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Auxiliary field method as a powerful tool for nonperturbative study

Taro Kashiwa*
Department of Physics, Kyushu University, Fukuoka 812-8581, Japan

~Received 17 September 1998; published 5 March 1999!

The auxiliary field method, defined through introducing an auxiliary~also called the Hubbard-Stratonovich
or mean! field, and utilizing a loop expansion, gives an excellent result for a wide range of coupling constants.
The analysis is done for the anharmonic oscillator and the double-well cases in zero~a simple integral! and one
~quantum mechanics! dimension. It is shown that the result becomes increasingly accurate by taking a higher
loop into account in the weak coupling region; however, such is not the case in the strong coupling region. The
two-loop approximation is shown to be still insufficient for the double-well case in quantum mechanics.
@S0556-2821~99!02706-X#

PACS number~s!: 11.15.Tk, 02.70.2c
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I. INTRODUCTION

In most actual situations, path integral expressions ha
non-Gaussian form so that some approximation is alw
needed to evaluate them. Apart from perturbative treatme
such as a weak~strong! coupling expansion, which can onl
describe a small~large! coupling region, other approache
have been used to handle a wider coupling range such a
well-known variational method@1# which has been applied
successfully to the polaron problem@2#. This method, com-
bined with an optimization technique, has been discusse
Ref. @3#. A numerical estimation is also possible once e
pressed in the path integral form; for instance, compu
simulations produce fruitful results such as in lattice QC
@4#, but current technology does not yet permit imposi
certain symmetries onto the lattice; chiral symmetry is
well-known example@5# of such a symmetry. An advantag
of path integration, contrary to the operator formalism, is t
we can easily switch from one variable to another by me
of a simple change of variables, which opens up new po
bilities. The auxiliary field is considered as one of these va
ables, and was introduced into the model by Gross
Neveu@6#.

The Gross-Neveu model is a two-dimensional fo
fermion model inspired by the work of Nambu and Jon
Lasinio @7#:

L5c̄ i ]”c1
g2

2
~ c̄c!2, ~1.1!

wherec is anN component. Gross and Neveu@6# proposed
an equivalent Lagrangian:

L85c̄ i ]”c2
s2

2
2gc̄cs. ~1.2!

Heres has no kinetic term and on elimination by using t
equation of motion one recovers the original Lagrangian,
~1.1!. In this sense,s is an auxiliary field.
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One could paraphrase the above in terms of path integ
@8# as follows: the partition function~in an imaginary tem-
perature! for the Lagrangian, Eq.~1.1!, reads

Z[E DcDc̄ expF i E d2xS c̄ i ]”c1
g2

2
~ c̄c!2D G . ~1.3!

Introducing the auxiliary fields in terms of the Gaussian
integrals, such that

15E Ds expF2 i E d2x
1

2
~s1gc̄c!2G , ~1.4!

and inserting into Eq.~1.3! we find

Z5E dsDcDc̄expS i E d2xL8 D
5E dsDcDc̄ expF i E d2xS c̄ i ]”c2

s2

2
2gc̄cs D G .

~1.5!

Similar techniques are also utilized nowadays for a bo
quartic interaction@9# instead of the four-fermion interaction
The nomenclature fors field is, therefore, various: the mea
field @10# and the Hubbard-Stratonovich field@11# in solid
state physics.

In practice, we define the partition function~which can be
obtained throught° i t )

Z~T![E dsDcDc̄

3expF2E
0

T

dtE dxS c̄]”c1
s2

2
1gc̄cs D G ,

~1.6!

where the antiperiodic boundary condition for the fermi fie
c(T,x)52c(0,x), should be understood. We then integra
out the fermion field to find
©1999 The American Physical Society02-1
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Z~T!5E ds expF2E d2x
s2

2
1N ln det~]”1gs!G

[E dse2S[s] ,

S@s#[E d2x
s2

2
2N ln det~]”1gs!. ~1.7!

Since we look for a vacuum withT°`, we should find a
constant solutions0 in the equation of motion

dS

ds~x!
U

s0

50, ~1.8!

which gives the gap equation

s052Ng2E d2k

~2p!2

s0

k21~gs0!2 . ~1.9!

