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We consider three dimensional WY A=1 super-Yang-Mills theory compactified on the space-tithe
X Stx St. In particular, we compactify the light-cone coordinateon a light-like circle via DLCQ, and wrap
the remaining transverse coordinateon a spatial circle. By retaining only the first few excited modes in the
transverse direction, we are able to solve for bound state wave functions and masses numerically by diago-
nalizing the discretized light-cone supercharge. This regularization of the theory is shown to preserve super-
symmetry. We plot bound state masses as a function of the coupling, showing the transition in particle masses
as we move from a weakly to a strongly coupled theory. We analyze both numerically and analytically
massless states which exist only in the limit of strong or weak gauge coupling. In addition, we find massless
states that persist for all values of the gauge coupling. An analytical treatment of these massless states is
provided. Interestingly, in the strong coupling limit, these massless states become string-like.
[S0556-282(199)03608-3

PACS numbses): 11.10.Kk, 11.15.Tk

[. INTRODUCTION circle. By retaining only the first few excited modes in the
transverse direction, we are able to solve for bound state
An outstanding challenge in quantum field theory is solv-wave functions and masses numerically by diagonalizing the
ing non-Abelian gauge theories at intermediate and strongiscretized light-cone supercharge. We show that the super-
coupling. Recently, there has been considerable progress fymmetric formulation of the DLCQ procedure — which
understanding the properties of strongly coupled gauge thedvas studied in the context of two dimensional theof&41]
ries with supersymmetry1—-3]. In particular, there are a — extends naturally in 21 dimensions, resulting in an ex-
number of supersymmetric gauge theories that are believe’fFtly supersymmetric spectrum. _
to be inter-connected through a web of strong-weak coupling. "€ contents of this paper are organized as follows. In
dualities. Although existing evidence for these dualities is>€¢: !, we formulate SW) N=1 super-Yang-Mills theory

encouraging, there is still an urgent need to address the§jeef'ned on the cor_npachﬁed space-tulﬁe(S XS, Explicit .
expressions are given for the light-cone supercharges, which

issues at a more fundamental level. Ideally, we would like to . . . P
solve for the bound states of these theories directly and A€ then dlscre_nzed via the_SDLCQ propedurg. Quantlzgtlon
any coupling. of the theory is then carried out by imposing canonical

. ) . . . (anticommutation relations for boson and fermion fields. In
Of course, solving a field theory from first principles is

: ) ) Sec. lll, we present the results of our numerical diagonaliza-
typically an intractable task. Nevertheless, it has been knowgOnS by plotting bound state masses as a function of gauge
for some time that +1 dimensional field theoriesan be

) -+ - . M= coupling. We also study the bound state structure of the
solv_ed from _f|rst principles via a_stralghtforward application jassless states in the theory. In Sec. IV, we provide an ana-
of discrete light cone quantizatioDLCQ) (see[4] for a  |ytical treatment of certain massless states in the theory, and
review). In more recent times, a large class of supersymmetgiscuss the appearance of new massless states at strong cou-

ric gauge theories in two dimensions was studied using @ling. We conclude our analysis with a discussion of our
supersymmetric form of DLCQSDLCQ), which is known results in Sec. V.

