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Effective field theory for a three-brane universe

Raman Sundrum*
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~Received 5 October 1998; published 22 March 1999!

A general effective field theory formalism is presented which describes the low-energy dynamics of a
3-brane universe. In this scenario an arbitrary four-dimensional particle theory, such as the standard model, is
constrained to live on the world volume of a~311!-dimensional hypersurface, or ‘‘3-brane,’’ which in turn
fluctuates in a higher-dimensional, gravitating spacetime. The inclusion of chiral fermions on the 3-brane is
given careful treatment. The power counting needed to renormalize quantum amplitudes of the effective theory
is also discussed. The effective theory has a finite domain of validity, restricting it to processes at low enough
energies that the internal structure of the 3-brane cannot be resolved.@S0556-2821~99!00308-2#

PACS number~s!: 11.10.Kk, 11.25.Mj
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I. INTRODUCTION

How many dimensions do we live in? Macroscopical
we seeandfeel three spatial dimensions using electromag
tism. Furthermore, Newton’s 1/r 2 law of gravity follows
from general relativistic principles in 311 dimensions. Mi-
croscopically, calculations based on (311)-dimensional
spacetime are in excellent accord with our most sensi
experimental tests of the standard model~SM!. Yet, it is well
known that extra spatial dimensions are possible if they
compactified at sufficiently small radii. To resolve a comp
dimension, it must be probed by quanta with waveleng
smaller than its radius. Presently, our sharpest SM pro
have wavelengths as short as;10216 cm. Apparently this
provides the upper bound on the radii of any higher dim
sions occurring in nature. But this conclusion is based on
assumption thatall particle species move in the same numb
of dimensions as the SM. This assumption is implicit in t
standard Kaluza-Klein approach to higher dimensio
which, until recently, played a central role in string theor

Can non-SM particles see extra dimensions that the
does not? At present, we know of only one non-SM state,
graviton, but others might exist if they are weakly coupled
massive enough to have escaped detection thus far. Le
suppose there are extra spatial dimensions in which gra
can propagate1 but in which the SM cannot. We can think o
the SM as being ‘‘stuck’’ at some definite position in th
extra dimensions. That is, if the full ‘‘bulk’’ spacetime i
really d-dimensional,d.4, then we are considering the SM
to be confined to a (311)-dimensional hypersurface. Sinc
the bulk spacetime contains gravity and is therefore dyna
cal, the hypersurface cannot be rigid, but must also be
namical. We can borrow some string-theory parlance
call this dynamical hypersurface a ‘‘3-brane.’’2 The basic
idea that the standard particles are confined to a 3-bran
higher dimensions goes back at least to Ref.@1#. Very re-

*Email address: sundrum@budoe.bu.edu
1Indeed since gravity is so intimately tied to spacetime, it wo

be hard to conceive of gravitynot being present in all the extra
dimensions.

2In string theory, ‘‘3-brane’’ has a more restricted usage.
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cently, it has been discussed in Refs.@2# and @3#, as a pos-
sible means of addressing the unnatural hierarchy betw
the weak and Planck scales. These papers give an up-to
analysis of some of the theoretical and phenomenolog
possibilities. Related ideas involving 3-brane univers
and/or relatively low compactification scales appear in Re
@4–14#.

Let us now impose the constraint that Newton’s 1/r 2 Law,
or more generally, four-dimensional general relativity, is e
perimentally verified at macroscopic distances. Therefore
these distances, gravity must also be confined to 311 di-
mensions, the most obvious way being by compactifying
extra dimensions. But now the compactification radii are
constrained to be smaller than 10216 cm because SM par
ticles are not direct probes of the higher dimensions. To
solve the higher dimensions we must use gravity which
only been tested down to a distance of a centimeter.
radii of the extra dimensions need only be smaller than
for us to not yet have observed them. An exciting possibi
is that future short-distance tests of gravity may do so@2,15#.

Even if the compactification radii are too small to be se
directly in the forseeable future, they can lead to interest
indirect effects. One intriguing possibility is provided by th
work initiated in Ref.@7# in the context of M theory, literally
a case of parallel universes. We can effectively have t
3-branes, separated in a (411)-dimensional bulk spacetime
A supersymmetric and gauge extension of the SM lives
one 3-brane, while a strongly-interacting supersymme
hidden sectorlives on the other. The hidden sector dynam
can trigger spontaneous supersymmetry breaking on
3-brane, which is transmitted by bulk modes to the S
3-brane, where it shows up as soft supersymmetry break
~For an interesting study of this phenomenon in a sim
setting see Ref.@16#.!

If we do live on a 3-brane, what is it made of? It has be
understood for some time that a quantum field theory
contain topological defects of various types and dimensi
ality, which can have low-energy particle-like modes trapp
on them. It therefore seems plausible that our 3-brane
(311)-dimensional defect in a higher dimensional fie
theory, and the SM particles are some of the light mod
trapped on the defect. This is the scenario advocated in
©1999 The American Physical Society09-1
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@2#. While it is known how to build theories of this typ
where scalars and fermions live on the defect, it is still pro
lematic to obtain low-energy four-dimensional vect
~gauge! fields, although some new ideas are pursued in R
@8,2#. It is therefore fair to say that while the 3-brane sc
nario has reasonable support within quantum field theory,
are still some way from a realistic model.

