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We follow recent work and study the relativistiebrane system ind+1,1) dimensions and its connection
with a Galileo invariant system ind(1) dimensions. In particular, we solgebrane systems in (2,1), (3,1),
and (4,1) dimensions and show that their solutions solve the corresponding Galileo invariant systems in (1,1),
(2,1), and (3,1) dimensions. The results are extended to higher dimer{S605§6-282199)03208-7

PACS numbds): 11.27+d, 03.65-w, 47.10:+g

I. INTRODUCTION tions, which follows an alternate route to find solutions. We
believe that the distinct behavior @+ 1 is somehow related
The main objective of this paper is to find solutions of theto the fact that the current density loses its vectorial character
relativistic d-brane system ind+1,1) dimensions in con- in one spatial dimension. In this work instead of dealing
nection with solutions of a Galileo invariant system th1) directly with the equations of motion that follows from the
dimensions, as recently considered12]. Although we are ~ dynamical system we solve tfiebrane system ind+1,1)
mainly interested in the cases df1, 2 and 3 spatial di- dimensions. After solving the-brane system we show how
mensions, some of the results will be naturally extended t§h€ Solutions solve the corresponding Galileo invariant sys-

d>1, arbitrary. We remark that the Galileo invariant systemfjegl AltPOUQr; t\_Ne SP;:I be b(ioncerr;]gdh _ma|fng/_ W'tth tthe
is defined in @,1) dimensions, and is related to the relativ- raneé formufation of the problém, which IS ot direct inter
s . ! . : est to theoretical particle physics, we emphasize that the sub-
istic d-brane system in one higher spatial dimension,dn ( .~ " g : . )

. " 2 . ject is of broader interest since it also offers connections to
+1,1) dimensions. The relativistid-brane is an extended

. . . fluid d ics[3], t hanids®], and oth b-
object described by¢®, ¢, ... ,4%), where® is the evo- jeuéts[lygfgcg’f[ iglteqr:z? tl;n;hr;:ii;mcﬁs] and other su
lution parameter. The motion of tieebrane is governed by * the present work is organized as follows. In Sec. Il we

the Nambu;Gotc(; action indc+ 1i1) space-time dimensions, jntroduce the Galileo invariant system id,{) dimensions
with x*=(x7,x,x i andx=(x", ... x%). The Galileo in-  anq the relativistic general-brane system ind+1,1) di-
variant system was recently investigated in the W],  mensions, and we show the interesting connection between
and shows very interesting features, among them direct relahese two apparently distinct systems. We deal with specific
tion to fluid mechanic$3], to the hydrodynamical formula- issues in Sec. Ill, where we split the subject into finding
tion of quantum mechanicst,5], and to relativistic mem- solutions ofd-brane systems in (4,1), (3,1) and in (2,1)
brane[6,7] and its generalization ta-brane in @+1,1) dimensions, and showing how they solve the corresponding
dimensions. Other interesting issues are investigatgd,®,  Galileo invariant system in (3,1), (2,1), and (1,1) dimen-
in [10] and also in11-13. sions. In Sec. IV we generalize results obtained #n1,2,3

The Galileo invariant system is a Lagrangian system govto d>1, arbitrary. Comments and conclusions are briefly
erned by the pair of field§= 6(t,x) andp=p(t,x). Its dy- presented in Sec. V.
namics is first order in time, and the corresponding symplec-
tic structure shows tha#(t,x) and p(t,x) are canonically
conjugate[14]. There are two equations of motion, one is a
continuity equation for the densitp and the current] Here we introduce the Galileo invariant system and the
=pV o and the other describes first-order time evolution ofrelativistic d-brane system ind,1) and in @+1,1) dimen-

0, and depends on the presence of density-dependent intesions, respectively. The information collected below follows
actions. The connection between such dynamical system arnd accordance with Ref§1,2], and is important for the issues
the membrane and its generalization to thbrane system that compose the rest of the paper. For simplicity we split the
only appears under the very specific density-dependent intesubject into the two subsections that follow.
actionV(p)=\/p.

In Ref.[1] some solutions of the dynamical system were
presented in (1,1) dimensions and th1) ford>1. Also, in R _ _
[2] the (1,1) dimensional case was shown to be exactly solv- The Galileo invariant system is governed by the aclibn
able and solved explicitly. A lesson to be learned here is that o 1 N
this dynamical system seems to present very specific behav- |}\:f dtdx( g_p__pV 0-Vo——]|. (1)
ior in (1,1) dimensions, differently from its general behavior a2 p
in other dimensionsd,1) for d>1. This fact appears in the
former investigation$1,2] and also in the present investiga- Here we have=(x%, ... x%), and in this case we are work-

