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Galileo invariant system and the motion of relativistic d-branes
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We follow recent work and study the relativisticd-brane system in (d11,1) dimensions and its connection
with a Galileo invariant system in (d,1) dimensions. In particular, we solved-brane systems in (2,1), (3,1),
and (4,1) dimensions and show that their solutions solve the corresponding Galileo invariant systems in (1,1),
(2,1), and (3,1) dimensions. The results are extended to higher dimensions.@S0556-2821~99!03208-7#
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I. INTRODUCTION

The main objective of this paper is to find solutions of t
relativistic d-brane system in (d11,1) dimensions in con-
nection with solutions of a Galileo invariant system in (d,1)
dimensions, as recently considered in@1,2#. Although we are
mainly interested in the cases ofd51, 2 and 3 spatial di-
mensions, some of the results will be naturally extended
d.1, arbitrary. We remark that the Galileo invariant syste
is defined in (d,1) dimensions, and is related to the relat
istic d-brane system in one higher spatial dimension, ind
11,1) dimensions. The relativisticd-brane is an extende
object described by (f0,f1, . . . ,fd), wheref0 is the evo-
lution parameter. The motion of thed-brane is governed by
the Nambu-Goto action in (d11,1) space-time dimensions
with xm5(x0,x,xd11) andx5(x1, . . . ,xd). The Galileo in-
variant system was recently investigated in the work@1,2#,
and shows very interesting features, among them direct r
tion to fluid mechanics@3#, to the hydrodynamical formula
tion of quantum mechanics@4,5#, and to relativistic mem-
brane @6,7# and its generalization tod-brane in (d11,1)
dimensions. Other interesting issues are investigated in@8,9#,
in @10# and also in@11–13#.

The Galileo invariant system is a Lagrangian system g
erned by the pair of fieldsu5u(t,x) andr5r(t,x). Its dy-
namics is first order in time, and the corresponding symp
tic structure shows thatu(t,x) and r(t,x) are canonically
conjugate@14#. There are two equations of motion, one is
continuity equation for the densityr and the currentJ
5r¹u and the other describes first-order time evolution
u, and depends on the presence of density-dependent i
actions. The connection between such dynamical system
the membrane and its generalization to thed-brane system
only appears under the very specific density-dependent in
actionV(r)5l/r.

In Ref. @1# some solutions of the dynamical system we
presented in (1,1) dimensions and in (d,1) for d.1. Also, in
@2# the (1,1) dimensional case was shown to be exactly s
able and solved explicitly. A lesson to be learned here is
this dynamical system seems to present very specific be
ior in (1,1) dimensions, differently from its general behav
in other dimensions (d,1) for d.1. This fact appears in the
former investigations@1,2# and also in the present investig
0556-2821/99/59~8!/085007~13!/$15.00 59 0850
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tions, which follows an alternate route to find solutions. W
believe that the distinct behavior ind51 is somehow related
to the fact that the current density loses its vectorial chara
in one spatial dimension. In this work instead of deali
directly with the equations of motion that follows from th
dynamical system we solve thed-brane system in (d11,1)
dimensions. After solving thed-brane system we show how
the solutions solve the corresponding Galileo invariant s
tem. Although we shall be concerned mainly with th
d-brane formulation of the problem, which is of direct inte
est to theoretical particle physics, we emphasize that the
ject is of broader interest since it also offers connections
fluid dynamics@3#, quantum mechanics@5#, and other sub-
jects @10–13# of interest to physics.

The present work is organized as follows. In Sec. II w
introduce the Galileo invariant system in (d,1) dimensions
and the relativistic generald-brane system in (d11,1) di-
mensions, and we show the interesting connection betw
these two apparently distinct systems. We deal with spec
issues in Sec. III, where we split the subject into findi
solutions of d-brane systems in (4,1), (3,1) and in (2,1
dimensions, and showing how they solve the correspond
Galileo invariant system in (3,1), (2,1), and (1,1) dime
sions. In Sec. IV we generalize results obtained ind51,2,3
to d.1, arbitrary. Comments and conclusions are brie
presented in Sec. V.

II. GENERAL CONSIDERATIONS

Here we introduce the Galileo invariant system and
relativistic d-brane system in (d,1) and in (d11,1) dimen-
sions, respectively. The information collected below follow
in accordance with Refs.@1,2#, and is important for the issue
that compose the rest of the paper. For simplicity we split
subject into the two subsections that follow.

A. The Galileo invariant system in „d,1… dimensions

The Galileo invariant system is governed by the action@1#

I l5E dtdxS u
]r

]t
2

1

2
r¹u•¹u2

l

r D . ~1!

Here we havex5(x1, . . . ,xd), and in this case we are work
©1999 The American Physical Society07-1
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ing in (d,1) dimensions. This system is first order in tim
@14# and the fieldsu(t,x) andr(t,x) are canonical variables
with the Poisson brackets

$r~ t,x!,u~ t,y!%5d~x2y!. ~2!

The Lagrangian and Hamiltonian are given by

L5E dxS u
]r

]t
2

1

2
r¹u•¹u2

l

r D , ~3!

H5E dxS 1

2
r¹u•¹u1

l

r D . ~4!

There are two equations of motion. They can be obtained
instance via

]u

]t
5$u,H%, ~5!