to preserve supersymmetr§—11].
Evidently, it. would be desirab_le to ex}end t_hese DLCQ or Il. LIGHT-CONE QUANTIZATION AND SDLCQ
SDLCQ algorithms to solve higher dimensional theories.
One important difference between two dimensional and We wish to study the bound states.®*1 super-Yang-
higher dimensional theories is the phase diagram induced blills theory in 2+1 dimensions. Any numerical approach
variations in the gauge coupling. The spectrum of-al1l  necessarily involves introducing a momentum lattice — i.e.
dimensional gauge theory scales trivially with respect to thgparton momenta can only take on discretized values. The
gauge coupling, while a theory in higher dimensions has th&isual space-time lattice explicitly breaks supersymmetry; so
potential of exhibiting a complex phase structure, which mayif we wish to discretize our theorgnd preserve supersym-
include a strong-weak coupling duality. It is therefore inter-metry, then a judicious choice of lattice is required.
esting to study the phase diagram of gauge theorieB in In 1+1 dimensions, it is well known that the light-cone
=3 dimensions. momentum lattice induced by the DLCQ procedure pre-
Towards this end, we consider three dimensionalserves supersymmetry if the supercharge rather than the
SU(N) N=1 super-Yang-Mills theory compactified on the Hamiltonian is discretize@,11]. In 2+ 1 dimensions, a su-
space-timeRXx S'x St In particular, we compactify the persymmetric prescription is also possible. We begin by in-
light-cone coordinatex™ on a light-like circle via DLCQ, troducing light-cone coordinates” = (x°=x%)/2, and
and wrap the remaining transverse coordinat®n a spatial compactifying thex™ coordinate on a light-like circle. In this
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way, the conjugate light-cone momentk is discretized. L
To discretize the remainingransversemomentumk* =k2, S=J dx+dx‘j dx, tr
we may compactifyx: =x? on a spatial circle. Of course, 0
there is a signifii:ant difference between the discretized light- i i
cone moment&™, and discretized transverse momehitg i _ _
namely, the light-cone momentuki™ is always positive, Txdoxr \/Eled)Jr \/E(/)Dlw
while k;, may take on positive or negative values. The posi-, . .. . : .
tivity of k™ is a key property that is exploited in DLCQ er?;mmpi(l:lgf?ité?g S:i t‘:ﬁ dl;l(grr]‘;[g)?nbee %?(%%git;i ég?ée:jhef}ronmon'
calculatlons_, for any given Ilght_-cone compactification, theretheir Euler-Lagrange equations of motion:
are only a finite number of choices fai — the total num-
ber depending on how finely we discretize the momérta. g g .
the context of two dimensional theories, this implies a finite A= (9_23:(9_2('[¢:‘9— 1+ 244),
number of Fock statedl 2]. - -

In the case we are interested in — in which there is an
additional transverse dimension — the number of Fock states x=———D, . (4
is no longer finite, since there are an arbitrarily large number V24

of transverse momentum modes defined on the transverse These expressions may be used to express any operator in
spatial circle. Thus, an additional truncation of the transversgerms of the physical degrees of freedom only. In particular,
momentum modes is required to render the total number ofe light-cone energy,P~, and momentum operators,
Fock states finite, and the problem numerically tractatte. P* P, corresponding to translation invariance in each of
this work, we choose the simplest truncation procedure bethe coordinates™ andx, may be calculated explicitly:
yond retaining the zero mode; namely, only partons with L
transverse momentuky =0,=2#/L will be allowed, where p*+= j dX—J dx, tr[(d_¢)?+iga_y], (5
L is the size of the transverse circle. 0

Let us now apply these ideas in the context of a specific L 2 4 i 1
super-Yang-Mills theory. We start with-21 dimensional p*:J deJ dx, tr —g—J—J——Du//—Dﬂﬁ ,
N=1 super-Yang-Mills theory defined on a space-time with 0 252 2 J-
one transverse dimension compactified on a circle: (6)

%(afA‘)2+D+¢af¢+i¢D+w

. 3

L
Plzf dx*fO dx, tr[d_da, p+igd, ¢]. @)

L 1 _
s=f dzxfoolxL tr(——F“”FWwLi‘lfy“DM\If). )

4 The light-cone supercharge in this theory is a two component

Majorana spinor, and may be conveniently decomposed in
terms of its chiral projections:

After introducing the light-cone coordinates = (1/y/2)(x° a4 _(t
+x1), decomposing the spinoF in terms of chiral projec- Q=2 dx 0 dx, tldd—_ip= -], (8)
tions,
L
Q*=23’4f dx*f dx, tr| 29, ¢y
0
1+ 75 1- 75
=——Y, =—Y, 2 . 1
Ve X @ QL0 B1+200) — . ©

The action(3) gives the following canonicglantjcommuta-

and choosing the light-cone gaude’ =0, the action be- ton relations for propagating fields at equeal:

comes 1
[ij (X7 X1),0— iy Y ) [=518(X" =y ) d(X, ~y,)

ISince we wish to consider the decompactified limit in the end, we
omit zero modes. This is a necessary technical constraint in numeri-
cal calculations.

2- o« . ” . . . . .