II. GENERAL CONSIDERATIONS

A. The Galileo invariant system in (d,1) dimensions
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ing in (d,1) dimensions. This system is first order in time scription is restricted to pure statgkb] and one may envis-
[14] and the field¥(t,x) andp(t,x) are canonical variables, age another route, relying on the phase-space description of

with the Poisson brackets guantum mechanidd 6], which seems appropriate to gener-
alize the above description—recall that {lpeobability) den-
{p(t,x),0(t,y)} = d(x—y). (2)  sity and the(probability) current density are the first two

velocity moments of the Wigner distributioii7]. On the
other hand, we remark that potentials like the one in(Ej)
P have been considered for instance in Ré&8]|, and appear
p 1 N . .. -
L:f dx( 06— —=pVo-Vo— _>, 3 under the assumption of local probability conservation for
at 2 p the usual density and a current density that is extended to
account for diffusion.
_ 4) Although the dynamical systefd) is manifestly invariant
under Galileo transformations, it also presddfssymmetry

i ) . algebra that can be identified with that of the Poinagnaup
There are two equations of motion. They can be obtained fof, (q+ 1,1) dimensions. To see this, i 1,1) dimensions

The Lagrangian and Hamiltonian are given by

H—Jd L Vo V0+)\

instance via we use light-cone coordinates to identify®(x*, ... x4
90 with (t, 6,x), wherex stands for the transverse coordinates
= and
ap tzi(onrxd“)=x+ (12)
Gl (6) V2
and they have the explicit form o= %(xo—xd“):x‘. (13
a0 1 A
at +§V 6-Vo= ?’ @ We now introduce the light-cone components of the Poincare
generatorP* and M#” in the usual form
J )
(9—’:+v-(pva):o. ) PL=(P~,P* P, (14)

v_ (Mt M M ni
The first equation of motion couplgsto p via the specific MES=(MT7 ML ML M. (19

density-dependent interactidf(p) =\/p. This equation de-
couplesd from p in the absence of interactions, in the limit
A—0. The second equation, E@), is a continuity equation
linking the densityp with the current density=pV 0. Here
the current density necessarily couples the two figldmd
0. In one spatial dimension this coupling is nonvectorial, and P =H= f dx¢&, (16)
we believe that this may be behind the very specific behavior
this system presents in the (1,1) dimensional case.

The hydrodynamical description of quantum mechanics P+EN=f dxp, a7
follows with the Schrdinger action

To identify the generators of the Poincaagmmetry we re-
call that the Poincargroup contains the extended Galileo
group as a subgroud9]. We write

o1 . .
|s=f dtdx(i\P*\I’—EV\If*-V\P—VS . © P'—f dxJ' (18)
= . . and
whereVg=V(t,x) +V(¥*W¥) is the potential. We use
W(t,x)=pe'? (10) M**ED=f dx(t&€—6p), (19
and the specific potential
N 1(Vp)? M“EBEJ dx(td'—px'), (20)
Vg=——= (11)
p 8 p
, _ M‘iEGizf dx(Ex — 631, (21)
to causd g to collapse td, , reproducing the two equations
of motion (7) and (8). The quantum mechanical description
of the system just introduced is then governed by the dy- ij_ i v i
namical system with the actiqd). This hydrodynamical de- Mi= | dx(x'J1=x] JY). (22
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The first set identifies generators of translations, which introThe parameters* ~, w' ~, w'* andw'! respond for dilation,
duces the Hamiltoniahl, chargeN and linear momenturR.  Galileo boost, field-dependent coordinate transformations
The second set identifies generators of rotations, which inand rotations, respectively. To see this explicitly we notice
troduces the dilatioD, Galileo boost8, G and the angular that the transformations involving only™ ~ obey
momentumM. Here we are using

Sxt=wtr"x", (3D
T ~ L
J=p—, (23 X =—w"TX. (32
X'
We usew’ " =w to see thats"x™=(+w)"x™. The finite
1 A transformations are
E= EpVﬁ-V0+ ;. (24

X =e"", (33

It is not hard to check that the generat(t§)—(22) close the 5

Poincarealgebra in ¢+ 1,1) dimensions. X =e "x . (34
It is interesting to realize that interchangeability of the

light-cone coordinates+) and () allows interchanging ~We use the light-cone identifications™=t and x~

and 6 in Eqgs.(12) and (13), and this further implies inter- = 6,,(t,x) and write the new coordinates =T andx"
changingP™ andP~ andM*' andM ~'. We interchang®* = (T, X). We then get

andP~ with p— &, which impliesH«— N andB«~ —G. One

verifies that under the interchange of light-cone coordinate t—T=e", (35
the dilation changes @3« — D, picking up the minus sign W W

in the same way the other rotation generat®rand G do. 0— 6, (t,x)=e"0(e"t,x) (36)

