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A fully realistic and systematic effective field theory model of a 3-brane universe is constructed. It consists
of a six-dimensional gravitating spacetime, containing several, approximately p&Baile)-dimensional de-
fects, or “3-branes.” The standard model particles are confined to live on one of the 3-branes while different
four-dimensional field theories may inhabit the others, in literally a case of “parallel universes.” The effective
field theory is valid up to the six-dimensional Planck scale, where it must be replaced by a more fundamental
theory of gravity and 3-brane structure. Each 3-brane induces a conical geometry in the two dimensions
transverse to it. Collectively, the curvature induced by the 3-branes can compactify the extra dimensions into
a space of spherical topology. It is possible to take the six-dimensional Planck scale to be not much larger than
the weak scale, and the compact space not much smaller than a millimeter, thereby realizing the recent
proposal by Arkani-Hamed, Dimopoulos and Dvali for eliminating the gauge hierearchy problem. In this case,
an extra force is required to stabilize the compact space against collapse. This is provided by a six-dimensional
(compact U(1) gauge field with a magnetic flux quantum trapped in the compact space. The nature of the
cosmological constant problem in this scenario is discu§S556-282199)00408-1

PACS numbgs): 11.10.Kk, 11.25.Mj

[. INTRODUCTION The net result is that gravity is effectively described by four-
dimensional general relativity at distances larger than a mil-
It is usually assumed that the fundamental dynamicalimeter, but at shorter distances the Kaluza-Klein excitations
scale underlying gravity is the Planck scale, propagate and gravity reveals its six-dimensional nature. To
date, gravity has only been tested down to a distance of a
centimeter with no sign of extra dimensions, but if we are

lucky the six-dimensional transition may appear in upcoming
set by the observed value of Newton’s constant. If so, one igyp-millimeter tests of gravitja,2].

faced with the prOblem of Understanding the mechanism There is an Ongoing effort to theoretica"y realize a phe_
which stabilizes the very large hierarchy between this scalgomenologically acceptable version of the above scenario,
and the electroweak scale=246 GeV. Recently however, ejther within quantum field theory or within string theory
it has been propos€d] that the dynamical scale of gravity, [1,3—5. Related ideas involving 3-brane universes and/or
M, is not much larger than the weak scale, thereby eliminatrelatively low compactification mass scales appear in Refs.
ing the usual hierarchy problem. This is accomplished by6—15 The purpose of the present paper is to construct a
taking general relativity to be fundamentallysix  realistic model of a 3-brane universe using the effective field
dimensional, with two large compact dimensions, and identheory methods developed in RdfL6], focussing on the
tifying M with the six-dimensional Planck mass. Using the compactification mechanism. This approach is analogous to
standard relatiofl] (also see Sec. VI within the chiral Lagrangian approach to the soft pion sector of the
strong interactions. Just as the chiral lagrangian describes the
most general structure of the low-energy interactions among

(pseudd Nambu-Goldstone bosons, without explicitly de-
where A is the area of the compact two-dimensional spacescribing the mechanism that gave rise to the associated spon-
one finds that ifM is not much larger than the weak scale, taneous symmetry-breaking, the effective field theory we use
then the typicallinean dimension of the compact space is here will describe the general structure of low-energy inter-
not much smaller than a millimeter. That is, the compactifi-actions among the 3-brane fluctuations, six-dimensional
cation mass scale is not much larger than 4®V. Refer-  gravity and the SM fields, without explictly describing the
ence[1] proposed that the reason we do not experimentallynechanism that gave rise to the 3-brane and the fields living
observe finely spaced Kaluza-Klein excitations of the stanen it. Just as the chiral Lagrangian description is valid up to
dard model(SM) particles is because the entire SM is con-energies at which the detailed QCD mechanism for chiral
fined to a (3+ 1)-dimensional defect, which we will refer to symmetry-breaking becomes important, the effective theory
as a “3-brane,” which is point-like in the two-dimensional we will use is valid up to energies of order, at which point
compact space and extended in the non-compact directionthe internal structure of the 3-brane and the physics of
On the other hand, gravity is not confined in this manner angtrongly-coupled gravity become important.
light Kaluza-Klein excitations of the graviton are present. The basic model proposed in this paper consists of a six-

dimensional gravitating spacetime, containing several, ap-
proximately parallel 3-branes. They act as sources for the
*Email address: sundrum@budoe.bu.edu curvature needed to compactify the extra dimensions into a