If s0 is nonzero, then dynamically symmetry breaking o
curs. Indeed, the formula is legitimated if the number
fermion species becomes infinite,N→`. However, this is
not the case for most of the physical situations:N is finite or
even 1. We ask the question as to how accurate is it w
N51, which is one of the motivations of this work.

The second purpose of this paper is as follows: perfo
ing the WKB approximation in the double-well potential w
have to pursue instanton calculations@12#, which are cum-
bersome as well as tedious. A simpler approach would b
use the auxiliary field method. We clarify these issues w
examples of the quartic coupling of bosonic field.

The paper is organized as follows. In Sec. II a sim
model calculation is performed for the integral expressi
Here we realize the importance of the loop expansion w
respect to the auxiliary field and find a more accurate re
by taking a higher loop correction into account when t
couplingg is small. However, wheng becomes larger, highe
loops do not always improve the situation. We then proc
to the quantum mechanical model in Sec. III, where we co
pare our results with those obtained numerically, and fi
that the two-loop correction gives a 4% error for 1023,g2

,103 except for O(1021),g2,O(1) in the double-well
case. The final section is devoted to a discussion.

II. SIMPLE „ZERO-DIMENSIONAL … MODEL

The starting point is

I[E
2`

` dx

A2p
expF2

v2

2
x22

g2

8
x4G . ~2.1!

The integral is expressed as

I 5Apuv2u
4g2 ev4/4g2H I21/4S v4

4g2D2e~v2!I1/4S v4

4g2D J ,

~2.2!
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where

e~x!5H 11, x.0,

21, x,0,

and Ia(x) is the modified Bessel function. There are tw
cases depending on the sign ofv2.

Case~i!: v2.0 ~zero-dimensional anharmonic oscillator!.
In this case,

I 5A v2

2pg2ev4/4g2
K1/4S v4

4g2D ;
g2→0

11O~g2!, ~2.3!

where Ka(x) is the modified Bessel function.
Case~ii !: v2,0 ~zero-dimensional double well!. In this

case, in the limitg2→0,

I ;
g2→0

A2ev4/2g2
. ~2.4!

Here it should be noted thatg250 is an essential singularity
that is to say, the double-well case is non Borel summab

Now introduce an auxiliary field such that

15E
2`

` dy

A2p
expF2

1

2S y1 ig
x2

2 D 2G ~2.5!

so as to cancel thex4 term when inserted into Eq.~2.1!,
yielding

I 5E
2`

` dx

A2p

dy

A2p
expF2

1

2
~v21 igy!x22

y2

2 G
5E

2`

` dy

A2p
~v21 igy!21/2e2y2/2

5E
2`

` dy

A2p
expF2

y2

2
2

1

2
ln~v21 igy!G . ~2.6!

We rewrite the final expression as

I 5E
2`

` dy

A2p
expF2

S~y!

a GU
a51

,

S~y![
1

2
ln~v21 igy!1

y2

2
, ~2.7!

where we have introduced a parametera, which must be set
to unity at the end. We calla the loop-expansion paramete
Next, denote the solution ofS8(y)50 asy0;

S8~y!5y1
ig

2~v21 igy!
50, ~2.8!

which can be expressed as

V 22v25
g2

2V 2
, ~2.9!
2-2
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whereV 2 should obey

V 2[v21 igy0.0, ~2.10!

since the Gaussian integral ofx, Eq. ~2.6!, must exist. Then
use the saddle point method aroundy0 to give

I 5E
2`

` dy

A2p
expF2

S~y0!

a
2

S~2!~y0!

2a
~y2y0!2

2
S~3!~y0!

3!a
~y2y0!32

S~4!~y0!

4!a
~y2y0!42•••GU

a51

.

~2.11!

Making a change of variable,y2y0°y/Aa, we obtain

I 5e2S0 /aE
2`

` A a

2p
dy

3expF2
S0

~2!

2
y22Aa

S0
~3!

3!
y32a

S0
~4!

4!
y42•••GU

a51

>e2S0 /aA a

2pE2`

`

dye2S0
~2!y2/2

3S 12aH S0
~4!

