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Effective field theory for a three-brane universe
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A general effective field theory formalism is presented which describes the low-energy dynamics of a
3-brane universe. In this scenario an arbitrary four-dimensional particle theory, such as the standard model, is
constrained to live on the world volume of(a+1)-dimensional hypersurface, or “3-brane,” which in turn
fluctuates in a higher-dimensional, gravitating spacetime. The inclusion of chiral fermions on the 3-brane is
given careful treatment. The power counting needed to renormalize quantum amplitudes of the effective theory
is also discussed. The effective theory has a finite domain of validity, restricting it to processes at low enough
energies that the internal structure of the 3-brane cannot be respB@sb6-282(99)00308-2

PACS numbgs): 11.10.Kk, 11.25.Mj

I. INTRODUCTION cently, it has been discussed in Rdf2] and[3], as a pos-
sible means of addressing the unnatural hierarchy between

How many dimensions do we live in? Macroscopically, the weak and Planck scales. These papers give an up-to-date
we seeandfeelthree spatial dimensions using electromagne-analysis of some of the theoretical and phenomenological
tism. Furthermore, Newton’s 9 law of gravity follows possibilities. Related ideas involving 3-brane universes
from general relativistic principles in81 dimensions. Mi-  and/or relatively low compactification scales appear in Refs.
croscopically, calculations based on 43)-dimensional [4-14].
spacetime are in excellent accord with our most sensitive | et us now impose the constraint that Newton'’s?1/aw,
experimental tests of the standard mo@V). Yet, itis well  or more generally, four-dimensional general relativity, is ex-
known that extra spatial dimensions are possible if they argerimentally verified at macroscopic distances. Therefore by
compactified at sufficiently small radii. To resolve a compactage distances, gravity must also be confined ol 3di-

dimension, it must be probed by quanta with Wa"e'ength%ensions, the most obvious way being by compactifying the

smaller than its radius. Presentlinour sharpest SM probegy s gimensions. But now the compactification radii are not
have wavelengths as short asl0™~° cm. Apparently this

. . : . constrained to be smaller than 76 cm because SM par-
provides the upper bound on the radii of any higher dimen-. . . . .

. o ) S ticles are not direct probes of the higher dimensions. To re-
sions occurring in nature. But this conclusion is based on the

assumption thadll particle species move in the same numberSOIVe the higher dimensions we must use gravity which has

of dimensions as the SM. This assumption is implicit in theonh_/, been tested ‘?'OW” 'to a distance of a centimeter. The
standard Kaluza-Klein approach to higher dimensions@dii of the extra dimensions need only be smaller than this

which, until recently, played a central role in string theory. for us to not yet have observed them. An exciting possibility
Can non-SM particles see extra dimensions that the SN that future short-distance tests of gravity may d¢zas).
does not? At present, we know of only one non-SM state, the Even if the compactification radii are too small to be seen
graviton, but others might exist if they are weakly coupled ordirectly in the forseeable future, they can lead to interesting
massive enough to have escaped detection thus far. Let iRdirect effects. One intriguing possibility is provided by the
suppose there are extra spatial dimensions in which gravityork initiated in Ref[7] in the context of M theory, literally
can propagatfebut in which the SM cannot. We can think of a case of parallel universes. We can effectively have two
the SM as being “stuck” at some definite position in the 3-branes, separated in a-{4)-dimensional bulk spacetime.
extra dimensions. That is, if the full “bulk” spacetime is A supersymmetric and gauge extension of the SM lives on
really d-dimensionald>4, then we are considering the SM one 3-brane, while a strongly-interacting supersymmetric
to be confined to a (3 1)-dimensional hypersurface. Since hidden sectotives on the other. The hidden sector dynamics
the bulk spacetime contains gravity and is therefore dynamiean trigger spontaneous supersymmetry breaking on its
cal, the hypersurface cannot be rigid, but must also be dy3-brane, which is transmitted by bulk modes to the SM
namical. We can borrow some string-theory parlance an@-brane, where it shows up as soft supersymmetry breaking.
call this dynamical hypersurface a “3-brané.The basic  (For an interesting study of this phenomenon in a simple
idea that the standard particles are confined to a 3-brane setting see Ref.16].)
higher dimensions goes back at least to R&f. Very re- If we do live on a 3-brane, what is it made of? It has been
understood for some time that a quantum field theory can
contain topological defects of various types and dimension-
*Email address: sundrum@budoe.bu.edu ality, which can have low-energy particle-like modes trapped
YIndeed since gravity is so intimately tied to spacetime, it wouldon them. It therefore seems plausible that our 3-brane is a
be hard to conceive of gravityot being present in all the extra (3+1)-dimensional defect in a higher dimensional field
dimensions. theory, and the SM particles are some of the light modes
2In string theory, “3-brane” has a more restricted usage. trapped on the defect. This is the scenario advocated in Ref.
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[2]. While it is known how to build theories of this type clude chiral fermions, such as quarks and leptons, on the
where scalars and fermions live on the defect, it is still prob-3-brane. Section V explains how to gauge-fix reparametriza-
lematic to obtain low-energy four-dimensional vectortion invariance of the 3-brane description. Section VI dis-
(gauge fields, although some new ideas are pursued in Refsusses the power counting needed to implement renormaliza-
[8,2]. It is therefore fair to say that while the 3-brane sce-tion in the effective field theory program. Section VII
nario has reasonable support within quantum field theory, weliscusses the sense in which the effective field theory is re-
are still some way from a realistic model. ally a “gauged chiral Lagrangian” corresponding to the

