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Super Yang-Mills theory at weak, intermediate, and strong coupling
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We consider three dimensional SU(N) N51 super-Yang-Mills theory compactified on the space-timeR
3S13S1. In particular, we compactify the light-cone coordinatex2 on a light-like circle via DLCQ, and wrap
the remaining transverse coordinatex' on a spatial circle. By retaining only the first few excited modes in the
transverse direction, we are able to solve for bound state wave functions and masses numerically by diago-
nalizing the discretized light-cone supercharge. This regularization of the theory is shown to preserve super-
symmetry. We plot bound state masses as a function of the coupling, showing the transition in particle masses
as we move from a weakly to a strongly coupled theory. We analyze both numerically and analytically
massless states which exist only in the limit of strong or weak gauge coupling. In addition, we find massless
states that persist for all values of the gauge coupling. An analytical treatment of these massless states is
provided. Interestingly, in the strong coupling limit, these massless states become string-like.
@S0556-2821~99!03608-5#

PACS number~s!: 11.10.Kk, 11.15.Tk
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I. INTRODUCTION

An outstanding challenge in quantum field theory is so
ing non-Abelian gauge theories at intermediate and str
coupling. Recently, there has been considerable progres
understanding the properties of strongly coupled gauge th
ries with supersymmetry@1–3#. In particular, there are a
number of supersymmetric gauge theories that are belie
to be inter-connected through a web of strong-weak coup
dualities. Although existing evidence for these dualities
encouraging, there is still an urgent need to address th
issues at a more fundamental level. Ideally, we would like
solve for the bound states of these theories directly an
any coupling.

Of course, solving a field theory from first principles
typically an intractable task. Nevertheless, it has been kno
for some time that 111 dimensional field theoriescan be
solved from first principles via a straightforward applicati
of discrete light cone quantization~DLCQ! ~see @4# for a
review!. In more recent times, a large class of supersymm
ric gauge theories in two dimensions was studied usin
supersymmetric form of DLCQ~SDLCQ!, which is known
to preserve supersymmetry@5–11#.

Evidently, it would be desirable to extend these DLCQ
SDLCQ algorithms to solve higher dimensional theori
One important difference between two dimensional a
higher dimensional theories is the phase diagram induce
variations in the gauge coupling. The spectrum of a 111
dimensional gauge theory scales trivially with respect to
gauge coupling, while a theory in higher dimensions has
potential of exhibiting a complex phase structure, which m
include a strong-weak coupling duality. It is therefore inte
esting to study the phase diagram of gauge theories inD
>3 dimensions.

Towards this end, we consider three dimensio
SU(N) N51 super-Yang-Mills theory compactified on th
space-timeR3S13S1. In particular, we compactify the
light-cone coordinatex2 on a light-like circle via DLCQ,
and wrap the remaining transverse coordinatex' on a spatial
0556-2821/99/59~8!/085001~8!/$15.00 59 0850
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circle. By retaining only the first few excited modes in th
transverse direction, we are able to solve for bound s
wave functions and masses numerically by diagonalizing
discretized light-cone supercharge. We show that the su
symmetric formulation of the DLCQ procedure — whic
was studied in the context of two dimensional theories@5,11#
— extends naturally in 211 dimensions, resulting in an ex
actly supersymmetric spectrum.

The contents of this paper are organized as follows.
Sec. II, we formulate SU(N) N51 super-Yang-Mills theory
defined on the compactified space-timeR3S13S1. Explicit
expressions are given for the light-cone supercharges, w
are then discretized via the SDLCQ procedure. Quantiza
of the theory is then carried out by imposing canonic
~anti!commutation relations for boson and fermion fields.
Sec. III, we present the results of our numerical diagonali
tions by plotting bound state masses as a function of ga
coupling. We also study the bound state structure of
massless states in the theory. In Sec. IV, we provide an a
lytical treatment of certain massless states in the theory,
discuss the appearance of new massless states at strong
pling. We conclude our analysis with a discussion of o
results in Sec. V.

II. LIGHT-CONE QUANTIZATION AND SDLCQ

We wish to study the bound states ofN51 super-Yang-
Mills theory in 211 dimensions. Any numerical approac
necessarily involves introducing a momentum lattice —
parton momenta can only take on discretized values.
usual space-time lattice explicitly breaks supersymmetry
if we wish to discretize our theoryand preserve supersym
metry, then a judicious choice of lattice is required.

