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The extremely high precision of current radio interferometric observations demands a better theoretical
treatment of secondary effects in the propagation of electromagnetic signals in variable gravitational fields.
Such fields include those of oscillating and precessing stars, stationary or coalescing binary systems, and
colliding galaxies. Especially important is the problem of propagation of light rays in the field of gravitational
waves emitted by a localized source of gravitational radiation. A consistent approach for a complete and
exhaustive solution of this problem is developed in the present paper in the first post-Minkowskian and
quadrupole approximation of general relativity. This approximation is linear with respect to the universal
gravitational constantG and accounts for the static monopole, spin, and time-dependent quadrupole moments
of an isolated system. We demonstrate for the first time that the equations of light propagation in the retarded
gravitational field of an arbitrary localized source emitting quadrupolar gravitational waves can be integrated
exactly in closed form. The influence of the gravitational field under consideration on the light propagation is
examined not only in the wave zone but also in cases when light passes through the intermediate and near
zones of the source. We reproduce the known results of integration of equations of light rays, both in a
stationary gravitational field and in the field of plane gravitational waves, establishing the relationship between
our new formalism and the simplified approaches of other authors. Explicit analytic expressions for light
deflection and integrated time delay~Shapiro effect! are obtained accounting for all possible retardation effects
and arbitrary relative locations of the source of gravitational waves, the source of light rays , and the observer.
Coordinate dependent terms in the expressions for observable quantities are singled out and used for physically
meaningful interpretation of observable quantities. It is shown that the ADM and harmonic gauge conditions
can both be satisfied simultaneously outside the source of gravitational waves. Such ADM-harmonic coordi-
nates are extensively used in the present paper. Their use drastically simplifies the integration of light propa-
gation equations and the equations for the motion of light source and observer in the gravitational field of the
source of gravitational waves, leading to the unique interpretation of observable effects. The two limiting cases
of small and large values of impact parameterd are elaborated in more detail. It is proved that leading order
terms for the effect of light deflection in the case of small impact parameter depend neither on the radiative part
(;1/d) of the gravitational field nor on the intermediate (;1/d2) zone terms, confirming a previous result in
the literature. The main effect rather comes from the near zone (;1/d3) terms. This property of strong
suppression of the influence of gravitational waves on the propagation of light rays makes much more difficult
any direct detection of gravitational waves by VLBI or pulsar timing techniques, in contrast with previous
claims by other authors. We also present a thorough-going analytical treatment of time delay and bending of
light in the case of large impact parameter. This exploration essentially extends previous results regarding
propagation of light rays in the field of a plane monochromatic gravitational wave. Explicit expressions for
Shapiro effect and deflection angle are obtained in terms of the transverse-traceless~TT! part of the space-
space components of the metric tensor. We also discuss the relevance of the developed formalism for inter-
pretation of radio interferometric and timing observations, as well as for data processing algorithms for future
gravitational wave detectors.@S0556-2821~99!03706-6#

PACS number~s!: 04.30.2w, 04.80.Nn, 95.55.Ym, 95.85.Sz
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I. INTRODUCTION

A. Historical remarks

Binary systems are well known sources of periodic gra
tational waves. Indirect proof of the existence of gravi

*On leave from ASC FIAN, Leninskii Prospect, 53, Mosco
117924, Russia.
0556-2821/99/59~8!/084023~29!/$15.00 59 0840
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tional waves emitted by binary pulsars was given by Tay
@1#. However, the direct observation of gravitational wav
still remains the unsolved problem of experimental gravi
tional physics. The expected spectrum of gravitational wa
extends from;104 Hz to 10218 Hz @2,3#. Within that
range, the spectrum of periodic waves from known bina
systems extends from about 1023 Hz, the frequency of
gravitational radiation from a contact white-dwarf binary@4#,
through the 1024 to 1026 Hz range of radiation from main
©1999 The American Physical Society23-1
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sequence binaries@5#, to the 1027 to 1029 Hz frequencies
emitted by binary supermassive black holes postulated to
in galactic nuclei @6#. The dimensionless strain of thes
waves at the Earth,h, may be as great as 10221 at the highest
frequencies, and as great as 3310215 at the lowest frequen
cies in this range.

Sazhin@7# first suggested detection of gravitational wav
from a binary system using timing observations of a puls
the line of sight to which passes near the binary. It w
shown that the integrated time delay for propagation of
electromagnetic pulse near the binary is proportional to 1d2

whered is the impact parameter of the unperturbed traject
of the signal. More recently, Sazhin and Saphonova@8# made
estimates of the probability of observations of this effect,
pulsars in globular clusters, and showed that the probab
can be high, reaching 0.97 for one cluster. We note howe
that mathematical technique worked out in these papers
lows rigorous treatment only of effects of the near-zo
quasi-static quadrupolar part of the gravitational field and
not enough to make any conclusion about actual observa
ity of gravitational waves emitted by a binary system.

Wahlquist@9# made another approach to the detection
periodic gravitational waves, based on Doppler tracking
spacecraft traveling in deep space. His approach is restri
by the plane gravitational wave approximation develop
earlier by Estabrook and Wahlquist@10#. Tinto ~ @11#, and
references therein! made the most recent theoretical cont
bution in this area. The Doppler tracking technique has b
used in space missions, by seeking the characteristic t
signature, the presence of which would reveal the influe
of a gravitational wave crossing the line of sight from spa
craft to observer@12#.

Quite recently, Braginskyet al. @13# ~see also@14#! have
raised the question of using astrometry as a detector of
chastic gravitational waves. This idea has also been inve
gated by Kaiser and Jaffe@15# and, in particular, by Pyne
et al. @16# and Gwinnet al. @17# who showed that the overa
effect is proportional to the strain of metric perturbati
caused by the plane gravitational wave and set observati
limits on the energy density of ultra long gravitational wav
present in early universe. Montanari@18# studied polarization
perturbations of free electromagnetic radiation in the field
a plane gravitational wave and found that the effects
exceedingly small.

Fakir ~@19#, and references therein! has suggested the po
sibility of using astrometry to detect periodic variations
apparent angular separations of appropriate light sour
caused by gravitational waves emitted from isolated sou
of gravitational radiation. He was not able to develop a s
consistent approach to tackle the problem with neces
completeness and rigor. For this reason his estimate of
effect is erroneous. Another attempt to work out a more c
sistent approach to the calculation of the deflection angl
the field of arbitrary source of gravitational waves has be
undertaken by Durrer@20#. However, the calculations hav
been done only for the plane wave approximation and
result obtained was extrapolated for the case of the local
source of gravitational waves without justification. For th
reason the deflection angle was overestimated. The s
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misinterpretation of the effect can be found in the paper
Labeyrie @21# who studied a photometric modulation o
background sources by gravitational waves emitted by
binary stars. Because of this, the expected detection of
gravitational waves from the observations of the radio sou
GPS QSO 20221171 suggested by Pogrebenkoet al. @22#
was not based on firm theoretical ground.