The situation improves if we consider superstring theory spontaneous breaking of higher-dimensional spacetime sym-
the direction taken in Ref$3,13]. Intrinsic to the theory are metries by the 3-brane ground state. In particular, our treat-
Dirichlet-branegD-brane$, defects of varying dimensional- ment is an adaptation of Volkov's general formalism for
ity on which open strings can end. See R&f/] for areview. treating spontaneous breaking of spacetime symmégttis
The short open string modes trapped on D-branes can irBection VIII provides the conclusions.
clude light gauge fields, fermions and scalars, all the basic The present formalism is not explicitly supersymmetric,
ingredients for realistic theories. It is possible to construct aut it is hoped that the extension to supersymmetry can be
variety of sandwiches of D-branes and strifigsveiwed in  accomplished by methods similar to those of Sec. IV. It is
Ref. [18]), which reduce at low energies to interesting par-expected that this will tie in closely with earlier work on
ticle theories effectively living in four dimensions, weakly low-energy effective theories describing the spontaneous
coupled to gravity and other modes which propagate inpartia) breaking of (highe) supersymmetry. See for ex-
higher dimension3.However, a realistic SM sector has not ample Refs[20] and[21]. Referenc¢21] gives a more com-
yet been engineered in this way. plete list of references on this topic.

The purpose of the present paper is to show how one can The present papetin particular Sec. VI assumes an
construct realisticeffective field theorieso study the low- aquaintance with the methodology of effective field theory.
energy conseqguences of the 3-brane scenario, in a systematiReferenc¢22] provides a good introduction to the basic con-
economical and elegant way. The only degrees of freedorepts and techniques, in the relatively simple context of pion
that appear are those that matter at low energies, the purephysics. Referencg3] describes how to interpret general
high-energy degrees of freedom are considered to be inteelativity as a quantum effective field theory.
grated out. Even if a fundamental description were known,

the most efficient way of pursuing the low-energy dynamics Il. PRELIMINARIES

would be tomatchthe fundamental theory to such an effec- ) _ )

tive field theory, and then use the latter for calculations and A. Fields, coordinates, and related notation

insight. We are interested in four-dimensional SM fields living on

Roughly speaking, the low-energy domain restricts us t@he world-volume of a 3-brane, which in turn is free to move
processes which cannot resolve the stucture of the 3-brangy a gravitating bulk spacetime of dimensiod;>4. The
In many ways this approach is analogous to the chiral Lafields we consider will be the minimal set needed to realize
grangian approach to pion dynamics, where the pion ishis scenario.(Adding non-minimal fields poses no extra
treated as a point-particle whose internal quark-glue structurgroblem) For simplicity we take the 3-brane world-volume
is outside the low-energy domain of validity. We will simply topology to beR?, and the bulk topology to be eith&? or
assumethat there issome high-energy physics, perhaps R4x Td-4 whereTX denotes &-torus.
string theory or an exotic field theory, which gives rise 10 a  The coordinates of the bulk spacetime will be denoted
3-brane moving inside a bult-dimensional spacetime. Itis xM The bulk coordinate indices are capital letters from the
assumed that the SM, or some extension ofwhich for  yigdle of the Roman alphabet,N, ...=0,...d—1. We
convenience we will continue to call the “SM}'is con-  yeserve the lower-case letters from the middle of the Roman
strained to propagate within the 3-brane world volume, a”%lphabet to refer to just the last—4 of these indices,
that gravity, and perhaps some other degrees of freedom, afg , . =4, ... d—1. If one is only interested in bosonic
free to propagate in the bulk. We then construct the mosfie|ds(Sec. Ill), the components of the bulk metriB,(X),
general consistent effective field theory describing the cOuzan pe considered as the fundamental gravitational degrees
plings between bulk gravity, the 3-brane fluctuations, and they freedom. Otherwise, the gravitational degrees of freedom
SM particles. By this means we can outpace the fundamentgl e pyik are the components of thevein, EA (X) (that s,
theorists who must first tackleowa realistic 3-brane arises. ¢ 4 gimensional vielbein Thelocal Lorentzindices in the

The organization of the paper is as follows. Section Il set ulk are capital letters from the beginning of the Roman
up some basic notation. Section Il describes the COUp”ngglphabetA B —0,...d—1. Thed-bein is related to the
of the purely bosonic degrees of freedom. The result of thi%ulk metrié G ' kX) by '
section may appear rather obvious to anyone familiar with MRS
the literature on D-branes, and no great originality is EM(X) 7asEE(X) = Gyn(X),
claimed. Section IV develops the formalism needed to in-