The “resolution” of the discretization is usually characterized by _ _ 1 _ _
a positive integeiK, which is called the “harmonic resolution” {ohij (X7 x0) by aYL)}—§5(X —y )X —Yyy)
[12,13; for a given choice oK, the light-cone moment&* are

X

1
Sii Ok — 1 i 5k|) , (10

restricted to positive integer multiples & /K, whereP™* is the 1
total light-cone momentum of a state. X| GOk — Ngii 5kl>' (12)
3This truncation procedure, which is characterized by some inte-
ger upper bound, is analogous to the truncatiok ofimposed by Using these relations one can check the supersymmetry

the “harmonic resolution”K. algebra:
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{QT.Q"}=2\2P", {Q~,Q }=2\2P", N=(1,1) supersymmetry of the dimensionally reduceel.,
. two dimensionaltheory[5]. Moreover, in theP, =0 sector,
{Q",Q }=—4P,. (12 the mass squared operatdf is given byM2=2P* P,

We will consider only states which have vanishing trans- As we mentloned e_arller, in order to render the bound
verse momentum, which is possible since the total transversgate equations numerically tractable, the transverse momen-
momentum operator is kinematialon such states, the tum of partons must be truncated. First, we introduce the
light-cone supercharge€®™ andQ ™~ anti-commute with each Fourier expansion for the field$ and ¢, where the trans-
other, and the supersymmetry algebra is equivalent to theerse space-time coordinate is periodically identified:

[aij (k* ’ ni)e—ik+x‘ —i(2mntiL)x, + ajTi (k* ' nL)eik*'x_ +i(2wnL/L)xL]’

i(OX ) - S f caK

. ,X 'X = —— —

K Al S Jo Y2kt
1 ” x e L

lﬂij(O,X‘,Xl):—Z - lZ . dk by (k™ nt)e KX —I@mHLx 4 (it pty gl X Him Lx ),
VTTL npt=—w

Substituting these into th@ntjcommutatorg11), one finds

1
[aij(P+,n¢),ark(q+ym¢)]: 8(p"—a")dn, ,ml( Sil Sjk— N5ij 5|k) : (13

1
{bij(p*.n).bl(a",m)}=8(p*—q*) s, ,ml( S Oy~ 1y 9l 5Ik)- (14

The supercharges now take the following form:

Q+=i21/4l2 Odk\/E[biTj(k,nL)aij(k,nL)—a;rj(k,nL)bij(k,nL)], (15
neZ
27/477i . nJ_
Q =— 22 fodkﬁ[aﬁ(k,ni)bij(k,ni)—b;(k,ni)aij(k,ni)]
n-e
i271/4 -
g
\/G nzz J;) dkldkzdk35(kl+ k2_k3)5ni+ﬂ§,né
1 k—k i Lyal L L T 1 L 1
e K Law(kunnagke.m)bi (ks,m) =By (ks ng)aw(ke,n)a (ko n )
1Kz
1 kitks
+2 — Kk [aifk(k:%-“ﬁ)akj(kl-nf)bij(kz,né)—afk(kl,ni)bﬁj(kz,né)aij(k3,nJ3-)]
VK1K3
1 kotkg
+—2 Tk [biTk(kl,nf)alj(kz,né)aﬂ(kg,né)—aiTj(k3,né)bik(kl)akj(kz,né)]
VK2K3
1 1 1 s Ly . | . | | i

4Strictly speaking, on a transverse cylinder, there are separate sectors with total transverse meménta€ consider only one of them,
n=0.
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We now perform the truncation procedure; namely, in all 2 2
sums over the transverse momentaappearing in the above 2
expressions for the supercharges, we restrict summation t01612N i
the following allowed momentum modes; =0,=1. More ]
generally, the truncation procedure may be definedriy 10 pllE=
<N ax, WhereN, .4 iS some positive integer. In this work,
we consider the simple cad¢,,,,=1. Note that this pre-
scription is symmetric, in the sense that there are as many
positive modes as there are negative ones. In this way we
retain parity symmetry in the transverse direction.