In 111 dimensions, it is well known that the light-con
momentum lattice induced by the DLCQ procedure p
serves supersymmetry if the supercharge rather than
Hamiltonian is discretized@5,11#. In 211 dimensions, a su-
persymmetric prescription is also possible. We begin by
troducing light-cone coordinatesx65(x06x1)/A2, and
compactifying thex2 coordinate on a light-like circle. In this
©1999 The American Physical Society01-1
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FRANCESCO ANTONUCCIO, OLEG LUNIN, AND STEPHEN PINSKY PHYSICAL REVIEW D59 085001
way, the conjugate light-cone momentumk1 is discretized.
To discretize the remaining~transverse! momentumk'5k2,
we may compactifyx'5x2 on a spatial circle. Of course
there is a significant difference between the discretized lig
cone momentak1, and discretized transverse momentak' ;
namely, the light-cone momentumk1 is always positive,1

while k' may take on positive or negative values. The po
tivity of k1 is a key property that is exploited in DLCQ
calculations; for any given light-cone compactification, the
are only a finite number of choices fork1 — the total num-
ber depending on how finely we discretize the momenta.2 In
the context of two dimensional theories, this implies a fin
number of Fock states@12#.

In the case we are interested in — in which there is
additional transverse dimension — the number of Fock st
is no longer finite, since there are an arbitrarily large num
of transverse momentum modes defined on the transv
spatial circle. Thus, an additional truncation of the transve
momentum modes is required to render the total numbe
Fock states finite, and the problem numerically tractable.3 In
this work, we choose the simplest truncation procedure
yond retaining the zero mode; namely, only partons w
transverse momentumk'50,62p/L will be allowed, where
L is the size of the transverse circle.

Let us now apply these ideas in the context of a spec
super-Yang-Mills theory. We start with 211 dimensional
N51 super-Yang-Mills theory defined on a space-time w
one transverse dimension compactified on a circle:

S5E d2xE
0

L

dx' trS 2
1

4
FmnFmn1 iC̄gmDmC D . ~1!

After introducing the light-cone coordinatesx65(1/A2)(x0

6x1), decomposing the spinorC in terms of chiral projec-
tions,

c5
11g5

21/4
C, x5

12g5

21/4
C, ~2!

and choosing the light-cone gaugeA150, the action be-
comes

1Since we wish to consider the decompactified limit in the end,
omit zero modes. This is a necessary technical constraint in num
cal calculations.

2The ‘‘resolution’’ of the discretization is usually characterized
a positive integerK, which is called the ‘‘harmonic resolution’
@12,13#; for a given choice ofK, the light-cone momentak1 are
restricted to positive integer multiples ofP1/K, whereP1 is the
total light-cone momentum of a state.

3This truncation procedure, which is characterized by some i
ger upper bound, is analogous to the truncation ofk1 imposed by
the ‘‘harmonic resolution’’K.
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S5E dx1dx2E
0

L

dx' trF1

2
~]2A2!21D1f]2f1 icD1c

1 ix]2x1
i

A2
cD'f1

i

A2
fD'cG . ~3!

A simplification of the light-cone gauge is that the no
dynamical fieldsA2 and x may be explicitly solved from
their Euler-Lagrange equations of motion:

A25
g

]2
2

J5
g

]2
2 ~ i @f,]2f#12cc!,

x52
1

A2]2

D'c. ~4!

These expressions may be used to express any opera
terms of the physical degrees of freedom only. In particu
the light-cone energy,P2, and momentum operators
P1,P', corresponding to translation invariance in each
the coordinatesx6 andx' may be calculated explicitly:

P15E dx2E
0

L

dx' tr@~]2f!21 ic]2c#, ~5!

P25E dx2E
0

L

dx' trF2
g2

2
J

1

]2
2

J2
i

2
D'c

1

]2
D'cG ,

~6!

P'5E dx2E
0

L

dx' tr@]2f]'f1 ic]'c#. ~7!

The light-cone supercharge in this theory is a two compon
Majorana spinor, and may be conveniently decomposed
terms of its chiral projections:

Q1521/4E dx2E
0

L

dx' tr@f]2c2c]2f#, ~8!

Q2523/4E dx2E
0

L

dx' trF2]'fc

1g~ i@f,]2f#12cc!
1

]2
cG . ~9!