Mp,~10® GeV, )
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space of spherical topology. Each of the 3-branes may bdimensional curvature scald®, and is a function of coordi-
inhabited by a separate four-dimensional quantum fielchates for the bulk spacetim¥M=%--5 A six-dimensional
theory, one of which is the familiar SM. These parallel, four-compact U(1) gauge field is also included, with field
dimensional sub-universes interact weakly with each othestrengthZ,\(X). It will not play an important role until Sec.
via the bulk six-dimensional gravity, so that they can beVIl. The 3-brane embedding in the bulk spacetime is given
considered as hidden sectors relative to each other. This sy fields, YM(x). The SM fields “feel” a four-dimensional

gualitatively similar to the ideas put forth in Refd.0]. metric on the 3-brane induced by this embedding, given by
This paper is organized so as to progressively build up to M oN
a fully realistic model. Section Il briefly reviews the neces- 9,u(X)=Gun(Y(x))d,Y" 3, Y". (6)

sary effective field theory formalism detailed in REL6]. : : , : )
Section lll describes the effective field theory that results.(The casg of (fh'ril fermlons is more subtle, qulvmg an
from integrating out the massive SM physics. Section Ivinduced vierbeing, . It is given careful treatment in Ref.
deals with the case of a single 3-brane in six fully non-116], but We4WI|| not need the details her&he d|men3|on_ful
compact dimensions. The classical equations of motion reconstantsfy, Ao andMy, are the “bare” 3-brane tension,
veal that the 3-brane induces a conical geometry in the twgix-dimensional cosmological constant and six-dimensional
transverse dimensions. In Sec. V, the cones from sever&llanck mass respectively. In this paper we will consider the
3-branes are patched together to fully compactify the extrgase wherdo~O(Mo).

dimensions. In Sec. VI, the effective field theory below the The terms in Eqgs(4) and (5) are the lowest dimension
compactification mass scale is derived. It is pointed out tha@Perators which are invariant under both general
when the VEV of the effective field corresponding to the sizeX-coordinate transformations andcoordinate transforma-

of the compact space is large, this field can mediate effects iions, the ellipses containing higher-dimension invariants
conflict with experimental post-Newtonian gravitational Suppressed by powers M,. The resulting theory, written
tests. This problem is resolved in Sec. VII by introducing ain terms of canonical fields, is necessarily non-
six-dimensional Abelian gauge field with a non-trivial mag- renormalizable and must be treated by the methods of effec-
netic flux through the compact space. Section VI discusse8Vve field theory, the effective theory being valid up to ener-
the nature of the cosmological constant problem in thegies of orderMg. This scale constrains both the allowed

present scenario. Section IX contains the final discussion. energy-momenta in physical processes, aDd aIso_the size_ of
metric fluctuations away from six-dimensional Minkowski

space and 3-brane fluctuations away from a flat four-
dimensional hypersurface. Physics at higher energies can
This section summarizes some of the key aspects of thenly be understood within a more fundamental theory, de-
3-brane effective field theory formalism described in Ref.scribing the internal structure of the 3-brane and strongly-
[16]. coupled gravity. The fact that SM experiments are not sen-
Our starting point will be the action governing the SM sitive to such exotic physics indicates thag (and hencé )
fields on a 3-brane, which in turn is coupled to six- are at least larger than the weak sdalppearing in the SM

Il. THE STANDARD MODEL ON A 3-BRANE

dimensional “bulk” gravity[16]: potential, V(H,H*)].
Finally, consider the embedding fieldg™(x). Because
S=Szpranet Spulk: (3)  of the coordinate invariances, not all of th&" are physical.

A convenient gauge-fixingin the effective theory’s domain
of validity) is provided by choosin
S:’»—brane:f d4XV_g[_fg_gMVDMH*DvH_V(HyH*) Y) P Y J
YH(X)=x*, YM=43(x) arbitrary. (7

- %g”“Pg”"FWFvaL i ieho®D g +yHY The two physical fieldsy™, acquire explicit kinetic terms
and interactions upon expanding E¢g) for small fluctua-
tions, using Eq.(6). They appear derivatively coupled be-

+H.c.+-- ] 4 cause they are the Nambu-Goldstone modes corresponding
to spontaneous breaking of transverse translations by the
3-brane. We will generally use lower-case Roman letters,

1 _ . .
Sbulk:f dGX\/z{ —AO—ZMSR— Z]_-MN]_-MN+ o } m,n, ...=4,5, to denote these transverse directions.