How does such a truncation affect the supersymmetry
properties of the theory? Note first that an operator relation
[A,B]=C in the full theory is not expected to hold in the
truncated formulation. However, & is quadratic in terms of 0.25 0.5 0.75 1 1.25 1.5 1.75 2
fields (or in terms of creation and annihilation operajors
one can show that the relatigh,B]=C implies

Bescsesssasassssussevee

oo ot .ﬂ'%nmllmlm
easees?®

. ..'. ,ﬂﬂmmiwmﬂQHIMIm
g

porrie i

g/

FIG. 1. Plot of bound state mass squaké@in units 162N/L2
as a function of the dimensionless coupling@’' <2, defined by
(9")?>=g?NL/1673, at N=1000 andK=5. Boson and fermion
[Atr By ]=Cy masses are identical.

for the truncated operato;, , B, andCy, . In our case, tum of a state, and may be thought of as a fixed constant,
Q" is quadratic, and so the relatiod®,; ,Q}=22P;;  since it is easy to form a Fock basis that is already diagonal
and{Q,- ,Q;;}=0 are true in the®, =0 sector of the trun- with respect to the operat®* [12]. The integeK is called
cated theory. The{Q,, ,Q,} however is not equal to the “harmonic resolution,” and ¥ measures the coarseness
2\/§pt—r . So the diagonalization ofQ,, ,Q;} will yield a of our discretization. The continuum limit is then recovered
different bound state spectrum than the one obtained aftdty taking the limitK—o. Physically, 1K represents the
diagonalizing 2/2P;, . Of course the two spectra should smallest positive unit of longitudinal momentum fraction al-
agree in the limitN .. At any finite truncation, how- 10wed for each parton in a Fock state.

ever, we have the liberty to diagonalize any one of these ©Of course, as soon as we implement the DLCQ procedure,
operators. This choice specifies our regularization scheme.Which is specified unambiguously by the harmonic resolution

Choosing to diagonalize the light-cone supercharge, howX land cutoff transverse momentum modes via the constraint
ever, has an important advantagbe spectrum is exactly |Ni |<Nmax. the integrals appearing in the definitions for
supersymmetric for any truncatiom contrast, the spectrum Q° and Q~ are replaced by finite sums, and so the
of the Hamiltonian becomes supersymmetric only in the€igenequation B¥P~[W)=M?¥) is reduced to a finite
N ax— limit.® matrix diagonalization problem. In this last step we use the

To summarize, we have introduced a truncation proceduréact thatP~ is proportional to the square of the light-cone
that facilitates a numerical study of the bound state problemsuperchargeQ . In the present work, we are able to per-
and preserves supersymmetry. The interesting property dprm numerical diagonalizations fdt=2, 3, 4 and 5 with
the light-cone superchard@™ [Eq.(16)] is the presence of a the help ofMATHEMATICA and a desktop PC. In Fig. 1, we
gauge coupling constant as an independent variable, whidghot the bound state mass squahéd, in units 167°N/L?, as
does not appear in the study of two dimensional theories. I& function of the dimensionless couplig=gNL/47%?,
the next section, we will study how variations in this cou-in the range &g’'<2. We consider the specific cadé
pling affects the bound states in the theory. =1000, although our algorithm can calculate masses for any
choice ofN, since it enters our calculations as an algebraic
variable. Since there is an exact boson-fermion mass degen-
eracy, one needs only diagonalize the mass madrfxcor-

In order to implement the DLCQ formulation of the responding to the bosons. Fid=5, there are precisely 600
bound state problem — which is tantamount to imposingbosons and 600 fermions in the truncated light-cone Fock
periodic boundary conditions™=x"+27R [13] — we  space; so the mass matrix that needs to be diagonalized has
simply restrict the light-cone momentum variablesppear- dimensions 608 600. AtK=4, there are 92 bosons and 92
ing in the expressions fa@* andQ~ to the following dis-  fermions, while atK =3, one finds 16 bosons and 16 fermi-
cretized set of momenta: {(1/K)P*,(2K)P",(3/ ons.

K)P*,...}. Here,P* denotes the total light-cone momen-  In Fig. 2, we plot the bound state spectrum in the range
0=<g’=10. It is apparent now that new massless states ap-

IIl. NUMERICAL RESULTS: BOUND STATE SOLUTIONS

5If one chooses anti-periodic boundary conditions inxhecoor-
dinate for fermions, then there is no choice; one can only diagonal- ®Strictly speaking,P~=(1//2)(Q")? is an identity in the con-
ize the light-cone Hamiltonian. Sdd4] for more details on this tinuum theory and alefinitionin the compactified theory, corre-
approach. sponding to the SDLCQ prescripti¢s,11].