The action~3! gives the following canonical~anti!commuta-
tion relations for propagating fields at equalx1:

@f i j ~x2,x'!,]2fkl~y2,y'!#5
1

2
id~x22y2!d~x'2y'!

3S d i l d jk2
1

N
d i j dklD , ~10!

$c i j ~x2,x'!,ckl~y2,y'!%5
1

2
d~x22y2!d~x'2y'!

3S d i l d jk2
1

N
d i j dklD . ~11!

Using these relations one can check the supersymm
algebra:

e
ri-
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$Q1,Q1%52A2P1, $Q2,Q2%52A2P2,

$Q1,Q2%524P' . ~12!

We will consider only states which have vanishing tran
verse momentum, which is possible since the total transv
momentum operator is kinematical.4 On such states, the
light-cone superchargesQ1 andQ2 anti-commute with each
other, and the supersymmetry algebra is equivalent to
08500
-
se

e

N5(1,1) supersymmetry of the dimensionally reduced~i.e.,
two dimensional! theory@5#. Moreover, in theP'50 sector,
the mass squared operatorM2 is given byM252P1P2.

As we mentioned earlier, in order to render the bou
state equations numerically tractable, the transverse mom
tum of partons must be truncated. First, we introduce
Fourier expansion for the fieldsf and c, where the trans-
verse space-time coordinatex' is periodically identified:
,

f i j ~0,x2,x'!5
1

A2pL
(

n'52`

` E
0

` dk1

A2k1
@ai j ~k1,n'!e2 ik1x22 i~2pn'/L !x'1aji

† ~k1,n'!eik1x21 i~2pn'/L !x'#,

c i j ~0,x2,x'!5
1

2ApL
(

n'52`

` E
0

`

dk1@bi j ~k1,n'!e2 ik1x22 i~2pn'/L !x'1bji
† ~k1,n'!eik1x21 i~2pn'/L !x'#.

Substituting these into the~anti!commutators~11!, one finds

@ai j ~p1,n'!,alk
† ~q1,m'!#5d~p12q1!dn' ,m'

S d i l d jk2
1

N
d i j d lkD , ~13!

$bi j ~p1,n'!,blk
† ~q1,m'!%5d~p12q1!dn' ,m'

S d i l d jk2
1

N
d i j d lkD . ~14!

The supercharges now take the following form:

Q15 i21/4 (
n'PZ

E
0

`

dkAk@bi j
† ~k,n'!ai j ~k,n'!2ai j

† ~k,n'!bi j ~k,n'!#, ~15!

Q25
27/4p i

L (
n'PZ

E
0

`

dk
n'

Ak
@ai j

† ~k,n'!bi j ~k,n'!2bi j
† ~k,n'!ai j ~k,n'!#

1
i221/4g

ALp
(

ni
'PZ

E
0

`

dk1dk2dk3d~k11k22k3!dn
1
'1n

2
' ,n

3
'

3H 1

2Ak1k2

k22k1

k3
@aik

† ~k1 ,n1
'!ak j

† ~k2 ,n2
'!bi j ~k3 ,n3

'!2bi j
† ~k3 ,n3

'!aik~k1 ,n1
'!ak j~k2 ,n2

'!#

1
1

2Ak1k3

k11k3

k2
@aik

† ~k3 ,n3
'!ak j~k1 ,n1

'!bi j ~k2 ,n2
'!2aik

† ~k1 ,n1
'!bk j

† ~k2 ,n2
'!ai j ~k3 ,n3

'!#

1
1

2Ak2k3

k21k3

k1
@bik

† ~k1 ,n1
'!ak j

† ~k2 ,n2
'!ai j ~k3 ,n3

'!2ai j
† ~k3 ,n3

'!bik~k1!ak j~k2 ,n2
'!#

1S 1

k1
1

1

k2
2

1

k3
D @bik

† ~k1 ,n1
'!bk j

† ~k2 ,n2
'!bi j ~k3 ,n3

'!1bi j
† ~k3 ,n3

'!bik~k1 ,n1
'!bk j~k2 ,n2

'!#J . ~16!