4!
y42

S0
~3!2

2~3! !2
y6J 1O~a2!D U

a51

,

~2.12!

where we have written

S~n!~y0![S0
~n! . ~2.13!

The aL21 term is called theL-loop term (L50 is the tree
term!. From Eq.~2.9!,

V 25
v21Av412g2

2
, ~2.14!

then

S052
~V 22v2!2

2g2
52

g2

8V 4
, S0

~2!511
g2

2V 4
,

S0
~3!52 i

g3

V 6
, S0

~4!523
g4

V 8
, S0

~6!5
5!g6

2V 12
.

~2.15!

Using these and performing elementary integrations, we
tain
08500
b-

I 5expS g2

8V 4DA V 2

V 41
g2

2
S 11

3g4

8S V 41
g2

2 D 2

2
35g6

24S V 41
g2

2 D 3 1
329g8

128S V 41
g2

2 D 4

2
105g10

64S V 41
g2

2 D 5 1O~4-loop!D . ~2.16!

Stated as above, we assign the following definitions to
contributions to the integralI:

I tree[expS g2

8V 4D ,

I 1-loop[I treeA V 2

V 41
g2

2

,

I 2-loop[I 1-loopS 11
3g4

8S V 41
g2

2 D 2 2
5g6

24S V 41
g2

2 D 3D ,

I 3-loop[expS g2

8V 4DA V 2

V 41
g2

2

3S 11
3g4

8S V 41
g2

2 D 2 2
35g6

24S V 41
g2

2 D 3

1
329g8

128S V 41
g2

2 D 4 2
105g10

64S V 41
g2

2 D 5D . ~2.17!

Let us analyze the individual cases.
Case ~i!: zero-dimensional anharmonic oscillator. P

v2°1 so that Eq.~2.14! reads

V 25
A112g211

2
. ~2.18!

We plot the ratio ofI L-loop(L50,1,2,3) to the exact value in
Fig. 1, ~a! for g2<1 and~b! g2.1, respectively. Details are
shown in Table I.

Case~ii !: zero-dimensional double well. Putv2°21 so
that Eq.~2.14! reads

V 25
A112g221

2
. ~2.19!
2-3



TARO KASHIWA PHYSICAL REVIEW D 59 085002
FIG. 1. Zero-dimensional anharmonic oscillator case.~a!, g2<1. ~b! g2.1. Dotted lines representI tree/exact, dashed linesI 1-loop/exact,
solid linesI 2-loop/exact, and dash-dotted linesI 3-loop /exact, respectively.
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We plot the same ratio as in case~i! in Figs. 2~a! and 2~b!.
However, in Fig. 2~a! we have omitted the tree graph b
cause of the large deviation. Details are again shown
Table II.

From Figs. 1 and 2, it should be noted that higher lo
corrections always improve the result wheng2<1, but not in
the strong coupling region as is seen from the graphs F
1~b! and 2~b!. Details for the numerical values are listed
Tables I and II. This fact implies that the loop expansion
merely an asymptotic expansion. In the anharmonic osc
tor case, the result is especially satisfactory: the two-lo
result gives a 4% error for 1023,g2,103. In the double-
well case, the three-loop expansion spoils the agreeme
the regiong2@1, but gives a better result atg2,1. However,
it is remarkable that the error, in the two-loop expansion, s
remains within ;8% for a large coupling region, 1023

,g2,103.
Finally, the essential role of the loop expansion should

emphasized: if we stop at theg4 term in the two- or three-
loop expression, Eq.~2.17!, the result deviates far away from
the true value. Therefore we must abandon the coupling c
stant expansion in the auxiliary field method.
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III. QUANTUM MECHANICAL MODEL

Encouraged by the foregoing results, in this section
analyze the quantum mechanical model defined by
Hamiltonian

H5
p2

2
1

v2

2
x21

g2

8
x4. ~3.1!

Here again, depending on the sign ofv2, we consider two
cases:~i! v2.0, the anharmonic oscillator, and~ii ! v2,0,
the double well. The partition function is given by

Z~T!5Tr e2TH5E Dx

3expF2E
0

T

dtS ẋ2

2
1

v2

2
x21

g2

8
x4D GU

x~T!5x~0!

,

~3.2!
TABLE I. Zero-dimensional anharmonic oscillator.