These properties make the identificatigh6),(17) and(19)—
(21) very natural. Also they are important for constructing Ref. [1]
the explicit transformations: We offer a simple illustration by v

o o s Let us now focus attention on the transformations intro-
considering the generator of dilation symmetry; here We uced bvwi- identifyingw ~=w'. We obtain
know that time changes according to ywe, 9 S

in agreement with the dilation transformations introduced in

+ _
t—e"t. (25) ox" =0, (37
To make the interchangeability of light-cone coordinates X" =wWX, (38)
work correctly we must change thfield according to Sxi—wix* (39)
N W W.
o(t,x)—e"o(e"t,x) (26) We see that
which is indeed the correct transformatiph]. This reason- Syt =0 (40)

ing is inspired by unpublished work0], and it helps in
building all the transformations explicitly, in particular the

(2)y = — \p 2yt - (3)y— —
apparently mysterious field-dependent coordinate transfor- OTXT=WXT oX =0,

mations introduced ifl], which now follow naturally from (4D
the standard coordinate and field transformations that appear S2xi=0 42)
in a Galileo boost. )
There is an alternate way to see the naturalness of thene finite transformations are then given by

identification of the generators of the Lorentz symmetry.

This was briefly introduced 1], and here we make the T=t, (43
argument explicit. We introduce the infinitesimal Lorentz

transformations Xi=x+wit, (44)

OXM=WH"X, . (27 and

In the (d+1,1) dimensional space-time we change to the o1
former light-cone coordinates to rewrite the infinitesimal (T, X) = 6u(t,X) + WX + S WL (45)
Lorentz transformations in the form

These transformations identify the Galileo boost—see Ref.

Sxt=wr"xT+wtx, 28 1.

B P We now examine the transformations introducedaby,
X =—w'ox WX (29 making the identificationv'* =w'. We get
SXi=wxt+wtx —wiixi, (30 Sxt=wix, (46)
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ox~ =0, 47
SX'=wx". (48)
We see that
SPxT=w?x"; 8®x*T=0, (49)
5%~ =0, (50)
5Pxi=0. (51)

The finite transformations are given by

I
T=t+w'x'+§W20W(t,x), (52
X =x"+w' 6,(t,x), (53
and also
O(T,X) = 6,,(t,x). (549

In this case we can write
.
T=t+wx+ EWZQ(T,X), (59

X'=x"+w 6(T,X) (56)

which identify the field-dependent coordinate transforma

tions introduced in Refl1].

The Galileo invariant system also engenders interestin

solutions. The equations of motiofv) and (8) possess
dilation-invariant solutions that can be written in the form

r2

S 2(d-1t”

|2 t]
p(t,r)= a)\(d—l)T. (58

o(t,r)= (57

PHYSICAL REVIEW D 59 085007

B. The (d+1,1) dimensional d-brane system

We follow Ref. [6] to introduce the relativistid-brane
system in fI+1,1) dimensions. Thel-brane system is an
extended object described by the coordinates
(% ¢, ... .Y, where ¢ is the evolution parameter and
(¢, ... .,¢% constitute thel-dimensional space that param-
etrizes thed-brane. This object is governed by the Nambu-
Goto action

1= - [ d%agt-agtyG, (59)

whereG is (— 1) times the determinant of the induced met-
ric

_ XM X,
Ip® P’

af (60)

where «,8=0,1, ... d. Here thed-brane is submersed in
the (d+ 1,1) spacetime and we use light-cone coordinates to

represent*=(xx%, ... x4, x@*y as (r,6,x), where
1 (d+1)
X :E(X +X )=, (61
1.5 (d+1)
X ZE(X —X )=46. (62

We use light-cone coordinates with the same motivation of
the former case, where we have shown that the Galileo in-
Yariant system ind,1) dimensions presents symmetry alge-
bra that can be identified with that of the Poincgreup in
(d+1,1) dimensions. This is convenient because light-cone
coordinates introduce the tranverse spatial compongnts
=(x%, ... x9% very naturally, which we shall identify di-
rectly with the spatial components of the Galileo invariant
system in €1,1) dimensions.

We identify the evolution parametep® with the light-
cone timer(7= ¢°) to write the elements dB,,z in the form