En(XOGMN(X)ER(X) = 7B, (6N

3The way effective 3-branes arise in the scenario of Réf.  Wherez,g is thed-dimensional Minkowski metric. It is use-
mentioned above, is more subtle. See Ret] for a discussion. ful to subdivide the local Lorentz indices into two subsets:
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the first four denoted by letters from the beginning of the If we are considering thé-dimensional spacetime to be

Greek alphabety, 8, ... =0,...3,while the remaining indi- of the form R*xXTY"4 then gravity becomes effectively
ces are denoted by lower-case letters from the beginning dbur-dimensional at distances larger than the radii of tthe (
the Roman alphabeg,b,...=4,...d—-1. —4)-torus, with an effective Planck constaktp,, given by

The coordinates intrinsic to the 3-brane will be denotedM2 =M%"2v;, where V; is the volume of the
x#. The 3-brane coordinate indices are chosen from thg¢d—4)-torus. See Ref§2,3] for further discussion.
middle of the Greek alphabet;,v,...=0,...,3. Thebulk
coordinates describing the position occupied by a poio B. The induced metric on the 3-brane
the 3-brane, are denotét(x). They are dynamical fields. . o )
The last fields required are those of the SM, which are all The distance between two infinitesimally separated points

functions ofx, since they live only on the 3-brane. They ON the 3-branex andx+dx, is given by

come in three types: scalar fields, vector gauge fields, and _ M 4 UN

left-handed Weyl spinors, denotegi(x),A,,(x),(x) re- ds’=Gun(Y(x))dY"dY

spectively. Any right-handed spinor fields can be made left- oYM aYN

handed by charge conjugation in the usual manner. Spinor =Gyn(Y(X))——dx*——dx?, 4
and internal indices are suppressed because it is entirely axt ax"

straightforward to replace them whenever desired. . . .
9 P from which we deduce that the induced metric on the

B. The “vacuum” state 3-brane is
The effective field theory will describe the small- 0,.,(X) =Gun(Y(x))d,YMa, YN, (5)
amplitude, long-wavelength fluctuations of the dynamical
fields about the following state: Given Eq.(2), it is clear thatg,,(x) will consist of small
fluctuations about the four-dimensional Minkowski metric,
En(X)=3m. Gun(X)=nun; Dy -

YM(X): 5%)(#’ C. Effective field theory associated to the 3-brane

H(X)=v. 2) Let us write the most general action for the bosonic fields

associated to the 3-brane in the background of the bulk met-

That is, we expand about a Minkowski bulk spacetime, withric, Gyn(X). The action must be invariant under general
the 3-brane occupying the subspace spanned by the foxtcoordinate transformationas well as xcoordinate trans-
X*-axes, and with the intrinsic 3-brane coordinatas, formations. The requirement of the first of these invariances
agreeing with the bulk coordinate$*. We also allow some is clear since it is the ‘“gauge invariance” for the
of the scalar fields on the 3-brane to be non-zero, but cond-dimensional general relativistic bulk gravity. The require-

stant over the 3-brane. ment ofx-coordinate invariance follows because thepace
is completely unphysical, just providing a convenient means
Ill. THE BOSONIC EFFECTIVE FIELD THEORY of parametrizing the 3-brane embeddigx).

] ) ) ) ) The book-keeping to enforce these two invariances is
~ This section describes the construction of the effectivestraightforward. We first have to determine how our fields
field theory when fermionic fields are absent. The procedurgansform under the two types of coordinate transformations.

for adding fermions is treated in the next section. Gun(X) is anX-space 2-tensor andscalar. The action can-
not depend directly on all of (x) because it makes reference
A. Effective theory of gravity in the bulk to the origin ofX-coordinate space, which is unphysi¢te
In isolation, the bulk gravitational fields are described byusual statement that coordinates are not themselves
an action generally-covariant tensgrsbut the action can depend on

07#Y"", which is anX-vector andx-vector. ¢(x) is obviously
_ d 42 a scalar of both spaces,(x) is an x-vector and an
Sbulk_f d°Xde(E){—A+2M"“R+---},  (3)  x.scala® An important composite field is the induced
3-brane metricg,,,(x). From Eq.(5), it is anX-scalar and an
where thed-dimensional Einstein-Hilbert action has been ex-
plicitly written, with M being thed-dimensional Planck mass
and R the d-dimensional curvature scalarA is a

d-dimensional cosmological constant term, and the ellipsis i§egcrines the parallel transport between two infinitesmally sepa-
the series of higher dimensional geometric invariants Withateq points on the 3-braneandx+dx. The parallel transport is as
coefficients given by powers of W, multiplied by order one  ,syal given by #iA,(x)dx*. Under anx-coordinate transforma-
(or less dimensionless couplings. The effective field theoryton, dx“ transforms covariantly, and 99, must be taken to trans-
philosophy and technology for using this non-renormalizable&orm as a contravariant vector. But underXsoordinate transfor-
action is essentially the same as for the ustial4 case, mation nothing happens to the parallel transport, and smust be
which has been discussed in detail in R&f3]. a scalar.