4Strictly speaking, on a transverse cylinder, there are separate sectors with total transverse momenta 2pn/L; we consider only one of them
n50.
1-3
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FRANCESCO ANTONUCCIO, OLEG LUNIN, AND STEPHEN PINSKY PHYSICAL REVIEW D59 085001
We now perform the truncation procedure; namely, in
sums over the transverse momentani

' appearing in the above
expressions for the supercharges, we restrict summatio
the following allowed momentum modes:ni

'50,61. More
generally, the truncation procedure may be defined byuni

'u
<Nmax, whereNmax is some positive integer. In this work
we consider the simple caseNmax51. Note that this pre-
scription is symmetric, in the sense that there are as m
positive modes as there are negative ones. In this way
retain parity symmetry in the transverse direction.

How does such a truncation affect the supersymme
properties of the theory? Note first that an operator rela
@A,B#5C in the full theory is not expected to hold in th
truncated formulation. However, ifA is quadratic in terms of
fields ~or in terms of creation and annihilation operator!,
one can show that the relation@A,B#5C implies

@Atr ,Btr #5Ctr

for the truncated operatorsAtr , Btr , andCtr . In our case,
Q1 is quadratic, and so the relations$Qtr

1 ,Qtr
1%52A2Ptr

1

and $Qtr
1 ,Qtr

2%50 are true in theP'50 sector of the trun-
cated theory. The$Qtr

2 ,Qtr
2% however is not equal to

2A2Ptr
2 . So the diagonalization of$Qtr

2 ,Qtr
2% will yield a

different bound state spectrum than the one obtained a
diagonalizing 2A2Ptr

2 . Of course the two spectra shou
agree in the limitNmax→`. At any finite truncation, how-
ever, we have the liberty to diagonalize any one of th
operators. This choice specifies our regularization schem

Choosing to diagonalize the light-cone supercharge, h
ever, has an important advantage:the spectrum is exactly
supersymmetric for any truncation. In contrast, the spectrum
of the Hamiltonian becomes supersymmetric only in
Nmax→` limit.5

To summarize, we have introduced a truncation proced
that facilitates a numerical study of the bound state probl
and preserves supersymmetry. The interesting propert
the light-cone superchargeQ2 @Eq. ~16!# is the presence of a
gauge coupling constant as an independent variable, w
does not appear in the study of two dimensional theories
the next section, we will study how variations in this co
pling affects the bound states in the theory.

III. NUMERICAL RESULTS: BOUND STATE SOLUTIONS

In order to implement the DLCQ formulation of th
bound state problem — which is tantamount to impos
periodic boundary conditionsx25x212pR @13# — we
simply restrict the light-cone momentum variableski appear-
ing in the expressions forQ1 andQ2 to the following dis-
cretized set of momenta: $(1/K)P1,(2/K)P1,(3/
K)P1, . . . %. Here,P1 denotes the total light-cone mome

5If one chooses anti-periodic boundary conditions in thex2 coor-
dinate for fermions, then there is no choice; one can only diago
ize the light-cone Hamiltonian. See@14# for more details on this
approach.
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tum of a state, and may be thought of as a fixed const
since it is easy to form a Fock basis that is already diago
with respect to the operatorP1 @12#. The integerK is called
the ‘‘harmonic resolution,’’ and 1/K measures the coarsene
of our discretization. The continuum limit is then recover
by taking the limit K→`. Physically, 1/K represents the
smallest positive unit of longitudinal momentum fraction a
lowed for each parton in a Fock state.

Of course, as soon as we implement the DLCQ proced
which is specified unambiguously by the harmonic resolut
K, and cutoff transverse momentum modes via the constr
uni

'u<Nmax, the integrals appearing in the definitions f
Q1 and Q2 are replaced by finite sums, and so t
eigenequation 2P1P2uC&5M2uC& is reduced to a finite
matrix diagonalization problem. In this last step we use
fact thatP2 is proportional to the square of the light-con
supercharge6 Q2. In the present work, we are able to pe
form numerical diagonalizations forK52, 3, 4 and 5 with
the help ofMATHEMATICA and a desktop PC. In Fig. 1, w
plot the bound state mass squaredM2, in units 16p2N/L2, as
a function of the dimensionless couplingg85gANL/4p3/2,
in the range 0<g8<2. We consider the specific caseN
51000, although our algorithm can calculate masses for
choice ofN, since it enters our calculations as an algebr
variable. Since there is an exact boson-fermion mass de
eracy, one needs only diagonalize the mass matrixM2 cor-
responding to the bosons. ForK55, there are precisely 600
bosons and 600 fermions in the truncated light-cone F
space; so the mass matrix that needs to be diagonalized
dimensions 6003600. At K54, there are 92 bosons and 9
fermions, while atK53, one finds 16 bosons and 16 ferm
ons.