) Ill. INFRARED DYNAMICS OF GRAVITY

. . . AND THE 3-BRANE
The SM scalar, chiral spinor and vector fields are denoted

H,4 A, respectively, the last of these being used to form Let us now imagine integrating out the physics of the
the covariant derivatives and the gauge field strengg)j,. effective theory described above, down to the far infrared. In
(Gauge and flavor indices have not been explicitly wriften. particular, all the massive SM particles are completely inte-
The SM fields are functions of intrinsic coordinates on thegrated out. We are left with an effective theory valid at very
3-brane, x*=%--3 The gravitational field is the six- low energies, consisting of six-dimensional gravity and the
dimensional metric, Gy, used to construct the six- Abelian gauge field, the 3-brane embedding fields, and mass-
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less SM partiCleS. Now at these energies the massless SM|ear|y’ Yn:Vn: const provides a solution to these equa-
particles are essentially decoupled from each other and frofigns.

the gravitational and (derivatively-coupleyl embedding The metric equations of motiofsix-dimensional Einstein
fields. Therefore, since we are more interested in the dynanequationy are
ics of the 3-brane itself, we can drop reference to the mass-

less SM fields since they have a negligible effect. Similarly 1
we can ignore the six-dimensional gauge figidich has no V=G| Run= 5 RGun | (X)
sources in this paperThen the general form of this infrared
effective theory is given by Ed3), where now 4 _
= Gu(X) "Gy (X) 82X Y™).
4M
S3—brane:f d4X\/—g{—f4+~ : '}’ (8) (13
Now let us try the metric ansatz. The only non-trivial com-
Sbulk:f d®XV=G{-A-2M*R+---}. (99  Ponents of the curvature tensor canmg,, and Einstein's
equations split into two:
The higher dimension terms in the ellipses are irrelevant in f4 _
the far infrared. The dimensionful constant§, A andM JOR? = — pVE S2(XM—Y™) (14)

are the bottom-line renormalized 3-brane tension, six-

dimensional cosmological constant and six-dimensional

Planck constant respectively. The fact that we toigk Rmn—ER(z)gngO, (15)
~0O(Mg) implies that, barring fine cancellationsf 2

~QO(M). For now we shall assume thAt=0, but will take 5 ) )
it to be non-zero but small in Secs. VI and VII. where R® denotes the two-dimensional curvature scalar

constructed fromG,,,. Equation(15) holds identically for
any two-dimensional metriqz,,. Equation(14) is closely
IV. A FLAT 3-BRANE SOLUTION analogous to Einstein’s equations in42) dimensions in
The dynamics of the 3-brane and six-dimensional gravitythe presence of a static particle souf¢], and has a very
is weakly coupled in the far infrared, and well-approximatedsimple solution:Gy,, corresponds to a conical geometry on
by the classical equations of motion. We will look for a static M, , with the tip of the cone a¥™. The deficit angle of the
solution of the following form: cone is given by

m_ym_ B(x) = xH f4
YM=YM=const, Y*(Xx)=x*, S— Pyt (16)
ds?=Gyn dX" dXN= 7, dx* dX”+ Gy X*, X3 d XM dX".
(10) Although we will not need it here, an explicit form for this

_ _ _ metric can be given in radial coordinates centeredtthat
That is, the bulk spacetime has the form, MinfkM,, o ya a_ X5—Y5=¢:
where Mink, is four-dimensional Minkowski space and, p: '

is a two-dimensional manifold. In this section we will take £ \2
M, to have non-compact planar topology. The 3-brane is Gpp=1.G,4=G4,=0, g¢¢>=(1_ — p?. (17
embedded along the Minkowski directions and at some 8mM

point, Y™, in M,. Note that, by Eq(6), with such an em-
bedding the SM fields would feel an induced Minkowski
metricg,,= 7,,. Also notice that our ansatz fof satisfies
the gauge condition, Eq7).