“This point deserves some explanation. The gauge felek)
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x-tensor. Usingg,, and d, we can construct covariant p 1 1 5
x-derivatives in the standard way, and apply them to thew :Egpve[“pﬁ[ﬂemvﬁngygmelapeﬁ]ﬁ[aeyu]e wMys-

various tensors already discussed in order to generate further (11)
tensors. Invariants can then be formed by contracting
x-tensor indices using,,, and its inverseg””. An x-coordinate invariant and local Lorentz invariant action
From these ingredients we can build the action, then follows:
. — g"” —
obsrgr?se:f d4X _g[ _f4+ TDMQSDVQS_V(QZ”) Sfermion:f d4X —g{zﬁle’g’yaDMlﬁ-i- o ‘}, (12)
gty — ©) wheree, is the inverse of the vierbein, obtained fraf) by
4 mptove ot usingg*” to raise thex-coordinate index and,z to lower

the local Lorentz index.

whereF ,,(x) is the usual gauge field strength, and the el- It therefore appears that incorporating fermions on the
lipsis includes higher-dimensional invariants one can build3-brane will require deriving the vierbein induced from the
out of the fields and covariant derivatives, with dimensionfulbulk d-bein and the 3-brane embedding. Indeed this is gen-
coefficients set by powers offlor /M. (See Sec. V).Note  erally the case, and, as will be seen below, the result is con-
that by locality, whenGy,y or its derivatives appear in this siderably more complicated than for the induced metric, Eq.
action they must be evaluated on the 3-brane/(af). The  (5). However, before embarking on this exercise it is enlight-
dominant terms, explicitly displayed in E¢6), depend on ening to see why we cannot generally get away with a sim-
Gy only throughg,,, and Eq.(5), but higher invariant$in pler approach.
the ellipsis of Eq.(6)] can certainly depend ofs,y in a We can consider the four-dimensional local Lorentz
more general manner. group atx on the 3-brane to be the subgroup of the

The leading term of Eq(6) is a “bare” tension for the d-dimensional local Lorentz group a(x) which acts non-
3-brane, the mass scalebeing determined by the physics trivially on the four-dimensional hyperplane tangent to the
that gave rise to the 3-brane. This term can be renormalize8-brane(spanned bw#YMEQ). It follows that we get four-
at tree- and loop-level by the vacuum energy of the SM. Thelimensional local Lorentz invariance by demanding
renormalized3-brane tension dominates the interactions ofd-dimensional local Lorentz invariance. Just as in four di-
bulk gravity with the 3-brane when it is close to its ground mensions, we can construdidimensional gauge fields for
state. This term also contains kinetic energy for ¥htelds  |ocal Lorentz invarianceﬂ’,\*,lB(X), in terms of thed-bein.

as will be discussed in Sec. VI. The formula is exactly analogous to Ed.1). From this we
get an induced gauge field and covariant derivative on the
IV. FERMIONS ON THE 3-BRANE 3-brane,
A. The problem wﬁB(x)E(?MYMQQB(Y(X)),
Recall how spin-1/2 fermions are ordinarily introduced in
a four-dimensional general relativistic conte(@ee Ref[24] D =g + l ABy (13)
for more details. The fermions, #(x), are regarded as n=ouT P (AR

x-scalars, but as spinors of the local Lorentz group. The Lor-

entz generators in the spinor representation are as usu#here ag=3I'[al'g are thed-dimensional Lorentz gen-
given by’o'(aB)E%'y[a'yB] , where they, are Dirac matrices ~erators in _spinor r_epr.esentation, ahd are d-dimensional
satisfying Dirac matrices satisfying,

{7&!7[3}:27]01[3' (7) {I‘A’FB}:ZWAB' (14)

The local Lorentz group can formally be thought of as anWe can therefore write anx-coordinate invariant and
internal SQ(3,1) gauge group. It gets related to spacetimed-dimensional local Lorentz invariant action,
through the vierbeine; , anx-vector and local Lorentz vec-
tor which satisfies Sfermion:J d4X</—g{g”V(?,,YME©, YiTaD g+ ...}
€50X) 70580 () =0,,(%), (8) (19
N 5 p Although Eg.(15) is a consistent means of introducing
e, (X)g"(x)ey(x) = n*”. (9 fermions onto the 3-brane, it is not the most general way, and
) o ) in particular does not give rise to four-dimensional chiral
A covariant derivative fory with respect to local Lorentz  fermions. The reason is that even if tiefield appearing in
transformations can be constructed in terms of the V|erbe|nEq_ (15) is in an irreducible(perhaps chiralspinor represen-
tation of thed-dimensional local Lorentz group, it always
corresponds to eeduciblespinor representation of the four-