The situation improves if we consider superstring theo
the direction taken in Refs.@3,13#. Intrinsic to the theory are
Dirichlet-branes~D-branes!, defects of varying dimensional
ity on which open strings can end. See Ref.@17# for a review.
The short open string modes trapped on D-branes can
clude light gauge fields, fermions and scalars, all the ba
ingredients for realistic theories. It is possible to construc
variety of sandwiches of D-branes and strings~reveiwed in
Ref. @18#!, which reduce at low energies to interesting p
ticle theories effectively living in four dimensions, weak
coupled to gravity and other modes which propagate
higher dimensions.3 However, a realistic SM sector has n
yet been engineered in this way.

The purpose of the present paper is to show how one
construct realisticeffective field theoriesto study the low-
energy consequences of the 3-brane scenario, in a system
economical and elegant way. The only degrees of freed
that appear are those that matter at low energies, the pu
high-energy degrees of freedom are considered to be
grated out. Even if a fundamental description were know
the most efficient way of pursuing the low-energy dynam
would be tomatchthe fundamental theory to such an effe
tive field theory, and then use the latter for calculations a
insight.

Roughly speaking, the low-energy domain restricts us
processes which cannot resolve the stucture of the 3-br
In many ways this approach is analogous to the chiral
grangian approach to pion dynamics, where the pion
treated as a point-particle whose internal quark-glue struc
is outside the low-energy domain of validity. We will simp
assumethat there issome high-energy physics, perhap
string theory or an exotic field theory, which gives rise to
3-brane moving inside a bulkd-dimensional spacetime. It i
assumed that the SM, or some extension of it~which for
convenience we will continue to call the ‘‘SM’’!, is con-
strained to propagate within the 3-brane world volume, a
that gravity, and perhaps some other degrees of freedom
free to propagate in the bulk. We then construct the m
general consistent effective field theory describing the c
plings between bulk gravity, the 3-brane fluctuations, and
SM particles. By this means we can outpace the fundame
theorists who must first tacklehowa realistic 3-brane arises

The organization of the paper is as follows. Section II s
up some basic notation. Section III describes the coupli
of the purely bosonic degrees of freedom. The result of
section may appear rather obvious to anyone familiar w
the literature on D-branes, and no great originality
claimed. Section IV develops the formalism needed to

3The way effective 3-branes arise in the scenario of Ref.@7#,
mentioned above, is more subtle. See Ref.@11# for a discussion.
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clude chiral fermions, such as quarks and leptons, on
3-brane. Section V explains how to gauge-fix reparametr
tion invariance of the 3-brane description. Section VI d
cusses the power counting needed to implement renorma
tion in the effective field theory program. Section V
discusses the sense in which the effective field theory is
ally a ‘‘gauged chiral Lagrangian’’ corresponding to th
spontaneous breaking of higher-dimensional spacetime s
metries by the 3-brane ground state. In particular, our tre
ment is an adaptation of Volkov’s general formalism f
treating spontaneous breaking of spacetime symmetries@19#.
Section VIII provides the conclusions.

The present formalism is not explicitly supersymmetr
but it is hoped that the extension to supersymmetry can
accomplished by methods similar to those of Sec. IV. It
expected that this will tie in closely with earlier work o
low-energy effective theories describing the spontane
~partial! breaking of ~higher! supersymmetry. See for ex
ample Refs.@20# and@21#. Reference@21# gives a more com-
plete list of references on this topic.

The present paper~in particular Sec. VI! assumes an
aquaintance with the methodology of effective field theo
Reference@22# provides a good introduction to the basic co
cepts and techniques, in the relatively simple context of p
physics. Reference@23# describes how to interpret gener
relativity as a quantum effective field theory.

II. PRELIMINARIES

A. Fields, coordinates, and related notation

We are interested in four-dimensional SM fields living o
the world-volume of a 3-brane, which in turn is free to mo
in a gravitating bulk spacetime of dimension,d.4. The
fields we consider will be the minimal set needed to real
this scenario.~Adding non-minimal fields poses no extr
problem.! For simplicity we take the 3-brane world-volum
topology to beR4, and the bulk topology to be eitherRd or
R43Td24, whereTk denotes ak-torus.

The coordinates of the bulk spacetime will be deno
XM. The bulk coordinate indices are capital letters from t
middle of the Roman alphabet,M ,N, . . .50, . . . ,d21. We
reserve the lower-case letters from the middle of the Rom
alphabet to refer to just the lastd24 of these indices,
m,n, . . .54, . . . ,d21. If one is only interested in bosoni
fields~Sec. III!, the components of the bulk metric,GMN(X),
can be considered as the fundamental gravitational deg
of freedom. Otherwise, the gravitational degrees of freed
in the bulk are the components of thed-bein,EM

A (X) ~that is,
thed-dimensional vielbein!. The local Lorentzindices in the
bulk are capital letters from the beginning of the Rom
alphabet,A,B, . . .50, . . . ,d21. Thed-bein is related to the
bulk metric,GMN(X), by

EM
A ~X!hABEN

B~X!5GMN~X!,

EM
A ~X!GMN~X!EN

B~X!5hAB, ~1!

wherehAB is thed-dimensional Minkowski metric. It is use
ful to subdivide the local Lorentz indices into two subse
9-2
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EFFECTIVE FIELD THEORY FOR A THREE-BRANE UNIVERSE PHYSICAL REVIEW D59 085009
the first four denoted by letters from the beginning of t
Greek alphabet,a,b, . . .50, . . . 3,while the remaining indi-
ces are denoted by lower-case letters from the beginnin
the Roman alphabet,a,b, . . .54, . . . ,d21.