Damour and Esposito-Fare`se@23# have studied the deflec
tion of light and integrated time delay caused by the tim
dependent gravitational field generated by a localized m
rial source lying close to the line of sight. They explicit
took into account the full, retarded gravitational field in th
near, intermediate, and wave zones. Contrary to the claim
Fakir @19# and Durrer@20# and in agreement with Sazhin’
@7# calculations, they found that the deflections due to b
the wave-zone gravitational wave and the intermediate-z
retarded fields vanish exactly. The leading total tim
dependent deflection is given only by the quasi-static, ne
zone quadrupolar piece of the gravitational field.

In the present paper we work out an even more system
approach to the problem. While Damour and Esposito-Far`se
@23# considered both the light source and the observer to
located at infinity, and performed their calculations in term
of the spacetime Fourier transform, we do not need th
assumptions. Our approach is much more general and a
cable for any location of the source of light and observer
space with respect to the source of gravitational radiati
The integration technique which we use for finding the so
tion of equations of propagation of light rays was partia
employed in@24# and does not require any implementation
the spacetime Fourier transform.

Section II of the present paper discusses equations
propagation of electromagnetic waves in the geometric
tics approximation. The metric tensor and coordinate s
tems involved in our calculations are described in Sec.
along with gauge conditions imposed on the metric tens
The method of integration of the equations of motion w
emphasis on specific details of calculations of particular
tegrals is given in Sec. IV. Exact solution of the equations
light propagation and the form of relativistic perturbations
the light trajectory are obtained in Sec. V. Section VI
devoted to derivation of basic observable relativis
effects—the integrated time delay and the deflection an
We find the more precise meaning of quite general formu
obtained in the previous section by discussing in Sec.
several limiting cases in the relative configuration of t
source of light, the observer, and the source of gravitatio
waves. Section VIII contains concluding remarks. Appen
A compares results of our calculations with those by Dam
and Esposito-Fare`se @23# and proves their gauge invarianc
Appendix B gives more details on the derivation of t
Arnowitt-Deser-Misner-~ADM ! harmonic coordinate system
used in the present paper for interpretation of observed r
tivistic effects.

B. Observational capabilities

Calculations of the effects of gravitational waves are
most interest if they indicate that those can be detected w
3-2
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ASTROMETRIC AND TIMING EFFECTS OF . . . PHYSICAL REVIEW D59 084023
present techniques, or foreseeable improvements. Astro
ric precision and accuracy have evolved rapidly in the l
decades, and can be expected to continue to improve
principle, the accuracy attainable with a given instrumen
approximately the angular resolution of the instrument,
vided by the signal-to-noise ratio. In practice, the time sp
of the observations and the angular separation of the so
from reference sources critically affect the attainable ac
racy.

Very-long baseline interferometry~VLBI ! attains the
highest angular resolution available on an operational ba
It achieves angular resolution set by the diffraction limit,
Du'l/B, whereB is the separation of the interferomet
elements~the baseline!, andl is the observing wavelength
Practical baselines may be about as long as an Earth ra
B;6400 km; a typical observing wavelength isl53 cm,
yielding angular resolution of 1 milliarcsecond.

Observations of a moderately strong (;1 Jy) extragalac-
tic source, such as a quasar, can reach signal-to-noise ra
several hundred in 5 or 10 minutes, offering potential an
lar accuracy of microarcseconds. In principle, a day of in
gration with the US Very Long Baseline Array~VLBA !
could yield angular accuracy of about 0.1 microarcsecon

Observations using the largest radiotelescopes can
crease the signal-to-noise ratio by a factor of;103. In
practice, a host of geodetic and propagation effects limit
reproducibility of VLBI astrometry. These factors must e
ther be measured during the observations, or calculated f
models. At present, atmospheric stability and changes
source structure limit reproducibility of measured angles
tween sources to about 1 milliarcsecond, over periods
months. Observations of pairs of radio sources, with sep
tions of ;0.5°, can yield angular accuracy of about 50 m
croarcseconds, reproducible over periods of years, when
fects of source structure are included@25#.

Astrophysical H2O masers have extremely high flux de
sities, of up to 106 Jy atl51.3 cm. In principle, a day of
observation of masers with the VLBA could yield angul
accuracy of a few picoarcseconds. Observations of ma
have attained reproducibility of better than 10 microarcs
onds over several months, between individual maser spo
a Galactic maser cluster, with separations of a few arc
@26#. Astrometric observations of extragalactic masers h
attained accuracies of better than 1 microarcsecond, for
ser spots separated by less than 1 arcsec@27#. Atmospheric
variations probably dominate the error budget.

Shorter wavelengths offer potentially higher diffractio
limited angular resolution, but practical obstacles are sev
Atmospheric effects present greater phase changes
shorter time scales; and photon shot noise becomes a lim
factor for fainter sources and at shorter wavelengths. Opt
interferometers in space will probably equal and exceed
accuracy of VLBI. For example, the Space Interferome
Mission ~SIM!, and the proposed European mission GA
seek to attain angular accuracy of about 1 microarcsecon
several hours of integration@28–30#.

Astrometric observations to seek effects of gravitatio
waves could attain higher accuracy, at least on shorter tim
cales. The periods of the waves, and of the expected de
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tion, could be short enough to avoid some atmospheric
other propagation effects. For known binary systems,
wave period, and perhaps the phase, are known accura
permitting search for deflections at this period. Such a ‘‘sy
chronous’’ search would eliminate many noise sources,
low detection of short-period motions with the sensitivi
resulting from long integrations, and perhaps allow astrom
ric accuracy to approach the signal-to-noise ratio limit.

II. EQUATIONS OF PROPAGATION OF
ELECTROMAGNETIC WAVES

We assume the approximation of geometric optics, as
wavelength of electromagnetic waves used for astrome
observations is usually much smaller than wavelength
gravitational waves emitted by isolated astronomical syste
like binary stars or supernova explosions@2#. This allows us
to use the relativistic equation of geodesic motion of a ma
less particle~such as a photon! for description of the proces
of propagation of electromagnetic signal from the source
light to the observer at the Earth. We also assume that sp
time is asymptotically flat. This assumption does not hold
cosmological distances. However, if we neglect all terms
pending on the rate of cosmological expansion and mak
rescaling of time and space coordinates with the cosmol
cal scale factora(t), our formalism will be still valid for
application in cosmology.

We denote spatial coordinates byxi5x5(x1,x2,x3) and
time coordinatex05ct, wherec is the speed of light andt is
coordinate time. Let the motion of a photon be defined
fixing the mixed initial-boundary conditions introduced an
extensively used by Brumberg@31#

x~ t0!5x0 ,
dx~2`!

dt
5k, ~1!

wherek251 and the spatial components of vectors are
noted by bold letters. These conditions define the coordin
x0 of the photon at the moment of emissiont0 and its veloc-
ity at the infinite past and the infinite distance from the orig
of the spatial coordinates~that is, at past null infinity!. In
what follows we putc51 for convenience.