Tree One loop Two loop Three loop
g2 Exact Tree/Exact ~One loop!/exact ~Two loop!/exact ~Three loop!/exact

1023 0.9996
0.9999
1.00

0.9996
1

0.9996
1

0.9996
1

1022 0.9963
0.9988
1.00

0.9963
1

0.9963
1

0.9963
1

1021 0.9685
0.9881
1.02

0.9664
1.00

0.9690
1.00

0.9683
1.00

1 0.8386
0.9149

1.1
0.8125
0.97

0.8541
1.02

0.8277
0.99

10 0.5954
0.7027
1.18

0.5484
0.92

0.6195
1.04

0.5976
1.00

102 0.3672
0.4510
1.23

0.3300
0.90

0.3817
1.04

0.3790
1.03

103 0.2131
0.2656
1.25

0.1899
0.89

0.2210
1.037

0.2222
1.043
2-4
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FIG. 2. Zero-dimensional double-well case.~a! g2<1. ~b! g2.1. Dotted line representsI tree/exact, which is omitted in~a!, because of
a large deviation. Dashed lines representI 1-loop/exact, solid linesI 2-loop/exact, and dash-dotted linesI 3-loop/exact, respectively.
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wherex(T)5x(0) designates the periodic boundary con
tion. Here~and hereafter! we put\°1, and use the continu
ous representation

Dx[ lim
N→`

)
j 51

N
dxj

A2pDt
, Dt[

T

N
. ~3.3!

Introducing an auxiliary field in terms of the Gaussian ide
tity

15E Dy expF2E
0

T

dt
1

2S y1
igx2

2 D 2G , ~3.4!

so as to cancel the quartic term, we obtain

Z~T!5E DxDy expF2E
0

T

dtS ẋ2

2
1~v21 igy!

x2

2
1

y2

2
D G ,

~3.5!

which, after integration with respect tox, becomes
08500
-

-

Z~T!5E Dy expF2E
0

T

dt
y2

2
1

1

2
ln detS 2

d2

dt2
1v21 igyD G

[E Dy expS 2
S@y#

a D U
a51

, ~3.6!

where

S@y#[E
0

T

dt
y2

2
1

1

2
ln detS 2

d2

dt2
1v21 igyD , ~3.7!

and, again, the loop-expansion parametera has been intro-
duced.

Denoting byy0(t) the solution of the equation of motion
S8@y#5dS@y#/dy(t)50, we obtain the gap equation

y0~ t !1
ig

2
G~ t,t !50, ~3.8!

which can be rewritten as

V ~ t !22v25
g2

2
G~ t,t !, ~3.9!
TABLE II. Zero-dimensional double well.

Tree One loop Two loop Three loop
g2 Exact Tree/exact ~One loop!/exact ~Two loop!/exact ~Three loop!/exact

1023 1.986310217 1.035310219

52.1
2.313310217

1.17
1.930310217

0.97
1.961310217

0.98

1021 7.36031021 1.21031023

16.44
8.49531021

1.15
7.16231021

0.97
7.27031021

0.98

1021 2.2083102 1.1073103

5.01
2.3113102

1.06
2.1123102

0.96
2.1563102

0.98

1 2.350
4.202
1.79

1.932
0.82

2.155
0.92

2.411
1.03

10 0.8074
1.103
1.37

0.6897
0.85

0.8137
1.01

0.8768
1.09

102 0.4040
0.5196
1.29

0.3542
0.88

0.4159
1.03

0.4295
1.06

103 0.2196
0.2777
1.26

0.1942
0.88

0.2270
1.03

0.2312
1.05
2-5
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where

V ~ t !2[v21 igy0~ t !. ~3.10!

Here the Green’s functionG(t,t8) obeys the inhomogeneou
equation

S 2
d2

dt2
1V ~ t !2DG~ t,t8!5d~ t2t8!. ~3.11!

Again it should be noted that

V ~ t !2.0, ~3.12!

due to the existence of the Gaussian integration ofx in Eq.
~3.5!.