1
D,=d,+ =0 , 10 . : . : .
moTR Pu T (ap) (10 dimensional Lorentz subgroup. This reducible representation

2
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contains equal numbers of left- and right-handed Weyl douThe condition that the tangent hyperplane is mapped to lie in
blets, as is familiar from dimensional reduction in Kaluza-the « directions is equivalent to requiring the Lorentz-
Klein theory. transformed tangent vectors to be orthogonal toaturec-
In superstring theory, fermions in the above reducible reptions. That is,
resentation naturally arise in tisgmplestD-brane configura-
tions. They are some of the massless modes of the open REEM(Y)a,YM=0, forall a,u. (19
string that can attach to the D-brane. They are related b ] ]
supersymmetry to massless vector fields on the D-brane, arﬁ1e d-bein has been used here to expres¥ in local Lor-
so become gauginos of théighly-supersymmetriclow- €Ntz coordinates. _ _ _
energy gauge theory that lives on the D-brane. Equations(18) and(19) unlquel.y determindR, since they
Clearly, in order to include two-component SM chiral fer- correspond to %(d—4) equations for &(d—4) un-
mions on the 3-brane we must adopt a different procedure. IKNOWNS, 6,4(X), and we are expanding about field values
fact we must explicitly determine an induced vierbein on theEd. (2) for which there is a unique solutiod,,=0. Equa-

3-brane, as mentioned above. Then we can take our action {®n (19) can be solved perturbatively to any desired order in
be given by the small fluctuations about E¢R). The precise algorithm

for doing this is described in the Appendix.
. — The vierbein is then given by
Sgh?:gn?ermion:f d4XV—g{l,//LIeZ'O'aDMl/IL-I—de,/ILI,bL A "
e, =RaEn(Y)d, Y". (20
+H.c+---}, (16) o o )
Let us prove that this indeed satisfies the properties of a
where thes® are the usual 22 chiral Dirac matrices for Vierbein, Eqs(8), (9). Equation(20) implies
four-dimensional Minkowski space. The covariant derivative
now contains the local Lorentz gauge fields as in Ef§),

(11 as well as gauge fields for internal gauge groupsyow, by Eq. (19 we can replace the sums over,8

Yukawa couplings to scalars are also included. The ellipsi >0,... 3 on theright-hand side by sums from 0 @1,

contains higher dimension interactions that can be con-. . f 4 t6—1 add nothina. Theref
structed with the help of the vierbein and covariant deriva-SNce the Sums from add nothing. Theretore,

€% el =RaEM I, YM 7, 5REERT, YN, (22)

tives. Of course we have the usual requirement of cancella- @ B_ pEEA M F=B 5 yN

. . T : €, 7,58, =RaEnd.Y RgENd Y. 22

tion of chiral gauge anomalies in order for our effective uTapSy = RAEMOu T TEFTBEN 22

theory to make sense at the quantum level. The fact thatR is a d-dimensional Lorentz transformation
implies that

B. The induced vierbein

E F_ _AB
The vierbein can conveniently be thought of as a means of RamerRe= 17" (23

finding_the components of thespace _differentialdx“, in g4 Eq.(22) simplifies to
(four-dimensionadl local Lorentz coordinates, the result be-

ing juste,dx*. Our strategy for obtaining the vie_rbein from eﬁ%gef= = ﬂABEE%YM a,YN
the 3-brane embedding is as follows. At each pajnte will M N
lift dx* to the corresponding infinitesimal-space vector =Gund, Y1, Y

tangent to the 3-brane,

g =0y (24)
where the second equality follows from EG) and the third
equality from Eq(5). Thus Eq(8) holds. Regarding Eq24)
in matrix notation,

dyM=g,YMdx*. (17

Then we will perform a locatl-dimensional Lorentz trans-
formation atY(x), mapping the tangent hyperplane to lie in
the =0, ...,3directions. In particulardY will be mapped

to an infinitesimal vector with non-zero components only in
the « directions,e,dx*. Thee;; so obtained will be proven e can invert both sides, and then pre-multiply éand

to form a vierbein. This approach has similarities with thepost-multiply byeT to get Eq.(9).

co_nstructio'ns of Refd9,20,21. For a different approach to We have found an induced vierbein which we can use to
chiral fermions on branes see Rp4]. construct the action for chiral fermions on the 3-brane, ac-

The requisite Lorentz transformatioR, is determined as  ¢ording to Eq.(16). The full action of our effective field
follows. Among thed-dimensional Lorentz generatdiis the theory is the sum of Eq<3), (6), (16).

vector representationJ*®), the subgroup generated by the
J(@h) and theJ@ |eaves invariant the subspace spanned by
the a directions. We will drop these generators and consider
R to be of the form

e'ne=g, (25)

V. GAUGE FIXING THE REPARAMETRIZATION
INVARIANCE

Our formalism up to this point has been explicitly invari-
R(x) =expli 0,,(x)J ). (18 ant under generat-coordinate transformations. This corre-
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sponds to a large reparametrization invariance in our descrip- ZM(x)

tion of the 3-brane. If YM(x) describes a 3-brane Y™ (x)= 5 (30)
configuration and ik’ (x) is a generak-coordinate transfor- f

mation, thenYM(x’(x)) describes an identical 3-brane con-

From Egs.(5), (6), (26) we see that the dominant cou-

figuration. . ; . o m
Fortunately, it is straightforward to eliminate this redun- pllngs ofa _bU|k graviton to the SMwithout exciting thez
field) are given by

dancy, leaving us with only the physical number of 3-brane
degrees of freedom. This is done by imposing the gauge

condition, Sgraviton-SM: f d4XT§,'\//|(X)
Y#(x) —x*=0, (26)