Equation of propagation of photons in a weak gravi
tional field is given in the first post-Minkowskian approx
mation by the formula@31,32#

ẍi~ t !5
1

2
g00,i2g0i ,t2

1

2
g00,tẋ

i2gik,tẋ
k2~g0i ,k2g0k,i !ẋ

k

2g00,kẋ
kẋi2S gik, j2

1

2
gk j ,i D ẋkẋ j

1S 1

2
gk j ,t2g0k, j D ẋkẋ j ẋi , ~2!

where theg00,g0i ,gi j are components of metric tensor, full
determined by the given distribution and motion of ma
inside the source of gravitational field, dots over vectors
note the total derivative with respect to time, and comm
indicate partial derivatives with respect to spatial or tim
3-3
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KOPEIKIN, SCHÄFER, GWINN, AND EUBANKS PHYSICAL REVIEW D59 084023
coordinates; that is, for any functionf ,i5] f /]xi , f ,t5] f /]t.
Hereafter repeated latin indices mean summation from 1
3. The given equation is valid in arbitrary coordinat
~gauges! and represents the ordinary second order differ
tial equation for light propagation.

The right-hand side of Eq.~2! includes terms which de
pend on the coordinate velocityẋi of the photon, in the
weak-field approximation approximately equal to the spe
of light c. We restrict ourselves to finding a solution of E
~2! only in the first linear approximation with respect to th
universal gravitational constantG. For this reason, when
solving Eq.~2!, only one iteration is enough and it is admi
sible to make the replacementẋi5ki in the right-hand side of
the equation. The result of this approach is

ẍi~ t !5
1

2
g00,i2g0i ,t2

1

2
g00,tk

i2gi j ,tk
j2~g0i , j2g0 j ,i !k

j

2g00,j k
jki2S gip, j2

1

2
gp j ,i D kpkj

1S 1

2
gp j ,t2g0p, j D kpkjki . ~3!

This equation must be solved to obtain a perturbed trajec
of the photon propagating through the gravitational field
an isolated astronomical system emitting gravitatio
waves. To accomplish this task one needs a mathema
expression for the metric tensor.

III. METRIC TENSOR AND COORDINATE SYSTEMS

Let us chose the origin of the asymptotically flat coor
nate frame at the center of mass-energy of the isolated a
nomical system and impose the de-Donder~harmonic! gauge
conditions on components of the ‘‘canonical’’ metric tens
We assume that gravitational field is weak and the metric
spacetimegab is written as a sum of the Minkowski metri
hab5diag(21,1,1,1) plus a small perturbationhab :

gab5hab1hab , ~4!

where the Greek indices run from 0 to 3. The most gene
expression for the linearized metric tensor, generated b
system emitting gravitational waves, in terms of its symm
ric and trace-free~STF! mass and spin multipole moments
given by Thorne@33# ~see also@34,35#!. It can be written as

hab5hab
can.1¹bwa1¹awb , ~5!

where¹a5]/]xa. The ‘‘canonical’’ form of the metric ten-
sor perturbations in harmonic gauge reads as follows@36#:

h00
can.5

2M
r

12(
l 52

`
~21! l

l !
FIAl

~ t2r !

r
G

,Al

, ~6!
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h0i
can.52

2e ipqSpNq

r 2

24(
l 52

`
~21! l l

~ l 11!!
F e ipqSpAl 21

~ t2r !

r
G

,qAl 21

14(
l 52

`
~21! l

l !
F İiAl 21

~ t2r !

r
G

,Al 21

, ~7!

hi j
can.5d i j H 2M

r
12(

l 52

`
~21! l

l !
FIAl

~ t2r !

r
G

,Al

J
14(

l 52

`
~21! l

l !
F Ïi jA l 22

~ t2r !

r
G

,Al 22

28(
l 52

`
l ~21! l l

~ l 11!!
F epq~ i Ṡj )pAl 22

~ t2r !

r
G

,qAl 22

,

~8!

where Ni5xi /r , and the round brackets around indices
equation~8! means symmetrization; that is, for any two in
dices T( i j )5

1
2 (Ti j 1Tji ). In the pure harmonic gauge th

functions w0,wi are solutions of the homogeneou
d’Alembert’s equation and are given by the expressions

w05(
l 50

` FWAl
~ t2r !

r
G

,Al

, ~9!

wi5(
l 50

` FXAl
~ t2r !

r
G

,iAl

1(
l 51

` H FYiAl 21
~ t2r !

r
G

,Al 21

1F e ipq

ZqAl 21
~ t2r !

r
G

,pAl 21

J , ~10!

whereWAl
, XAl

, YiAl 21
, andZqAl 21

are arbitrary functions
of time. Their specific choice will be made later on in th
discussion regarding the interpretation of observable effe
In Eqs.~6!–~10!, we adopt the notation:Al5a1a2 . . . al is a
polyindex,M is the total ~Tolman or ADM! mass of the
system,IAl

andSAl
are the STF mass and spin gravitation

multipoles, andWAl
,XAl

,YAl
,ZAl

are multipoles which re-
flect the freedom of coordinate transformations. These m
tipoles can be eliminated from the metric using the transf
mation

x8a5xa2wa, ~11!

relating an original harmonic coordinate systemxa to an-
other harmonic onex8a, in which only the ‘‘canonical’’ part
of the metric is present.
3-4
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ASTROMETRIC AND TIMING EFFECTS OF . . . PHYSICAL REVIEW D59 084023
However, we would like to emphasize that, in gener
Eq. ~5! holds in an arbitrary gauge. Particular examples
functionsw0 andwi in harmonic gauge are given in Eqs.~9!,
~10!. Other expressions forw0 and wi in the ADM
~Arnowitt-Deser-Misner! gauge@37# are given in Appendix
B wherein we also prove that it is possible to choose fu
tions w0 and wi in such a way that ADM and harmoni
gauge conditions will be satisfied simultaneously. T
means that the classes of harmonic and ADM coordina
overlap. The discussion of different gauges is helpful
giving a unique interpretation of observable effects by pr
erly fixing the coordinate degrees of freedom in correspo
ing quantities@38,39#.

The STF cartesian tensor has a special algebraic struc
which eliminates all reducible parts of the tensor and lea
only the irreducible part having the highest rank@33,40#. In
other words, contraction over of any two indices of ST
tensor gives identically zero. It is worth noting the absen
of the dipole mass multipoleIi in Eqs. ~6!–~8! which is
identically zero, due to the choice of the origin of coordina
system at the center of mass of the gravitating system.
also stress that the multipoles in the linearized metric~6!–
~10! depend on the ‘‘retarded time’’t2r . At first sight this
dependence seems to make subsequent calculations mor
ficult. However, just the opposite happens and the dep
dence of the multipoles on the retarded time makes the
culations simpler.

