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Auxiliary field method as a powerful tool for nonperturbative study
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The auxiliary field method, defined through introducing an auxili@igo called the Hubbard-Stratonovich
or mean field, and utilizing a loop expansion, gives an excellent result for a wide range of coupling constants.
The analysis is done for the anharmonic oscillator and the double-well cases i@ zémple integraland one
(quantum mechanigglimension. It is shown that the result becomes increasingly accurate by taking a higher
loop into account in the weak coupling region; however, such is not the case in the strong coupling region. The
two-loop approximation is shown to be still insufficient for the double-well case in quantum mechanics.
[S0556-282(199)02706-X

PACS numbsd(s): 11.15.Tk, 02.70-c

[. INTRODUCTION One could paraphrase the above in terms of path integrals
[8] as follows: the partition functiofiin an imaginary tem-
In most actual situations, path integral expressions have peratur¢ for the Lagrangian, Eq1.1), reads

non-Gaussian form so that some approximation is always

needed to evaluate them. Apart from perturbative treatments, o o 92 _

such as a weakstrong coupling expansion, which can only ZEJ DyYDys exp{iJ dzx( Jiby+ 7(¢¢)2”. (1.3

describe a smal(large coupling region, other approaches

have been used to handle a wider coupling range such as the

well-known variational methodl1] which has been applied Introducing the auxiliary fieldr in terms of the Gaussian

successfully to the polaron problef#]. This method, com- integrals, such that

bined with an optimization technique, has been discussed in

Ref. [3]. A numerical estimation is also possible once ex- 1 _

pressed in the path integral form; for instance, computer 1=J Do exp{—if d2x5(0+gz/u/f)2}, (1.4

simulations produce fruitful results such as in lattice QCD

[4], but current technology does not yet permit imposing

certain symmetries onto the lattice; chiral symmetry is a@nd inserting into Eq(1.3) we find

well-known exampld 5] of such a symmetry. An advantage

of path integration, contrary to the operator formalism, is that —

we can easily switch from one variable to another by means ZZJ dffDlﬁDlﬂeXP( if dZXC’)

of a simple change of variables, which opens up new possi-

bilities. The auxiliary field is considered as one of these vari- — , o = o

ables, and was introduced into the model by Gross and :f doDyDy ex 'f dX| idy— 5 —gygo

Neveu[6].

The Gross-Neveu model is a two-dimensional four- 1.5
fermion model inspired by the work of Nambu and Jona-
Lasinio[7]: Similar techniques are also utilized nowadays for a boson

quartic interactiorf9] instead of the four-fermion interaction.
2 The nomenclature fos field is, therefore, various: the mean
L=giby+ g—(%p)z, (1.1  field [10] and the Hubbard-Stratonovich fie[d1] in solid
2 state physics.
In practice, we define the partition functiowhich can be
where s is anN component. Gross and Nevg@l] proposed obtained through—it)
an equivalent Lagrangian:

) Z(M)= f doDyDy

oy %—gwa. 1.2

T _ o’
Xexr{ - J dtf dx( Yhy+ ?-ﬁ-glplﬂ()')
Here o has no kinetic term and on elimination by using the °
equation of motion one recovers the original Lagrangian, Eq. (1.6
(1.1). In this senseg is an auxiliary field.
where the antiperiodic boundary condition for the fermi field,
Y(T,x)=—¢(0x), should be understood. We then integrate
*Email address: tarolscp@mbox.nc.kyushu-u.ac.jp out the fermion field to find
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o2 where
Z(T)=J daexr{—j d*x—+NIndet4+go)

= f doe Slal,

+1, x>0,
-1, x<0,

E(X)=[

and 1,(x) is the modified Bessel function. There are two

o2 cases depending on the signof.
S[a]sf d2x7— NInde(é+go). 1.7 Case(i): ?>0 (zero-dimensional anharmonic oscillgtor
In this case,
Since we look for a vacuum witfi—o, we should find a . Wt \ 920
constant solutionr, in the equation of motion | = \/ngze 149 K1,4( 2’ ) ~ 1+0(g?), (2.3
oS — (1.9 where K,(x) is the modified Bessel function.
So(X) o ' Casel(ii); w?><0 (zero-dimensional double wgllIn this
case, in the limig®>—0,
which gives the gap equation 020 s
| ~ 2e»"/29%, (2.4
=2Ng f (2m)? k2+(go' )2 (1.9 Here it should be noted thgf=0 is an essential singularity;

that is to say, the double-well case is non Borel summable.