H (X, X™=0)
uv
e G

) ] " ) where the SM stress tensor is defined in the usual four-
while thed—4 fields, Y™(x), are physical and can fluctuate. 4imensional way,

For small fluctuations about E(), Eq. (26) can always be
solved. Note that this is a complete gauge-fixing becauge if 8S5prand

satisfies Eq(26), then Tsu(x)= 59,,(X) (32

9,0="yy
Y#(x'(x))—x*#=0 ifandonlyif x'(x)=x. (27) S
This is a special case of our general expectation that a
In the quantum functional integral we need only integrated-dimensional graviton, Hyy, should couple to the
over Y(x) which satisfy Eq.(26). Furthermore, this gauge d-dimensional matter stress tens6M"N. When the matter is
condition has a trivial ghost determinant, sincefiatisfies restricted to move on a 3-brane as in the case of the SM, the
Eqg. (26) andx’(x) =x+ &(x) is aninfinitesimalcoordinate  only non-vanishing components &N are theT*”, local-
transformation, ized on the 3-brane.
It is a troublesome but necessary feature of the presence
of fermions in the effective field theorwia Eq. (16)], that

5E"(y) [Y#(X ()= X¥]=3,Y*(x) 8*(y =) dependence on the gravitons avi@ is implicit in the 6,
£=0 angles that determinB and the vierbein through Eg&18),
= 645y —x), (28) (19), (20). To determine the interaction vertices in Ed6)
g we have to determine these angles from E@) perturba-
which is field independent. tively in powers of(derivatives of H andY, as described in
the Appendix. Fortunately, for any process, computed to
VI. POWER-COUNTING, CANONICAL FIELDS, some fixed loop order, only vertices with a limited number of
AND RENORMALIZATION H andY will contribute.

We now consider the structure of our effective field
The effective field theory construction described in thetheory for the three possible casés,f~M, (i) f<M, (i)
preceding sections admits and contains various types of nof> M.
renormalizable interactions. We need to determine the (i) f~M: For power-counting purposes we can take all
power-counting dimension, and thereby the relevance, ofigher-dimension interactions involving canonical fields to
these interactions, by writing our theory in terms of canoni-pe of order a power of M, given by dimensional analysis.

cally normalized fields. In order to make sense of this non-renormalizable theory
The gravitational fields can be decomposed as usual agith an infinite number of possible ternfiim the ellipses of
[24] Egs.(3), (6), (16)] we must restrict its domain of validity to
A momenta and field fluctuatiorj@way from Eq.(2)] much
EA (X)= 8 + Hw(X) smaller thanM. For processes outside this domain, we re-
m(X) =Sy M d2-1 quire a more fundamental description of quantum gravity

and the physics that gave rise to the 3-brane. The effective

field theory procedure in the domain of validity is to work to
, (29) some fixed but arbitrary order in NI/, say O(1/M¥), bal-
Md2-1 Md-2 anced by powers of fields and momenta for the process under

consideration. We then throw away all terms in our effective

whereH?%, (X) is the canonical graviton field, and its indices Lagrangian of higher order, leaving only a finite number of
have been raised and lowered using the Minkowski metricinteractions.
We must also canonically normalize the 3-brane coordinate Now, if we only wish to doclassicalfield theory, we can
fields, Y™(x) [where we are assuming that we have elimi-simply use the truncated effective Lagrangian. In the modern
nated the reparametrization invariance according to Eceffective field theory view, this is precisely the sense in
(26)]. We see that a kinetic term quadratic¥f results from  which ordinary classical general relativity, using only the
the expansion of the leading term of E®) in powers of Einstein-Hilbert action, is a valid approximation. However
(derivatives of Y™. A canonically normalized set of fields, we can also dguantumeffective field theory. In computing
Z™M(x), can be introduced by writing Feynman diagrams we will encounter local ultraviolet diver-

L
HuntHnv  HumoHy

Gun(X)=nun+
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gences which are formally of higher order thatM¥/ We  gauge invariance when fermions are present on the 3-brane,
can simply throw them away. The remaining divergencesut this nuisance is no more severe than in ordinary four-
(finite in numbey will correspond precisely to thecountej  dimensional field theories.
terms we have retained in our effective Lagrangian, so renor-
malization can proceed in the usual way. VII. THE FORMALISM OF SPONTANEOUS SYMMETRY