This pair of solutions appears ird{l) dimensions, ford d0  ox Ix
>1, and here we have set=/x-x, which identifies the Goo=25_-——- 7. (63
length of the vectox=(x!,x, ... x9% in d>1 spatial di-
mensions. In Ref{1] the pair of solutions fod=2 and the 90 ax  ox
corresponding field-dependent coordinate transformations in- Goi=Gipg=——— —, (64)
duced by the generators & were used to obtain other so- ag' 9T 4
lutions to the dynamical system in (2,1) dimensions. Here,
however, we explore other issues and get the pair of solu- X X
tions (57) and (58) by following an alternate route, which Gjj= _gij:a_dﬂ'aTSj' (65
relies on solving thed-brane problem in d+1,1) dimen-
sions, ford>1. We write
This Galileo invariant system can also be solved in one
spatial dimension, and some solutions were already pre- g=de(g;j) (66)
sented if1]. Also, in[2] it was shown that the (1,1) dimen-
sional system is integrable, and the explicit solutions werdo get
presented. This result is confirmed by the investigation that 20 x4
appears in Sec. Il for the 1-brane system in (2,1) dimen- X oX &
Sione. yetem in (21 G=0|2;, 5, 5, o"uu | &)
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whereg'*gy;= 5, andu; is defined as accordance with Eq(75). This fact shows that one is still
free to maker-independent reparametrizatiosy, . . . ,¢%
U 99 X X ©9) — (¢, ... ,¢"% of thed-brane. Different choices of the mo-
Coggt 0T g mentumlII are related to different choices efindependent
parametrization and then we can chodeat convenience.
The equations of motion for thétbrane can be written in the For instance, the choidd=—cw(¢?%, . .. ,¢%) envolving a
form [6] constant times a specified function af*, . . . ,¢% is known
[6] as the orthonormal gauge. We can illustrate this point by
X p ., 0X going fromII(¢%, ... ,¢% to II=—c, constant, for sim-
ar ﬁ+ &_(ﬁl (69 plicity. In this case the above Eg&.6) and(77) become
2
00 1 96 X i(iggij ﬁ) 79
97 oz PPt UEZ (70) PRI Py
LI B —( u'), (71 ’;_9 ;( ZX jx 129) (80)
ar (9¢' II m99 apl] a9’ P T o
g g We now change parametrization by allowing
——=—=(Ilu), (72 =
J I ox ox d
T LSRR 81
ap ) 9’

wherep andII are canonical momenta conjugatextand 6,

respectively. The motion is constrained to obey with a similar change ind(r,¢%, ... ,¢%, in accordance

) 20 with the constraint equatiov8). We use

X

p— +II—=0.
¢’ '

This condition appears as a consequence of gauge symmetry,

which comes from the freedom to parametrize thierane. as the choice to get rid of the factorc?/in Egs. (79) and

In the light-cone coordinates with the time identification (80). For simplicity we then considdi = — 1, which further

7=¢° we can furth_er investigat_e the ph_y_sica! contents of thqmplles p=dx/d. In this case the equations of motion sim-
d-brane after settings;=0. This condition identifies the plify to the equations

(light-cone time dependence of the parametrization and al-
lows rewriting of the equations of motion in the simpler form

(73
(82

oX

p=—H(9—T, (74
aH—O 75
Iy (75
and
00 1/dx ox 1 26
or 2\ a1 ar Hzg (78
azx 1 91 . ox -
P I g\ TI 99" apl |

Instead of Eq(73) the constrained motion now obeys

960 ax  ox
ip T g

which reproduces Ed68) for u;=

(78)

the momentumI=II(¢?, ... 4%, now r-independent in

0 in a self-consistent way.
The constraint Eq(.78) is independent of the explicit form of

P d ( | ax) .
a2 9’ 99 apl]’

30_1 IX IX 84
o 2\ar a7 9 ®4

The constraint equatio(i78) was first solved 7] in the
d=2 case, the membrane case and it can also be solved in
the generald-brane case. We follow Ref2] and here the
main step concerns inverting=x(7,¢?, ... ,¢% to get¢'
= ¢'(t,x), after renamingr as timet. Here we have

J J
=~ 4+V9.V

Jr ot (85)

and the constraint equatidi@8) is solved by

oX

E’ZV&

(86)
In this case Eq(84) becomes

a6 1
— 4= VH Va—zg (87

ot
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and reproduces Ed7) if and only if we further define

N
>

g= e (88)
On the other hand Eq83) can be rewritten as
#x 149 ©9)
a7 2 ox
The proof follows after recognizing that
i 1 iip...ig jjz...jdaxkz oxts
a9 _(d—l)!e € (9¢i2“.a¢id
oxke  gxkd
X e —. (90
0—»¢J2 07¢Jd

In this case we can use

axke  gxka gxK

iz da— .. =ckk.kafy (92)
5¢lz (;d,Jd 5¢l 9
to get to
XK 1 axke  gxka
i — T lia. . igegkka .. kg e —
99 gl (d=1)! € € a2 a¢id\/§

(92)
and now we can write, recalling the smoothness xof

=x(7,¢% ... ,¢% and (ant) symmetry of the Levi-Civita
symbol,

P ( ’ ax")

Ers ag)
1 ax<e  gxkd] g '
_ lio...igokks ...k e — |
d=11 €2 de"2 d(;d,iz ﬁ(j)id M(fg)_
1 ax<e  gxk g 1 ax
== ip...iggkky. . kg — —
(d-1) € ¢ 'z gpldl ox (\@_(wi
_ 1 Elkz---kdeka"'kd\/a i(\/a) (93
(d=1)! X! I
We use the identity
1 Ky .. kg Ko .. .Kge si]
me'z---delz---dza'l (94)
to obtain
d | ax*\ 1 49 (©5)
A’ 99 a2 gxk

PHYSICAL REVIEW D 59 085007

which ends the proof. We then use E@85) and (86) to
write

Px 9

ar? JT

—Vaa Vo-V(Veo
=V +Vo-V(Vo)

=V

70 ive.ve 96
S TaVove. (96)

We use this together with E¢89) to obtain, discarding an
unimportant constant,

d 1 1
—+—V0-V0=§g. (97)

This equation also reproduces E@) for g defined by Eq.
(89).