When obtaining the classical equations of motion by func-
tionally differentiating the action, it is legitimate to derive  Of course, the above solution does not provide a realistic
the Y™ equations of motion by first settin@yy to its ansatz  packground spacetime, because gravitational fluctuations can
form, and then to derive the metric equations of motion bypropagate freely in the six non-compact dimensions. For ex-
first SettingY to its ansatz form. Thy™ equations of motion amp|e1 this leads to a m/ Newtonian force instead of the
are then experimental X2 law [1]. To cure this problem we will con-

sider M, to be compact, with spherical topology. However,
39, [N= 99" Gmn(Y(x))3,Y"]=0, (1)  we must reconcile this with the fact that the static 3-brane
considered in the previous section yields a locally fidt
where with a conical singularity at the 3-brane location. The sim-
plest way to proceed is to consider the case of several
9=t Gmn(Y) 3, YT, Y". (120  3-branes, labelled by an ind¢xEach of these 3-branes may

Away from the 3-brane, the bulk spacetime has
Minkowskian geometry.

V. COMPACTIFICATION WITH SEVERAL 3-BRANES
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be inhabited by different four-dimensional field theories, onedescribed in the previous section. As usual when higher di-
of which is the SM. At low enough energies the details ofmensions are compactified, the higher dimensional fields, in
these field theories are irrelevant, the 3-branes are charathe present case just the six-dimensional meinieglecting
tererized just by their renormalized tensiorié,. We will the Abelian gauge field for noygive rise to a Kaluza-Klein
look for a solution to the classical equations of motion usingtower of four-dimensional states, most of which acquire
the same ansatz for the metric as in the previous section artdasses of order the compactification mass scale. The mass-
with each 3-brane again extended in the Minkowski direcless states correspond to “zero-modes” of the compactified
tions and occupying a fixed poift", in M,. This configu-  configuration. The 3-brane is an added source of massless
ian i . 2 fields, namely ther™ fields and the massless SM fields. We
ration is a case of “parallel universes” linked only by the "<'*> y i ; Jeltds. VW
higher-dimensional gravity. will neglect the massless SM fields here since their inclusion

As in the previous section, it is straightforward to see thatS rather trivial. Obviously the fields on the 3-brane do not

the ansatz satisfies thg; equations of motion. The non- give rise to any massive Kaluza-Klein states. ,
trivial Einstein equation generalizes to Let us first consider the six-dimensional metric tensor,

whose components can be decomposed in four-dimensional
§4 . Minkowski space as a tensoG,,(X), vector fields,
VOR® == — (X Y. (18)  G,m(X), and scalars,Gp(X). We found a global
I 2M Minkowski four-dimensional spacetime factor as part of our
classical solution in Sec. V. We can deform this continuously
So that this spacetime factor is a curved manifold described
by a four-dimensional metric,

The solution is now analogous to the case of several stati
point masses in (2 1)-dimensional gravity on a space of
spherical topology17]. The geometry is flat everywhere in
M, except at the locations of the 3-branes, where there are -

T e o _ GLr=9uu(X), (22)
conical singularities with deficit angles:
in coordinates wher&#=x*. Non-trivial X*°-dependence
in G, corresponds to Kaluza-Klein excitations with masses
of order the compactification scale. In Kaluza-Klein theory,
massless components of ti&,,, correspond to continuous

However this static solution is not generally possible beisometries of the compactified space. In the present case

cause of the constraint provided by the Gauss-Bonnet thediowever, there are no continuous isometiffes example,
rem for spherical topology: consider the case wherd1, is a tetrahedron Therefore

there are no massle&s,, states, and below the compactifi-

4
fi

S=—1—. 19
I am4 19

cation scale we effectively have
f dX*dx®\/GR? = —87. (20) y
Mz G,m=0. (23
By Eq. (18) this implies Fhat the.static solution is only pos-  The fate of theG,,(X) is tied up with the 3-brane fields,
sible if the 3-brane tensions satisfy the sum rule Y™(x). The identification of zero-modes is made somewhat
4 ambiguous by general coordinate invariance. In one conve-
j

