GMm~X!hmnGnN~X!d2~Xm2Ȳm!.

~13!

Now let us try the metric ansatz. The only non-trivial com
ponents of the curvature tensor can beRmn , and Einstein’s
equations split into two:

AGR~2!52
f 4

2M4
d2~Xm2Ȳm! ~14!

Rmn2
1

2
R~2!Gmn50, ~15!

where R(2) denotes the two-dimensional curvature sca
constructed fromGmn . Equation~15! holds identically for
any two-dimensional metric,Gmn . Equation~14! is closely
analogous to Einstein’s equations in (211) dimensions in
the presence of a static particle source@17#, and has a very
simple solution:Gmn corresponds to a conical geometry o
M2 , with the tip of the cone atȲm. The deficit angle of the
cone is given by

d5
f 4

4M4
. ~16!

Although we will not need it here, an explicit form for thi
metric can be given in radial coordinates centered atȲm, that
is X42Ȳ4[r,X52Ȳ5[f:

Grr51,Grf5Gfr50, Gff5S 12
f 4

8pM4D 2

r2. ~17!

Away from the 3-brane, the bulk spacetime h
Minkowskian geometry.

V. COMPACTIFICATION WITH SEVERAL 3-BRANES

Of course, the above solution does not provide a reali
background spacetime, because gravitational fluctuations
propagate freely in the six non-compact dimensions. For
ample, this leads to a 1/r 4 Newtonian force instead of the
experimental 1/r 2 law @1#. To cure this problem we will con-
siderM2 to be compact, with spherical topology. Howeve
we must reconcile this with the fact that the static 3-bra
considered in the previous section yields a locally flatM2
with a conical singularity at the 3-brane location. The si
plest way to proceed is to consider the case of sev
3-branes, labelled by an indexj. Each of these 3-branes ma
0-3
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RAMAN SUNDRUM PHYSICAL REVIEW D 59 085010
be inhabited by different four-dimensional field theories, o
of which is the SM. At low enough energies the details
these field theories are irrelevant, the 3-branes are cha
tererized just by their renormalized tensions,f j

4 . We will
look for a solution to the classical equations of motion us
the same ansatz for the metric as in the previous section
with each 3-brane again extended in the Minkowski dir
tions and occupying a fixed point,Ȳj

m , inM2 . This configu-
ration is a case of ‘‘parallel universes’’ linked only by th
higher-dimensional gravity.

As in the previous section, it is straightforward to see t
the ansatz satisfies theYj equations of motion. The non
trivial Einstein equation generalizes to

AGR~2!52(
j

f j
4

2M4
d2~Xm2Ȳj

m!. ~18!

The solution is now analogous to the case of several s
point masses in (211)-dimensional gravity on a space o
spherical topology@17#. The geometry is flat everywhere i
M2 except at the locations of the 3-branes, where there
conical singularities with deficit angles:

d j5
f j

4

4M4
. ~19!

However this static solution is not generally possible b
cause of the constraint provided by the Gauss-Bonnet th
rem for spherical topology:

E
M 2

dX4 dX5AGR~2!528p. ~20!

By Eq. ~18! this implies that the static solution is only po
sible if the 3-brane tensions satisfy the sum rule

(
j

f j
4

4M4
54p. ~21!

That is, according to Eq.~18!, the conical singularities are
the only source of curvature forM2 , and the deficit angles
must add up to 4p in order to yield a surface of spherica
topology. A simple example of such anM2 is the surface of
a tetrahedron, where the four vertices correspond to the
sitions of four 3-branes.

As will be seen in Sec. VI and discussed further in S
VIII, the fine-tuning of 3-brane tensions to satisfy Eq.~21! is
just the re-incarnation of the cosmological constant prob
in the present context. Granting this fine-tuning, we hav
minimal mechanism for compactification of the higher d
mensions, namely the curvature induced by the 3-bra
themselves.

VI. EFFECTIVE FIELD THEORY BELOW THE
COMPACTIFICATION SCALE

Let us now derive the effective field theory for the mas
less degrees of freedom after compactification in the man
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described in the previous section. As usual when higher
mensions are compactified, the higher dimensional fields
the present case just the six-dimensional metric~neglecting
the Abelian gauge field for now!, give rise to a Kaluza-Klein
tower of four-dimensional states, most of which acqu
masses of order the compactification mass scale. The m
less states correspond to ‘‘zero-modes’’ of the compactifi
configuration. The 3-brane is an added source of mass
fields, namely theYm fields and the massless SM fields. W
will neglect the massless SM fields here since their inclus
is rather trivial. Obviously the fields on the 3-brane do n
give rise to any massive Kaluza-Klein states.