The Galileo invariant systerfil) contains another equa-
tion of motion. It is Eq.(8), the continuity equation. It is
obtained from the relativistid-brane system as follows. We
have, by definition,

&_g= iii . (99
ar 99 579

Also
99 a9

We use these results together with

L9 o g a(ax' &x')

V= |
9 97907 5k gxk or P Il
a9 oxK
CTaxk ggl ot
d 96
ax® ax
to obtain
ag 5
E+V0-Vg=29v 0 (101

which reproduces the continuity equation after chooging
=2\/p?, as given by Eq(88). The motion of thed-brane in
(d+1,1) dimensions is then governed by the equations of
motion that describe the dynamical systéty in (d,1) di-
mensions. We remark that the above proof only works under
the definition introduced in Eq(88), with the density-
dependent interaction described by the very specific potential

V(p)=\lp.
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There is an alternate way to make tiidrane system in the subject into the three subsections that follow, which deal
(d+1,1) dimensions reproduce the Galileo invariant systenwith d=1,2,3 separately.

in (d,1) dimensions. It follows as in Ref8], for instance,
but now ind+1 spatial dimensions. It relies on reformulat-
ing the description of thel-brane according to the identifi-
cations[21]

X" = %(x% xIh=t=¢° (102
X = %(Xo—xd“)zﬁ (103

and also
d=x, i=12,...4d. (104)

This is interesting since now= 6(t,x) is directly identified
with the 6 field of the Galileo invariant system ind(1)
dimensions. To see this explictly we recall from EgQ) that
the Lagrangian density can be written as

L"d: \/6 (105)
and now
a0
G=ZE+V0~V0. (106
The momentum conjugate t®is given by
1
= (107
a0
2—+Vo-Vo
at
and this gives the Hamiltonian density
1 1
H=—=—-1IVH-Vo. (108

2IT 2

We use this Hamiltonian density to write the first-order La-

grangian density, after defining=— p/\2\. We discard a

total time derivative and ignore an unimportant multiplica-

tive constant to obtain

dp 1 N
L= 0———pV0-V0—;.

i (109

This is exactly the Lagrangian density that follows from the

action (1) that defines the Galileo invariant system uhX)
dimensions.

Ill. SOME BRANE SOLUTIONS

Let us now deal with solutions ofl-brane systems in

(2,1), (3,1), and (4,1) dimensions, and with the relations
between such solutions and solutions of the Galileo invariant
system in one, two, and three spatial dimensions. We split

A. Solutions for d=1

Here we consider the relativistic 1-brane system in (2,1)
dimensions. We parametrize the system withand the uni-
dimensional transverse coordinate is given oy x(7,¢).
Also, the matrixg;;=(dx/d¢')-(dx/d¢’) and its determi-
nantg now become the very same thing, explicitly

2
. (110

ax

9= 34

Also, gg’—1 and the equation of motion (83) becomes

X I°x

=0 111
It d¢? (119
The other equation&/8) and (84) give
ae_ax X
39 97 06
X 2+ ax\?
ar] "\ |

We can solve Eq(11]) directly. It is a wave equation and
presents the general solution

(112

90 1
a2,

(113

X(r,9)=f () +f_(7— ). (114

The solution is written in terms of two arbitrary functions
f., and here we have

ox

E_Zfﬂr(r+¢)+f’,(7—¢) (1195

and

ox

% (119

=1 (rt )1 (1= 9),

where we are using the notatidri(z)=(df/dz). We use
these expressions to rewrite Eq$12) and(113 as

00

=L+ S+ (7= )], (117

a0 . 2_rfr )

ﬁ—[ Wt ) = [fl(r=¢)] (118
in order to get

1/ 9 14 e 2

27 T 9a o(r,d)=[fi(7+&)]% (119
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1( d a) . )
297 a0 o(1,¢)=[f_(7—P)]".
(120

These results allow writingd(7,¢)=0,(7+¢)+6_(7

—¢), and the general solution fat can be written in the

form

H(T,¢)=J(T+¢)[f;(z)]zdz+ F "1t (2)]2dz

PHYSICAL REVIEW D 59 085007

LA A 130
7t T Plax] 179 (130
a0+1a92_>\ 131
2] T (13D

which are the equations of motidi) and (8) in the (1,1)
dimensional case.
Furthermore, we can use E{.27) to write