]r

]t
5$r,H% ~6!

and they have the explicit form

]u

]t
1

1

2
¹u•¹u5

l

r2
, ~7!

]r

]t
1¹•~r¹u!50. ~8!

The first equation of motion couplesu to r via the specific
density-dependent interactionV(r)5l/r. This equation de-
couplesu from r in the absence of interactions, in the lim
l→0. The second equation, Eq.~8!, is a continuity equation
linking the densityr with the current densityJ5r¹u. Here
the current density necessarily couples the two fieldsr and
u. In one spatial dimension this coupling is nonvectorial, a
we believe that this may be behind the very specific beha
this system presents in the (1,1) dimensional case.

The hydrodynamical description of quantum mechan
follows with the Schro¨dinger action

I S5E dt dxS iC* Ċ2
1

2
¹C* •¹C2VSD , ~9!

whereVS5V(t,x)1V̄(C* C) is the potential. We use

C~ t,x!5Areiu ~10!

and the specific potential

VS5
l

r
2

1

8

~¹r!2

r
~11!

to causeI S to collapse toI l , reproducing the two equation
of motion ~7! and ~8!. The quantum mechanical descriptio
of the system just introduced is then governed by the
namical system with the action~1!. This hydrodynamical de-
08500
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scription is restricted to pure states@15# and one may envis-
age another route, relying on the phase-space descriptio
quantum mechanics@16#, which seems appropriate to gene
alize the above description—recall that the~probability! den-
sity and the~probability! current density are the first two
velocity moments of the Wigner distribution@17#. On the
other hand, we remark that potentials like the one in Eq.~11!
have been considered for instance in Ref.@18#, and appear
under the assumption of local probability conservation
the usual density and a current density that is extende
account for diffusion.

Although the dynamical system~1! is manifestly invariant
under Galileo transformations, it also presents@1# symmetry
algebra that can be identified with that of the Poincare´ group
in (d11,1) dimensions. To see this, in (d11,1) dimensions
we use light-cone coordinates to identify (x0,x1, . . . ,xd11)
with (t,u,x), wherex stands for the transverse coordinat
and

t[
1

A2
~x01xd11!5x1, ~12!

u[
1

A2
~x02xd11!5x2. ~13!

We now introduce the light-cone components of the Poinc´
generatorsPm andMmn in the usual form

Pm5~P2,P1,Pi !, ~14!

Mmn5~M 12,M 1 i ,M 2 i ,Mi j !. ~15!

To identify the generators of the Poincare´ symmetry we re-
call that the Poincare´ group contains the extended Galile
group as a subgroup@19#. We write

P2[H5E dxE, ~16!

P1[N5E dxr, ~17!

Pi5E dxJi ~18!

and

M 12[D5E dx~ tE2ur!, ~19!

M 1 i[Bi5E dx~ tJi2rxi !, ~20!

M 2 i[Gi5E dx~Exi2uJi !, ~21!

Mi j 5E dx~xiJj2xj Ji !. ~22!
7-2
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The first set identifies generators of translations, which in
duces the HamiltonianH, chargeN and linear momentumP.
The second set identifies generators of rotations, which
troduces the dilationD, Galileo boostB, G and the angular
momentumM . Here we are using

Ji5r
]u

]xi
, ~23!

E5
1

2
r¹u•¹u1

l

r
. ~24!

It is not hard to check that the generators~16!–~22! close the
Poincare´ algebra in (d11,1) dimensions.

It is interesting to realize that interchangeability of t
light-cone coordinates (1) and (2) allows interchangingt
and u in Eqs. ~12! and ~13!, and this further implies inter-
changingP1 andP2 andM 1 i andM 2 i . We interchangeP1

andP2 with r↔E, which impliesH↔N andB↔2G. One
verifies that under the interchange of light-cone coordin
the dilation changes asD↔2D, picking up the minus sign
in the same way the other rotation generatorsB and G do.
These properties make the identifications~16!,~17! and~19!–
~21! very natural. Also they are important for constructin
the explicit transformations: We offer a simple illustration
considering the generator of dilation symmetry; here
know that time changes according to

t→ewt. ~25!

To make the interchangeability of light-cone coordina
work correctly we must change theu field according to

u~ t,x!→ewu~ewt,x! ~26!

which is indeed the correct transformation@1#. This reason-
ing is inspired by unpublished work@20#, and it helps in
building all the transformations explicitly, in particular th
apparently mysterious field-dependent coordinate trans
mations introduced in@1#, which now follow naturally from
the standard coordinate and field transformations that ap
in a Galileo boost.

There is an alternate way to see the naturalness of
identification of the generators of the Lorentz symmet
This was briefly introduced in@1#, and here we make th
argument explicit. We introduce the infinitesimal Loren
transformations

dxm5wmnxn . ~27!

In the (d11,1) dimensional space-time we change to
former light-cone coordinates to rewrite the infinitesim
Lorentz transformations in the form

dx15w12x11wi 1xi , ~28!

dx252w12x21wi 2xi , ~29!

dxi5wi 2x11wi 1x22wi j xj . ~30!
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The parametersw12, wi 2, wi 1 andwi j respond for dilation,
Galileo boost, field-dependent coordinate transformati
and rotations, respectively. To see this explicitly we not
that the transformations involving onlyw12 obey

dx15w12x1, ~31!

dx252w12x2. ~32!