The coordinates intrinsic to the 3-brane will be deno
xm. The 3-brane coordinate indices are chosen from
middle of the Greek alphabet,m,n, . . .50, . . . ,3. Thebulk
coordinates describing the position occupied by a pointx on
the 3-brane, are denotedYM(x). They are dynamical fields

The last fields required are those of the SM, which are
functions of x, since they live only on the 3-brane. The
come in three types: scalar fields, vector gauge fields,
left-handed Weyl spinors, denotedf(x),Am(x),cL(x) re-
spectively. Any right-handed spinor fields can be made l
handed by charge conjugation in the usual manner. Sp
and internal indices are suppressed because it is ent
straightforward to replace them whenever desired.

B. The ‘‘vacuum’’ state

The effective field theory will describe the sma
amplitude, long-wavelength fluctuations of the dynami
fields about the following state:

EM
A ~X!5dM

A , GMN~X!5hMN ;

YM~x!5dm
Mxm,

f~x!5v. ~2!

That is, we expand about a Minkowski bulk spacetime, w
the 3-brane occupying the subspace spanned by the
Xm-axes, and with the intrinsic 3-brane coordinates,xm,
agreeing with the bulk coordinates,Xm. We also allow some
of the scalar fields on the 3-brane to be non-zero, but c
stant over the 3-brane.

III. THE BOSONIC EFFECTIVE FIELD THEORY

This section describes the construction of the effect
field theory when fermionic fields are absent. The proced
for adding fermions is treated in the next section.

A. Effective theory of gravity in the bulk

In isolation, the bulk gravitational fields are described
an action

Sbulk5E ddXdet~E!$2L12Md22R1•••%, ~3!

where thed-dimensional Einstein-Hilbert action has been e
plicitly written, with M being thed-dimensional Planck mas
and R the d-dimensional curvature scalar,L is a
d-dimensional cosmological constant term, and the ellipsi
the series of higher dimensional geometric invariants w
coefficients given by powers of 1/M , multiplied by order one
~or less! dimensionless couplings. The effective field theo
philosophy and technology for using this non-renormaliza
action is essentially the same as for the usuald54 case,
which has been discussed in detail in Ref.@23#.
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If we are considering thed-dimensional spacetime to b
of the form R43Td24, then gravity becomes effectivel
four-dimensional at distances larger than the radii of thed
24)-torus, with an effective Planck constant,M Pl , given by
M Pl

2 5Md22VT , where VT is the volume of the
(d24)-torus. See Refs.@2,3# for further discussion.

B. The induced metric on the 3-brane

The distance between two infinitesimally separated po
on the 3-brane,x andx1dx, is given by

ds25GMN„Y~x!…dYMdYN

5GMN„Y~x!…
]YM

]xm
dxm

]YN

]xn
dxn, ~4!

from which we deduce that the induced metric on t
3-brane is

gmn~x!5GMN„Y~x!…]mYM]nYN. ~5!

Given Eq. ~2!, it is clear thatgmn(x) will consist of small
fluctuations about the four-dimensional Minkowski metr
hmn .

C. Effective field theory associated to the 3-brane

Let us write the most general action for the bosonic fie
associated to the 3-brane in the background of the bulk m
ric, GMN(X). The action must be invariant under gene
X-coordinate transformationsas well as x-coordinate trans-
formations. The requirement of the first of these invarian
is clear since it is the ‘‘gauge invariance’’ for th
d-dimensional general relativistic bulk gravity. The requir
ment ofx-coordinate invariance follows because thex-space
is completely unphysical, just providing a convenient mea
of parametrizing the 3-brane embedding,Y(x).

The book-keeping to enforce these two invariances
straightforward. We first have to determine how our fiel
transform under the two types of coordinate transformatio
GMN(X) is anX-space 2-tensor andx-scalar. The action can
not depend directly on all ofY(x) because it makes referenc
to the origin ofX-coordinate space, which is unphysical~the
usual statement that coordinates are not themse
generally-covariant tensors!, but the action can depend o
]mYM, which is anX-vector andx-vector.f(x) is obviously
a scalar of both spaces.Am(x) is an x-vector and an
X-scalar.4 An important composite field is the induce
3-brane metric,gmn(x). From Eq.~5!, it is anX-scalar and an

4This point deserves some explanation. The gauge fieldAm(x)
describes the parallel transport between two infinitesmally se
rated points on the 3-brane,x andx1dx. The parallel transport is as
usual given by 11 iAm(x)dxm. Under anx-coordinate transforma-
tion, dxm transforms covariantly, and soAm must be taken to trans
form as a contravariant vector. But under anX-coordinate transfor-
mation nothing happens to the parallel transport, and soAm must be
a scalar.
9-3
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RAMAN SUNDRUM PHYSICAL REVIEW D 59 085009
x-tensor. Usinggmn and ]m we can construct covarian
x-derivatives in the standard way, and apply them to
various tensors already discussed in order to generate fu
tensors. Invariants can then be formed by contract
x-tensor indices usinggmn and its inverse,gmn.