nient choice of language, we can observe that the metric on
M, given by G,,n=Gmn, is the Euclidean metric plus a
number of conical singularities at the 3-brane positions, the
That is, according to Eq(18), the conical singularities are deficit angles fixed by the 3-brane tensions according to Eq.
the only source of curvature fok1,, and the deficit angles (19). Therefore the zero-modes are the 3-brane separations,
must add up to 4 in order to yield a surface of spherical |Y;—Y,|, measured with the Euclidean metric, which then
topology. A simple example of such awf, is the surface of determineg,,,. Note that by Eqs(6), (7), the induced metric
a tetrahedron, where the four vertices correspond to the p®n thejth 3-brane is given by
sitions of four 3-branes. _

As will be seen in Sec. VI and discussed further in Sec. 9 (0) =90, () + Gmn(Y](X), Y(x))3, Y"3,Y". (24)
VIII, the fine-tuning of 3-brane tensions to satisfy Eg1) is . ] . ] )
just the re-incarnation of the cosmological constant problend his formula requires careful interpretation becagsie be-
in the present context. Granting this fine-tuning, we have a9 evaluated at a position where it has a conical smgu_larlty.
minimal mechanism for compactification of the higher di- We do not expect a 3-brane to “feel” the curvature singu-

mensions, namely the curvature induced by the 3-brangdrity for which it is itself the source, anymore than we ex-
themselves. pect this for a point particle. Indeed, given any physical ul-

traviolet regularization of our original effective theory at
scaleM, such curvature singularities would be smoothed out
over distances of order W. In the 3-brane effective La-
grangian, we are using,,, to measure distances involved in
Let us now derive the effective field theory for the mass-3-brane fluctuations. In the effective theory’'s domain of va-
less degrees of freedom after compactification in the mannédidity the typical distances are much larger thaM1/so the

>

j m=4ﬂ'. (21)

VI. EFFECTIVE FIELD THEORY BELOW THE
COMPACTIFICATION SCALE
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curvature singularity is unimportant. In the present situationSM stateqour standard probes of gravjtyas given by Egs.

throwing out the curvature singularity leaves us with (4) and(6), are negligible at distances larger than a centime-
. ter where gravity is testelHowever the problem is that a
9.0(X) =0u(X) + 8nd, Y[, Y], (250  Y-dependent four-dimensional Planck mass in &) cor-

responds to an order one mixing of tfrormalized Y sca-

where én de_notes the_ two—d_imensional Euclidean metric. |5rs with the metric tensog,,, , which leads to an unaccept-
The effective four-dimensional theory below the compac-,pe scalar admixture to gravity of order dhe.

tification scale is then given by substituting the massless T escape from this phenomenological problem we re-

metric components into Eq&3), (9), quire a potential energy term for the compactified area,
§4 A(Y), which stabilizes it and gives the corresponding com-

S=— f d4x,/_51 > fJ4+ 1 5mnauvaﬂyjrnavyjn} bination ofY-scalars a finite Yukawa range below a centime-

i 2 ter. The simplest way to introduce a potential term is to

begin with a small positive six-dimensional cosmological
+f dx4 dx5\/§[2M4R<4)+2M4R(2)]+ ot constant_,/_\. At the level .of the effective theory below the
compactification scale this clearly leads to an extra term,

(26)
5S,= — f d*x V= gAY)A. (30)

where R™® is the four-dimensional curvature scalar due to

9,,, andR@ is the two-dimensional curvature scalar due to

Gmn- The kinetic terms for thé/; arose by expanding—g  This term favors the reduction of. We now require a force

in Eq. (8) about@ using Eq.(25). By the Gauss-Bonnet that opposes this reduction in order to obtain stability. It was
. v .(25).

theorem, Eq.20), and the fact thaR® constructed from proposed in Refd.19] that this can be provided by intrinsi-
T cally guantum mechanical matching corrections at the com-

q. s 4,5 o o .
9., Is independent oK™”, we get pactification scale. Although this is not the method of stabi-
lization preferred in this paper, it is useful to briefly consider

S= _j d* V—g{ > fjfl_lﬁﬂ.M4 it first in order to understand its merits and problems.

i The important point is that there is a tower of Kaluza-
¢4 Klein states of the graviton with masses set by the compac-
o Tuvg ymg yn 45(4) tification scale. Quantum loops of these states will then con-