In Fig. 2, we plot the bound state spectrum in the ran
0<g8<10. It is apparent now that new massless states

l- 6Strictly speaking,P25(1/A2)(Q2)2 is an identity in the con-
tinuum theory and adefinition in the compactified theory, corre
sponding to the SDLCQ prescription@5,11#.

FIG. 1. Plot of bound state mass squaredM2 in units 16p2N/L2

as a function of the dimensionless coupling 0<g8<2, defined by
(g8)25g2NL/16p3, at N51000 andK55. Boson and fermion
masses are identical.
1-4
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SUPER YANG-MILLS THEORY AT WEAK, . . . PHYSICAL REVIEW D59 085001
pear in the strong coupling limitg8→`.
An interesting property of the spectrum is the presence

exactly massless states that persist for all values of the
pling g8. For K55, there are 16 such states~8 bosons and 8
fermions!. At K54, one finds 8 states~4 bosons and 4 fer
mions! that are exactly massless for any coupling, while
K53, there are 4 states~two bosons and two fermions! with
this property. We will have more to say regarding the
states in the next section, but here we note that the struc
of these states become ‘‘string-like’’ in the strong coupli
limit. This is illustrated in Fig. 3, where we plot the ‘‘aver
age length’’~or average number of partons! of each of these
massless states.7 This quantity is obtained by counting th
number of partons in each Fock state that comprises a m
less bound state, appropriately weighted by the modulu
the wave function squared. Clearly, at strong coupling,
average number of partons saturates the maximum pos
value allowed by the resolution — in this case 5 partons. T
same behavior is observed at lower resolutions. Thus, in
continuum limitK→`, we expect the massless states in t
theory to become string-like at strong coupling.

One interesting property of the model studied here is
manifestN5(1,1) supersymmetry in theP'50 momentum
sector, by virtue of the supersymmetry relations~12!. More-
over, if we consider retaining only the zero modeni

'50,
then the light-cone superchargeQ2 for the 211 model is
identical to the 111 dimensionalN5(1,1) supersymmetric
Yang-Mills theory studied in@5,7,8#, after a rescaling by the
factor 1/g8. ~This is equivalent to expressing the ma
squaredM2 in units g̃2N/p, whereg̃5g/AL. The quantityg̃
is then identified as the gauge coupling in the 111 theory.!
We may therefore think of the additional transverse degr
of freedom in the 211 model, represented by the mod
n'561, as a modification of the 111 model. A natural
question that follows from this viewpoint is, how well doe
the 111 spectrum approximate the 211 spectrum after per
forming this rescaling? Before discussing the numerical
sults summarized in Table I, let us first attempt to pred
what will happen at small couplingg8. In this case, the co
efficients of terms in the rescaled HamiltonianP2 that cor-
respond to summing the transverse momentum squareduk'u2

of partons in a state will be large. So the low energy sec
will be dominated by states withn'50, i.e., those states tha
appear in the Fock space of theN5(1,1) model in 111
dimensions. This is indeed supported by the results in Ta
I.

For large couplingg8, however, it is clear that the ap
proximation breaks down. In fact, one can show that
tabulated masses in the rescaled 211 model tend to zero in
the strong coupling limit, which eliminates any scope f
making comparisons between the two and three dimensi
models.

Thus, the non-perturbative problem of solving dimensio

7The ‘‘noisiness’’ in this plot for larger values ofg8 reflects the
ambiguity of choosing a basis for the eigenspace, due to the e
mass degeneracy of the massless states.
08500
f
u-

r

e
re

ss-
of
e
ble
e
e

s

e

s

-
t

r

le

e

r
al

-

ally reduced models in 111 dimensions can only provide
information about bound state masses in the correspon
weakly coupledhigher dimensional theory.

IV. ANALYTICAL RESULTS:
THE MASSLESS SECTOR

In the previous section we presented the results of stu
ing the bound state problem using numerical methods
performing such a study we conveniently chose the simp
nontrivial truncation of the transverse momentum mod
namely,n'50,61. Surprisingly, such a simple scheme pr
vided many interesting insights concerning the massless
massive sector. In particular we see that there are three t
of massless states: those that are massless only atg50 or
g5` ~but not both! and those that are massless for any va
of the coupling. In this section, we will analyze only th
massless sector of the theory, and show that the obse
properties of the spectrum with the truncationn'50,61,
also persists if we include higher modes:n'50,61,
62, . . . ,6Nmax. We therefore consider the model with s
percharges given by Eqs.~15! and~16!, and restrict summa-
tion of transverse momentum modes via the constraintun'u
<Nmax.