(i) f<M: For power-counting purposes, E@0) sug- BREAKING
gests that the strength of non-renormalizable interactions in-
volving only canonical 3-brane fields should be taken of or- The effective field theory developed above is a particular
der a power of 1/, the scale fixed by the physics which gave case of the chiral Lagrangian approach to spontaneous
rise to the 3-brane. Equatid®9) then suggests that interac- Symmetry-breaking, and it is quite useful to understand the
tions involving extra gravitongd, are further suppressed by deep sense in which this is so. Let us recall the broad essence

powers of 1. Now our effective field theory is valid for ©Of this method. The chiral Lagrangian is a low-energy theory
momenta and field fluctuations much smaller thafor pro- for the Nambu-Goldstone modes associated to spontaneously

cesses beyond this domain, we require a more fundament [0"9” symmetries. If the full group of dynamlcal_symme-
ries isG, and the vacuum spontaneously breaks this down to

e e e s et denent f SUBJOUH, hn e Nambu-Goldsione modes o
’ y q P nder all of G, but the transformations outside Hif are re-

guantum gravity, the present general relativistic descriptioq}Ilized non-linearly. The chiral Lagrangian dynamics is

continuing to make sense for momenta all the way uMto yjoniy constrained to respect the full symmetry. If there
The effective field theory procedure is now to do a doubleyre giher low-energy fields which are not Nambu-Goldstone
expansion. We must work to some flxe(_j but arb|tra_1ry Ordermodes, but which transform linearly under they are to be
in 1/f, balanced by powers of 3-brane field fluctuations andncjuded in the chiral Lagrangian, and coupled to the
momenta for the process under consideration, and to somgambu-Goldstone modes so that the f@linvariance is re-
fixed order in 1M, balanced by powers of the graviton field spected. Although initialyG is taken to be global symme-
and momenta. For example,fifM is small enough it may be try group, it can subsequently be weakly gauged in a
a good approximation to work to some non-trivial order in straightforward manner at the level of the chiral Lagrangian.
1/f, but to zeroth order in M. In this approximation we are The beauty of this method is that it separates the question of
simply neglecting bulk gravity altogether, as we frequentlywhat the low-energy consequencesof spontaneous
do in SM applications, but we are retaining the 3-brane flucsymmetry-breaking are from thdrequently more difficult
tations in the flat bulk spacetime. Once again, to any order igjuestion of what thelynamical mechanisfor the spontane-
the double expansion, renormalization proceeds in the usu@us symmetry-breaking is.
manner once the effective Lagrangian and ultraviolet diver- In general, there are two types of symmetry that can be
gences are truncated to the finite number that are within thepontaneously broken, the familiar case of internal symme-
order to which we are working. tries and the less familiar case of spacetime symmetries. The
(iii) f>M: This is the case of a “large” 3-brane tension. general formalism for constructing the chiral Lagrangian in
In this case it is quite unnatural to expect that the higherthe former case was worked out in Rg25], while for the
dimension interactions involving 3-brane fields are supdatter case the formalism was provided in Ref9]. In this
pressed by powers of fl/even if the interactions contain no paper, spacetime symmetry is spontaneously broken, and this
explicit gravitons. The reason is that gravity couples to evSymmetry is “weakly gauged” by gravity. Let us begin by
erything and gravitational loops will dress all possible inter-turning off gravity, leavingd-dimensional Minkowski space-
actions. We can therefore expect that any higher-dimensiotime. Formally, we seEjy, = 8y, . From Eq.(2) we see that
interaction will naturally be of order powers ofM/ unless the 3-brane vacuum spontaneously breaksdtb@mensional
protected byX-coordinate orx-coordinate invariance. That Poincare symmetry by picking out a four-dimensional hyper-
is, for power counting purposes, we should first write ourplane to occupy. Specifically, this breaks the translations
effective Lagrangian in terms ofX-coordinate and transverse to the 3-brane, generatedPhy, and the Lorentz
x-coordinate invariants as we have in E@8), (6), (16). transformations that change the orientation of the 3-brane,
Then the naive coefficients of the various higher-dimensiorgenerated byJ*®. The corresponding Nambu-Goldstone
invariants should be given by powers bf determined by modes are ther™(x) and 6,,(x) (see Sec. IV B respec-
dimensional analysis. The right powers off Mill then tively. Using these modes, our effective theory, given by Eq.
emerge when the effective Lagrangian is expanded in term@) plus Eq.(16), is invariant under the fult-dimensional
of the canonical fields. Poincare symmetry, the four-dimensional Poincare subgroup
While in principle any ultraviolet regulator can be used tobeing linearly realized and the remaining symmetry transfor-
regulate the Feynman diagrams of the effective theory, it isnations being non-linearly realized. It is quite remarkable
of course preferable to use a regularization that respects dlsat the dynamics of this purely four-dimensional theory can
many of the symmetries of the theory as possible. The simrespect-dimensional Poincare invariance. The magic comes
plest procedure appears to be dimensional regularizatioliom the special couplings to the Nambu-Goto modes. In this
where one analytically continues the dimensionality of bothnon-gravitational limit our effective theory is essentially an
the 3-brane as well as that of the bulk spacetime. As is aladaptation of the general formalism of RET9]
ways the case, this regularization does not respect chiral Note that thed,, are not independent degrees of freedom
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from the Y™. This is a peculiarity of spacetime symmetry brane embedded in the bulk spacetime.