In what follows we consider the concrete case of a loc
ized deflector emitting gravitational waves. In this section
restrict ourselves to considering the influence of gravitatio
field of the deflector on the propagation of electromagne
signals made by its total constant massM, spinS, and time-
dependent quadrupole momentIi j (t2r ) only. This simpli-
fies the expressions~6!–~8! for the metric tensor, which are
reduced to the expressions

h00
can.5

2M
r

1¹p¹qFIpq~ t2r !

r G , ~12!

h0i
can.52

2e ipqSpNq

r 2
12¹ jF İi j ~ t2r !

r
G ,

~13!

hi j
can.5d i j h00

can.1qi j
can. , ~14!

where

qi j
can.5

2

r
Ïi j ~ t2r !. ~15!

Herein terms depending onM andSi are static and produc
well-known effects in the propagation of light rays. Retard
terms that are inversely proportional to the distancer from
the gravitating system describe the pure gravitational-w
part of the metric.

Let us stress that in the harmonic coordinate system
gravitational-wave part of the metric tensor is present in
of its components and is expressed through the second
derivative of the quadrupole moment@33#. If we choose the
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ADM gauge@36# it is possible to eliminate the gravitationa
wave terms from theh00

can. andh0i
can. components of the met

ric tensor and to bring all of them tohi j
adm @41#. Thenh00

adm

andh0i
adm depend only on the ‘‘instantaneous’’ timet and not

on the retarded timet2r ~see Appendix B!. In combining
the ADM gauge with the harmonic gauge an even simp
representation is possible whereh00 and h0i do not depend
on time at all. However, the transformation from the cano
cal form of metric ~12!–~15! to the ADM-harmonic form
includes integration of the quadrupole moment with resp
to time. Appendix B gives a more detailed study of th
procedure.

One might ask whether the ADM or harmonic coordina
system is more preferable, for the adequate physical tr
ment of the relativistic time delay and deflection of light ra
in the field of gravitational waves emitted by a localize
source. Our point of view is that the coordinate syste
should be chosen in such a way to be simultaneously b
ADM and harmonic. The reason for this is that an obser
who is at rest with respect to the ADM coordinate syste
does not feel the gravitational force caused by gravitatio
waves. This means that if the instantaneous gravitatio
field of the localized source may be neglected, the obse
fixed with respect to the ADM system can be considered
be in free fall. Hence, no artificial force need be applied
the observer in order to keep him at rest at the fixed coo
nate point. The motion of such an observer is described
the extremely simple equationxi5const and there is no nee
to account for kinematic effects associated with the obse
er’s motion. All these advantages are lost in the ‘‘canonica
harmonic gauge. An observer fixed with respect to that
ordinate system must be kept at a fixed coordinate point
some external force to prevent his motion under the influe
of gravitational waves. The existence of such a force is
natural from physical and astronomical points of view. O
the other hand, the ‘‘canonical’’ harmonic gauge has the
vantage of a much simpler integration of the equations
light propagation than the ‘‘canonical’’ ADM gauge. On
can see that the‘‘canonical’’ ADM metric coefficients~B1!,
~B2! contain functions which depend on timet only. As will
be clear from the procedure of integration of equations
light propagation described in the next section such ‘‘inst
taneous’’ functions of time do not permit explicit integratio
of each specific term~only after summing all terms is the
explicit integration possible!. Fortunately, the classes o
ADM and harmonic coordinate systems overlap and, for t
reason, we can substantially benefit by choosing a coordi
system that is simultaneously both ADM and harmonic. T
allows us to proceed in the following way. First we integra
equations of light propagation in the harmonic gauge a
then apply coordinate transformations~B13!, ~B14! which
transform the pure harmonic coordinate system to the AD
one without violation of the harmonic gauge conditions. Th
simplifies the treatment of observable effects drastically.

IV. METHOD OF INTEGRATION OF THE EQUATIONS
OF MOTION

A. Useful relationships

We introduce astronomical coordinatesx[xi

5(x1,x2,x3) corresponding to the plane of the sky of th
3-5
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KOPEIKIN, SCHÄFER, GWINN, AND EUBANKS PHYSICAL REVIEW D59 084023
observer and based on a triad of the unit vectors (I0 ,J0 ,K0).
The vectorK0 points from the observer toward the deflecto
and the vectorsI0 and J0 lie in the plane of the sky, being
orthogonal to vectorK0 . The vectorI0 is directed to the east
andJ0 points towards the north celestial pole. The origin
the coordinate system is chosen to lie at the barycenter o
deflector which emits gravitational waves~see Fig. 1!.

Another reference frame based on a triad of the unit v
tors (I ,J,K ) rotated with respect to vectors (I0 ,J0 ,K0) is
useful as well. The vectorK points from the observer towar
the source of light, and the vectorsI andJ lie in the plane of
the sky, being orthogonal to vectorK , which is different
from the plane of the sky being orthogonal to vectorK0 .
This is because the ‘‘plane of the sky’’ is tangent to a sphe
and vectorsK and K0 point in different directions. Mutua
orientation of one triad with respect to another one is de
mined by the following equations:

I05I cosV1J sinV, ~16!

J052I cosu sinV1J cosu cosV1K sinu, ~17!

K05I sinu sinV2J sinu cosV1K cosu, ~18!

where rotational anglesV andu are constant.
To integrate the equations of propagation of electrom

netic waves in curved space-time we must resort to an
proximation method. In the Newtonian approximation, t
unperturbed trajectory of the light ray is a straight line:

xi~ t !5xN
i ~ t !5x0

i 1ki~ t2t0!, ~19!

wheret0 is the instant of time of the photon emission fro
the point with spatial coordinatesx0

i , andki5k is a constant
unit vector tangent to the unperturbed trajectory and direc
from the point of emission to the point of observation

FIG. 1. Astronomical coordinate system used for calculatio
The origin of the coordinate system is at the center-of-mass of
source of gravitational waves. The bundle of light rays is defined
the vector fieldki . The vectorKi52ki1O(c22) is directed from
observer towards the source of light. The vectorK0

i is directed from
the observer towards the source of gravitational waves. We us
the paper the equalitiesK0

i 52Ni52xi /r , wherexi are the coor-
dinates of the observer with respect to the source of gravitatio
waves, andr 5uxu. The plane of the sky to the vectorK0

i is not
shown.
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photon ~the vectork'2K ). In the Newtonian approxima
tion, the coordinate speed of the photonẋi5ki and is con-
sidered to be constant.

It is convenient to introduce a new independent param
t along the photon’s trajectory according to the rule@24#

t[k•x5t2t01k•x0 , ~20!

where the dot symbol between two vectors denotes the
clidean dot product of two vectors. The momentt0 of the
signal’s emission corresponds to the numerical value of
parametert05k•x0 , and the momentt* of the closest ap-
proach of the unperturbed trajectory of the photon to
origin of the coordinate system corresponds to the valut
50 ~note thatt0,0 if the source of light is behind the
localaized source of gravitational waves!. Thus, we find

t5t2t* , t05t02t* . ~21!