From these ingredients we can build the action,

Sbosons
3-brane5E d4xA2gH 2 f 41

gmn

2
DmfDnf2V~f!

2
gmngrs

4
FmrFns1 . . . J , ~6!

whereFmn(x) is the usual gauge field strength, and the
lipsis includes higher-dimensional invariants one can bu
out of the fields and covariant derivatives, with dimension
coefficients set by powers of 1/f or 1/M . ~See Sec. VI.! Note
that by locality, whenGMN or its derivatives appear in thi
action they must be evaluated on the 3-brane, atY(x). The
dominant terms, explicitly displayed in Eq.~6!, depend on
GMN only throughgmn and Eq.~5!, but higher invariants@in
the ellipsis of Eq.~6!# can certainly depend onGMN in a
more general manner.

The leading term of Eq.~6! is a ‘‘bare’’ tension for the
3-brane, the mass scalef being determined by the physic
that gave rise to the 3-brane. This term can be renormal
at tree- and loop-level by the vacuum energy of the SM. T
renormalized3-brane tension dominates the interactions
bulk gravity with the 3-brane when it is close to its grou
state. This term also contains kinetic energy for theY fields
as will be discussed in Sec. VI.

IV. FERMIONS ON THE 3-BRANE

A. The problem

Recall how spin-1/2 fermions are ordinarily introduced
a four-dimensional general relativistic context.~See Ref.@24#
for more details.! The fermions,c(x), are regarded as
x-scalars, but as spinors of the local Lorentz group. The L
entz generators in the spinor representation are as u
given by,s (ab)[

1
4 g [agb] , where thega are Dirac matrices

satisfying

$ga ,gb%52hab . ~7!

The local Lorentz group can formally be thought of as
internal SO(3,1) gauge group. It gets related to spaceti
through the vierbein,em

a , anx-vector and local Lorentz vec
tor which satisfies

em
a~x!haben

b~x!5gmn~x!, ~8!

em
a~x!gmn~x!en

b~x!5hab. ~9!

A covariant derivative forc with respect to local Lorentz
transformations can be constructed in terms of the vierb

Dm5]m1
1

2
vm

abs~ab! , ~10!
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ab5

1

2
grne[a

r] [meb]
n]1

1

4
grngtse[a

reb]
t] [seg

n]e
d

mhgd .

~11!

An x-coordinate invariant and local Lorentz invariant acti
then follows:

Sf ermion5E d4xA2g$c̄ iea
mgaDmc1•••%, ~12!

whereea
m is the inverse of the vierbein, obtained fromem

a by
using gmn to raise thex-coordinate index andhab to lower
the local Lorentz index.

It therefore appears that incorporating fermions on
3-brane will require deriving the vierbein induced from th
bulk d-bein and the 3-brane embedding. Indeed this is g
erally the case, and, as will be seen below, the result is c
siderably more complicated than for the induced metric,
~5!. However, before embarking on this exercise it is enlig
ening to see why we cannot generally get away with a s
pler approach.

We can consider the four-dimensional local Loren
group at x on the 3-brane to be the subgroup of t
d-dimensional local Lorentz group atY(x) which acts non-
trivially on the four-dimensional hyperplane tangent to t
3-brane~spanned by]mYMEM

A ). It follows that we get four-
dimensional local Lorentz invariance by demandi
d-dimensional local Lorentz invariance. Just as in four
mensions, we can constructd-dimensional gauge fields fo
local Lorentz invariance,VM

AB(X), in terms of thed-bein.
The formula is exactly analogous to Eq.~11!. From this we
get an induced gauge field and covariant derivative on
3-brane,

vm
AB~x![]mYMVM

AB
„Y~x!…,

Dm[]m1
1

2
vm

ABS~AB! , ~13!

whereS (AB)[
1
4 G [AGB] are thed-dimensional Lorentz gen

erators in spinor representation, andGA are d-dimensional
Dirac matrices satisfying,

$GA ,GB%52hAB . ~14!

We can therefore write anx-coordinate invariant and
d-dimensional local Lorentz invariant action,

Sf ermion5E d4xA2g$gmn]nYMEM
A c̄ iGADmc1 . . . %.

~15!

Although Eq. ~15! is a consistent means of introducin
fermions onto the 3-brane, it is not the most general way,
in particular does not give rise to four-dimensional chi
fermions. The reason is that even if thec field appearing in
Eq. ~15! is in an irreducible~perhaps chiral! spinor represen-
tation of thed-dimensional local Lorentz group, it alway
corresponds to areduciblespinor representation of the four
dimensional Lorentz subgroup. This reducible representa
9-4
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EFFECTIVE FIELD THEORY FOR A THREE-BRANE UNIVERSE PHYSICAL REVIEW D59 085009
contains equal numbers of left- and right-handed Weyl d
blets, as is familiar from dimensional reduction in Kaluz
Klein theory.