If oo is nonzero, then dynamically symmetry breaking oc- Now introduce an auxiliary field such that
curs. Indeed, the formula is legitimated if the number of -
fermion species becomes infinithl—o. However, this is 1=J'°° ﬂex 1 4 X_)
not the case for most of the physical situatioNss finite or —o\27 2\Y g 2
even 1. We ask the question as to how accurate is it when
N=1, which is one of the motivations of this work. so as to cancel th&* term when inserted into Eq2.1),

The second purpose of this paper is as follows: performyielding
ing the WKB approximation in the double-well potential we
have to pursue instanton calculatigri®], which are cum- = dx dy ) y?
bersome as well as tedious. A simpler approach would be to f_w\/— \/_ex __(‘*’ +igy)x*— 2
use the auxiliary field method. We clarify these issues with
examples of the quartic coupling of bosonic field.

(2.5

The paper is organized as follows. In Sec. Il a simple J (w2+|gy) V2g-y*12
model calculation is performed for the integral expression. ‘”\/_
Here we realize the importance of the loop expansion with 5
respect to the auxiliary field and find a more accurate result - Jm ﬂex;{ Yy lln(w2+igy)} (2.6)
by taking a higher loop correction into account when the —o\27 2 ' '

couplingg is small. However, wheg becomes larger, higher
loops do not always improve the situation. We then proceedVe rewrite the final expression as
to the quantum mechanical model in Sec. lll, where we com-

pare our results with those obtained numerically, and find (= dy S(y)
that the two-loop correction gives a 4% error for #&:g? 1= J_m\/T_WeX T a
<10 except forO(10 1)<g?<0O(1) in the double-well
case. The final section is devoted to a discussion.

1 . y?
S(y)= 5 In(w?+igy) + 3, 27
Il. SIMPLE (ZERO-DIMENSIONAL ) MODEL
where we have introduced a parametewhich must be set
to unity at the end. We call the loop-expansion parameter.
Next, denote the solution &' (y)=0 asyy;

The starting point is

= dx w? g°
— . __y2_ 2 4
I—f_w\/_exp{ 5 X 8x (2.1 N ig L .
The integral is expressed as
which can be expressed as
7T|w2| 41402 w4 w4
= w*l4g (2 )
TN g eV | 0r-w= 2 29
(2.2) 202
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where() 2 should obey
O 2%2=w?+igyy,>0, (2.10

since the Gaussian integral ®f Eq. (2.6), must exist. Then
use the saddle point method arouyglto give

I_f“’ dy _S(YO)_S(Z)(VO) 2
e a 5 Y Yo

~ S®(yo)
3la

=0
-y oy yo)t - }

a=1

(2.10)

Making a change of variablg,—yy,—Y/+/a, we obtain

= [a
—eSo/a —
l=e Lw 21_rdy
)

(2 383) Sg‘”
2 3 4
XGX%‘TV‘@ﬁ —agr ‘}
a=1
a ee}
Ee—SO/a1 [Ef_mdye_sgz)yzﬂ
584) 4 > 6 2
X|l—aj —y*— —— +
1 a{ 2 2(3!)2y O(a?) ) ,
a=1
(2.12
where we have written
SM(yo)=5y". (2.13

The a- ! term is called the_-loop term (=0 is the tree
term). From Eq.(2.9),

W+ o 2

Q B E— (2.19
then
SOZ_(QZ_&)Z)ZZ_ 92 SE)Z)Z:I_"r‘g—Z
29> 804’ 204
3 4 6
. 9 g Slg
Iy 2 (4) _ _ 9 (6) __ —"9
= 'Qe’ So = 398’ So o 12
(2.19