For states carrying positive light-cone momentum,P1 is
never zero, and so massless states must satisfy the equ
P2uC&50, which, using the relationP25(1/A2)(Q2)2 and
Hermiticity of Q2, reduces to

Q2uC&50. ~17!

This is the equation we wish to study in detail.
We begin with an analysis of the weak coupling limit

the theory. This limit means that the dimensionless coupl
constant is small: i.e.gAL!1. We will consider the strong-
weak coupling behavior of the theory on a cylinder wi
ct

TABLE I. Values for the mass squaredM2, in units g̃2N/p,

with g̃25g2/L, for bound states in the dimensionally reducedN
5(1,1) model, and the 211 model studied here. The quantityg̃ is
identified as the gauge coupling in the 111 model. We setK53, 4
and 5, andN51000. Note that the comparison of masses betw
the 111 model and the~re-scaled! 211 model is good only at
weak couplingg8.

Comparison between 111 and 211 spectra
- 111 model Rescaled 211 model
K - g85.01 g85.1 g851.0

K55 15.63 15.5 15.17 3.7
18.23 17.6 17.9 3.5
21.8 21.3 21.7 3.2

K54 - - - -
18.0 17.99 17.6 3.56
21.3 21.3 21.0 3.1

K53 - - - -
- - - -

20.2 20.2 19.8 3.1
1-5
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FRANCESCO ANTONUCCIO, OLEG LUNIN, AND STEPHEN PINSKY PHYSICAL REVIEW D59 085001
fixed circumferenceL, and so it is convenient to choose th
units in which L51 for this discussion. The supercharg
~16! consists of two parts: one is proportional to the coupl
and the other is coupling independent:

Q25Q'1gQ̃. ~18!

So atg50 Eq.~17! reduces toQ'uC&50, which means tha
uC& may be viewed as a state in the Fock space of the
dimensionalN5(1,1) super Yang-Mills theory, which ma
be obtained by dimensional reduction of the 211 theory.
Thus the massless states atg50 are states with any comb
nation of a†(k,0) andb†(k,0) modes, and no partons wit
nonzero transverse momentum.

What happens with these massless states when
switches on the coupling? To answer this question, we n
some information about the behavior of states as function
the coupling. We assume that wave functions are analyti
terms ofg at least in the vicinity ofg50. This means that in
this region any massless stateuC& may be written in the form

uC&5 (
n50

`

gnun&, ~19!

where statesun& are coupling independent. Then using re
tion ~18!, theg-dependent equation~17! may be written as an
infinite system of relations between differentun&:

Q'u0&50, ~20!

Q'un&1Q̃un21&50, n.0. ~21!

The first of these equations was already used to exclude
tons carrying non-zero transverse momentum, which i
property of the massless bound states at zero coupling.
second equation is non-trivial. Let us consider two differe
subspaces in the theory. The first of these subspaces con
of states with no creation operators for transverse mo
which we will label 1. The other is the complement of th
space in which the operatorQ' is invertible and we label this
space 2. Equation~21! defines the recurrence relation whe
Q̃un21& is in subspace 2:

un&52Q'
21~Q̃un21&u2). ~22!

The consistency condition is that projection ofQ̃un21& in
subspace 1 is zero,

Q̃un21&u150. ~23!

This condition implies that not all states of the two dime
sional theory,g50, may be extended to such states at ar
trary g using Eq.~22!. Takingn51, Eq.~23! implies thatu0&
is a massless state of the dimensionally reduced theory.
numerical solutions, of course, show this correspondence
tween the 211 and 111 @5,7,8# massless bound state
Starting from a massless state of the two dimensional the
08500
o

ne
ed
of
in

-

ar-
a
he
t
ists
es

-
i-

he
e-

y,

and we construct statesun& using Eq.~22!, and for which Eq.
~23! is always satisfied. ThenuC& may be found from sum-
ming a geometric series:

uC&5 (
n50

`

~2gQ'
21Q̃!nu0&5

1

11gQ'
21Q̃

u0&. ~24!