We usew125w to see thatd (n)x65(6w)nx6. The finite
transformations are

x̃15ewx1, ~33!

x̃25e2w x2. ~34!

We use the light-cone identificationsx15t and x2

5uw(t,x) and write the new coordinates asx̃15T and x̃2

5u(T,X). We then get

t→T5ewt, ~35!

u→uw~ t,x!5ewu~ewt,x! ~36!

in agreement with the dilation transformations introduced
Ref. @1#.

Let us now focus attention on the transformations int
duced bywi 2, identifying wi 25wi . We obtain

dx150, ~37!

dx25wixi , ~38!

dxi5wix1. ~39!

We see that

d~2!x150, ~40!

d~2!x25w2x1; d~3!x250,
~41!

d~2!xi50. ~42!

The finite transformations are then given by

T5t, ~43!

Xi5xi1wit, ~44!

and

u~T,X!5uw~ t,x!1wixi1
1

2
w2t. ~45!

These transformations identify the Galileo boost—see R
@1#.

We now examine the transformations introduced bywi 1,
making the identificationwi 15wi . We get

dx15wixi , ~46!
7-3
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dx250, ~47!

dxi5wix2. ~48!

We see that

d~2!x15w2x2; d~3!x150, ~49!

d~2!x250, ~50!

d~2!xi50. ~51!

The finite transformations are given by

T5t1wixi1
1

2
w2uw~ t,x!, ~52!

Xi5xi1wiuw~ t,x!, ~53!

and also

u~T,X!5uw~ t,x!. ~54!

In this case we can write

T5t1wixi1
1

2
w2u~T,X!, ~55!

Xi5xi1wiu~T,X! ~56!

which identify the field-dependent coordinate transform
tions introduced in Ref.@1#.

The Galileo invariant system also engenders interes
solutions. The equations of motion~7! and ~8! possess
dilation-invariant solutions that can be written in the form

u~ t,r !52
r 2

2~d21!t
, ~57!

r~ t,r !5A2

d
l~d21!

utu
r

. ~58!

This pair of solutions appears in (d,1) dimensions, ford
.1, and here we have setr 5Ax•x, which identifies the
length of the vectorx5(x1,x2, . . . ,xd) in d.1 spatial di-
mensions. In Ref.@1# the pair of solutions ford52 and the
corresponding field-dependent coordinate transformations
duced by the generators ofG were used to obtain other so
lutions to the dynamical system in (2,1) dimensions. He
however, we explore other issues and get the pair of s
tions ~57! and ~58! by following an alternate route, which
relies on solving thed-brane problem in (d11,1) dimen-
sions, ford.1.

This Galileo invariant system can also be solved in o
spatial dimension, and some solutions were already
sented in@1#. Also, in @2# it was shown that the (1,1) dimen
sional system is integrable, and the explicit solutions w
presented. This result is confirmed by the investigation t
appears in Sec. III for the 1-brane system in (2,1) dim
sions.
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B. The „d11,1… dimensional d-brane system

We follow Ref. @6# to introduce the relativisticd-brane
system in (d11,1) dimensions. Thed-brane system is an
extended object described by the coordina
(f0,f1, . . . ,fd), wheref0 is the evolution parameter an
(f1, . . . ,fd) constitute thed-dimensional space that param
etrizes thed-brane. This object is governed by the Namb
Goto action

I d52E df0df1
•••dfdAG, ~59!

whereG is (21)d times the determinant of the induced me
ric

Gab[
]xm

]fa

]xm

]fb
, ~60!

where a,b50,1, . . . ,d. Here thed-brane is submersed in
the (d11,1) spacetime and we use light-cone coordinate
representxm5(x0,x1, . . . ,xd,x(d11)) as (t,u,x), where

x15
1

A2
~x01x~d11!![t, ~61!

x25
1

A2
~x02x~d11!![u. ~62!

We use light-cone coordinates with the same motivation
the former case, where we have shown that the Galileo
variant system in (d,1) dimensions presents symmetry alg
bra that can be identified with that of the Poincare´ group in
(d11,1) dimensions. This is convenient because light-co
coordinates introduce the tranverse spatial componenx
5(x1, . . . ,xd) very naturally, which we shall identify di-
rectly with the spatial components of the Galileo invaria
system in (d,1) dimensions.

We identify the evolution parameterf0 with the light-
cone timet(t[f0) to write the elements ofGab in the form

G0052
]u

]t
2

]x

]t
•

]x

]t
, ~63!

G0i5Gi05
]u

]f i
2

]x

]t
•

]x

]f i
, ~64!

Gi j 52gi j 5
]x

]f i
•

]x

]f j
. ~65!

We write

g[det~gi j ! ~66!

to get

G5gS 2
]u

]t
2

]x

]t
•

]x

]t
1gi j uiuj D , ~67!
7-4
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wheregikgk j5d j
i andui is defined as

ui[2
]u

]f i
1

]x

]t
•

]x

]f i
. ~68!

The equations of motion for thed-brane can be written in the
form @6#

]x

]t
52

p

P
1ui

]x

]f i
, ~69!

]u

]t
5

1

2P2
~p•p1g!1ui

]u

]f i
, ~70!

]p

]t
52

]

]f iS 1

P
ggi j

]x

]f j D 1
]

]f i
~pui !, ~71!