Using these and performing elementary integrations, we ob-

tain
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10@10
~ 75 +O(4-loop | (2.16
64(Q4+ >

Stated as above, we assign the following definitions to the
contributions to the integrdl

g2
ItreeEexf{ 80 4) )

I 1—IoopE Itree

2\ 2 2\ 3
g g
4, 2 4, 2
8l Q4+ > 24(9 +3
3298 105910
+ R 925 | (2.19
128(Q4+7 64(94+7

Let us analyze the individual cases.
Case (i): zero-dimensional anharmonic oscillator. Put

0?1 so that Eq(2.14) reads

QZ_\/1+292+1

5 (2.18

We plot the ratio ofl | ;0L =0,1,2,3) to the exact value in
Fig. 1, (a) for g?<1 and(b) g?>>1, respectively. Details are
shown in Table I.

Caselii): zero-dimensional double well. Puf?— —1 so

that Eq.(2.14) reads

Vi+2g°—1

2:
0 2

(2.19
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FIG. 1. Zero-dimensional anharmonic oscillator cdai.g?<1. (b) g>> 1. Dotted lines represei../exact, dashed lindlg _o0p/ €XAct,
solid linesl ,.o0p/€Xact, and dash-dotted lineg,,,,/exact, respectively.

We plot the same ratio as in caée¢ in Figs. 2a) and Zb).
However, in Fig. 2a) we have omitted the tree graph be-
cause of the large deviation. Details are again shown ir‘)jm
Table II.

From Figs. 1 and 2, it should be noted that higher loop
corrections always improve the result whgf<1, but not in
the strong coupling region as is seen from the graphs Figs. p?  w? g?
1(b) and 2b). Details for the numerical values are listed in H= 7+ 7X2+ §X4-
Tables | and Il. This fact implies that the loop expansion is
merely an asymptotic expansion. In the anharmonic oscilla-

tor case, the result is especially satisfactory: the two-loopere again, depending on the sign®f, we consider two
result gives a 4% error for 1§<g®<10’. In the double- casesi(i) w?>0, the anharmonic oscillator, arfd) w?<0,

well case, the three-loop expansion spoils the agreement e double well. The partition function is given by
the regiong?>1, but gives a better result gt<1. However,

it is remarkable that the error, in the two-loop expansion, still
remains within~8% for a large coupling region, 18
<g?<10°.

Finally, the essential role of the loop expansion should be
emphasized: if we stop at thg term in the two- or three-
loop expression, Eq2.17), the result deviates far away from
the true value. Therefore we must abandon the coupling con-
stant expansion in the auxiliary field method.

. QUANTUM MECHANICAL MODEL

Encouraged by the foregoing results, in this section we
alyze the quantum mechanical model defined by the
Hamiltonian

(3.9

Z(T):Tre‘TH=f Dx

2 W2 g
=+ x4+ x4

T [x
X ex —fdt
0

2 2 8

X(T)=x(0)
(3.2

TABLE |. Zero-dimensional anharmonic oscillator.

Tree One loop Two loop Three loop
g? Exact Tree/Exact (One loop/exact (Two loop)/exact (Three loop/exact
103 0.9996 0198(9)9 0.91996 0.91996 0.91996
102 0.9963 019338 0.91963 0.91963 0.91963
oo O 0% 055 0558
L e oo omm o oma o
o oms oI o ey o
w oo O o o o5
oo OEE obw 0219 022
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(@) (b)

FIG. 2. Zero-dimensional double-well caga) g?<1. (b) g>> 1. Dotted line represents../exact, which is omitted irfa), because of
a large deviation. Dashed lines represknt,p/exact, solid lined,_,q,/exact, and dash-dotted lineég,qp/€Xact, respectively.

wherex(T)=x(0) designates the periodic boundary condi- d? -
tion. Here(and hereaftgrwe putz—>1, and use the continu- Z(T)—f Dy ex f dt—+ In de‘( qe Tettigy
ous representation
Ef Dy ex SU]) , (3.6
Dx= lim H At= T (3.3 a=1
] N .
Nowi=1 /2 7TA where
Introducing an auxiliary field in terms of the Gaussian iden- d?
tity Syl= dt— Inde e >+w+igy|, (3.7
T 1 igx?\2 and, again, the loop-expansion parametdras been intro-
f Dy exp{ f dt—( T) } (34  duced.