Now expandS@y# aroundy0 @or V (t)2# such that

S@y#5S01
1

2
~y2y0!2S0

~2!1
1

3!
~y2y0!3S0

~3!1•••,

~3.13!

where we have used the abbreviations

S0
~n![

dnS

dy~ t1!dy~ t2!•••dy~ tn!
U

y5y0

~3.14!

and the notation

~y2y0!nS0
~n![E dt1dt2•••dtn~y2y0!

3~ t1!~y2y0!~ t2!•••~y2y0!

3~ tn!
dnS

dy~ t1!dy~ t2!•••dy~ tn!
U

y5y0

.

~3.15!

Shifting and scaling the integration variables as before,
obtain

Z~T!5e2S0 /aE Dy expF2
1

2
D21y2

2Aa
y3

3!
S0

~3!2a
y4

4!
S0

~4!2••• GU
a51

, ~3.16!

where we have writtenS0
(2)°D21 which reads, explicitly,

D21~ t1 ,t2![
d2S

dy~ t1!dy~ t2!
U

y5y0

5d~ t12t2!

1
g2

2
G~ t1 ,t2!G~ t2 ,t1!. ~3.17!

Moreover,
08500
e

S0
~3!52

ig3

2
$G~ t1 ,t2!G~ t2 ,t3!G~ t3 ,t1!

1G~ t1 ,t3!G~ t3 ,t2!G~ t2 ,t1!%,

S0
~4!52g4$G~ t1 ,t2!G~ t2 ,t3!G~ t3 ,t4!G~ t4 ,t1!

1G~ t1 ,t2!G~ t2 ,t4!G~ t4 ,t3!G~ t3 ,t1!

1G~ t1 ,t3!G~ t3 ,t2!G~ t2 ,t4!G~ t4 ,t1!%. ~3.18!

From these we have

Z~T! tree[exp~2S0!,

Z~T!1-loop[expS 2S02
1

2
ln detD D ,

Z~T!2-loop[expS 2S02
1

2
ln detD D

3@11~2-loop graphs!#, ~3.19!

where the two-loop graphs are formally given by Fig. 3.
The rest of the task is to fix the form of the Green

function @solution to Eq.~3.11!#, and find the solutiony0(t)
of the gap equation~3.9!. In this paper we confine ourselve
to a time-independent solution, denoted by an overbar,

y0~ t !°y0̄:const , V~ t !2°V̄2:const . ~3.20!

The Green’s function, the solution to Eq.~3.11!, can be ob-
tained explicitly:

Ḡ~ t,t8;V̄![
1

T (
r 52`

`
ei2pr ~ t2t8!/T

S 2pr

T D 2

1V̄2

5
1

2V̄ sinh
V̄T

2

H u~ t2t8!coshV̄S T

2
2t1t8D

1u~ t82t !coshV̄S T

2
1t2t8D J , ~3.21!

FIG. 3. Formal 2-loop graphs.D denotes the propagator of th
auxiliary field.
2-6
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where we have taken the periodic boundary condition i
account.

Now V̄ is the solution of the gap equation:

igy0̄5V̄22v25
g2

2
Ḡ~ t,t;V̄!5

g2

4V̄
cothS V̄T

2
D .

~3.22!

WhenT→ large,V̄ can be expressed as

V̄5V01V1e2V0T1V2e22V0T1•••, ~3.23!

whereV0 is the solution of the third degree equation:

V0
32v2V05

g2

4
. ~3.24!

As an aside, we remark that in order to calculate the ene
of the first excited state,V1 must be known, which is easily
obtained to be

V15
g2

2~3V0
21v2!

. ~3.25!

In this paper, however, only the ground state energy is c
sidered. Other barred quantities are found straightforwar
in particular

D̄~ t,t8!5S d2S

dy~ t !dy~ t8!
U

y5 ȳ0

D 21

5d~ t2t8!2
g2

2V̄
Ḡ~ t,t8;V̂!, ~3.26!

where

V̂2[4V̄21
g2

2V̄
. ~3.27!