]P

]t
5

]

]f i
~Pui !, ~72!

wherep andP are canonical momenta conjugate tox andu,
respectively. The motion is constrained to obey

p•
]x

]f i
1P

]u

]f i
50. ~73!

This condition appears as a consequence of gauge symm
which comes from the freedom to parametrize thed-brane.

In the light-cone coordinates with the time identificatio
t[f0 we can further investigate the physical contents of
d-brane after settingui50. This condition identifies the
~light-cone! time dependence of the parametrization and
lows rewriting of the equations of motion in the simpler for

p52P
]x

]t
, ~74!

]P

]t
50 ~75!

and

]u

]t
5

1

2S ]x

]t
•

]x

]t
1

1

P2
gD , ~76!

]2x

]t2
5

1

P

]

]f iS 1

P
ggi j

]x

]f j D . ~77!

Instead of Eq.~73! the constrained motion now obeys

]u

]f i
5

]x

]t
•

]x

]f i
~78!

which reproduces Eq.~68! for ui50 in a self-consistent way
The constraint Eq.~78! is independent of the explicit form o
the momentumP5P(f1, . . . ,fd), now t-independent in
08500
try,

e

l-

accordance with Eq.~75!. This fact shows that one is stil
free to maket-independent reparametrization (f1, . . . ,fd)
→(f̄1, . . . ,f̄d) of thed-brane. Different choices of the mo
mentumP are related to different choices oft-independent
parametrization and then we can chooseP at convenience.
For instance, the choiceP52cw(f1, . . . ,fd) envolving a
constantc times a specified function off1, . . . ,fd is known
@6# as the orthonormal gauge. We can illustrate this point
going from P(f1, . . . ,fd) to P52c, constant, for sim-
plicity. In this case the above Eqs.~76! and ~77! become

]2x

]t2
5

]

]f iS 1

c2
ggi j

]x

]f j D , ~79!

]u

]t
5

1

2S ]x

]t
•

]x

]t
1

1

c2
gD . ~80!

We now change parametrization by allowing

]x

]f i
→

]x

]f̄ j

]f̄ j

]f i
~81!

with a similar change inu(t,f1, . . . ,fd), in accordance
with the constraint equation~78!. We use

]f̄ i

]f j
5cd j

i ~82!

as the choice to get rid of the factor 1/c2 in Eqs. ~79! and
~80!. For simplicity we then considerP521, which further
implies p5]x/]t. In this case the equations of motion sim
plify to the equations

]2x

]t2
5

]

]f iS ggi j
]x

]f j D , ~83!

]u

]t
5

1

2S ]x

]t
•

]x

]t
1gD . ~84!

The constraint equation~78! was first solved@7# in the
d52 case, the membrane case and it can also be solve
the generald-brane case. We follow Ref.@2# and here the
main step concerns invertingx5x(t,f1, . . . ,fd) to getf i

5f i(t,x), after renamingt as timet. Here we have

]

]t
5

]

]t
1¹u•¹ ~85!

and the constraint equation~78! is solved by

]x

]t
5¹u. ~86!

In this case Eq.~84! becomes

]u

]t
1

1

2
¹u•¹u5

1

2
g ~87!
7-5
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and reproduces Eq.~7! if and only if we further define

g[
2l

r2
. ~88!

On the other hand Eq.~83! can be rewritten as

]2xi

]t2
5

1

2

]g

]xi
. ~89!

The proof follows after recognizing that

ggi j 5
1

~d21!!
e i i 2 . . . i de j j 2 . . . j d

]xk2

]f i 2
•••

]xkd

]f i d

3
]xk2

]f j 2
•••

]xkd

]f j d
. ~90!

In this case we can use

e j j 2 . . . j d
]xk2

]f j 2
•••

]xkd

]f j d

]xk

]f j
[ekk2 . . . kdAg ~91!

to get to

ggi j
]xk

]f j
5

1

~d21!!
e i i 2 . . . i dekk2 . . . kd

]xk2

]f i 2
•••

]xkd

]f i d
Ag

~92!

and now we can write, recalling the smoothness ofx
5x(t,f1, . . . ,fd) and ~anti! symmetry of the Levi-Civita
symbol,

]

]f iS ggi j
]xk

]f j D
5

1

~d21!!
e i i 2 . . . i dekk2 . . . kd

]xk2

]f i 2
•••

]xkd

]f i d
F ]

]f i
~Ag!G

5
1

~d21!!
e i i 2 . . . i dekk2 . . . kd

]xk2

]f i 2
•••

]xkd

]f i d
F ]

]xl
~Ag!G ]xl

]f i

5
1

~d21!!
e lk2 . . . kdekk2 . . . kdAgF ]

]xl
~Ag!G . ~93!

We use the identity

1

~d21!!
e ik2 . . . kde jk2 . . . kd[d i j ~94!

to obtain

]

]f iS ggi j
]xk

]f j D 5
1

2

]g

]xk
~95!
08500
which ends the proof. We then use Eqs.~85! and ~86! to
write

]2x

]t2
5

]

]t
¹u

5¹
]u

]t
1¹u•¹~¹u!

5¹S ]u

]t
1

1

2
¹u•¹u D . ~96!

We use this together with Eq.~89! to obtain, discarding an
unimportant constant,

]u

]t
1

1

2
¹u•¹u5

1

2
g. ~97!