In superstring theory, fermions in the above reducible r
resentation naturally arise in thesimplestD-brane configura-
tions. They are some of the massless modes of the o
string that can attach to the D-brane. They are related
supersymmetry to massless vector fields on the D-brane,
so become gauginos of the~highly-supersymmetric! low-
energy gauge theory that lives on the D-brane.

Clearly, in order to include two-component SM chiral fe
mions on the 3-brane we must adopt a different procedure
fact we must explicitly determine an induced vierbein on
3-brane, as mentioned above. Then we can take our actio
be given by

Schiral-f ermion
3-brane 5E d4xA2g$c̄Liea

msaDmcL1yfcLcL

1H.c.1•••%, ~16!

where thesa are the usual 232 chiral Dirac matrices for
four-dimensional Minkowski space. The covariant derivat
now contains the local Lorentz gauge fields as in Eqs.~10!,
~11! as well as gauge fields for internal gauge grou
Yukawa couplings to scalars are also included. The ellip
contains higher dimension interactions that can be c
structed with the help of the vierbein and covariant deri
tives. Of course we have the usual requirement of cance
tion of chiral gauge anomalies in order for our effecti
theory to make sense at the quantum level.

B. The induced vierbein

The vierbein can conveniently be thought of as a mean
finding the components of thex-space differential,dxm, in
~four-dimensional! local Lorentz coordinates, the result b
ing just em

adxm. Our strategy for obtaining the vierbein from
the 3-brane embedding is as follows. At each pointx, we will
lift dxm to the corresponding infinitesimalX-space vector
tangent to the 3-brane,

dYM5]mYMdxm. ~17!

Then we will perform a locald-dimensional Lorentz trans
formation atY(x), mapping the tangent hyperplane to lie
the a50, . . . ,3 directions. In particular,dY will be mapped
to an infinitesimal vector with non-zero components only
the a directions,em

adxm. Theem
a so obtained will be proven

to form a vierbein. This approach has similarities with t
constructions of Refs.@9,20,21#. For a different approach to
chiral fermions on branes see Ref.@4#.

The requisite Lorentz transformation,R, is determined as
follows. Among thed-dimensional Lorentz generators~in the
vector representation!, J(AB), the subgroup generated by th
J(ab) and theJ(ab) leaves invariant the subspace spanned
thea directions. We will drop these generators and consi
R to be of the form

R~x!5exp„iuaa~x!J~aa!
…. ~18!
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The condition that the tangent hyperplane is mapped to li
the a directions is equivalent to requiring the Lorent
transformed tangent vectors to be orthogonal to thea direc-
tions. That is,

RB
aEM

B ~Y!]mYM50, for all a,m. ~19!

The d-bein has been used here to express]mY in local Lor-
entz coordinates.

Equations~18! and~19! uniquely determineR, since they
correspond to 43(d24) equations for 43(d24) un-
knowns,uaa(x), and we are expanding about field valu
Eq. ~2! for which there is a unique solution,uaa50. Equa-
tion ~19! can be solved perturbatively to any desired order
the small fluctuations about Eq.~2!. The precise algorithm
for doing this is described in the Appendix.

The vierbein is then given by

em
a[RA

aEM
A ~Y!]mYM. ~20!

Let us prove that this indeed satisfies the properties o
vierbein, Eqs.~8!, ~9!. Equation~20! implies

em
ahaben

b5RA
aEM

A ]mYMhabRB
bEN

B]nYN. ~21!

Now, by Eq. ~19! we can replace the sums overa,b
50, . . . ,3 on theright-hand side by sums from 0 tod21,
since the sums from 4 tod21 add nothing. Therefore,

em
ahaben

b5RA
EEM

A ]mYMhEFRB
FEN

B]nYN. ~22!

The fact thatR is a d-dimensional Lorentz transformatio
implies that

RA
EhEFRB

F5hAB. ~23!

So Eq.~22! simplifies to

em
ahaben

b5EM
A hABEN

B]mYM]nYN

5GMN]mYM]nYN

5gmn , ~24!

where the second equality follows from Eq.~1! and the third
equality from Eq.~5!. Thus Eq.~8! holds. Regarding Eq.~24!
in matrix notation,

eThe5g, ~25!

we can invert both sides, and then pre-multiply bye and
post-multiply byeT to get Eq.~9!.

We have found an induced vierbein which we can use
construct the action for chiral fermions on the 3-brane,
cording to Eq.~16!. The full action of our effective field
theory is the sum of Eqs.~3!, ~6!, ~16!.

V. GAUGE FIXING THE REPARAMETRIZATION
INVARIANCE

Our formalism up to this point has been explicitly invar
ant under generalx-coordinate transformations. This corre
9-5
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sponds to a large reparametrization invariance in our desc
tion of the 3-brane. If YM(x) describes a 3-bran
configuration and ifx8(x) is a generalx-coordinate transfor-
mation, thenYM(x8(x)) describes an identical 3-brane co
figuration.