+ Smn@*3, Y19 Y+ 2 AY)MAR® + ... 4 , . : : . ’
zj: 2 Omndu Yy Ou T (¥) tribute to the effective potential. Dimensional analysis

suggest the rough form,

(27)

where =k
5Squantum: - f d*x N g?- (31

A(Y)= f dX*dX5\G (29)
Indeed these are just the types of corrections, Witt0, that

is the area of\1, determined by the 3-brane separations. Itisare induced in more standard Kaluza-Klein compactifica-

now clear that our previous sum rule requirement on thdions. For example, see R¢20]. We see that combining our

3-brane deficit angles, Eq21), is precisely the tuning of original effective action withsS, and 8S;yanwumgives a sta-

parameters necessary to cancel the effective fourbilizing effective potential forA(Y),

dimensional cosmological constant.

From Eq.(27) we see that the effective four-dimensional k 4 4
Planck constant is given by Verr=A(Y)A + AY)? + ; fi—16aM". (32
M3 =A(Y)M*. (29

At the minimum of this potential,

The fact thatM p; depends on massless fields leads to a con-

flict with post-Newtonian experimental tests of general rela- A~O(A™13). (33
tivity. See Ref[18] for a review. These tests are sensitive to

the tensorial nature of the macroscopic gravitational force,

and imply that the scalar admixture of the gravitational force 1pacail that we are considering the case whire O(M) are

can be at most a fraction of a percent. The reason that oNgrger than the weak scalEThat is, by Eqs(18) and(20), we are
must perform tests sensitive to relativisti¢post-  considering the case of several order one deficit angles adding up to

Newtonian”) effects in order to distinguish scalar from ten- 4 ] The scaled; suppress the derivative couplings of the canoni-
sor exchange is because in the Newtonian limit both excally normalizedy scalars.

changes give rise to arf/force. At first sight this issue does  20One can also perform a Weyl! transformation to eliminate the
not appear to pose a problem for us since the derivativéield dependence from the Einstein action. It then resurfaces in di-
couplings of the(canonically normalized16]) Y scalars to  rect gravitational strength couplings of the scalars to the SM.
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Thus A% is the compactification scale and is a free param-Aharnov-Bohm phase it induces in test charges, namely
eter of the effective theory. The minimum value ¥f;; is  —e®. Thus the vortex is unphysicéhkin to an unphysical
now the effective four-dimensional cosmological constant. Itcoordinate singularifyprecisely when the flux is quantized
can be set to zero by fine-tuning the SM 3-brane tensionas in Eq.(36). In this section we will consider the casé
(See Sec. VII. =1.

The curvature at the minimum of the effective potential The equations of motion for the gauge field following
sets the mass of the combination¥sécalars determiningl. from Eg. (5), with the six-dimensional metric given by
We can estimate this as follows. The_ a_béa;cales guadrati- Gu=0,,(X), Gum=0, Gpn= Gmn( X4, X5), are
cally with theY’s, so that near the minimum 04+,

\ __,U-P_V"' =

Veff~A(5Y)2- (34) ap,[ g9™"g p()’] Ov (37)
From Eq.(27) we see that the canonically normalized scalar 3, [N—9g9** F,1=0, (38
fields aref?Y, so that Eq.(34) corresponds to a mass of .
order AY%f2. By Egs. (29), (33) and the fact thatf I NGG™F,1=0, (39
~0O(M), we see that this mass is justd¥ly,. To be phe- e
nomenologically acceptable we must then hpig] I NGG™G " F1=0. (40

AMp <1 cm. (35  We will seek a solution where the gauge field has vanishing

Mm-components and then-components arex-independent.
This corresponds to a compactification length scale smalleFherefore Eqs(37)—(39) are automatically satisfied, leaving
than 1016 cm andM larger than 1& GeV. only Eq. (40).
The mechanism considered above for acceptably stabiliz- Since F,, is an antisymmetric tensor it can conveniently
ing A is minimal and attractive, but for millimeter scale be written in terms of a scalar fiel&, on M,
compactifications it is unacceptable and we must turn to

something else. €
g For= —B, (41)