Denoting byy(t) the solution of the equation of motion,
S'[y]= 869 y]/8y(t) =0, we obtain the gap equation
so as to cancel the quartic term, we obtain
i
- Yo(t)+ EG(t,t)=0, (3.9
T [x2 X2 2 2
Z(T)=f DxDy ex —f dt ?+(w2+igy)?+
0

which, after integration with respect 1o becomes

which can be rewritten as

2
Q (t)z—wzz%G(t,t), (3.9

TABLE II. Zero-dimensional double well.

Tree One loop Two loop Three loop
g? Exact Treelexact (One loop/exact  (Two loop/exact  (Three loop/exact
19 17 17 17
103 1.986¢ 1627 1.035!»<Zi023 2.311.3?%02l 1.93(%%021 1.96&;;02l
1 7 360¢ 162 1.2;&102 8.491-5;5102 7.1((5)?;7102 7.2?;8102
10-1 2 208 107 1'12.7(?1@ 2.31%6102 2.1(112;;6102 2.1g%<8102
A L
T - v
o oww O oEe oum o oo
o omes  CHT Ok oo omn
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where

Q (1)’=w?+igy(t). (3.10
Here the Green'’s functioB(t,t') obeys the inhomogeneous
equation

2
(—%Jrﬂ(t)z)G(t,t’):&(t—t’). (3.11)

A
Again it should be noted that ‘ A @ sy’ n Ss”

Q(t)?>0, (3.12
] o o FIG. 3. Formal 2-loop graph@\ denotes the propagator of the
due to the existence of the Gaussian integration of Eq.  auxiliary field.
(3.5.
Now expandS[y] aroundy, [or Q (t)?] such that ig®
S5 =~ 5 {G(t1,t)G(ts,t5) G(ts, ty)

1 2c(2) 1 3c(3)
SyYI=So+ 5(Y=Y0)"Se + 37 (Y =Y0)*Sg"+ - -, +G(t1,t3)G(t3,t)G(t,,t0)},
3.1
(313 SV = — g4 G(t1,12)G(ty,t3) G(ts,t4) Gty ty)
where we have used the abbreviations +G(ty,t,)G(tr,ts)G(ta,ts)Glts,ty)
Sgn)z " fns n (314) +G(tl!t3)G(t31t2)G(t2 yt4)G(t4,t1)}. (318)
0y(t1)dy(tz)- -~ 8y(ty) Y=Yo From these we have
and the notation Z(Mye=eXH—S),
1
(y_YO)nSBn)Ef dtydty- - - dty(y—Yo) Z(T)l"oo"EeXF{ S0~ EIndetA :
X(t)(Y—Yo)(t2)---(Y—Yo)

Z(T) 2100 —exp< So— —In detA)
8"S

oy(ty)oy(ty)- - - dy(ty,) Yoy

(3.15 where the two-loop graphs are formally given by Fig. 3.
The rest of the task is to fix the form of the Green’s
Shifting and scaling the integration variables as before, wéunction[solution to Eq.(3.11)], and find the solutiory(t)
obtain of the gap equatiof3.9). In this paper we confine ourselves
to a time-independent solution, denoted by an overbar,

X(tn) X[1+ (2-loop graphy], (3.19

1 S _
Z(T)=e‘50’af Dyex;{—EA‘ly2 Yo(t)y—>yg:const, Q(t)2~Q2const. (3.20

The Green'’s function, the solution to E@®.11), can be ob-
(3.1 tained explicitly:

y® Y
Y P ) _514_
a3r> Ay }

a=1 - 1 Z giem—t)T
where we have writte{?— A ~* which reads, explicitly, Gt Q) =7, 2 2t |\*
T -+
Aty 1) = 7S S(ty—ty)
Ll)= el =6t~ T
()oYl - — [a(t—t’)coshﬁ(——tﬂ’)
_ QT 2
g2 2Q sth
+ 5 Gt 1)G(tz, ). (3.17)
—(T
Moreover, +0(t —t)coshQ(§+t—t )] (3.2)

085002-6



AUXILIARY FIELD METHOD AS A POWERFUL TOCL . ..