Fortunately, it is straightforward to eliminate this redu
dancy, leaving us with only the physical number of 3-bra
degrees of freedom. This is done by imposing the ga
condition,

Ym~x!2xm50, ~26!

while thed24 fields,Ym(x), are physical and can fluctuat
For small fluctuations about Eq.~2!, Eq. ~26! can always be
solved. Note that this is a complete gauge-fixing becauseY
satisfies Eq.~26!, then

Ym
„x8~x!…2xm50 if and only if x8~x!5x. ~27!

In the quantum functional integral we need only integr
over Y(x) which satisfy Eq.~26!. Furthermore, this gaug
condition has a trivial ghost determinant, since ifY satisfies
Eq. ~26! and x8(x)5x1j(x) is an infinitesimalcoordinate
transformation,

d

djn~y!
U

j50

@Ym
„x8~x!…2xm#5]nYm~x!d4~y2x!

5dn
md4~y2x!, ~28!

which is field independent.

VI. POWER-COUNTING, CANONICAL FIELDS,
AND RENORMALIZATION

The effective field theory construction described in t
preceding sections admits and contains various types of
renormalizable interactions. We need to determine
power-counting dimension, and thereby the relevance
these interactions, by writing our theory in terms of cano
cally normalized fields.

The gravitational fields can be decomposed as usua
@24#

EM
A ~X!5dM

A 1
HM

A ~X!

Md/221
,

GMN~X!5hMN1
HMN1HNM

Md/221
1

HMLHN
L

Md22
, ~29!

whereHM
A (X) is the canonical graviton field, and its indice

have been raised and lowered using the Minkowski met
We must also canonically normalize the 3-brane coordin
fields, Ym(x) @where we are assuming that we have elim
nated the reparametrization invariance according to
~26!#. We see that a kinetic term quadratic inYm results from
the expansion of the leading term of Eq.~6! in powers of
~derivatives of! Ym. A canonically normalized set of fields
Zm(x), can be introduced by writing
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Ym~x![
Zm~x!

f 2
. ~30!

From Eqs.~5!, ~6!, ~26! we see that the dominant cou
plings of a bulk graviton to the SM~without exciting theZm

field! are given by

Sgrav i ton-SM5E d4xTSM
mn ~x!

Hmn~x,Xm50!

Md/221
, ~31!

where the SM stress tensor is defined in the usual fo
dimensional way,

TSM
mn ~x![

dS3-brane

dgmn~x!
U

gmn5hmn

. ~32!

This is a special case of our general expectation tha
d-dimensional graviton, HMN , should couple to the
d-dimensional matter stress tensor,TMN. When the matter is
restricted to move on a 3-brane as in the case of the SM,
only non-vanishing components ofTMN are theTmn, local-
ized on the 3-brane.

It is a troublesome but necessary feature of the prese
of fermions in the effective field theory@via Eq. ~16!#, that
dependence on the gravitons andYm is implicit in the uaa
angles that determineR and the vierbein through Eqs.~18!,
~19!, ~20!. To determine the interaction vertices in Eq.~16!
we have to determine these angles from Eq.~19! perturba-
tively in powers of~derivatives of! H andY, as described in
the Appendix. Fortunately, for any process, computed
some fixed loop order, only vertices with a limited number
H andY will contribute.

We now consider the structure of our effective fie
theory for the three possible cases,~i! f ;M , ~ii ! f !M , ~iii !
f @M .

~i! f ;M : For power-counting purposes we can take
higher-dimension interactions involving canonical fields
be of order a power of 1/M , given by dimensional analysis
In order to make sense of this non-renormalizable the
with an infinite number of possible terms@in the ellipses of
Eqs.~3!, ~6!, ~16!# we must restrict its domain of validity to
momenta and field fluctuations@away from Eq.~2!# much
smaller thanM. For processes outside this domain, we
quire a more fundamental description of quantum grav
and the physics that gave rise to the 3-brane. The effec
field theory procedure in the domain of validity is to work
some fixed but arbitrary order in 1/M , sayO(1/Mk), bal-
anced by powers of fields and momenta for the process u
consideration. We then throw away all terms in our effect
Lagrangian of higher order, leaving only a finite number
interactions.

Now, if we only wish to doclassicalfield theory, we can
simply use the truncated effective Lagrangian. In the mod
effective field theory view, this is precisely the sense
which ordinary classical general relativity, using only th
Einstein-Hilbert action, is a valid approximation. Howev
we can also doquantumeffective field theory. In computing
Feynman diagrams we will encounter local ultraviolet dive
9-6
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gences which are formally of higher order than 1/Mk. We
can simply throw them away. The remaining divergenc
~finite in number! will correspond precisely to the~counter!
terms we have retained in our effective Lagrangian, so ren
malization can proceed in the usual way.

~ii ! f !M : For power-counting purposes, Eq.~30! sug-
gests that the strength of non-renormalizable interactions
volving only canonical 3-brane fields should be taken of
der a power of 1/f , the scale fixed by the physics which ga
rise to the 3-brane. Equation~29! then suggests that interac
tions involving extra gravitons,H, are further suppressed b
powers of 1/M . Now our effective field theory is valid for
momenta and field fluctuations much smaller thanf. For pro-
cesses beyond this domain, we require a more fundame
description of the physics that gave rise to the 3-brane. H
ever, this may not require a more fundamental description
quantum gravity, the present general relativistic descript
continuing to make sense for momenta all the way up toM.