This equation also reproduces Eq.~7! for g defined by Eq.
~88!.

The Galileo invariant system~1! contains another equa
tion of motion. It is Eq.~8!, the continuity equation. It is
obtained from the relativisticd-brane system as follows. W
have, by definition,

]g

]t
[ggi j

]

]t
gi j . ~98!

Also

]g

]t
5

]g

]t
1¹u•¹g. ~99!

We use these results together with

gi j
]

]t
gi j 5

]f i

]xk

]f j

]xk

]

]tS ]xl

]f i

]xl

]f j D
52

]f j

]xk

]

]f j

]xk

]t

52
]

]xk

]u

]xk
~100!

to obtain

]g

]t
1¹u•¹g52g¹2u ~101!

which reproduces the continuity equation after choosingg
52l/r2, as given by Eq.~88!. The motion of thed-brane in
(d11,1) dimensions is then governed by the equations
motion that describe the dynamical system~1! in (d,1) di-
mensions. We remark that the above proof only works un
the definition introduced in Eq.~88!, with the density-
dependent interaction described by the very specific poten
V(r)5l/r.
7-6
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There is an alternate way to make thed-brane system in
(d11,1) dimensions reproduce the Galileo invariant syst
in (d,1) dimensions. It follows as in Ref.@8#, for instance,
but now ind11 spatial dimensions. It relies on reformula
ing the description of thed-brane according to the identifi
cations@21#

x15
1

A2
~x01xd11![t5f0 ~102!

x25
1

A2
~x02xd11![u ~103!

and also

f i[xi , i 51,2, . . . ,d. ~104!

This is interesting since nowu5u(t,x) is directly identified
with the u field of the Galileo invariant system in (d,1)
dimensions. To see this explictly we recall from Eq.~59! that
the Lagrangian density can be written as

Ld5AG ~105!

and now

G52
]u

]t
1¹u•¹u. ~106!

The momentum conjugate tou is given by

P5
1

A2
]u

]t
1¹u•¹u

~107!

and this gives the Hamiltonian density

H52
1

2P
2

1

2
P¹u•¹u. ~108!

We use this Hamiltonian density to write the first-order L
grangian density, after definingP[2r/A2l. We discard a
total time derivative and ignore an unimportant multiplic
tive constant to obtain

L5u
]r

]t
2

1

2
r¹u•¹u2

l

r
. ~109!

This is exactly the Lagrangian density that follows from t
action ~1! that defines the Galileo invariant system in (d,1)
dimensions.

III. SOME BRANE SOLUTIONS

Let us now deal with solutions ofd-brane systems in
(2,1), (3,1), and (4,1) dimensions, and with the relatio
between such solutions and solutions of the Galileo invar
system in one, two, and three spatial dimensions. We s
08500
-

s
nt
lit

the subject into the three subsections that follow, which d
with d51,2,3 separately.

A. Solutions for d51

Here we consider the relativistic 1-brane system in (2
dimensions. We parametrize the system withf, and the uni-
dimensional transverse coordinate is given byx5x(t,f).
Also, the matrixgi j 5(]x/]f i)•(]x/]f j ) and its determi-
nantg now become the very same thing, explicitly

g5S ]x

]f D 2

. ~110!

Also, ggi j→1 and the equation of motion (83) becomes

]2x

]t2
2

]2x

]f2
50. ~111!

The other equations~78! and ~84! give

]u

]f
5

]x

]t

]x

]f
, ~112!

]u

]t
5

1

2F S ]x

]t D 2

1S ]x

]f D 2G .
~113!

We can solve Eq.~111! directly. It is a wave equation and
presents the general solution

x~t,f!5 f 1~t1f!1 f 2~t2f!. ~114!

The solution is written in terms of two arbitrary function
f 6 , and here we have

]x

]t
5 f 18 ~t1f!1 f 28 ~t2f! ~115!

and

]x

]f
5 f 18 ~t1f!2 f 28 ~t2f!, ~116!

where we are using the notationf 8(z)5(] f /]z). We use
these expressions to rewrite Eqs.~112! and ~113! as

]u

]t
5@ f 18 ~t1f!#21@ f 28 ~t2f!#2, ~117!

]u

]f
5@ f 18 ~t1f!#22@ f 28 ~t2f!#2 ~118!

in order to get

1

2S ]

]t
1

]

]f D u~t,f!5@ f 18 ~t1f!#2, ~119!
7-7
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1

2S ]

]t
2

]

]f D u~t,f!5@ f 28 ~t2f!#2.

~120!

These results allow writingu(t,f)5u1(t1f)1u2(t
2f), and the general solution foru can be written in the
form

u~t,f!5E ~t1f!

@ f 18 ~z!#2dz1E ~t2f!

@ f 28 ~z!#2dz.

~121!

The results given by Eqs.~114! and~121! constitute the pair
of general solutionsx(t,f) andu(t,f) of the 1-brane sys-
tem.

To connect the 1-brane system to the Galileo invari
system in (1,1) dimensions we follow the general investi
tions introduced in Sec. II. We start by rewritingu(t,f) as
u(t,x). Since we already havex5x(t,f) in Eq. ~114!, we
write f5h(t,x) and changet→t to get to

x[ f 1„t1h~ t,x!…1 f 2„t2h~ t,x!… ~122!

in a way such that

~11ht! f 18 1~12ht! f 28 50 ~123!

and

hxf 18 2hxf 28 51. ~124!