(121) 20
The results given by Eq$114) and(121) constitute the pair ERRE (132
of general solutiong(7,¢) and 6(r,¢) of the 1-brane sys-

tem. Also, the current density(x,t) = p(d6/dx) can be written as

To connect the 1-brane system to the Galileo invariant
system in (1,1) dimensions we follow the general investiga-

!

tions introduced in Sec. Il. We start by rewritirfif 7, ¢) as
6(t,x). Since we already have=x(r,¢) in Eq. (114), we
write ¢=h(7,x) and changer—t to get to

x=f, (t+h(t,x))+f_(t—h(t,x)) (122
in a way such that
(1+h)f’, +(1—h)f" =0 (123
and
h,f\ —h,f" =1. (1249
We also get
ht:@:_f’grf’, (125
ot flL—fL
and
hX=@= ! : (126)
X fL—f"

These results allow writing

a(t,x)zf[Hh(x’t)][f;(z)]Zderf[t_h(x't)][f',(z)jzdz.

(127

On the other hand, we use E@8) to get
[ ox 2_ 2\ 128
g= ib) - ? (128

and this leads to the result
2\
p(t,x)== y2r . (129
flL—f"

The above field configurationg(t,x) and p(t,x) obey the
pair of equations

- (133

fr+f
J(t,x) =+ 2h—
fl—f

It is now interesting to see that if we skt or f_ to zero,

that is, if we solve Eq(112) with only one of the two inde-
pendent solutions we get to the result that bétAnd p are
time-independent: We see thaits time-independent directly
from Eq.(132); from Eq. (133 we get that the current den-
sity is constant, and so the continuity equation demands the
density to be time-independent. We remark that the equa-
tions of motion(130 and(131) impose that the current den-
sity is a specific constant

J(t,X)=* 2\ (134

when one considers time-independent configurations. This
means that the particular solutiox(7,¢)="f,(7+ @) or
x(7,¢)=f_(7— ¢) to the Eq.(111) reproduces all the static
solutions of the dynamical system governed by the adtlon
in (1,1) dimensions.

For the (1,1) dimensional system the energy of static con-
figurationsd= 6(x) andp=p(x) can be written in the form

2\
Ezf dx +—}
p
do 1
== \/2)\f dX&"'EJ dxp
do9_\/2>\)2
Nt

dx p

1
P

dg
dx

X

(135

and so is minimized to the value

Em== V2\[6(x=%)— 6(x=—)]

for field configurations that obey

do  \2n

e

dx "~ p

(136)

(137)

which are the same solutions with constant and uniform cur-
rent density already obtained. Here we notice that the energy
can also be written as
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which gives
f pr( ) —ZJ dx— (138
JR
. - . g= RZ( )
This shows that the kinetic and potential parts of the energy ¢
contribute equally, as usually happens with Bogomol'nyi-
Prasad-SommerfielBPS solutions[22]. This means that Ve also have
the system described by Eq430 and(131) is the bosonic ggti=R?

portion of some supersymmetric system, and that the 1-brane
solutions with ¢+ ¢) or (7— ¢) are the solutions that gen- 12_
erate all the BPS solutions of the corresponding dynamical 997=99"=0,
system described by the acti¢b) in (1,1) dimensions. JR\2

ggzz—( )

B. Solutions for d=2 I

(149

(150

(151)

(152

Let us consider the (3,1) dimensional problem. This is the We use the equation of motid83) to get from the equa-

case with d=2, the membrane case wherap(¢?) tions forx andy the same equation fdR=R(r,¢)

=(¢,¢) andx=(X,y). This problem was already considered

in [6—8]. Here we have PR R dR\?
—= +R| — (153
ax\2 [ay\? a7 <9¢>2 I
911:(&_) +(5_) (139 . o . .
¢ ¢ This equation is solved by separating variables. Here we get
X dx dy dy b
912=921= ;5 5 +£ e R(7,¢)= 21’2; (154)
(140
The other equation&/8) and (84) give
R B
922=| 7 - 2
Y Y ¢
0(r.d)=—— (155
and we get a
( ox ay  ax &y) 142 We use Eqs(144) and (145 to write
g dp Y dp IX I +ay ay (aR)(&R) (156
We can writeg={x,y}2, where gra¢ oo |or]\od
IX Xy dy _
X dy  ax gy el 15
{x,y}= 9b a0 9 b (143 It dp Ot Y (59
is the Poisson bracket with respect to the membrane coordf:S0, from Eq.(154) we get
nates ¢, ). We remark that such identification is only pos-
sible in the membrane case, for2. ﬁz 21/2f (159
In Ref. [1] one finds solutions of the Galileo invariant arT 2’
system in the planard=2) case, which present dilation and
circular symmetries. For this reason we choose the circular R 1
ansatz £=2 - (159
x=R(7,¢)cod¢), 144 and now Eq(155) allows us to check that
In this case we get o N i)’
IR\ 2 36
911:(%) , (149 &—l/fzo (162
012=021=0, (147) in explicit agreement with the constraint equatit#8), as
expected.
9.,=R?, (148 We notice thaR?=x2+y? and this allows us to obtain
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1
¢?=5 (0 +y?) (162
and so we can write
1
O(txy) == o (X*+y?). (163
We also have
2
g=SR? (164
T
and now Eq.(88) allows us to obtain
VAlt]
p(t,Xy)= ——5=. (165
JOE+y?)