The effective field theory procedure is now to do a dou
expansion. We must work to some fixed but arbitrary or
in 1/f , balanced by powers of 3-brane field fluctuations a
momenta for the process under consideration, and to s
fixed order in 1/M , balanced by powers of the graviton fie
and momenta. For example, iff /M is small enough it may be
a good approximation to work to some non-trivial order
1/f , but to zeroth order in 1/M . In this approximation we are
simply neglecting bulk gravity altogether, as we frequen
do in SM applications, but we are retaining the 3-brane fl
tations in the flat bulk spacetime. Once again, to any orde
the double expansion, renormalization proceeds in the u
manner once the effective Lagrangian and ultraviolet div
gences are truncated to the finite number that are within
order to which we are working.

~iii ! f @M : This is the case of a ‘‘large’’ 3-brane tensio
In this case it is quite unnatural to expect that the high
dimension interactions involving 3-brane fields are su
pressed by powers of 1/f , even if the interactions contain n
explicit gravitons. The reason is that gravity couples to
erything and gravitational loops will dress all possible int
actions. We can therefore expect that any higher-dimen
interaction will naturally be of order powers of 1/M , unless
protected byX-coordinate orx-coordinate invariance. Tha
is, for power counting purposes, we should first write o
effective Lagrangian in terms ofX-coordinate and
x-coordinate invariants as we have in Eqs.~3!, ~6!, ~16!.
Then the naive coefficients of the various higher-dimens
invariants should be given by powers ofM determined by
dimensional analysis. The right powers of 1/f will then
emerge when the effective Lagrangian is expanded in te
of the canonical fields.

While in principle any ultraviolet regulator can be used
regulate the Feynman diagrams of the effective theory,
of course preferable to use a regularization that respect
many of the symmetries of the theory as possible. The s
plest procedure appears to be dimensional regulariza
where one analytically continues the dimensionality of b
the 3-brane as well as that of the bulk spacetime. As is
ways the case, this regularization does not respect ch
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gauge invariance when fermions are present on the 3-br
but this nuisance is no more severe than in ordinary fo
dimensional field theories.

VII. THE FORMALISM OF SPONTANEOUS SYMMETRY
BREAKING

The effective field theory developed above is a particu
case of the chiral Lagrangian approach to spontane
symmetry-breaking, and it is quite useful to understand
deep sense in which this is so. Let us recall the broad ess
of this method. The chiral Lagrangian is a low-energy theo
for the Nambu-Goldstone modes associated to spontaneo
broken symmetries. If the full group of dynamical symm
tries isG, and the vacuum spontaneously breaks this dow
a subgroupH, then the Nambu-Goldstone modes transfo
under all ofG, but the transformations outside ofH are re-
alized non-linearly. The chiral Lagrangian dynamics
tightly constrained to respect the fullG symmetry. If there
are other low-energy fields which are not Nambu-Goldsto
modes, but which transform linearly underH, they are to be
included in the chiral Lagrangian, and coupled to t
Nambu-Goldstone modes so that the fullG-invariance is re-
spected. Although initiallyG is taken to be aglobal symme-
try group, it can subsequently be weakly gauged in
straightforward manner at the level of the chiral Lagrangi
The beauty of this method is that it separates the questio
what the low-energy consequences of spontaneous
symmetry-breaking are from the~frequently more difficult!
question of what thedynamical mechanismfor the spontane-
ous symmetry-breaking is.

In general, there are two types of symmetry that can
spontaneously broken, the familiar case of internal symm
tries and the less familiar case of spacetime symmetries.
general formalism for constructing the chiral Lagrangian
the former case was worked out in Ref.@25#, while for the
latter case the formalism was provided in Ref.@19#. In this
paper, spacetime symmetry is spontaneously broken, and
symmetry is ‘‘weakly gauged’’ by gravity. Let us begin b
turning off gravity, leavingd-dimensional Minkowski space
time. Formally, we setEM

A 5dM
A . From Eq.~2! we see that

the 3-brane vacuum spontaneously breaks thed-dimensional
Poincare symmetry by picking out a four-dimensional hyp
plane to occupy. Specifically, this breaks the translatio
transverse to the 3-brane, generated byPm , and the Lorentz
transformations that change the orientation of the 3-bra
generated byJaa. The corresponding Nambu-Goldston
modes are theYm(x) and uaa(x) ~see Sec. IV B! respec-
tively. Using these modes, our effective theory, given by E
~6! plus Eq.~16!, is invariant under the fulld-dimensional
Poincare symmetry, the four-dimensional Poincare subgr
being linearly realized and the remaining symmetry transf
mations being non-linearly realized. It is quite remarkab
that the dynamics of this purely four-dimensional theory c
respectd-dimensional Poincare invariance. The magic com
from the special couplings to the Nambu-Goto modes. In t
non-gravitational limit our effective theory is essentially a
adaptation of the general formalism of Ref.@19#

Note that theuaa are not independent degrees of freedo
9-7
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RAMAN SUNDRUM PHYSICAL REVIEW D 59 085009
from the Ym. This is a peculiarity of spacetime symmet
breaking and can be traced back to the fact that both tr
lations and Lorentz transformations share the same c
served current, thed-dimensional energy-momentum tenso
whereas in the case of internal symmetries, each gene
has its own conserved current. In particular, the fact that
effective theory is invariant under the fulld-dimensional
Poincare group implies that in addition to the usual fo
dimensional energy-momentum tensor we have extra c
served currents,Tmm(x),

]mTmm50. ~33!