In case of gravitational lensing, for example, the varia
t is negative from the point of emission up to the point of t
closest approach, and is positive otherwise. The differen
identity dt5dt is valid and for this reason the integratio
along ray’s path with respect to timet can be replaced by the
integration with respect to parametert. Using parametert,
the equation of the unperturbed trajectory of light ray can
represented as

xi~t!5xN
i ~t!5kit1j i , ~22!

and the distance,r, of the photon from the origin of coordi
nate system is given by

r 5r N~t!5At21d2, ~23!

where the length of the constant~for a chosen light ray!
transverse vectorj5k3(x03k)5k3(x3k) is called the
impact parameter of the unperturbed trajectrory of the li
ray, d5uju, and the symbol ‘‘3 ’ ’ between two vectors de-
notes the Euclidean cross product. It is worth emphasiz
that the vectorj i is directed from the origin of the coordinat
system toward the point of the closest approach of the
perturbed path of light ray to that origin. The relations

r 1t5
d2

r 2t
, r 01t05

d2

r 02t0
, ~24!

also hold, and they are useful for presenting the results
integration of the light ray equations in different form. I
particular, if we assumet0,0 and the strong inequalitiesd
!r , andd!r 0 to hold, then

t5r 2
d2

2r
1 . . . , t052r 01

d2

2r 0
1 . . . , ~25!

which clearly shows that at the moment of light receptiont
is positive and at that of light emissiont0 is negative.

Let us consider a set of curvesxi(t)5kit1j i with dif-
ferent values of vectorski andj i . The vector fieldki , defined
along the curvexi(t), describes the direction of a bundle o
light rays along the curve, and introduces a natural ‘‘211’’
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splitting of 3-dimensional space. The vectorj i , on the plane
orthogonal to the bundle of light rays, is a point of interse
tion of any of those rays with that plane~see Fig. 1!. This
vector does not depend ont and can be defined, as in E
~22!, by the relationship

j i5Pj
i xj , ~26!

where

Pi j 5d i j 2kikj , ~27!

is the projection operator onto the plane orthogonal to
vectorki . The operator has only two algebraically indepe
dent components and satisfies the relationship

Pk
i Pj

k5Pj
i . ~28!

Because of this property we can recast Eq.~26! into the form

j i5Pj
i j j , ~29!

which shows explicitly that the vectorj i is constrained to lie
in a 2-dimensional plane. Thus, we immediately have for
operation of partial differentiation in this plane

]j i

]j j
5Pj

i 5Pi j 5Pi j . ~30!

It is worth noting that the projection operator can be used
raise and lower indices of any geometrical object lying in
plane orthogonal to vectorki .

In what follows, it is convenient to consider the spat
components of coordinatesj i as formally independent with
subsequent projection onto the plane when doing differen
tion with respect toj i . Therefore we always use the operat
of differentiation with respect toj i in combination with the
projection operatorPj

i . For example, before the projectio
we treat

]j i

]j j
5d j

i , ~31!

and for the same expression with subsequent projection

Pj
q ]j i

]jq
5Pj

i , ~32!

which agrees with Eqs.~28! and~30!. Moreover, the follow-
ing rule of differentiation for an arbitrary smooth functio
F(t,x) holds

F S ]

]xi
1ki

]

]t D F~ t,x!G
x5x01k~ t2t0!

5S Pi
j ]

]j j
1ki

]

]t D F@t,j1kt#. ~33!
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Equation~33! is a generalization of the corresponding fo
mula introduced by Kopeikin@@24#, Eq. ~20!# for functions
which do not depend explicitly on timet. It is worth noting
that in the left-hand side of formula~33! one has first to
differentiate the functionF(t,x) with respect to timet and
spatial coordinatesxi and, then, to make the substitutionx
5x01k(t2t0). However, one makes corresponding subs
tutions in the right-hand side of the formula~33! first and
only afterwards takes derivatives.

It is useful to stress again that because the coordinatej i

lie in the plane orthogonal to the vectorki only two of the
threej1,j2,j3 are, in fact, independent. We also stress t
the new variablesj i andt are independent as well. For th
reason, the integration of any function, which can be rep
sented as a time derivative with respect to the parametert, is
always quite straightforward:

E ]

]t
F~t,j!dt5F~t,j!1C~j!, ~34!

whereC(j) is an arbitrary function of the constant impa
parameter. Moreover, as the vectorj i does not depend on
time t, the partial derivatives with respect toj i can be re-
moved from within the time integrals when calculating the
along the photon’s trajectory, that is

E ]

]j i
F~t,j!dt5

]

]j iE F~t,j!dt. ~35!

Because of these advantages the new independent co
natest andj i are quite useful in calculations. The usefulne
of the variablest and j i has been also recognized b
Damour and Esposito-Fare`se @23#.

The equations of motion of light rays~3! in terms of pa-
rametersj and t are simpler, and after accounting for
freedom in gauge transformations and implementation of
lationship~33! assume the form@42#

ẍi~t!5
1

2
]̂ ih00

can.2 ]̂ th0i
can.2

1

2
ki ]̂ th00

can.2kj ]̂ thi j
can.

1kj ]̂ ih0 j
can.1

1

2
~ ]̂ i1ki ]̂ t!k

pkqhpq
can.

2 ]̂ tt~wi2kiw0!, ~36!

where the following notations are used:]̂ i[Pi j ]/]j j ,]̂ t
[]/]t. Let us emphasize once again that the representa
of Eq. ~36! is valid in an arbitrary coordinate system and
metric coefficients are taken along the unperturbed trajec
of propagation of the light ray; that is,hab(t,x)5hab(t,j
1kt). We also remark that the right-hand side of Eq.~36!
contains only spatial partial derivatives with the same ind
‘‘ i ’’ as does the left-hand side of the equation. This contra
with Eq. ~3! where the indices of spatial derivatives a
mixed. Equation~36! will be used in Secs. V and VI for a
general treatment of gravitational perturbations of the p
ton’s trajectory and discussion of relativistic time delay a
angle of light deflection.
3-7
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KOPEIKIN, SCHÄFER, GWINN, AND EUBANKS PHYSICAL REVIEW D59 084023
Another useful form of Eq.~36! may be obtained if one
introduces the four-vectorka5(1,ki). Then we find

ẍi~t!5
1

2
kakb]̂ ihab

can.2 ]̂ tS kahia
can.2

1

2
kikjkpqjp

can.D
2 ]̂ tt~wi2kiw0!. ~37!

This form of the equation clearly shows that only the fi
term on the right-hand side contributes to the deflection
light, if observer and source of light are at infinity. Indee
one integration of Eq.~37! with respect to time from2` to
1` brings all first and second time derivatives to zero, d
to the asymptotic flatness of the metric tensor. This make
connection between the formalism of the present paper
that of Damour and Esposito-Fare`se@23# ~see also Appendix
A!.

B. Calculation of integrals from the static part of the
gravitational field

The static part of the gravitational field of the deflect
contributes to perturbations of light’s ray trajectory, defin
by the following indefinite integrals@24#:

A~t,j![E dt

r
5E dt

Ad21t2
52 ln~Ad21t22t!,

~38!