We also get

ht5
]h

]t
52

f 18 1 f 28

f 18 2 f 28
~125!

and

hx5
]h

]x
5

1

f 18 2 f 28
. ~126!

These results allow writing

u~ t,x!5E [ t1h~x,t !]
@ f 18 ~z!#2dz1E [ t2h~x,t !]

@ f 28 ~z!#2dz.

~127!

On the other hand, we use Eq.~88! to get

g5S ]x

]f D 2

5
2l

r2
~128!

and this leads to the result

r~ t,x!56
A2l

f 18 2 f 28
. ~129!

The above field configurationsu(t,x) and r(t,x) obey the
pair of equations
08500
t
-

]r

]t
1

]

]xFrS ]u

]xD G50, ~130!

]u

]t
1

1

2S ]u

]xD 2

5
l

r2
~131!

which are the equations of motion~7! and ~8! in the (1,1)
dimensional case.

Furthermore, we can use Eq.~127! to write

]u

]t
522 f 18 f 28 . ~132!

Also, the current densityJ(x,t)5r(]u/]x) can be written as

J~ t,x!56A2l
f 18 1 f 28

f 18 2 f 28
. ~133!

It is now interesting to see that if we setf 1 or f 2 to zero,
that is, if we solve Eq.~111! with only one of the two inde-
pendent solutions we get to the result that bothu andr are
time-independent: We see thatu is time-independent directly
from Eq. ~132!; from Eq. ~133! we get that the current den
sity is constant, and so the continuity equation demands
density to be time-independent. We remark that the eq
tions of motion~130! and~131! impose that the current den
sity is a specific constant

J~ t,x!56A2l ~134!

when one considers time-independent configurations. T
means that the particular solutionx(t,f)5 f 1(t1f) or
x(t,f)5 f 2(t2f) to the Eq.~111! reproduces all the static
solutions of the dynamical system governed by the action~1!
in (1,1) dimensions.

For the (1,1) dimensional system the energy of static c
figurationsu5u(x) andr5r(x) can be written in the form

E5E dxF1

2
rS du

dxD
2

1
l

r G
56A2lE dx

du

dx
1

1

2E dxr

3S du

dx
7

A2l

r D 2

~135!

and so is minimized to the value

EM56A2l@u~x5`!2u~x52`!# ~136!

for field configurations that obey

du

dx
56

A2l

r
~137!

which are the same solutions with constant and uniform c
rent density already obtained. Here we notice that the ene
can also be written as
7-8
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EM5E dxrS du

dxD
2

52E dx
l

r
. ~138!

This shows that the kinetic and potential parts of the ene
contribute equally, as usually happens with Bogomol’n
Prasad-Sommerfield~BPS! solutions @22#. This means that
the system described by Eqs.~130! and~131! is the bosonic
portion of some supersymmetric system, and that the 1-b
solutions with (t1f) or (t2f) are the solutions that gen
erate all the BPS solutions of the corresponding dynam
system described by the action~1! in (1,1) dimensions.

B. Solutions for d52

Let us consider the (3,1) dimensional problem. This is
case with d52, the membrane case where (f1,f2)
5(f,c) andx5(x,y). This problem was already considere
in @6–8#. Here we have

g115S ]x

]f D 2

1S ]y

]f D 2

, ~139!

g125g215
]x

]f

]x

]c
1

]y

]f

]y

]c
,

~140!

g225S ]x

]c D 2

1S ]y

]c D 2

~141!

and we get

g5S ]x

]f

]y

]c
2

]x

]c

]y

]f D 2

. ~142!

We can writeg5$x,y%2, where

$x,y%5
]x

]f

]y

]c
2

]x

]c

]y

]f
~143!

is the Poisson bracket with respect to the membrane coo
nates (f,c). We remark that such identification is only po
sible in the membrane case, ford52.

In Ref. @1# one finds solutions of the Galileo invarian
system in the planar (d52) case, which present dilation an
circular symmetries. For this reason we choose the circ
ansatz

x5R~t,f!cos~c!, ~144!

y5R~t,f!sin~c!. ~145!

In this case we get

g115S ]R

]f D 2

, ~146!

g125g2150, ~147!

g225R2, ~148!
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g5R2S ]R

]f D 2

. ~149!

We also have

gg115R2, ~150!

gg125gg2150, ~151!

gg225S ]R

]f D 2

. ~152!

We use the equation of motion~83! to get from the equa-
tions for x andy the same equation forR5R(t,f)

]2R

]t2
5R2

]2R

]f2
1RS ]R

]f D 2

. ~153!

This equation is solved by separating variables. Here we

R~t,f!521/2
f

t
. ~154!

The other equations~78! and ~84! give

u~t,f!52
f2

t3
. ~155!

We use Eqs.~144! and ~145! to write

]x

]t

]x

]f
1

]y

]t

]y

]f
5S ]R

]t D S ]R

]f D , ~156!

]x

]t

]x

]c
1

]y

]t

]y

]c
50. ~157!

Also, from Eq.~154! we get

]R

]t
5221/2

f

t2
, ~158!