Let us first consider the six-dimensional metric tens
whose components can be decomposed in four-dimensi
Minkowski space as a tensorGmn(X), vector fields,
Gmm(X), and scalars, Gmn(X). We found a global
Minkowski four-dimensional spacetime factor as part of o
classical solution in Sec. V. We can deform this continuou
so that this spacetime factor is a curved manifold descri
by a four-dimensional metric,

Gmn5ḡmn~x!, ~22!

in coordinates whereXm[xm. Non-trivial X4,5-dependence
in Gmn corresponds to Kaluza-Klein excitations with mass
of order the compactification scale. In Kaluza-Klein theo
massless components of theGmm correspond to continuou
isometries of the compactified space. In the present c
however, there are no continuous isometries~for example,
consider the case whereM2 is a tetrahedron!. Therefore
there are no masslessGmm states, and below the compactifi
cation scale we effectively have

Gmm50. ~23!

The fate of theGmn(X) is tied up with the 3-brane fields
Ym(x). The identification of zero-modes is made somew
ambiguous by general coordinate invariance. In one con
nient choice of language, we can observe that the metric
M2 , given by Gmn5Gmn , is the Euclidean metric plus a
number of conical singularities at the 3-brane positions,
deficit angles fixed by the 3-brane tensions according to
~19!. Therefore the zero-modes are the 3-brane separat
uYj2Yku, measured with the Euclidean metric, which th
determineGmn . Note that by Eqs.~6!, ~7!, the induced metric
on the j th 3-brane is given by

gmn~x!5ḡmn~x!1Gmn„Yj
4~x!,Yj

5~x!…]mYm]nYn. ~24!

This formula requires careful interpretation becauseG is be-
ing evaluated at a position where it has a conical singular
We do not expect a 3-brane to ‘‘feel’’ the curvature sing
larity for which it is itself the source, anymore than we e
pect this for a point particle. Indeed, given any physical
traviolet regularization of our original effective theory
scaleM, such curvature singularities would be smoothed
over distances of order 1/M . In the 3-brane effective La-
grangian, we are usingGmn to measure distances involved
3-brane fluctuations. In the effective theory’s domain of v
lidity the typical distances are much larger than 1/M , so the
0-4
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COMPACTIFICATION FOR A THREE-BRANE UNIVERSE PHYSICAL REVIEW D59 085010
curvature singularity is unimportant. In the present situati
throwing out the curvature singularity leaves us with

gmn~x!5ḡmn~x!1dmn]mYj
m]nYj

n , ~25!

wheredmn denotes the two-dimensional Euclidean metric
The effective four-dimensional theory below the compa

tification scale is then given by substituting the massl
metric components into Eqs.~8!, ~9!,

S52E d4xA2ḡH(
j

F f j
41

f j
4

2
dmnḡ

mn]mYj
m]nYj

nG
1E dX4 dX5AG@2M4R~4!12M4R~2!#1•••J ,

~26!

where R(4) is the four-dimensional curvature scalar due
ḡmn , andR(2) is the two-dimensional curvature scalar due
Gmn . The kinetic terms for theYj arose by expandingA2g

in Eq. ~8! aboutḡmn , using Eq.~25!. By the Gauss-Bonne
theorem, Eq.~20!, and the fact thatR(4) constructed from
ḡmn is independent ofX4,5, we get

S52E d4x A2ḡH(
j

f j
4216pM4

1(
j

f j
4

2
dmnḡ

mn]mYj
m]nYj

n12A~Y!M4R~4!1•••J ,

~27!

where

A~Y![E dX4dX5AG ~28!

is the area ofM2 determined by the 3-brane separations. I
now clear that our previous sum rule requirement on
3-brane deficit angles, Eq.~21!, is precisely the tuning of
parameters necessary to cancel the effective fo
dimensional cosmological constant.

From Eq.~27! we see that the effective four-dimension
Planck constant is given by

M Pl
2 5A~Y!M4. ~29!