085001-4



SUPER YANG-MILLS THEORY AT WEAK, ... PHYSICAL REVIEW D59 085001

pear in the strong coupling limg’ — . TABLE |. Values for the mass squared?, in units gN/,

An interesting property of the spectrum is the presence ofvith g2=g?/L, for bound states in the dimensionally reduckd
exactly massless states that persist for all values of the cou=(1 1) model, and the 21 model studied here. The quantgyis
pling g’. ForK=5, there are 16 such statésbosons and 8 identified as the gauge coupling in the-1 model. We seK=3, 4
fermiong. At K=4, one finds 8 state@ bosons and 4 fer- and 5, and\=1000. Note that the comparison of masses between
mions that are exactly massless for any coupling, while forthe 1+1 model and there-scaled 2+1 model is good only at
K =3, there are 4 staté¢two bosons and two fermiopsvith ~ weak couplingg’.
this property. We will have more to say regarding these
states in the next section, but here we note that the structure
of these states become “string-like” in the strong coupling”
limit. This is illustrated in Fig. 3, where we plot the “aver-

Comparison between-11 and 2+ 1 spectra
1+1 model Rescaled-21 model
- g'=.01 g'=.1 g’'=10

age length”(or average number of partonsf each of these k=g 15.63 15.5 15.17 3.7
massless statésThis quantity is obtained by counting the 18.23 17.6 17.9 35
number of partons in each Fock state that comprises a mass- 21.8 21.3 21.7 3.2
less bound state, appropriately weighted by the modulus qf _ ] ] ) )
the wave function squared. Clearly, at strong coupling, the 18.0 17.99 17.6 3.56
average number of partons saturates the maximum possible 213 213 21.0 31
value allowed by the resolution — in this case 5 partons. The, ' ' ' '
S i : =3 - - - -
same behavior is observed at lower resolutions. Thus, in the
continuum limitK — o, we expect the massless states in this 20.2 20.2 19.8 a1

theory to become string-like at strong coupling.
One interesting property of the model studied here is thé
manifest\/=(1,1) supersymmetry in the* =0 momentum
sector, by virtue of the supersymmetry relatighg). More-
over, if we consider retaining only the zero modg=0,
then the light-cone superchar@g for the 2+1 model is
identical to the 1 dimensional\/=(1,1) supersymmetric
Yang-Mills theory studied ih5,7,8|, after a rescaling by the
factor 1§'. (This is equivalent to expressing the mass

squaredVi? in unitsgN/ar, whereg=g/+/L. The quantityg In the previous section we presented the results of study-
is then identified as the gauge coupling in the 1L theory)  ing the bound state problem using numerical methods. In
We may therefore think of the additional transverse degreegerforming such a study we conveniently chose the simplest
of freedom in the 21 model, represented by the modesnontrivial truncation of the transverse momentum modes,
nt==1, as a modification of the #1 model. A natural namely,n, =0,+ 1. Surprisingly, such a simple scheme pro-
question that follows from this viewpoint is, how well does vided many interesting insights concerning the massless and
the 1+ 1 spectrum approximate thet2L spectrum after per- massive sector. In particular we see that there are three types
forming this rescaling? Before discussing the numerical reof massless states: those that are massless orgy=at or

sults summarized in Table |, let us first attempt to predictg=-cc (but not both and those that are massless for any value
what will happen at small coupling’. In this case, the co- of the coupling. In this section, we will analyze only the
efficients of terms in the rescaled HamiltoniBn that cor- massless sector of the theory, and show that the observed
respond to summing the transverse momentum squirétl  properties of the spectrum with the truncatioph=0,+1,

of partons in a state will be large. So the low energy sectoalso persists if we include higher modes:=0,*+1,

will be dominated by states with" =0, i.e., those states that +2,... +N,... We therefore consider the model with su-
appear in the Fock space of thé=(1,1) model in %1  percharges given by Eq&l5) and(16), and restrict summa-
dimensions. This is indeed supported by the results in Tablgon of transverse momentum modes via the constiaiht