VG

In this section we make use of the six-dimensional Com_where the indices of the-tensor have been lowered with the
; lon w u Ix-dl ' Gmn Metric. Equation40) can then simplify to

pact U(1) gauge field and six-dimensional cosmological
constant to stabilize the compact space. The mechanism is 9mB=0. (42)
essentially a limiting case of that of Rdi21] where the

U(1) was the remnant of a spontaneously broken sixTaking into account Eq36) (for N=1) gives the solution,
dimensional SU(2) gauge theory. The intuitive idea is

simple. Compact(1) gauge fields can have non-zero mag- B= 2_77 43)
netic flux through closed two-dimensional surfaces such as ed’

M. This flux is a quantized topological invariant of the o i

U(1) fiber bundle structure and is therefore fixed. This Substituting Eqs(41) and (43) into Eq.(5) we can read
forces the flux density to increase dsdecreases, leading to Off the contribution that the magnetic energy of the trapped
a higher magnetic energy density. This provides the stabilizflux makes to the effective potential of the effective theory
ing potential we seek. Asl increases this potential reduces, PEIOW the compactification scale. The result is

but the potential due to a small six-dimensional cosmological

VII. STABILITY FROM TRAPPED MAGNETIC FLUX

constant increases, as seen in Bf). The size of the com- Votr= 2, f?_16WM4+f dX*dX5\/G| A + }BZ}
pact space is determined by the balance between these two i 2
effects. 2
Explicitly, the magnetic flux througti, is given by =AAY)+ } +Z ff—lBa-rM“, (44)
2N e“A(Y) 7]
— 4 5 —
= szdX dX€™ Finn(X) = e ' (38 where we have omitted the guantum corrections discussed in

the last section since they are negligible for large compacti-
where 645: _6542 1, N must be an integer, and is the fications. Mlnlmlzmg this effective potential fad we find
elementary charge that defines the abelian gauge group agh#t
compactU(1). Note that in six-dimensions has units of
mass 1. Let us briefly recall the reason for the flux quanti- _ &
zation. Naively, the flux must vanish by Stokes’ theorem. CeJA
However this can be evaded by adding a compensating
point-like vortex of flux,— & (corresponding to the “Dirac The effective potential at this minimum will correspond to an
string” of three dimensional spacsomwhere onM,. The effective four-dimensional cosmological constant which can
presence of the vortex can only be physically detected by thbe made to vanish by tuning the SM 3-brane tension. As in

A (45)
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the previous section we can estimate the mass of the canonisual cosmological constant problem. Note that in the ab-
cally normalized combination of-scalars corresponding to sence of the stabilization mechanism, the requirement that
A(Y) fluctuations, and find that it is still of ordex%f. Veis Vanish reduces to the sum rule for the 3-brane deficit
What is new is that we have the extra parametéo play angles, Eq(21).
with, so that we can consistently arrange for both the Comp- It is amusing to note that the above fine-tuning problem
ton wavelength of these fluctuations and the compactificatiodisappears in the case where the extra dimensionsatre
length scale to béoughly) of order a millimeter. This phe- compactified, as in Sec. IV. There we found a solution to the
nomenologically interesting but safe choice is accomplisheeffective classical equations of motion, where the induced
by taking metric on the 3-brane seen by the SM particles is exactly
four-dimensional Minkowksi space, without any need to fine
1 tune the 3-brane tension. A change in this tension only led to
’“O(M_PI)- a change in the deficit angle of the conical singularity in the
extra dimensions. Of course this is merely trading one major
4 problem for another since without compactifying,, grav-
ANO( _) (46) ity remains six-dimensional at all distances, in obvious con-
A flict with experiment.(For example, Newton’s 17 law is

in thi i have treated the six.di ional replaced by a 1 law.)
n this section we have treate € Six-dimensional Cos- ot ;s now turn to the six-dimensional constafut, The

mological constant and magnetic energy as perturbations to

A . ; . Crucial observation is thahe SM vacuum energy does not
the baglc_ plctgre_develope_d in Secs. V and VI. Strictly, thISrenormalizeA. This is because the SM fields are confined to
analysis is valid in the regime where tid, curvature due