The tree part in Eq.~3.19! becomes

Z̄~T! tree[exp~2S0̄!, ~3.28!

with

S0̄5T
y0̄

2

2
1

1

2 (
r 52`

`

lnH S 2pr

T D 2

1V̄2J
52

T

2g2 ~V̄22v2!21 ln sinhS V̄T

2
D

1~V̄2independent part!, ~3.29!

where the gap equation~3.22! has been utilized in the firs
term in the final expression. In the one-loop part of E
~3.19!, we need to know ln detD̄(t,t8) which is
08500
o

y

n-
y,

.

1

2
ln detD̄~ t,t8!

5
1

2 (
r 52`

`

lnH 11
g2T2

8p2V̄

1

r 21~V̄T/p!2J
5

1

2 (
r 52`

` H lnF r 21S V̂T

2p
D 2G2 lnF r 21S V̄T

p
D 2G J

5 lnS sinh~V̂T/2!

sinh~V̄T!
D . ~3.30!

As for the two-loop part,S0
(3)̄ andS0

(4)̄ are now expressed a
in Fig. 4. Accordingly, the two-loop part is shown in Fig. 5

From the graphs, we note that one needs the three-
four-loop calculations in the two loops of the auxiliary fiel

since our verticesS0
(3)̄ and S0

(4)̄ are nonlocal. As a result o
this complexity, we confine ourselves to the case thatT°`,
that is, to the ground state. Write the Fourier transformati
of Ḡ and D̄ such that

Ḡ~ t,t8;V0!5E
2`

` dk

2p
e2 ik~ t2t8!

1

k21V0
2

[E
2`

` dk

2p
e2 ik~ t2t8!G0~k!,

FIG. 4. Vertices for the constant classical solution. The so

lines representḠ(t,t8;V̄) and the dots represent the vertices whi

should be attached by the auxiliary field propagator,D̄(t,t8), given
by the double line.~See Fig. 5.!

FIG. 5. Two-loop graphs for the constant classical solution. T
numbers upper in the figures represent those of multiplicity.
2-7
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D̄~ t,t8!5E
2`

` dk

2p
e2 ik~ t2t8!

k214V0
2

k21V̂2

[E
2`

` dk

2p
e2 ik~ t2t8!D0~k!, ~3.31!

where

V̂2[4V0
21

g2

2V0
, ~3.32!

since V̄ is now V0 underT→`. With this notation, each
graph Figs. 5~a!–5~d! can be calculated and expressed
follows:

~a!5
g4

8 E dldpdk

~2p!3 D0~p!D0~k!G0~ l !

3G0~ l 1k!G0~ l 1p!G0~ l 1k1p!

5
g4

64V0
5

r110

r2~r11!~r12!
, ~3.33!

~b!5
g4

4 E dldpdk

~2p!3 D0~p!D0~k!

3G0~ l !2G0~ l 1k!G0~ l 1p!

5
g4

64V0
5

r110

r2~r11!
, ~3.34!

~c!52
g6

8
D0~0!F E dldp

~2p!2 D0~p!G0~ l !2G0~ l 1p!G2

52
g6

128V0
8

~r16!2

r4~r12!2 , ~3.35!
08500
s

~d!52
g6

12
E dldpdkdq

~2p!4 D0~p!D0~q!D0~p1q!

3G0~ l !G0~ l 1p!G0~ l 1p1q!

3G0~k!G0~k1q!G0~k1q1p!

52
g6

64V0
8

~r218r14!

r4~r11!~r12!2 . ~3.36!

Here we have introduced a parameter

r[AV̂2

V0
2
. ~3.37!

The ground state energy

E052 lim
T→`

1

T
ln Z~T! ~3.38!

is therefore

E0
tree5

V0

2
2

g2

32V0
2

, ~3.39!

E0
12 loop5

V0

2
~r21!2

g2

32V0
2

, ~3.40!

E0
22 loop5

V0

2
~r21!2

g2

32V0
2

2
g4

64V0
5

~r13!~r110!

r2~r11!~r12!

1
g6

128V0
8

r3115r2164r144

r4~r11!~r12!2 . ~3.41!

Let us analyze the following two cases.
Case~i!: the anharmonic oscillator. The solution of E

~3.24! is given @13# by
V055
2v

A3
cosF1

3
cos21S 3A3g2

8v3 D G , 0<
g2

8
<

v3

3A3
,

A3 g2

8
1Ag4

64
2

v6

27
1A3 3

g2

8
2Ag4

64
2

v6

27
,

v3

3A3
<

g2

8
.