I <Nax-

For large couplingg’, however, it is clear that the ap-  For states carrying positive light-cone momentu, is
proximation breaks down. In fact, one can show that thenever zero, and so massless states must satisfy the equation
tabulated masses in the rescaledd 2 model tend to zero in - P~ |W)=0, which, using the relatioR ™= (1/y2)(Q)? and
the strong coupling limit, which eliminates any scope for Hermiticity of Q , reduces to
making comparisons between the two and three dimensional
models. Q|v)=o0. (17)

Thus, the non-perturbative problem of solving dimension-

This is the equation we wish to study in detail.
We begin with an analysis of the weak coupling limit of
"The “noisiness” in this plot for larger values af' reflects the  the theory. This limit means that the dimensionless coupling
ambiguity of choosing a basis for the eigenspace, due to the exagonstant is small: i.egy/L<1. We will consider the strong-
mass degeneracy of the massless states. weak coupling behavior of the theory on a cylinder with

ally reduced models in 1 dimensions can only provide
information about bound state masses in the corresponding
weakly coupledigher dimensional theory.

IV. ANALYTICAL RESULTS:
THE MASSLESS SECTOR
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fixed circumferencé., and so it is convenient to choose the and we construct statés) using Eq.(22), and for which Eq.
units in whichL=1 for this discussion. The supercharge (23) is always satisfied. Thenl’) may be found from sum-
(16) consists of two parts: one is proportional to the couplingming a geometric series:
and the other is coupling independent:
- fe V)= -gQ;'Q)"0y=——-=10). (24

Q =Q,+g0. (19) W)= 2 (-9Q*Q)"0) 1+nglQ| ). (24
So atg=0 Eq.(17) reduces t®Q, | ¥)=0, which means that
| ) may be viewed as a state in the Fock space of the tw
dimensional\/=(1,1) super Yang-Mills theory, which may
be obtained by dimensional reduction of the- 2 theory.

So starting from the massless state of the two dimensional
%/:(1,1) model, one can always construct unique massless
states in the three dimensional theory at least in the vicinity

: . of g=0.
Thus the rr:assless staJtresgaet 0 are states with any combi- The statg24) turns out to be massless for any value of the
nation ofa'(k,0) andb'(k,0) modes, and no partons with coupling

nonzero transverse momentum.
What happens with these massless states when one 1
switches on the coupling? To answer this question, we need -\ — -1 _ _
some information about the behavior of states as functions of Q 1")=Q.(1+gQ Q)1+gQI 2e) 0)=Q.10)=0.
the coupling. We assume that wave functions are analytic in (25)
terms ofg at least in the vicinity oj=0. This means that in
this region any massless st&¢) may be written in the form though the state itself is dependent gn Thus, we have
shown that massless states of the three dimensional theory, at
* nonzero coupling, can be constructed from massless states of
|w)y= > g"n), (19 the corresponding model in two dimensions. All other states
n=0 containing only two dimensional modes can also be extended
to the eigenstates of the full theory. But such eigenstates are
massless only at zero coupling. Assuming analyticity, one
can then show that their masses grow linearlygah the
vicinity of zero. Such behavior also agrees with our numeri-

where state$n) are coupling independent. Then using rela-
tion (18), theg-dependent equatidid7) may be written as an
infinite system of relations between differ¢ni:

cal results.
Q.|0)=0, (20 To illustrate the general construction explained above we
_ consider one simple example. Working in DLCQ at resolu-
Q.|n)+Q|n—1)=0, n>0. (21)  tion K=3 we choose a special two dimensional massless

staté [5,7,8
The first of these equations was already used to exclude par-
tons carrying non-zero transverse momentum, which is a |0y= tr[a’(1,0a'(2,0)]|vac). (26)
property of the massless bound states at zero coupling. The
second equation is non-trivial. Let us consider two differentThen in the SUN) theory we find
subspaces in the theory. The first of these subspaces consists
of states with no creation operators for transverse modes _ 3
which we will label 1. The other is the complement of this Q|0)= m(tr{aT(l,O)[b*(l,— Da'(1,2)
space in which the operat@, is invertible and we label this
space 2. Equatio21) defines the recurrence relation when —af(1,)b"(1,-1)+b"(1,pa’(1,—-1)
Q|n—1) is in subspace 2:

—a'(1,—-1)b"(1,11})|vac, (27
=-Q ' (QIn-1)]y). 22
Iny=-Q, (QIn—1)3) (22 b o150 L 3 s
e = — — a y a ’_
The consistency condition is that projection @n—1) in * 473222

subspace 1 is zero, xa'(1,)—a'(1,0a’(1,0a’(1,-1)]|vad, (28

QIn-1)[,=0. @ 5 29

This condition implies that not all states of the two dimen- i ) i )
sional theoryg=0, may be extended to such states at arbi-! "€ [ast equation provides the consistency condit&s) for

trary g using Eq.(22). Takingn=1, Eq.(23) implies that0) n=2, and it also shows that for this special example we have
is a massless state of the dimensionally reduced theory. The

numerical solutions, of course, show this correspondence be-

tween the 21 and 1t+1 [5,7,8 massless bound states. ©8The statd0) denotes a massless state, wiilac) represents the
Starting from a massless state of the two dimensional theoryight-cone vacuum.
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only two stateg0) and|1), instead of a general infinite set. 2 2

The matrix form of the operator #gQ; 'Q in the |0),|1)

basis is
oly -l 3
1+9gQ, Q= o 1/°lo 1/ - (30)

Then the solution of Eq24) is

|w)=|0)+g|1)=tr[a’(1,0a"(2,0)]|vac

gJE._E_ T t toa
+ 477312 2\/5[3 (1,0a'(1,Da'(1,—1) -
2 4 6 8 10
—a'(1,0a'(1,-1)a'(1,1]vag. (31)

FIG. 2. Plot of bound state mass squaké@in units 162N/L2
This state was observed numerically, and the dependence 8$ a function of the dimensionless coupling ' <10, defined by
the wave function on the coupling constant is precisely thedg')*=g°NL/167°, atN=1000 andk =5. Note the appearance of

one given by the last formula. a new massless state at strong coupling.
In principle, we can determine the wave functions of all
massless states using this formalism. Our procedure has an Iny*=—Q XQ,|n—1)*| ), (34)

important advantage over a direct diagonalization of the
three dimensional supercharge. First, in order to find two .
dimensional massless states, one needs to diagonalize the Qu[n—=1)*]1+=0. (35
corresponding superchar§B]. However, the dimension of
the relevant Fock space is much less than the three dimers in the small coupling case, there are two possibilities:
sional theonyfat large resolutiorK, the ratio of these dimen- either one can construct all stafeg* satisfying the consis-
sions is of order Nlmaxt 1)K, a~1/4]. The extension of the tency conditions, or at least one of these conditions fails. The
two dimensional massless solution into a massless solutioformer case corresponds to the massless state in the vicinity
of the three dimensional theory requires diagonalizing a maef g= o, which can be extended to the massless states at all
trix which has a smaller dimension than the original problemcouplings. The states constructed in this way — and ones
in three dimensions. Thus, if one is only interested in thegiven by Eq.(24) — define the same subspace. In the latter
massless sector of the three dimensional theory, the mosase, the state is masslesgatoe, but it acquires a mass at
efficient way to proceed in DLCQ calculations is to solve thefinite coupling. There is a big difference, however, between
two dimensional theory, and then to upgrade the massleshe weak and strong coupling cases. While the kern€) of
states to massless solutions in three dimensions. consists of “two dimensional” states, the description of the
Finally, we will make some comments on bound states aktates annihilated b is a nontrivial dynamical problem.
very strong coupling. Of course, we have sta@$ which  since the massless states can be constructed starting from
are massless at any coupling, but our numerical calculatiogitherg=0 org=, we do not have to solve this problem to
shows there are additional states which become masslessgild them. If, however, one wishes to show that massless

g= (see Fig. 2 To discuss these states it is convenient tostates become long in the strong coupling liftitere is nu-
consider

Average Length

— 1 ~
Q_=§QL+Q (32

instead ofQ ™, and perform the strong coupling expansion.
Since we are interested only in massless states, the absolute .
normalization does not matter. We repeat all the arguments e
used in the weak coupling case: first, we introduce the space