. a 3-brane wheread represents a gravitational interaction
to these new sources is small compared to the zeroth ord b g

oo ; roughout the six-dimensional bulk spacetime. It can onl
sources, namely the 3-branes themselves. A six-dimension g b y

cosmological constant is a source for a constant curvature 9 renormalized by quantum loops of six-dimensional fields.
o fact using dimensional regularization there is no renormal-
order A/M*#, which integrates to a total of ordetA/M*. 9 9

This should be smaller than the 3-brane deficit angles, whic zation of A by quantum loops of six-dimensional gravitons

. . nd gauge fields, since they do not have a mass scale that can
were order one, but not necessarily mugarametrically gaug y

. o ._appear in divergent cosmological constant terms. So any
smaller. Thus at the order of magnitude level this is consisc .o o A seems technically natural. This argument re-
tent with Eq.(46). The magnetic energy balances the cosmo-

logical constant at the minimum of the effective Otentialquires qualification however. Six-dimensional general rela-
gice . . > ot tivity breaks down as an effective field theory at sddlend
and is therefore also consistent with the approximation w

. : Sherefore there must be new physics by this scale which re-
have made. In fact an exact solution of the classical equa-
’ q 6blaces it. Therefore naturalness would require this dynamical

gﬁgsagl;erggt\lf(v)irt]hmwcr::(tjug Lg?/en}i%g?j“c energy 1 pOSSIbIe’scale to set the size @, which is muchllarggr than we can
' tolerate[see Eq(46)]. We have two choices in our effective

field theory, simply accept that is also fine-tuned to be as

VIil. WHICH COSMOLOGICAL CONSTANT PROBLEM? small as in Eq.(46), or consider the bulk dynamics to be

We now consider the nature of the cosmological constanguUPersymmetric so that a small is technically natural. In
problem in the present model. For a general review[28 the latter case, we should take the view tbﬂto_f the fun-
In fact there are two cosmological constants that we shoulda@mental dynamics are exactly supersymmetric, but that the
consider, the effective four-dimensional constant below the>M Sector appears non-supersymmetric because of spontane-
compactification scale and the six-dimensional constant, OUS supersymmetry breaking dynamics (@n by) the SM
They pose quite different problems. 3-brane. This supersymmetry breaking only feeds into the
Let us begin with the four-dimensional effective cosmo-gravitational sector below the compactification mass scale.

logical constant. It is given by the value of the effective 10 Summarize, there are two potential cosmological con-
potential at its minimum stant problems, associated with the two cosmological con-

stants in six and four dimensions. While the six-dimensional
min min . 4 cosmological constant can be be kept naturally small if the
Tr=2AA™"+ > fi—16aM". (47)  pulk dynamics is supersymmetric, this is not an option for
the effective four-dimensional cosmological constant be-
Equation(4) shows that, in the absence of exact supersymcause we know experimentally that supersymmetry is too
metry, the SM vacuum energy will renormalize the corre-badly broken in at least the SM sector. Ideas along the lines
sponding 3-brane tension by an amount roughly set by th@ut forth in Ref.[23] may be required to resolve this tough
weak scaley, naturalness problem.

e~0

1
VAM?

4_<4 4
f4=15+0(v?). (48) IX. DISCUSSION

Consequently, thaatural size of |VE{f] is at leastO(v?). In this paper, a 3-brane effective field theory has been
min

The extreme fine tuning df, in order to getV{}| to be less  constructed which is consistent with all experimental stan-
than the experimental bound of 1%v*, is precisely the dard model and gravitational tests. The size of the compac-

085010-7



RAMAN SUNDRUM PHYSICAL REVIEW D 59 085010

tified extra dimensions is effectively a free parameter of theproblem, it would be more attractive if there were a single
model. If it is almost a millimeter, as proposed in REf], dynamical scale, roughly of order the six-dimensional Planck
upcoming tests of short-distance graVig} will see the tran-  scaleM, with the compactification scale emerging dynami-
sition to six-dimensional gravity, while future particle accel- cally in terms of this scale and some dimensionless param-
erators will be sensitive to the physics of strongly coupledeters, g, say in the forme~Y9°M. This would be a true
gravity at the six-dimensional Planck scale, whether this isslimination of the hiererchy problem. It is worth exploring if

provided by strings or something else. The present modej model of this type can be constructed.
should also have interesting cosmological implications al-

though we have not pursued these hgre. . _ ACKNOWLEDGMENTS
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