The fact thatM Pl depends on massless fields leads to a c
flict with post-Newtonian experimental tests of general re
tivity. See Ref.@18# for a review. These tests are sensitive
the tensorial nature of the macroscopic gravitational for
and imply that the scalar admixture of the gravitational fo
can be at most a fraction of a percent. The reason that
must perform tests sensitive to relativistic~‘‘post-
Newtonian’’! effects in order to distinguish scalar from te
sor exchange is because in the Newtonian limit both
changes give rise to a 1/r 2 force. At first sight this issue doe
not appear to pose a problem for us since the deriva
couplings of the~canonically normalized@16#! Y scalars to
08501
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SM states~our standard probes of gravity!, as given by Eqs.
~4! and~6!, are negligible at distances larger than a centim
ter where gravity is tested.1 However the problem is that a
Y-dependent four-dimensional Planck mass in Eq.~27! cor-
responds to an order one mixing of the~normalized! Y sca-
lars with the metric tensor,ḡmn , which leads to an unaccep
able scalar admixture to gravity of order one.2

To escape from this phenomenological problem we
quire a potential energy term for the compactified ar
A(Y), which stabilizes it and gives the corresponding co
bination ofY-scalars a finite Yukawa range below a centim
ter. The simplest way to introduce a potential term is
begin with a small positive six-dimensional cosmologic
constant,L. At the level of the effective theory below th
compactification scale this clearly leads to an extra term

dSL52E d4xA2ḡA~Y!L. ~30!

This term favors the reduction ofA. We now require a force
that opposes this reduction in order to obtain stability. It w
proposed in Refs.@19# that this can be provided by intrinsi
cally quantum mechanical matching corrections at the co
pactification scale. Although this is not the method of sta
lization preferred in this paper, it is useful to briefly consid
it first in order to understand its merits and problems.

The important point is that there is a tower of Kaluz
Klein states of the graviton with masses set by the comp
tification scale. Quantum loops of these states will then c
tribute to the effective potential. Dimensional analys
suggest the rough form,

dSquantum52E d4xA2ḡ
k

A 2
. ~31!

Indeed these are just the types of corrections, withk.0, that
are induced in more standard Kaluza-Klein compactifi
tions. For example, see Ref.@20#. We see that combining ou
original effective action withdSL anddSquantumgives a sta-
bilizing effective potential forA(Y),

Ve f f5A~Y!L1
k

A~Y!2
1(

j
f j

4216pM4. ~32!

At the minimum of this potential,

A;O~L21/3!. ~33!

1Recall that we are considering the case wheref j;O(M ) are
larger than the weak scale.@That is, by Eqs.~18! and ~20!, we are
considering the case of several order one deficit angles adding u
4p.] The scalesf j suppress the derivative couplings of the cano
cally normalizedY scalars.

2One can also perform a Weyl transformation to eliminate
field dependence from the Einstein action. It then resurfaces in
rect gravitational strength couplings of the scalars to the SM.
0-5



m

.
io

ia

la
f

ll

ili
le

t

m
a
m

ix
s
g
a

e
is

o
ili
s,
ica

t

a

ti-
m
tin

th

ly

d

g
y

ing

g

tly

e

ed
ry

d in
cti-

an
an
in

RAMAN SUNDRUM PHYSICAL REVIEW D 59 085010
ThusL1/6 is the compactification scale and is a free para
eter of the effective theory. The minimum value ofVe f f is
now the effective four-dimensional cosmological constant
can be set to zero by fine-tuning the SM 3-brane tens
~See Sec. VIII.!

The curvature at the minimum of the effective potent
sets the mass of the combination ofY-scalars determiningA.
We can estimate this as follows. The areaA scales quadrati-
cally with theY’s, so that near the minimum ofVe f f ,

Ve f f;L~dY!2. ~34!

From Eq.~27! we see that the canonically normalized sca
fields are f 2Y, so that Eq.~34! corresponds to a mass o
order L1/2/ f 2. By Eqs. ~29!, ~33! and the fact thatf
;O(M ), we see that this mass is just 1/AM Pl . To be phe-
nomenologically acceptable we must then have@18#

AM Pl,1 cm. ~35!

This corresponds to a compactification length scale sma
than 10216 cm andM larger than 1010 GeV.

The mechanism considered above for acceptably stab
ing A is minimal and attractive, but for millimeter sca
compactifications it is unacceptable and we must turn
something else.

VII. STABILITY FROM TRAPPED MAGNETIC FLUX

In this section we make use of the six-dimensional co
pact U(1) gauge field and six-dimensional cosmologic
constant to stabilize the compact space. The mechanis
essentially a limiting case of that of Ref.@21# where the
U(1) was the remnant of a spontaneously broken s
dimensional SU(2) gauge theory. The intuitive idea i
simple. CompactU(1) gauge fields can have non-zero ma
netic flux through closed two-dimensional surfaces such
M2 . This flux is a quantized topological invariant of th
U(1) fiber bundle structure and is therefore fixed. Th
forces the flux density to increase asA decreases, leading t
a higher magnetic energy density. This provides the stab
ing potential we seek. AsA increases this potential reduce
but the potential due to a small six-dimensional cosmolog
constant increases, as seen in Eq.~30!. The size of the com-
pact space is determined by the balance between these
effects.