B~t,j![E A~t,j!dt52t ln~Ad21t22t!2Ad21t2,

~39!

where we have omitted constants of integration which
absorbed by re-definition of constants of integration of u
perturbed light trajectory~19!. Integrals~38!, ~39! are for-
mally divergent at the lower limit. However, this divergen
is not dangerous for setting the second of the boundary c
ditions ~1! because only derivatives of the integral~38! ap-
pear in the result of the first time integration of the equatio
of motion of light rays, eliminating the divergent part of th
integral@43#. With this in mind, it is easy to prove that inte
grals ~38!, ~39! are in agreement with the boundary cond
tions ~1!.

C. Calculation of integrals from time dependent part of
gravitational field

One meets two ways of calculation of integrals in findi
the path of propagation of light in the gravitational field of
localized source emitting gravitational waves. The fi
method relies upon the use of the Fourier transform~40! and
allows one, at least in principle, to calculate all integr
explicitly if one knows the specific structure of the Fouri
image of the quadrupole moment of the deflector@44#. The
advantage of the second method is based on the fact tha
deals with the metric depending on retarded time only. T
allows one to make a special transformation of variab
within the integral which excludes any dependence of
integrands on the impact parameter, and transfers it to
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limits of the integrals. Thus, partial derivatives of the int
grals can be calculated explicitly without assumptions ab
the structure of the quadrupole moment of the deflector.
course, both methods give the same results. However,
second method is more general.

1. First method of integration

Let us assume the most general aperiodic form for
time variation of the deflector. In linear approximation th
total mass and spin of the deflector are conserved quant
@45# so that they do not depend on time at all, and we c
consider them as contributing only to the static part of
gravitational field of the deflector@46#. The quadrupole mo-
ment is not static. It may be represented through a Fou
transform as

Ii j ~ t2r !5~2p!21/2E
2`

1`

Ĩi j ~v!eiv~ t2r !dv, ~40!

whereĨi j (v) is the ~complex! Fourier image of the quadru
pole moment of the deflector which must be specified for a
particular source of gravitational waves. Here, we need
know the specific structure ofĨi j (v) as it will be shown later
it is irrelevant for subsequent calculations.

Taking time derivatives of the quadrupole moment yie

İi j 5~2p!21/2E
2`

1`

~ iv!Ĩi j ~v!eiv~ t2r !dv, ~41!

Ïi j 5~2p!21/2E
2`

1`

~2v2!Ĩi j ~v!eiv~ t2r !dv. ~42!

Generally speaking, arbitrary aperiodic source of grav
tional waves have an infinite spectrum. However, it is p
sible to choose that frequency band which gives the larg
contribution to the spectrum. The mean frequencyV of this
band defines the size of far~wave! zone of the source, a
being roughly equal to the wavelength of emitted gravi
tional wavesl52pc/V. For example, if the deflector o
light rays is a binary system, then the strongest emission
gravitational waves takes place at twice the mean orbital
quency of the system. For making estimates we can use
following approximations for components of the quadrupo
moment:

uİi j u.~Maec!
a

l
, uÏi j u.~Mec2!

a2

l2
, etc., ~43!

wherea is a characteristic size of the source of gravitation
waves ande is its oblateness, quantifying the deviation of th
density distribution from spherical symmetry.

When integrating the equations of light propagation us
the metric with Fourier transform~40! for the quadrupole
moment one meets the following integrals:

I 1~t,j,v!5E
2`

t cos@v~t2Ad21t2!#

Ad21t2
dt, ~44!
3-8
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I 2~t,j,v!5E
2`

t sin@v~t2Ad21t2!#

Ad21t2
dt.

~45!

In order to evaluate the integrals~44!, ~45! it is useful to
change the time argument,t, to the argumenty, by the trans-
formation

y5t2Ad21t2, ~46!

which yields

t5
y22d2

2y
, Ad21t252

1

2

d21y2

y
, dt5

1

2

d21y2

y2
dy.

~47!

While the parametert runs from2` to 1`, the new pa-
rametery runs from2` to 0; that is,y is always negative.

After transforming time arguments, the integralsI 1 andI 2
are reduced to the cosine- and sine integrals respecti
~@47#, formula 8.230!:

I 1~t,j,v!52Ci~vy!, ~48!

I 2~t,j,v!52Si~vy!, ~49!

where constants of integration have been omitted. Secon
integration of integrals~48!, ~49! along the light trajectory is
required as well. Using transformations~46!, ~47! we obtain

J1~t,j,v![E
2`

t

I 1~t,j,v!dt

52tCi~vy!1
1

2
vd2FSi~vy!

1
cos~vy!

2y G1
sin~vy!

2v
, ~50!

J2~t,j,v![E
2`

t

I 2~t,j,v!dt

52tSi~vy!1
1

2
vd2FCi~vy!2

sin~vy!

2y G
1

cos~vy!

2v
, ~51!

where constants of integration have again been omitted.
Using the Fourier transform of the quadrupole mom

~40! and formulas~44!, ~45!, ~48!, ~49! one calculates the
important integrals

Bi j ~t,j![E
2`

t Ii j ~ t2r !

r
dt

5~2p!21/2E
2`

1`

Ĩi j ~v!eivt* @ I 1~t,j,v!

1 i I 2~t,j,v!#dv, ~52!
08402
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Ci j ~t,j![E
2`

t İi j ~ t2r !

r
dt

5~2p!21/2E
2`

1`

vĨi j ~v!eivt*

3@2I 2~t,j,v!1 i I 1~t,j,v!#dv, ~53!

Di j ~t,j![E
2`

t

Bi j ~t,j!dt

5~2p!21/2E
2`

1`

Ĩi j ~v!eivt*

3@J1~t,j,v!1 iJ2~t,j,v!#dv, ~54!

Ei j ~t,j![E
2`

t

Ci j ~t,j!dt

5~2p!21/2E
2`

1`

vĨi j ~v!eivt* @J2~t,j,v!

2 iJ1~t,j,v!#dv, ~55!

wheret* is the moment of closest approach of the photon
the origin of coordinate system. In what follows, we ne
only partial derivatives with respect to the impact parame
of the integrals~52!, ~55!. These can be calculated rath
easily. We have, for example,

]̂ i I 1~t,j,v!5~yr !21cos~vy!j i ,

]̂ i I 2~t,j,v!5~yr !21sin~vy!j i , ~56!

and so on. Thus, making use of the inverse Fourier transf
we obtain

]̂kBi j ~t,j!5~yr !21Ii j ~ t2r !jk, ~57!

]̂tBi j ~t,j!5S 12
t

r DIi j ~ t2r !

y
, ~58!

]̂kCi j ~t,j!5~yr !21İi j ~ t2r !jk. ~59!

]̂tCi j ~t,j!5S 12
t

r D İi j ~ t2r !

y
, ~60!

Calculation of partial derivatives from integralsDi j (t,j)
and Ei j (t,j) may be done without difficulty in a simila
fashion using Eqs.~50!, ~51!.