So starting from the massless state of the two dimensio
N5(1,1) model, one can always construct unique mass
states in the three dimensional theory at least in the vicin
of g50.

The state~24! turns out to be massless for any value of t
coupling,

Q2uC&5Q'~11gQ'
21Q̃!

1

11gQ'
21Q̃

u0&5Q'u0&50,

~25!

though the state itself is dependent ong. Thus, we have
shown that massless states of the three dimensional theo
nonzero coupling, can be constructed from massless stat
the corresponding model in two dimensions. All other sta
containing only two dimensional modes can also be exten
to the eigenstates of the full theory. But such eigenstates
massless only at zero coupling. Assuming analyticity, o
can then show that their masses grow linearly atg in the
vicinity of zero. Such behavior also agrees with our nume
cal results.

To illustrate the general construction explained above
consider one simple example. Working in DLCQ at reso
tion K53 we choose a special two dimensional massl
state8 @5,7,8#

u0&5 tr@a†~1,0!a†~2,0!#uvac&. ~26!

Then in the SU(N) theory we find

Q̃u0&5
3

2A2
„ tr$a†~1,0!@b†~1,21!a†~1,1!

2a†~1,1!b†~1,21!1b†~1,1!a†~1,21!

2a†~1,21!b†~1,1!#%…uvac&, ~27!

u1&52Q'
21Q̃u0&52

AL

4p3/2

3

2A2
@a†~1,0!a†~1,21!

3a†~1,1!2a†~1,0!a†~1,1!a†~1,21!#uvac&, ~28!

Q̃u1&50. ~29!

The last equation provides the consistency condition~23! for
n52, and it also shows that for this special example we h

8The stateu0& denotes a massless state, whileuvac& represents the
light-cone vacuum.
1-6
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only two statesu0& and u1&, instead of a general infinite se
The matrix form of the operator 11gQ'

21Q̃ in the u0&,u1&
basis is

11gQ'
21Q̃5S 1 2g

0 1 D 5S 1 g

0 1D
21

. ~30!

Then the solution of Eq.~24! is

uC&5u0&1gu1&5 tr@a†~1,0!a†~2,0!#uvac&

1
gAL

4p3/2

3

2A2
@a†~1,0!a†~1,1!a†~1,21!

2a†~1,0!a†~1,21!a†~1,1!#uvac&. ~31!

This state was observed numerically, and the dependenc
the wave function on the coupling constant is precisely
one given by the last formula.

In principle, we can determine the wave functions of
massless states using this formalism. Our procedure ha
important advantage over a direct diagonalization of
three dimensional supercharge. First, in order to find t
dimensional massless states, one needs to diagonaliz
corresponding supercharge@5#. However, the dimension o
the relevant Fock space is much less than the three dim
sional theory@at large resolutionK, the ratio of these dimen
sions is of order (Nmax11)aK, a;1/4]. The extension of the
two dimensional massless solution into a massless solu
of the three dimensional theory requires diagonalizing a m
trix which has a smaller dimension than the original probl
in three dimensions. Thus, if one is only interested in
massless sector of the three dimensional theory, the m
efficient way to proceed in DLCQ calculations is to solve t
two dimensional theory, and then to upgrade the mass
states to massless solutions in three dimensions.

Finally, we will make some comments on bound states
very strong coupling. Of course, we have states~24! which
are massless at any coupling, but our numerical calcula
shows there are additional states which become massle
g5` ~see Fig. 2!. To discuss these states it is convenient
consider

Q̄25
1

g
Q'1Q̃ ~32!

instead ofQ2, and perform the strong coupling expansio
Since we are interested only in massless states, the abs
normalization does not matter. We repeat all the argume
used in the weak coupling case: first, we introduce the sp
1* whereQ̃ cannot be inverted and its orthogonal comp
ment 2* . Then any state from 1* is massless atg5`, but
assuming the expansion

uC&5 (
n50

`
1

gn
un&* ~33!

at large enoughg, one finds the analogues of Eqs.~22! and
~23!:
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un&* 52Q̃21~Q'un21&* u2* ), ~34!

Q'un21&* u1* 50. ~35!