Explicitly, the magnetic flux throughM2 is given by

F[E
M 2

dX4dX5emnFmn~X!5
2pN

e
, ~36!

where e4552e5451, N must be an integer, ande is the
elementary charge that defines the abelian gauge group
compactU(1). Note that in six-dimensions,e has units of
mass21. Let us briefly recall the reason for the flux quan
zation. Naively, the flux must vanish by Stokes’ theore
However this can be evaded by adding a compensa
point-like vortex of flux,2F ~corresponding to the ‘‘Dirac
string’’ of three dimensional space! somwhere onM2 . The
presence of the vortex can only be physically detected by
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Aharnov-Bohm phase it induces in test charges, name
2eF. Thus the vortex is unphysical~akin to an unphysical
coordinate singularity! precisely when the flux is quantize
as in Eq.~36!. In this section we will consider the caseN
51.

The equations of motion for the gauge field followin
from Eq. ~5!, with the six-dimensional metric given b
Gmn5ḡmn(x), Gmm50, Gmn5Gmn(X

4,X5), are

]m@A2ḡḡmrḡnsFrs#50, ~37!

]m@A2ḡḡmrFr l #50, ~38!

]m@AGGmkFkn#50, ~39!

]m@AGGmkG nlFkl#50. ~40!

We will seek a solution where the gauge field has vanish
m-components and them-components arex-independent.
Therefore Eqs.~37!–~39! are automatically satisfied, leavin
only Eq. ~40!.

SinceFmn is an antisymmetric tensor it can convenien
be written in terms of a scalar field,B, onM2 ,

Fmn[
emn

AG
B, ~41!

where the indices of thee-tensor have been lowered with th
Gmn metric. Equation~40! can then simplify to

]mB50. ~42!

Taking into account Eq.~36! ~for N51) gives the solution,

B5
2p

eA . ~43!

Substituting Eqs.~41! and ~43! into Eq. ~5! we can read
off the contribution that the magnetic energy of the trapp
flux makes to the effective potential of the effective theo
below the compactification scale. The result is

Ve f f5(
j

f j
4216pM41E dX4dX5AGFL1

1

2
B2G

5LA~Y!1
2p2

e2A~Y!
1(

j
f j

4216pM4, ~44!

where we have omitted the quantum corrections discusse
the last section since they are negligible for large compa
fications. Minimizing this effective potential forA we find
that

A5
A2p

eAL
. ~45!

The effective potential at this minimum will correspond to
effective four-dimensional cosmological constant which c
be made to vanish by tuning the SM 3-brane tension. As
0-6
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the previous section we can estimate the mass of the can
cally normalized combination ofY-scalars corresponding t
A(Y) fluctuations, and find that it is still of orderL1/2/ f 2.
What is new is that we have the extra parametere to play
with, so that we can consistently arrange for both the Com
ton wavelength of these fluctuations and the compactifica
length scale to be~roughly! of order a millimeter. This phe-
nomenologically interesting but safe choice is accomplis
by taking

e;OS 1

AAM2D ;OS 1

M Pl
D ,

L;OS M4

A D . ~46!

In this section we have treated the six-dimensional c
mological constant and magnetic energy as perturbation
the basic picture developed in Secs. V and VI. Strictly, t
analysis is valid in the regime where theM2 curvature due
to these new sources is small compared to the zeroth o
sources, namely the 3-branes themselves. A six-dimensi
cosmological constant is a source for a constant curvatur
order L/M4, which integrates to a total of orderAL/M4.
This should be smaller than the 3-brane deficit angles, wh
were order one, but not necessarily much~parametrically!
smaller. Thus at the order of magnitude level this is con
tent with Eq.~46!. The magnetic energy balances the cosm
logical constant at the minimum of the effective potent
and is therefore also consistent with the approximation
have made. In fact an exact solution of the classical eq
tions of motion including the magnetic energy is possib
and agrees with what we have found.

VIII. WHICH COSMOLOGICAL CONSTANT PROBLEM?

We now consider the nature of the cosmological cons
problem in the present model. For a general review see@22#.
In fact there are two cosmological constants that we sho
consider, the effective four-dimensional constant below
compactification scale and the six-dimensional constant,L.
They pose quite different problems.

Let us begin with the four-dimensional effective cosm
logical constant. It is given by the value of the effecti
potential at its minimum,

V e f f
min52LAmin1( f j

4216pM4. ~47!