2. Second method of integration

The second method also uses the substitutions~46!, ~47!.
The integrals~52!, ~53! are brought into the form

Bi j ~t,j![E
2`

t Ii j ~ t2r !

r
dt52E

2`

y Ii j ~ t* 1z!

z
dz,

~61!
3-9
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Ci j ~t,j![E
2`

t İi j ~ t2r !

r
dt52E

2`

y İi j ~ t* 1z!

z
dz.

~62!

One sees that the integrands of the integrals do not dep
on the parametersd andt at all. They are present only in th
upper limit of integration. Hence, the integrals~61!, ~62! are
functions of the variabley only, that isBi j (t,j)5Bi j (y) and
Ci j (t,j)5Ci j (y). Making use of the transformations~46!,
~47!, the integrals~54!, ~55! are reduced to the expression

Di j ~t,j![E
2`

t

Bi j ~t,j!dt

5
1

2E2`

y

Bi j ~z!dz1
d2

2 E
2`

y Bi j ~z!

z2
dz, ~63!

Ei j ~t,j![E
2`

t

Ci j ~t,j!dt

5
1

2E2`

y

Ci j ~z!dz1
d2

2 E
2`

y Ci j ~z!

z2
dz. ~64!

Hence, the integralsDi j (t,j),Ei j (t,j) are also functions of
the variabley only.

We stress once again that our formalism holds true
arbitrary dependence of the quadrupole moment of the lo
ized source on time, and includes the case of sources w
produce bursts of gravitational radiation, such as supern
explosions or coalescence of binary systems, as well as
riodic systems. Indeed, suppose that the burst starts a
momentt1 and terminates at the momentt2 . We assume for
simplicity that before and after the burst the quadrupole m
ment of the source is identically zero. During the burst,
tensor functionFi j (t) describes the time dependence of t
quadrupole moment. Then all formulas derived in this pa
hold, if we describe the quadrupole moment of the source
a product of two Heaviside step functions with the ten
functionFi j (t). Thus, for any moment of time we write

Ii j ~ t !5H~ t2t1!H~ t22t !Fi j ~ t !, ~65!

where the Heaviside step function is defined as follows

H~ t2T!5H 1 if t.T,

0 otherwise.
~66!

Time derivatives of the quadrupole moment are calcula
taking into account thatḢ(t2T)5d(t2T) is the Dirac
delta-function, and d(t2t1)Fi j (t1)5d(t2t2)Fi j (t2)50.
This yields

İi j ~ t !5H~ t2t1!H~ t22t !Ḟi j ~ t !,

Ïi j ~ t !5H~ t2t1!H~ t22t !F̈i j ~ t !, ~67!

and similar formulas for higher derivatives.
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It is evident from the structure of integrals~61!–~64! that
taking partial derivatives of any of the foregoing integrals
reduced to taking the partial derivative with respect toy. In
particular, we obtain

]̂ jBpq~t,j!52
Ipq~ t* 1y!

y
]̂ j y5~yr !21Ipq~ t2r !j j ,

~68!

which exactly coincides with the result~57! derived above
using the inverse Fourier transform method. Second
third partial derivatives of the functionBi j (t,j) with respect
to the impact parameter will be useful subsequently. Th
are calculated making use of formula~68!. This yields

]̂ jkBpq~t,j!5~yr !21F Pjk1
j jjk

yr
2

j jjk

r 2 GIpq~ t2r !

2
j jjk

yr2
İpq~ t2r !, ~69!

and

]̂ i jkBpq~t,j!5~yr !21F j i Pjk

yr
1

2jkPi j

yr
1

2j ij jjk

y2r 2
2

j i Pjk

r 2

2
2jkPi j

r 2
2

3j ij jjk

yr3
1

3j ij jjk

r 4 GIpq~ t2r !

2~yr !21F j i Pjk

r
1

2jkPi j

r
1

2j ij jjk

yr2

2
3j ij jjk

r 3 G İpq~ t2r !1
j ij jjk

yr3
Ïpq~ t2r !.

~70!

We note that the formulas of partial differentiation
Ci j (t,j) look the same as forBi j (t,j) after taking into ac-
count the fact that the integral~62! depends on the first time
derivative of the quadrupole moment. The derivatives of
functionalsEi j (t,j) andDi j (t,j) can be obtained using re
lationships ~63!, ~64! and derviatives ofBi j (t,j) and
Ci j (t,j). For example,

]̂ jDpq~t,j!5j jFBpq~t,j!

y
1E

2`

y Bi j ~z!

z2
dzG , ~71!

]̂ jkDpq~t,j!5
j j

y
]̂kBpq~t,j!1Pjk

3FBpq~t,j!

y
1E

2`

y Bi j ~z!

z2
dzG , ~72!
3-10
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]̂ i jkDpq~t,j!5
1

yF S Pi j 1
j ij j

yr D ]̂kBpq~t,j!

1Pjk]̂ iBpq~t,j!1j j ]̂ ikBpq~t,j!G .
~73!

It is worth emphasizing that the third partial derivative
Dpq(t,j) does not include the integralBpq(t,j) by itself, as
might be expected, but only its first and second derivativ
Therefore, the third partial derivative ofDpq(t,j) does not
depend on the past history of propagation of the light
@see formulas~68! and ~69!#.

Now, after making these remarks, we are ready to disc
the relativistic perturbations of the photon’s trajectory in t
radiative gravitational field of a localized source deflecti
light rays.

V. PERTURBATIONS OF PHOTON’S TRAJECTORY

We first note that in terms of the new variablest andj i

the components of the ‘‘canonical’’ metric tensor~12!–~14!
taken at an arbitrary point on the light ray can be re-writ
as follows@48#:

h00
can.~t,j!5

2M
r

1~ ]̂ i j 12ki ]̂ j t1kikj ]̂ tt!FIi j ~ t2r !

r G
22~ki ]̂ j1kikj ]̂ t!F İi j ~ t2r !

r
G1kikj

Ïi j ~ t2r !

r
,

~74!

h0i
can.~t,j!52

2e ipqS pxN
q

r 3
12~ ]̂ j1kj ]̂ t!F İi j ~ t2r !

r
G

22kj

Ïi j ~ t2r !

r
, ~75!

hi j
can.~t,j!5d i j h00

can.~t,j!1
2

r
Ïi j ~ t2r !, ~76!

where in the right-hand side of all formulas it is implicitl
assumed that variablest, xi are replaced byt and j i , and
]̂ i[Pi

j]/]j j ,]̂ t[]/]t. In addition, note that the dot over th
quadrupole momentIi j takes the usual meaning of differen
tiation with respect to time, which must be completed fir
before substitution oft andxi for t andj i , and before taking
any other derivative.

The metric tensor~74!–~76! is used in the equations o
motion of light rays~36! which are reduced with the help o
formula ~33! to the expression:
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,

ẍi~t!5@2M~ ]̂ i2ki ]̂ t!22S p~e ipq]̂qt1kqe ipq]̂ tt

2kje jpq]̂ iq!#H 1

r J 1~ ]̂ ipq2ki ]̂pqt12kp]̂ iqt

1kpkq]̂ i tt22kikp]̂qtt2kikpkq]̂ ttt!H Ipq~ t2r !

r J
12~kikp]̂qt2d ip]̂qt2d ipkq]̂ tt1kikpkq]̂ tt!