1* whereQ cannot be inverted and its orthogonal comple-

ment 2. Then any state from*Lis massless aj=«, but 1
assuming the expansion

’

. 0.25 0.5 0.75 1 1.25 1.5 1.75 2°
| W)= E i|n)* (33 FIG. 3. Plot of average length for the eight massless bosonic
n=0 g" states as a function of the dimensionless couptingdefined by
(9")2=g°NL/1673, at N=1000 andK=5. Note that the states
at large enougly, one finds the analogues of Eq82) and  attain the maximum possible length allowed by the resolution
(23): =5 in the limit of strong coupling.
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merical evidence for such behavior — see Fig.tBe struc- mensional theory at weak coupling only. Any scope for mak-
ture of 1* space becomes important, and we leave this quesng comparisons breaks down, however, at intermediate and
tion for future investigation. strong coupling. One also notes a smooth dependence of
bound state masses in terms of the DLCQ harmonic resolu-
tion K, a fact that was observed previously in studies of
V. DISCUSSION related supersymmetric modg¢RB].
. . . Interestingly, we find exactly massless states that persist
n 'Fh's work, we considered the bou_nd states of th_ree d'Tor all valueg )c/)f the gauge couypling. These states shorlJJId be
mensional SUK) A=1 super-Yang-Mills theory defined cqniragted with those that are massless only at the extreme
on the cqmpactlflegl space-tinkex S .><S . In particular, we valuesg=0 or g=2 (but not both.
cpmpaqtnﬁed the light-cone coordinate ona light-like An analytical treatment of the massless states revealed a
circle via DLeQ, and wrapped the remaining ransverse Cogonnection with the massless solutions of the corresponding
ordinatex- on a spatial circle. We showed explicitly that the dimensionally reduced modg6,7,8. We have shown that
supersymmetric form of DLCQSDLCQ employed in re-  he \wave functions of the massless states that remain mass-
cent studies of two dimensional supersymmetric gauge theQass for all values of the gauge coupling are in one-to-one
ries extends naturally in-21 dimensions, which resulted in correspondence with the massless states of thé Himen-
an exactly supersymmetric spectrum. We also showed thaliong)| theory. This fact seems to be non-trivial, since the
the N=1 supersymmetry is enhancedA6=(1,1) in aref-  concent of mass is defined differently in the two theories.
erence frame with vanishing total transverse momenBim  Erom the three dimensional point of view, the states in the
=0. The supersymmetric theory considered here is actuallyjjpert space that are naturally associated with the two di-
super-renpr_rnahzabl%. _ _ _ mensional Fock spadge. those states made up from partons
By retaining only the first few excited modes in the trans-yyith zero transverse momentyirare massless a=0.
verse direction, we were able to solve for bound state wave The pound state structure of the massless states in the 2
functions and masses numerically by diagonalizing the dis-, 1 theory was also studied for different couplings, and sum-
cretized light-cone supercharge. The results of our numerica} 5rized in Fig. 3, where we plotted the average number of
calculations for bound state masses are summarized in FigS,rtons for each of the massless solutions. We concluded
1 and 2. The theory exhibits a stable spectrum at both Smaﬁwat in the decompactified limK —c, these massless states
and large coupling. In Table I, we compared solutions of thg,, st become string-like in the strong coupling limit.
2_+1 di_mensional theory to corresponding solutions i_n the Evidently, it would be interesting to relate these observa-
dimensionally reduced +1 theory, after an appropriate tjongs with the recent claim that strongly coupled super-Yang-
rescaling of the 1 dimensional coupling constant, and wijis theory corresponds to string theory in an anti—de Sitter
observed that the lower dimensional theory provides a gooﬁackgrounc[:%]. Of course, the techniques we have employed
approximation to the low energy spectrum of the higher di-, this study may be applied to any supersymmetric gauge
theory defined on a suitably compactified space-time. This
should facilitate a more general study of the strongly coupled
SUltraviolet renormalization is never an issue here, since we hav€ynamics of super-Yang-Mills theories, and in particular, al-
truncated the transverse momentum modes, which acts as a regul@w one to scrutinize more carefully the string-like properties
tor. DLCQ regulates any longitudinal divergences for vanistking  of Yang-Mills theories.
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