Equation~4! shows that, in the absence of exact supersy
metry, the SM vacuum energy will renormalize the cor
sponding 3-brane tension by an amount roughly set by
weak scalev,

f 45 f 0
41O~v4!. ~48!

Consequently, thenatural size of uV e f f
minu is at leastO(v4).

The extreme fine tuning off 0 in order to getuV e f f
minu to be less

than the experimental bound of 10256v4, is precisely the
08501
ni-

-
n

d

-
to
s

er
al
of

h

-
-
l
e
a-
,

nt

ld
e

-

-
-
e

usual cosmological constant problem. Note that in the
sence of the stabilization mechanism, the requirement
Ve f f vanish reduces to the sum rule for the 3-brane defi
angles, Eq.~21!.

It is amusing to note that the above fine-tuning proble
disappears in the case where the extra dimensions arenot
compactified, as in Sec. IV. There we found a solution to
effective classical equations of motion, where the induc
metric on the 3-brane seen by the SM particles is exa
four-dimensional Minkowksi space, without any need to fi
tune the 3-brane tension. A change in this tension only led
a change in the deficit angle of the conical singularity in t
extra dimensions. Of course this is merely trading one ma
problem for another since without compactifyingM2 , grav-
ity remains six-dimensional at all distances, in obvious co
flict with experiment.~For example, Newton’s 1/r 2 law is
replaced by a 1/r 4 law.!

Let us now turn to the six-dimensional constant,L. The
crucial observation is thatthe SM vacuum energy does n
renormalizeL. This is because the SM fields are confined
a 3-brane whereasL represents a gravitational interactio
throughout the six-dimensional bulk spacetime. It can o
be renormalized by quantum loops of six-dimensional fiel
In fact using dimensional regularization there is no renorm
ization of L by quantum loops of six-dimensional graviton
and gauge fields, since they do not have a mass scale tha
appear in divergent cosmological constant terms. So
choice of L seems technically natural. This argument r
quires qualification however. Six-dimensional general re
tivity breaks down as an effective field theory at scaleM and
therefore there must be new physics by this scale which
places it. Therefore naturalness would require this dynam
scale to set the size ofL, which is much larger than we ca
tolerate@see Eq.~46!#. We have two choices in our effectiv
field theory, simply accept thatL is also fine-tuned to be a
small as in Eq.~46!, or consider the bulk dynamics to b
supersymmetric so that a smallL is technically natural. In
the latter case, we should take the view thatall of the fun-
damental dynamics are exactly supersymmetric, but that
SM sector appears non-supersymmetric because of spon
ous supersymmetry breaking dynamics on~or by! the SM
3-brane. This supersymmetry breaking only feeds into
gravitational sector below the compactification mass sca

To summarize, there are two potential cosmological c
stant problems, associated with the two cosmological c
stants in six and four dimensions. While the six-dimensio
cosmological constant can be be kept naturally small if
bulk dynamics is supersymmetric, this is not an option
the effective four-dimensional cosmological constant b
cause we know experimentally that supersymmetry is
badly broken in at least the SM sector. Ideas along the li
put forth in Ref.@23# may be required to resolve this toug
naturalness problem.

IX. DISCUSSION

In this paper, a 3-brane effective field theory has be
constructed which is consistent with all experimental st
dard model and gravitational tests. The size of the comp
0-7



th

l-
le

d
a

fe
in
e
t

al
y

le
ck
i-

am-

if

to
or
ef.
t of

RAMAN SUNDRUM PHYSICAL REVIEW D 59 085010
tified extra dimensions is effectively a free parameter of
model. If it is almost a millimeter, as proposed in Ref.@1#,
upcoming tests of short-distance gravity@2# will see the tran-
sition to six-dimensional gravity, while future particle acce
erators will be sensitive to the physics of strongly coup
gravity at the six-dimensional Planck scale, whether this
provided by strings or something else. The present mo
should also have interesting cosmological implications
though we have not pursued these here.

In the present paper, the compactification scale is ef
tively put in by hand among the parameters of our start
effective theory. Although it is technically natural to hav
the compactification mass scale be much smaller than
weak scale and six-dimensional Planck scale, thereby re
ing the proposal of Ref.@1# for solving the gauge hierarch
B

li,

a
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problem, it would be more attractive if there were a sing
dynamical scale, roughly of order the six-dimensional Plan
scaleM, with the compactification scale emerging dynam
cally in terms of this scale and some dimensionless par
eters,g, say in the forme21/g2

M . This would be a true
elimination of the hiererchy problem. It is worth exploring
a model of this type can be constructed.
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