]R

]f
521/2

1

t
~159!

and now Eq.~155! allows us to check that

]u

]f
522

f

t3
5S ]R

]t D S ]R

]f D , ~160!

]u

]c
50 ~161!

in explicit agreement with the constraint equation~78!, as
expected.

We notice thatR25x21y2 and this allows us to obtain
7-9
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f25
1

2
t2~x21y2! ~162!

and so we can write

u~ t,x,y!52
1

2t
~x21y2!. ~163!

We also have

g5
2

t2
R2 ~164!

and now Eq.~88! allows us to obtain

r~ t,x,y!5
Alutu

A~x21y2!
. ~165!

This pair of solutions identifies the circularly symmetric, d
lation invariant solutions presented in@1# for the Galileo in-
variant system in (2,1) dimensions.

We remark that the above solution~154! is a special case
of the solution found in@8#, which gives another pair o
solution to the Galileo invariant system, a pair that prese
no dilation invariance anymore. This fact was already kno
to the author of Ref.@8#.

C. Solutions for d53

Let us now consider the 3-brane system in (4,1) dim
sions. We parametrize this 3-brane with (f1,f2,f3)
5(f,x,c) in spacex5(x,y,z). We choose the spherica
ansatz

x5R~t,f!A12x2 cos~c!, ~166!

y5R~t,f!A12x2 sin~c!, ~167!

z5R~t,f!x. ~168!

In this case we use Eq.~65! to obtain

g115S ]R

]f D 2

, ~169!

g225
R2

12x2
, ~170!

g335R2~12x2!, ~171!

with gi j 50 for iÞ j . This implies that

g5R4S ]R

]f D 2

. ~172!

We then getg gi j 50 for iÞ j , and for the diagonal element
we have

gg115R4, ~173!
08500
ts
n

-

gg225~12x2!R2S ]R

]f D 2

, ~174!

gg335
R2

12x2S ]R

]f D 2

. ~175!

We use Eq.~83! to obtain from the equations forx, y, andz
the same equation forR5R(t,f)

]2R

]t2
5R4

]2R

]f2
12R3S ]R

]f D 2

. ~176!

This equation forR(t,f) can also be solved by separatin
variables. We see that

R~t,f!531/4S f

t D 1/2

~177!

explicitly solves Eq.~176!. This result can be used in Eq
~78! and ~84! to give

u~t,f!52
1

4
31/2

f

t2
. ~178!

We use the sphericalansatzto write

]x

]t

]x

]f
1

]y

]t

]y

]f
1

]z

]t

]z

]f
5S ]R

]t D S ]R

]f D , ~179!

]x

]t

]x

]c
1

]y

]t

]y

]c
1

]z

]t

]z

]c
50, ~180!

]x

]t

]x

]x
1

]y

]t

]y

]x
1

]z

]t

]z

]x
50. ~181!

Also, from Eq.~177! we get

]R

]t
52

1

2
31/4S t

f D 1/2 f

t2
, ~182!

]R

]f
5

1

2
31/4S t

f D 1/21

t
. ~183!

We use Eq.~178! to see that

]u

]f
52

1

4
31/2

1

t2
~184!

which shows explicit agreement with the constraint equat
~78!.

To obtainu in terms of the variables (t,x,y,z) we notice
that the sphericalansatzallows us to write

x21y21z25R2531/2
f

t
. ~185!

We use this result in Eq.~178! to obtain
7-10
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u~ t,x,y,z!52
1

4t
~x21y21z2!. ~186!

The density is obtained with Eqs.~88! and ~172!. It reads

r~ t,x,y,z!52A2

3
l

utu

Ax21y21z2
~187!

and together with Eq.~186! forms a pair of solutions of the
Galileo invariant system~1! in ~3,1! dimensions. This pair of
solutions is exactly the dilation invariant solutions found
@1# for the Galileo invariant system ind53, with the
density-dependent interactionV(r)5l/r. They are the solu-
tions ~57! and ~58! in the cased53.

IV. GENERALIZATION

The results obtained in Sec. III for thed-brane system in
d52 and 3 can be naturally extended to dimensions hig
than d53. However, instead of generalizing the form
sphericalansatzto arbitrary dimension we follow anothe
route, which concerns generalizing the results we have
ready obtained in the former Sec. III. We do this by fi
writing Eqs.~153! and ~176! together

]2R

]t2
5R2

]2R

]f2
1RS ]R

]f D 2

~d52!, ~188!

]2R

]t2
5R4

]2R

]f2
12R3S ]R

]f D 2

~d53!.

~189!

These results suggest the general behavior

]2R

]t2
5R2~d21!

]2R

]f2
1~d21!R2~d21!21S ]R

]f D 2

. ~190!

This equation is nonlinear in all but thed51 case, where it
reproduces the wave equation already considered in
former Sec. III.

Fortunately, we can solve Eq.~190! explicitly in the gen-
eral d.1 case. We have the solution

R~t,f!5S d1/2
f

t D 1/~d21!

. ~191!

On the other hand, we also have the results

g5R2S ]R

]f D 2

~d52!, ~192!

g5R4S ]R

]f D 2

~d53!. ~193!