This pair of solutions identifies the circularly symmetric, di-
lation invariant solutions presented [it] for the Galileo in-
variant system in (2,1) dimensions.

We remark that the above solutioh54) is a special case
of the solution found in[8], which gives another pair of

solution to the Galileo invariant system, a pair that presents

PHYSICAL REVIEW D 59 085007

IR\ 2
9922:(1_X2)R2(%> : (174
R* [4R\?
99%= 1—%(%) : (179

We use Eq(83) to obtain from the equations for, y, andz
the same equation f&R=R(7,¢)
JR

2R3<—>2
ap)

This equation forR(7,¢) can also be solved by separating
variables. We see that

R IR
>

— 176
-

12
R<7,¢>=31"‘( %) (177

explicitly solves Eq.(176). This result can be used in Egs.
(78) and (84) to give

no dilation invariance anymore. This fact was already known

to the author of Ref[8].

C. Solutions ford=3

Let us now consider the 3-brane system in (4,1) dimen-

sions. We parametrize this 3-brane withp'(¢?, %)

=(¢,x,¥) in spacex=(x,y,z). We choose the spherical
ansatz

x=R(7,¢)V1-x* cogy), (166
y=R(r,$)V1=x*sin(y), (167)
z=R(7,¢)x. (168
In this case we use E@65) to obtain
IR\ ?
gllz(ﬁ) , (169
R2
922= -2 (170
933=R*(1-x?), (171
with g;;=0 for i #]. This implies that
dR\?
g=R4(%) . (172

We then get g/ =0 fori #j, and for the diagonal elements
we have
11_ R4

99 73

1 .,
_ _ Talr?”
o(r.d)=—73 > (179
We use the sphericainsatzto write
IX Ix +o"y ay +¢9z iz JR\ [ dR 179
ard¢ drdd drddp \ar/\ag)’ (179
X &x+ay ay+az az_o 180
grag arantaray O (150
IX X +<9y ay +az iz 181
ardxy drdy Irdx (181
Also, from Eq.(177) we get
R 1 [T\
_ _ _ Tqu4 _ .
Ml (182
R 1 r\ Y21
__ TqliA -
762 ¢> 3 (183
We use Eq(178) to see that
a0 1 1
oY o
ap 4 2 (1849

which shows explicit agreement with the constraint equation
(78).

To obtainé in terms of the variablest(x,y,z) we notice
that the sphericahnsatzallows us to write

(185

¢
X2 +y?+ 22=R2=31/2;.

We use this result in Eq178) to obtain
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1o, ., The results fom for d=2 and 3 are given by Eq§155 and
o(t,x,y,z)=— X TyT+z ) (186  (179. They can be rewritten as
The density is obtained with Eq&8) and (172). It reads 2 11 2
’ ) ora)=— 2= 3 2?)" (9=2), (o9
5 1| T 2T T
p(t,X,y,2) =2 \| g\ (187)
3 \/X2+y2+22 1 b 1 b 1212
— _TQlrX _ T T all4 T
and together with Eq(186) forms a pair of solutions of the 0(7.¢) 43 2 27 3 ( 7')

Galileo invariant systerl) in (3,1) dimensions. This pair of
solutions is exactly the dilation invariant solutions found in (d=3). (196)
[1] for the Galileo invariant system iml=3, with the

Qensity—dependent_ interactidf(p) =N/p. They are the solu- They and the result given by E(L91) for R(r, &) allow the
tions (57) and (58) in the cased=3. following generalization:

IV. GENERALIZATION 1 R2

The results obtained in Sec. Il for tlebrane system in
d=2 and 3 can be naturally extended to dimensions higher
than d=3. However, instead of generalizing the former which is valid under the restrictiod>1. For the density we
sphericalansatzto arbitrary dimension we follow another use Eqs(88) and(194) to get
route, which concerns generalizing the results we have al-
ready obtained in the former Sec. Ill. We do this by first 2\ | 7]

p(r.d)=1 (-1

writing Egs. (153 and (176) together R (198
‘;2_732 RzZ;;JFR( g)z (d=2), (188 These results can be rewritten as
1 r?
L SO L S
ar? p? d '
(189 pito0= \ 2a-1) (200

These results suggest the general behavior

2R 2R JR\2 after changing £, ¢)— (t,x) and usingr=+X-x. They are
— =R2M-1D__ 4 (d—1)R2@-D-1 | (190 the results(57) and (58), found in Ref.[1] for the Galileo
T SO s e
aT dp I invariant system(1) in (d,1) dimensions, fod>1.