As in the small coupling case, there are two possibiliti
either one can construct all statesun&* satisfying the consis-
tency conditions, or at least one of these conditions fails. T
former case corresponds to the massless state in the vic
of g5`, which can be extended to the massless states a
couplings. The states constructed in this way — and o
given by Eq.~24! — define the same subspace. In the lat
case, the state is massless atg5`, but it acquires a mass a
finite coupling. There is a big difference, however, betwe
the weak and strong coupling cases. While the kernel ofQ'

consists of ‘‘two dimensional’’ states, the description of t
states annihilated byQ̃ is a nontrivial dynamical problem
Since the massless states can be constructed starting
eitherg50 or g5`, we do not have to solve this problem t
build them. If, however, one wishes to show that massl
states become long in the strong coupling limit~there is nu-

FIG. 2. Plot of bound state mass squaredM2 in units 16p2N/L2

as a function of the dimensionless coupling 0<g8<10, defined by
(g8)25g2NL/16p3, at N51000 andK55. Note the appearance o
a new massless state at strong coupling.

FIG. 3. Plot of average length for the eight massless boso
states as a function of the dimensionless couplingg8, defined by
(g8)25g2NL/16p3, at N51000 andK55. Note that the states
attain the maximum possible length allowed by the resolutionK
55 in the limit of strong coupling.
1-7
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merical evidence for such behavior — see Fig. 3!, the struc-
ture of 1* space becomes important, and we leave this qu
tion for future investigation.

V. DISCUSSION

In this work, we considered the bound states of three
mensional SU(N) N51 super-Yang-Mills theory defined
on the compactified space-timeR3S13S1. In particular, we
compactified the light-cone coordinatex2 on a light-like
circle via DLCQ, and wrapped the remaining transverse
ordinatex' on a spatial circle. We showed explicitly that th
supersymmetric form of DLCQ~SDLCQ! employed in re-
cent studies of two dimensional supersymmetric gauge th
ries extends naturally in 211 dimensions, which resulted i
an exactly supersymmetric spectrum. We also showed
theN51 supersymmetry is enhanced toN5(1,1) in a ref-
erence frame with vanishing total transverse momentumP'

50. The supersymmetric theory considered here is actu
super-renormalizable.9

By retaining only the first few excited modes in the tran
verse direction, we were able to solve for bound state w
functions and masses numerically by diagonalizing the
cretized light-cone supercharge. The results of our numer
calculations for bound state masses are summarized in F
1 and 2. The theory exhibits a stable spectrum at both sm
and large coupling. In Table I, we compared solutions of
211 dimensional theory to corresponding solutions in
dimensionally reduced 111 theory, after an appropriat
rescaling of the 111 dimensional coupling constant, an
observed that the lower dimensional theory provides a g
approximation to the low energy spectrum of the higher

9Ultraviolet renormalization is never an issue here, since we h
truncated the transverse momentum modes, which acts as a re
tor. DLCQ regulates any longitudinal divergences for vanishingk1.
ka
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mensional theory at weak coupling only. Any scope for ma
ing comparisons breaks down, however, at intermediate
strong coupling. One also notes a smooth dependenc
bound state masses in terms of the DLCQ harmonic res
tion K, a fact that was observed previously in studies
related supersymmetric models@8#.

Interestingly, we find exactly massless states that per
for all values of the gauge coupling. These states should
contrasted with those that are massless only at the extr
valuesg50 or g5` ~but not both!.

An analytical treatment of the massless states reveale
connection with the massless solutions of the correspond
dimensionally reduced model@5,7,8#. We have shown tha
the wave functions of the massless states that remain m
less for all values of the gauge coupling are in one-to-o
correspondence with the massless states of the 111 dimen-
sional theory. This fact seems to be non-trivial, since
concept of mass is defined differently in the two theori
From the three dimensional point of view, the states in
Hilbert space that are naturally associated with the two
mensional Fock space~i.e. those states made up from parto
with zero transverse momentum! are massless atg50.

The bound state structure of the massless states in t
11 theory was also studied for different couplings, and su
marized in Fig. 3, where we plotted the average numbe
partons for each of the massless solutions. We conclu
that in the decompactified limitK→`, these massless state
must become string-like in the strong coupling limit.

Evidently, it would be interesting to relate these obser
tions with the recent claim that strongly coupled super-Ya
Mills theory corresponds to string theory in an anti–de Sit
background@3#. Of course, the techniques we have employ
in this study may be applied to any supersymmetric ga
theory defined on a suitably compactified space-time. T
should facilitate a more general study of the strongly coup
dynamics of super-Yang-Mills theories, and in particular,
low one to scrutinize more carefully the string-like properti
of Yang-Mills theories.
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