Finally, we can turn gravity back on, thinking of it a
weakly gauging the spontaneously brokend-dimensional
Poincare group. We now become aware of another pecu
ity of the spacetime symmetry breaking. Since thePm are
among the broken generators, in principle they do not p
vide good quantum numbers for labelling the bulk quanta
the present case just the gravitons. Of course, far away f
the 3-brane it does seem sensible to label bulk quanta
their d-dimensional momenta, but the interactions aris
from our effective field theory between these quanta and
3-brane quantaviolate momentum conservationin the m
54, . . . ,d21 directions. This is not hard to understand int
itively. When the bulk quanta are very soft compared tof, the
scale setting the 3-brane tension, the 3-brane vacuum
appears approximately as a rigid wall, extending infinitely
the xW -directions. The bulk quanta can lose~gain! transverse
momentum to~from! this infinitely massive wall. On close
inspection we see that the wall is not perfectly rigid, so t
impacts from bulk quanta can create distortions in the w
parametrized byYm(x), which can propagate along the wa
and can also excite the SM modes. More technically,
very soft momenta we can neglect theYm modes since they
are derivatively coupled and therefore difficult to excite
the infrared. In this limit, the dominant coupling of the SM
bulk gravity is given by Eq.~31!. The localization of the bulk
graviton toXm50 in coordinate space implies in momentu
space that the SM model states couple equally to gravi
with any value of momentum transverse to the 3-brane,Pm .
This breakdown of globalPm conservation remains true eve
when we take into account the presence of theYm modes,
although we now have alocal version of transverse momen
tum conservation, namely conservation of the moment
‘‘current,’’ Eq. ~33!. Note however that four-dimensiona
momenta are well-defined global charges which are c
served in all processes, since they correspond to unbro
symmetry generators.

VIII. CONCLUSIONS

This paper has described the minimal effective fie
theory formalism needed to explore the low-energy impli
tions of a 3-brane universe. It appears relatively straight
ward to generalize the present framework in several dir
tions, for example, adding non-minimal bulk fields, maki
the formalism supersymmetric, considering more com
cated spacetime topologies, or considering more than
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brane embedded in the bulk spacetime.
The effective field theory formalism may help address

questions pursued in Ref.@16#, regarding the transmission o
supersymmetry breaking between branes in the scenari
Ref. @7#. Even the supersymmetry-breaking mechanism n
not be explicitly described, since its consequences can
pursued via the chiral Lagangian approach to supersymm
breaking initiated in Ref.@26#.
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APPENDIX

Here we derive a procedure for determining theuaa(x)
that appear implicitly@via Eqs.~18!, ~19!, ~20!# in the fer-
mion action, Eq.~16!, in powers of the graviton and 3-bran
fluctuations. In the vector representation of t
d-dimensional Lorentz group,SO(d21,1), we can write the
generators,J(AB),A,B, in the explicit form

JD
~AB!C5 ihCE~dE

AdD
B2dD

AdE
B!. ~A1!

Let us define a set of small quantities in which we c
perturb, by writing,

EM
B ~Y!]mYM[dm

B2em
B . ~A2!

Thus e contains the small fluctuations around Eq.~2!. We
will do perturbation theory by formally expanding in powe
of e,

uaa5 (
n50

uaa
~n!

R[eiuaaJ~aa!
5 (

n50
R~n!.

~A3!

Substituting Eq.~A2! into Eq. ~19! gives

Rm
a 5RB

aem
B . ~A4!

Now, to zeroth order ine we have the obvious solution
uaa

(0)50,R(0)5I . Higher order solutions can be obtained
eratively using Eq.~A4!. Suppose that we have already d
terminedu (0), . . . ,u (n). Then u (n11) is determined as fol-
lows. Then11 order term of Eq.~A4! reads

Rm
~n11!a5RB

~n!aem
B . ~A5!

Given the simple exponential series expansion forR in terms
of u, it is obvious thatR(n) is a computableO(en) polyno-
mial in u (0), . . . ,u (n). It follows thatu (n11) does not appea
9-8
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on the right-hand side of Eq.~A5!. The left-hand side has
simple linear dependence onu (n11) which can be expresse
by writing

Rm
~n11!a5 iugc

~n11!Jm
~gc!a1Rm uu~n11!50

~n11!a , ~A6!

where the second term of the right-hand side of Eq.~A6! is
B

li,

a

is

08500
to be computed in terms ofu (0), . . . ,u (n), with u (n11) set to
zero. By Eq.~A1!, the first term of the right-hand side of Eq
~A6! is simply umc

(n11)hac. Therefore subsituting Eq.~A6!
into Eq. ~A5! yields

umc
~n11!5hac~RB

~n!aem
B2Rm uu~n11!50

~n11!a !. ~A7!
0.
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