There are at least two other interesting issues related to

This equation is nonlinear in all but thie=1 case, where it £q (190). The first one is that it can be obtained from the
reproduces the wave equation already considered in theagrangian density

former Sec. Ill.
Fortunately, we can solve E¢L90) explicitly in the gen- ) ,
erald>1 case. We have the solution _ }(ﬁ) _ERZ(dD(ﬁ) (200)
5\ U1 2\ a7 2 203
R(7,¢)= ( dl’z;) . (191
which can be rewritten in the form
On the other hand, we also have the results
&R 2 _ E af
ngz(ﬁ) (d=2), (162 £= 56", RgR, (202
JR\? i
9= R“(—) (d=3). (193 where we are using that
d
; Jd d
They suggest the general behavior 9,= (5%) (203
g:RZ(d—l) ﬁ ? (194)
ap) and
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Go=1, (204)
go=g=o, (209
gllz _ RZ(d—l), (206)

in the effective (1,1) dimensional space-timed¢). Here we
introduce the determinaigi=det(G *#)=—R?@~ 1. In gen-
eral it depends on the pointr(¢), but in thed=1 case it
becomes constant, independent of both ¢hand 7 coordi-
nates of the bidimensional space-time.
The second issue related to E&j90) concerns the case of

consideringr-independent sphericahsatz that is, of reduc-
ing R(7,¢) to R(¢). In this case Eq(190 becomes

RIR, d—1 (d—R)Z—o (207)
dep? (d=Digg) =©

A direct consequence d® being 7-independent is that

d
Do,

- (208)

Furthermore, from Eqg194) and(207) we obtain

9 _ 0 209
e (209
and sog is constant. From Eq84) we then get

1
6=59r (210

which is independent of and so compatible with the con-
straint equation78). An explicit illustration is given after
solving Eq.(207). Here we see that

R(¢)= g (211

solves Eq(207). Also we use Eq(194) to get
g=—. (212

This result and Eq(210 allow us to write

1
0= ——r. 213
Y (213

Equations(211) and (213 give another solution for the

PHYSICAL REVIEW D 59 085007

dR
dé

1
= aFel—d. (214

We notice that the above solutié®11) solves the first-order
equation(214). We postpone to a future work further inves-
tigations on this and on other related issues.

V. COMMENTS AND CONCLUSIONS

In this paper we have found solutions for the relativistic
d-brane system ind+1,1) dimensions fod=1 and ford
>1. Thed-brane system presents spherically symmetric so-
lutions ind=2,3 that are directly related to the spherically
symmetric solutions introduced [d] for the Galileo invari-
ant system in (2,1) and in (3,1) dimensions. These results
were generalized to higher spatial dimensions, and so we
obtained solutions of the relativistid-brane system ind
+1,1) dimensions that reproduce the soluti¢sig and(58)
of the Galileo invariant systerfl) in (d,1) dimensions, for
d>1.

These solutions are very different from the solutions one
finds in (1,1) dimensions. Id=1 the Galileo invariant sys-
tem was solved exactly. The general behavior follows as in
[2], which solved the equations of motion following the
route of linearization of mechanics of fluidi8]. In Ref.[2]
one also finds infinity sets of conserved quantities, which are
proper to systems engendering general integrability. The be-
havior of general integrability id=1 shows up in the
present investigations via the presence of the wave equation,
which is linear and is solved exactly by standard method.
The 1-brane route to solutions to the Galileo invariant system
in (1,1) dimensions is very interesting since it allows obtain-
ing the static solutions and identifying how the BPS solu-
tions of that dynamical system appear in the 1-brane system.

The investigations done in the present paper introduce
further issues, for instance the problem of searching for other
solutions. In connection with Refl] one can ask about the
possibility of transforming solutions to new ones, using the
field-dependent coordinate transformations generate by
in Eq. (21). In the hydrodynamical formulation of quantum
mechanics we can ask about the possibility of not only in-
troducing diffusion[18] but also going beyond the descrip-
tion of pure state§l5]. Other interesting investigatiofg3]
have been done, generalizing not only the way the fluid me-
chanical system interacts but also how the kinematical con-
tribution may modify its dynamical behavior.

We can also reformulate the light-cone description of the
d-brane in the way that leads to the Born-Infeld equation
[24], as presented in Refg?,8], for instance. As one knows,
the Born-Infeld equation arises after a nonlinear modification
of standard electrodynamics, and presents interesting proper-
ties[25] and connections to fluid mechanics and other issues,
as the ones investigated recently in R¢f6,27. Another
interesting issue concerns the fact tbdiranes are extended

d-brane ind>1 spatial dimensions. We remark that solu- objects that can be related to matrix theory and as such may

tions to the above second-order equati{@d7) can also be
obtained via the following first-order equation:

be of interest for instance in the context of holomorphic con-
figurations recently considered in RE28].
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