PHYSICAL REVIEW D 59 085002

where we have taken the periodic boundary condition into

account.
Now () is the solution of the gap equation:

— 2 _ g¢g> [T
iQYO:QZ_wZZ%G(t.t;ﬂ)=g—_cot)"<—).

40 2
(3.22
WhenT— Iarge,(_l can be expressed as
Q=0p+ Qe 2T+ 0,e2%T+...  (3.23

where() is the solution of the third degree equation:

2

B) o
So S,

FIG. 4. Vertices for the constant classical solution. The solid
lines represen®(t,t’;)) and the dots represent the vertices which

should be attached by the auxiliary field propagatdt,t’), given
by the double line(See Fig. 5.

1 —
05— 0’ Qo= (3.24 5IndetA(t,t))
As an aside, we remark that in order to calculate the energy 1 = g2T2 1
of the first excited state); must be known, which is easily =35 In{ 1+ = = >
obtained to be P 87 r°+(QT/m)
® A\ 2 —_\ 2
1 QT QT
2 _ - 2 (220 | 222
— (3.29 2r_w"” o 277) } Inj =+ 7T> H
2(305+ w?)
: _ sinh(Q1T/2)
In this paper, however, only the ground state energy is con- =In| ———]. (3.30
sidered. Other barred quantities are found straightforwardly, Sinh(QT)

in particular
_ 525 -
A(t't'):( Sy()dy(t) )
Y=Yo
=8(t—t')— g—i@(t,t';fz), (3.26
2Q)
where
02=402+ g—: (3.27
2Q)
The tree part in Eq(3.19 becomes
Z(T)yec=exp — Sy, (3.28
with
So=Ty7°2+E rzx In[(g 2+(_22
=- Zlgz(s?— ®?)%+1n sinr(g)
+(Q —independent part (3.29

where the gap equatiof8.22 has been utilized in the first
term in the final expression. In the one-loop part of Eq.

(3.19, we need to know Indet(t,t’) which is

As for the two-loop partS{®) andS{" are now expressed as

in Fig. 4. Accordingly, the two-loop part is shown in Fig. 5.
From the graphs, we note that one needs the three- and

four-loop calculations in the two loops of the auxiliary field,

since our verticeS§) andS{" are nonlocal. As a result of
this complexity, we confine ourselves to the case Thato,
that is, to the ground state. Write the Fourier transformations

of G andA such that

= dk 1

~ ’. _ —ik(t—t’
G(tt ,Qo)—ﬁmﬁe tk( >k2+Qg

© dk ,
= [ Sme Gy,

(a) ® © @

FIG. 5. Two-loop graphs for the constant classical solution. The
numbers upper in the figures represent those of multiplicity.
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A J“ o 7ik(t7t,)k2+4Q§ (d= i dIdpdkqu( )Ao(a)Ao(P+0)
(t,t")= 700%8 m = 12 (277)4 olP)ao(g)Ap(PTq
=dk X Go(1)Go(l +p)Go(l+p+0a)
= J S—e TAk),  (3.3D)
~w 21 Go(K)Go(k+q)Go(k+0+p)
where _9° (pP+8pt4a) (3.96
g’ a0 p(pt1(pt2)% '
2_ 2 640, P (p pP
02=402+ —— 20" (3.32 0
o Here we have introduced a parameter
since () is now Q) underT—c. With this notation, each =
graph Figs. B8)-5(d) can be calculated and expressed as _1Q 33
follows: P= N gz (3.3
0
_9 fdldpd Ao(P)Ag(K)Go(1) The ground state energy
1
Eq=—lim=InZ(T 3.3
X Go(l +K)Go(l+p)Go(l +k+p) o LT (1) (338
g* p+10 is therefore
6405 p°(p+1)(p+2) ree. Q0 0
Elee= —— —— (3.39
g 2 320}
f (2 )3 AO(p)AO(k) QO gz
2 Ep *P=—(p-1-——, (340
X Go(1)*Go(I+k)Go(l +p) 2 3203
4 p+10 1000, £ 9 g* (p+3)(p+10)
- 334 E5- ol
6405 p(p+1) 2 3203 6405 P (p+1)(p+2)
g® f didp 2 9% pB+1502+64p+44
=——A(0 Ao(P)Go(1)2Go(I+ : 3.4
9 (p+6)2 Let us analyze the following two cases.
(3.395 Case(i): the anharmonic oscillator. The solution of Eq.