They suggest the general behavior

g5R2~d21!S ]R

]f D 2

. ~194!
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The results foru for d52 and 3 are given by Eqs.~155! and
~178!. They can be rewritten as

u~t,f!52
f2

t3
52

1

2

1

t S 21/2
f

t D 2

~d52!, ~195!

u~t,f!52
1

4
31/2

f

t2
52

1

2

1

2tF31/4S f

t D 1/2G2

~d53!. ~196!

They and the result given by Eq.~191! for R(t,f) allow the
following generalization:

u~t,f!52
1

2

R2

~d21!t
~197!

which is valid under the restrictiond.1. For the density we
use Eqs.~88! and ~194! to get

r~t,f!5A2l

d
~d21!

utu
R

. ~198!

These results can be rewritten as

u~ t,x!52
1

2

r 2

~d21!t
, ~199!

r~ t,x!5A2l

d
~d21!

utu
r

~200!

after changing (t,f)→(t,x) and usingr 5Ax•x. They are
the results~57! and ~58!, found in Ref.@1# for the Galileo
invariant system~1! in (d,1) dimensions, ford.1.

There are at least two other interesting issues relate
Eq. ~190!. The first one is that it can be obtained from th
Lagrangian density

L5
1

2S ]R

]t D 2

2
1

2
R2~d21!S ]R

]f D 2

~201!

which can be rewritten in the form

L5
1

2
G ab]aR]bR, ~202!

where we are using that

]a5S ]

]t
,

]

]f D ~203!

and
7-11
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G 0051, ~204!

G 015G 1050, ~205!

G 1152R2~d21!, ~206!

in the effective (1,1) dimensional space-time (t,f). Here we
introduce the determinantG5det(G ab)52R2(d21). In gen-
eral it depends on the point (t,f), but in thed51 case it
becomes constant, independent of both thef andt coordi-
nates of the bidimensional space-time.

The second issue related to Eq.~190! concerns the case o
consideringt-independent sphericalansatz, that is, of reduc-
ing R(t,f) to R(f). In this case Eq.~190! becomes

R
d2R

df2
1~d21!S dR

df D 2

50. ~207!

A direct consequence ofR beingt-independent is that

]g

]t
50. ~208!

Furthermore, from Eqs.~194! and ~207! we obtain

]g

]f
50 ~209!

and sog is constant. From Eq.~84! we then get

u5
1

2
gt ~210!

which is independent off and so compatible with the con
straint equation~78!. An explicit illustration is given after
solving Eq.~207!. Here we see that

R~f!5f1/d ~211!

solves Eq.~207!. Also we use Eq.~194! to get

g5
1

d2
. ~212!

This result and Eq.~210! allow us to write

u5
1

2d2
t. ~213!

Equations ~211! and ~213! give another solution for the
d-brane ind.1 spatial dimensions. We remark that sol
tions to the above second-order equation~207! can also be
obtained via the following first-order equation:
08500
dR

df
5

1

d
R12d. ~214!

We notice that the above solution~211! solves the first-order
equation~214!. We postpone to a future work further inve
tigations on this and on other related issues.

V. COMMENTS AND CONCLUSIONS

In this paper we have found solutions for the relativis
d-brane system in (d11,1) dimensions ford51 and ford
.1. Thed-brane system presents spherically symmetric
lutions in d52,3 that are directly related to the spherica
symmetric solutions introduced in@1# for the Galileo invari-
ant system in (2,1) and in (3,1) dimensions. These res
were generalized to higher spatial dimensions, and so
obtained solutions of the relativisticd-brane system in (d
11,1) dimensions that reproduce the solutions~57! and~58!
of the Galileo invariant system~1! in (d,1) dimensions, for
d.1.

These solutions are very different from the solutions o
finds in (1,1) dimensions. Ind51 the Galileo invariant sys-
tem was solved exactly. The general behavior follows as
@2#, which solved the equations of motion following th
route of linearization of mechanics of fluids@3#. In Ref. @2#
one also finds infinity sets of conserved quantities, which
proper to systems engendering general integrability. The
havior of general integrability ind51 shows up in the
present investigations via the presence of the wave equa
which is linear and is solved exactly by standard meth
The 1-brane route to solutions to the Galileo invariant syst
in (1,1) dimensions is very interesting since it allows obta
ing the static solutions and identifying how the BPS so
tions of that dynamical system appear in the 1-brane syst

The investigations done in the present paper introd
further issues, for instance the problem of searching for ot
solutions. In connection with Ref.@1# one can ask about th
possibility of transforming solutions to new ones, using t
field-dependent coordinate transformations generated bG
in Eq. ~21!. In the hydrodynamical formulation of quantum
mechanics we can ask about the possibility of not only
troducing diffusion@18# but also going beyond the descrip
tion of pure states@15#. Other interesting investigations@23#
have been done, generalizing not only the way the fluid m
chanical system interacts but also how the kinematical c
tribution may modify its dynamical behavior.

We can also reformulate the light-cone description of
d-brane in the way that leads to the Born-Infeld equat
@24#, as presented in Refs.@7,8#, for instance. As one knows
the Born-Infeld equation arises after a nonlinear modificat
of standard electrodynamics, and presents interesting pro
ties@25# and connections to fluid mechanics and other issu
as the ones investigated recently in Refs.@26,27#. Another
interesting issue concerns the fact thatd-branes are extende
objects that can be related to matrix theory and as such
be of interest for instance in the context of holomorphic co
figurations recently considered in Ref.@28#.
7-12
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