breaking and can be traced back to the fact that both trans- The effective field theory formalism may help address the
lations and Lorentz transformations share the same corguestions pursued in Rdfl6], regarding the transmission of
served current, thd-dimensional energy-momentum tensor, supersymmetry breaking between branes in the scenario of
whereas in the case of internal symmetries, each generat&ef.[7]. Even the supersymmetry-breaking mechanism need
has its own conserved current. In particular, the fact that theot be explicitly described, since its consequences can be
effective theory is invariant under the futl-dimensional pursued via the chiral Lagangian approach to supersymmetry
Poincare group implies that in addition to the usual four-breaking initiated in Ref[26].

dimensional energy-momentum tensor we have extra con-

served currentsT#™(x), ACKNOWLEDGMENTS
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Poincare group. We now become aware of another peculia@4ER40818.
ity of the spacetime symmetry breaking. Since thg are
among the broken generators, in principle they do not pro- APPENDIX
vide good quantum numbers for labelling the bulk quanta, in . .
the present case just the gravitons. Of course, far away from Here we derive a procedure for determining #g(x)
the 3-brane it does seem sensible to label bulk quanta b?at appear implicitiyvia Egs.(18), (19), (20)] in the fer-
their d-dimensional momenta, but the interactions arisingon action, Eq(16), in powers of the graviton and 3-brane
from our effective field theory between these quanta and thductuations. In  the vector representation of the
3-brane quantaviolate momentum conservatidn the m d-dlmensmnaAIBLorentz groufs(d—1,1), we can write the
=4,...d—1 directions. This is not hard to understand intu- generators)*®, A<B, in the explicit form
gglaelg.s\é\/trt}ﬁn the bulk quanta are very soft comparef] the JABIC_ [, CE(sA5E _ oA 58)
g the 3-brane tension, the 3-brane vacuum state D EYD “DYE
appears approximately as a rigid wall, extending infinitely in

the x-directions. The bulk guanta can lggain transverse
momentum t¢from) this infinitely massive wall. On closer
!nspecuon we see that the wall is not p_erfec_tly r|g|d, so that E?A(Y)%YMEfL— 62_ (A2)
impacts from bulk quanta can create distortions in the wall,

parametrized byr™(x), which can propagate along the wall 115 ¢ contains the small fluctuations around EB). We

and can also excite the SM modes. More technically, TRy 4o perturbation theory by formally expanding in powers
very soft momenta we can neglect th€& modes since they of e

are derivatively coupled and therefore difficult to excite in

the infrared. In this limit, the dominant coupling of the SM to

bulk gravity is given by Eq(31). The localization of the bulk 04a= E 0(0{2
graviton toX™=0 in coordinate space implies in momentum n=0
space that the SM model states couple equally to gravitons

(A1)

Let us define a set of small quantities in which we can
perturb, by writing,

with any value of momentum transverse to the 3-bréhg, R=gifeal " = > R,
This breakdown of globdP,,, conservation remains true even n=0
when we take into account the presence of Wemodes, (A3)

although we now have lacal version of transverse momen-

tum conservation, namely conservation of the momentunPubstituting Eq(A2) into Eq. (19) gives

“current,” Eq. (33). Note however that four-dimensional 2 —a B

momenta are well-defined global charges which are con- R.=Rge, . (A4)

served in all processes, since they correspond to unbroken ) ] ]
symmetry generators. Now, to zeroth order ire we have the obvious solution,

6{9=0,R@=]. Higher order solutions can be obtained it-

eratively using Eq(A4). Suppose that we have already de-

termined 6, ... ,6(". Then ¢("*1) is determined as fol-
This paper has described the minimal effective fieldlows. Then+1 order term of Eq(A4) reads

theory formalism needed to explore the low-energy implica-

tions of a 3-brane universe. It appears relatively straightfor- RFHa=RM2D . (A5)

ward to generalize the present framework in several direc-

tions, for example, adding non-minimal bulk fields, making Given the simple exponential series expansiorRan terms

the formalism supersymmetric, considering more compli-of 6, it is obvious thatR(™ is a computablg?(e") polyno-

cated spacetime topologies, or considering more than oneial in 6, ... 6. It follows that 6"*1) does not appear

VIIl. CONCLUSIONS
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on the right-hand side of EGA5). The left-hand side has a to be computed in terms @©, ... ,6(", with 6("*1) set to
simple linear dependence @) which can be expressed zero. By Eq.(Al), the first term of the right-hand side of Eq.

by writing (A6) is simply 6" V7. Therefore subsituting Eq(A6)
into Eq. (A5) yields
(n+1l)a_; p(n+1)q(yc)a (n+1)a
Ry He=iglc VO R (A6)
) ) . 0(n+1): R(n)a B_R(n+l)a ] A7
where the second term of the right-hand side of &®) is e Tac(Re "€, Hlpn+1_g (A7)
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