12808 p(p+2)%

2
[(e]
N
1%
| I
(@]
N
e
w

(3.29 is given[13] by

I

&

J

Putting w?~1 we calculate the ratio d5'°°’(L=0,1,2) to
the exact numerical value in Table IIl.
Case(ii): the double well. The solution of E43.249) is

Q_a\/ g4+|w2|3+92_3\/ g4+|w2|3_g2
0 Ves 27 8 Ves 27 8

(3.43

(3.42

//\

«Q

N

Qa

~

1S

|, [e)]
(.AJ
oo|‘9,\,

_f

Putting o>~ —1 we again compare the result to the exact
numerical value in Table IV.

For the anharmonic oscillator case, the auxiliary field
method can fit the data within a 13% error in the one-loop
expansion and a 3% error in the two-loop expansion, which
we consider to be excellent. For the double-well case, the
method gives us a~10% error except in the region
0O(10 1)< g?<0(1), where as in the zero-dimensional
case, there might be a need for a three-loop correction to
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TABLE lll. The anharmonic oscillator.

TABLE IV. The double well.

PHYSICAL REVIEW D 59 085002

Tree One loop Two loop Tree One loop Two loop
g%/8 Exact Treelexact (One loop/exact (Two loop/exact g2/8 Exact  Treel/exact(One loop/exact (Two loop/exact
10-3  0.50075 %59%%205 0.55-)075 0.5;)075 103 —61.794 —16.302ii(‘)10 —6:;._.794 —6Ji.794
e osos SISO OW e swp 02 SE g
00 ossots OO O 0TS g gy 0T 9 oo
Lomer GRS OmER oW g OE SR ouws
o ase MESLEm o Lmm g g OS5 Lo ans
16 31314 DRC 1Ter oomr 1% 30895 Groe Yinde gaora
10 66942 gloed 1tz osse 10 %85 oloe  1iam osone

improve the result. Apart from this, it would be still a good

o . . breaks down. However, it is cumbersome to go beyond the
approximation for a very large coupling region.

one-loop calculation in quantum field theory as well as in
quantum mechanics. The approximation scheme should be
simple and transparent. We therefore look for another solu-
The auxiliary field method, defined by the introduction of tion rather than a time-independent solution; that is, we must
an auxiliary field and by utilizing its loop expansion, can solve Eq.(3.11) more carefully. The structure of the domi-
give excellent results for the large coupling regionnant contribution to the path integral has recently been clari-
0(10 %)< g?<0(10%; even a component of the original fied by means of approximations such as the valley method
variable is single. However, in the quantum double-well[14]. With these in mind, work in this direction is in
case, there needs to be higher order corrections than the twprogress.
loop correction in the regio®(10~?)<g”<O(1). A maxi- As for applications, the formula is applicable almost to
mum deviation in the ground state energy of a two-loop calany sjtuation. Our interest is the dynamical structure of
culation reaches a value 18 times the exact value and has tiigcD, which has recently been revealed through consider-
wrong sign ag®~0.15. We have calculated the first excited ation of gauge invariance by Lavelle and McMullgis] and
energyE; up to one loop, others[16], for example. It is thus tempting to introduce this
method into QCD, which is also our future program.

IV. DISCUSSION

AE= E%-Ioop_ E(l)-loop

203 (. ¢® 3¢
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