~3.42!
ct

ld
op
ich
the

al
to
Puttingv2°1 we calculate the ratio ofE0
L-loop(L50,1,2) to

the exact numerical value in Table III.
Case~ii !: the double well. The solution of Eq.~3.24! is

V05A3 Ag4

64
1

uv2u3

27
1

g2

8
2A3 Ag4

64
1

uv2u3

27
2

g2

8
.

~3.43!
Putting v2°21 we again compare the result to the exa
numerical value in Table IV.

For the anharmonic oscillator case, the auxiliary fie
method can fit the data within a 13% error in the one-lo
expansion and a 3% error in the two-loop expansion, wh
we consider to be excellent. For the double-well case,
method gives us a;10% error except in the region
O(1021),g2,O(1), where as in the zero-dimension
case, there might be a need for a three-loop correction
2-8
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improve the result. Apart from this, it would be still a goo
approximation for a very large coupling region.

IV. DISCUSSION

The auxiliary field method, defined by the introduction
an auxiliary field and by utilizing its loop expansion, ca
give excellent results for the large coupling regi
O(1023),g2,O(103); even a component of the origina
variable is single. However, in the quantum double-w
case, there needs to be higher order corrections than the
loop correction in the regionO(1022),g2,O(1). A maxi-
mum deviation in the ground state energy of a two-loop c
culation reaches a value 18 times the exact value and ha
wrong sign atg2;0.15. We have calculated the first excite
energyE1 up to one loop,

DE[E1
1-loop2E0

1-loop

5
2V0

3

3V0
21v2S 12

g2

8V0
3

1
3g2

4A2V0
2A 1

3V0
21v2D ,

~4.1!

and found a level crossing around this region of the coup
constant. Apparently, for this coupling, the approximati

TABLE III. The anharmonic oscillator.

Tree One loop Two loop
g2/8 Exact Tree/exact ~One loop!/exact ~Two loop!/exact

1023 0.50075
0.50025
0.9990

0.50075
1

0.50075
1

1022 0.50726
0.50248
0.9906

0.50737
1.0002

0.50725
0.9999

1021 0.55915
0.52290
0.9352

0.56435
1.009

0.55775
0.9975

1 0.80377
0.65268
0.8038

0.85522
1.0640

0.78548
0.9772

10 1.5050
1.1080
0.7362

1.6729
1.1116

1.4738
0.9793

102 3.1314
2.2356
0.7139

3.5280
1.1267

3.0865
0.9857

103 6.6942
4.7445
0.7088

7.5659
1.1302

6.6112
0.9876
,

a-

ld

08500
l
o-

l-
the

g

breaks down. However, it is cumbersome to go beyond
one-loop calculation in quantum field theory as well as
quantum mechanics. The approximation scheme should
simple and transparent. We therefore look for another so
tion rather than a time-independent solution; that is, we m
solve Eq.~3.11! more carefully. The structure of the dom
nant contribution to the path integral has recently been cl
fied by means of approximations such as the valley met
@14#. With these in mind, work in this direction is in
progress.

As for applications, the formula is applicable almost
any situation. Our interest is the dynamical structure
QCD, which has recently been revealed through consid
ation of gauge invariance by Lavelle and McMullan@15# and
others@16#, for example. It is thus tempting to introduce th
method into QCD, which is also our future program.
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TABLE IV. The double well.

Tree One loop Two loop
g2/8 Exact Tree/exact~One loop!/exact ~Two loop!/exact

1023 261.794
262.500
1.0114

261.794
1

261.794
1

1022 25.5532
26.245
1.1246

25.5575
1.0008

25.5541
1.0002

1021 20.15413
20.57593

3.7368
20.02326

0.1509
20.08479

0.5501

1 0.51478
0.25

0.4856
0.66421
1.2903

0.41605
0.8082

10 1.3716
0.92366
0.6734

1.5839
1.1548

1.2112
0.8830

102 3.0695
2.1501
0.7005

3.4867
1.1359

2.7543
0.8973

103 6.6655
4.7048
0.7059

7.5467
1.1322

6.0004
0.9002
3
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