3H İpq~ t2r !

r J 2 ]̂ tt~wi2kiw0!, ~77!

where wi and w0 are functions given by relationships~9!,
~10!. Remarkably, no terms depending on the second t
derivatives of the quadrupole moment appear in the eq
tions of motion of light rays~77!, because of mutual cance
lation. This fact explicitly demonstrates that gravitation
waves emitted by localized sources are much more elu
from detection by angular deflection than other authors s
gest. It is worth noting that the disappearance of terms w
second time derivatives from the quadrupole moment i
local phenomena and is not a result of integration of E
~77!. This is a characteristic feature of General Relativi
Alternative theories of gravity do not possess such a lo
cancellation of gravitational wave terms. This cancellati
may be used for conducting new tests of General Relati
in the weak, radiative gravitational-field limit.

Let us simplify the equations of motion~77! in order to
avoid writing down cumbersome expressions. We introdu
two functionsw i andw0 which generate in Eq.~77! the time
derivatives]t of second and higher orders. These functio
are defined:

w0522kp¹qH Ipq~ t2r !

r J 1kpkqH İpq~ t2r !

r J , ~78!

w i52S pkqe ipqH 1

r J 2kpkq¹ i H Ipq~ t2r !

r J
12kqH İiq~ t2r !

r J , ~79!

where the differential operator¹ i[]/]xi must be applied
before the substitution of the unperturbed trajectory of lig
rays. It can be easily confirmed by straightforward use
formula ~33! that the expressions~78!, ~79! generate terms
with second and third derivatives with respect tot in Eq.
~77!. The equations for the path of the light ray now assu
the form:

ẍi~t!5@2M~ ]̂ i2ki ]̂ t!22S p~e ipq]̂qt2kje jpq]̂ iq!#

3H 1

r J 1~ ]̂ ipq2ki ]̂pqt12kp]̂ iqt!H Ipq~ t2r !

r J
22Pi j ]̂qtH İjq~ t2r !

r J 2 ]̂ tt@wi1w i2ki~w01w0!#.

~80!
3-11
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We note that the termsw0 andw i are gauge-dependent an
can be, in principle, eliminated from the equations of mot
~77! by choosing appropriate gauge functionsw0 and wi .
However, such a procedure will introduce a reference sys
with a coordinate grid very sensitive to the direction to
specific source of light rays; that is, to the vectorki . The
coordinate system obtained in this way will be of triflin
practical usage. For this reason we do not recommend
elimination of functionsw0 and w i from Eq. ~77! and give
preference to the ADM-harmonic coordinate system, wh
admits a much simpler and unique treatment of observa
effects. Thus, we leave the functionsw0 andw i in the equa-
tions of motion of light rays, where gauge functionsw0 and
wi are defined by formulas~B13!, ~B14!.

Proceeding further in this way and integrating Eqs.~77!
one obtains

ẋi~t!5ki1J̇ i~t! ~81!

xi~t!5xN
i ~t!1J i~t!2J i~t0!, ~82!

where the unperturbed trajectory of light rayxN
i (t) is deter-

mined by the expression~22!. The relativistic perturbations
to the trajectory are:

J̇ i~t!5~2M]̂ i12S pkje jpq]̂ iq!A~t,j!1 ]̂ ipqBpq~t,j!

2~2Mki12S pe ipq]̂q!H 1

r J 2~ki ]̂pq22kp]̂ iq!

3H Ipq~ t2r !

r J 22Pi j ]̂qH İjq~ t2r !

r J
2 ]̂ t@wi1w i2ki~w01w0!#, ~83!

J i~t!5~2M]̂ i12S pkje jpq]̂ iq!B~t,j!

2~2Mki22S pe ipq]̂q!A~t,j!1 ]̂ ipqDpq~t,j!

2~ki ]̂pq22kp]̂ iq!Bpq~t,j!22Pi j ]̂qCjq~t,j!

2wi~t,j!2w i~t,j!1ki@w0~t,j!1w0~t,j!#.

~84!
08402
m

he

h
le

We emphasize that before differentiation with respect to ti
t or impact parameterj i , one has to differentiate the quad
rupole moment with respect to timet and make the substitu
tions: t°t,r °Ad21t2,r 0°Ad21t0

2. We also wish to un-
derline that the only integrals which need be calcula
explicitly in expressions~83!, ~84! are A(t,j) and B(t,j).
All other integrals are acted upon by partial derivative
which reduce them to ordinary functions as explained in
previous section. This remarkable fact allows considera
simplification of the calculations. This simplification resul
from the fact that the integrands can be formed from retar
potentials independent of impact parameter, after using
transformation of variables~46!. This would be impossible if
the metric tensor were not a function of retarded timet2r .
Thus, retardation simplifies the calculations in the case
time-dependent gravitational fields. In the case of a static
stationary gravitational field, the calculation of propagati
of light can be done using the same technique since one
always consider a constant multipole also as a~constant!
function of retarded time. For this reason, more involv
calculations of light propagation~e.g. see@24# and@32#! can
be simplified as well.

The functionswi and w0, which describe freedom in
choosing coordinate systems, are taken from formulas~B13!,
~B14! of Appendix B. Consequently, the integrals of equ
tions of light propagation~77! expressed in the ADM-
harmonic coordinate gauge possess a simple interpretatio
observable effects, as discussed in the following section

It is convenient to obtain an expression for unit vectorki

written in terms of spatial coordinates of the points of em
sion, x0, and observation,x, of the light ray. From formula
~82! one has

ki52Ki2
Pj

i @J j~t,j!2J j~t0 ,j!#

ux2x0u
, ~85!

or more explicitly

ki52Ki2b i~t,j!1b i~t0 ,j!, ~86!

b i~t,j!5bM
i ~t,j!1bS

i ~t,j!1bQ
i ~t,j!, ~87!

where the relativistic correctionsb i(t,j) to the vectorKi are
defined as follows:
bM
i ~t,j!5

2M]̂ iB~t,j!

ux2x0u
, ~88!

bS
i ~t,j!5

2S pkje jpq]̂ iqB~t,j!12Pi jS pe jpq]̂qA~t,j!

ux2x0u
, ~89!

bQ
i ~t,j!5

]̂ ipqDpq~t,j!12kp]̂ iqBpq~t,j!22Pi j ]̂qCjq~t,j!2Pj
i @wj~t,j!1w j~t,j!#

ux2x0u
. ~90!
3-12
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The relativistic correctionsb i(t0 ,j) are obtained by replac
ing the parametert in the numerators of expressions~88!–
~90! by t0 . One notes that in Eq.~86! the unit Euclidean
vector

Ki52
xi2x0

i

ux2x0u
~91!

defines the direction from the observer towards the sourc
light and may be interpreted as a direction in asymptotica
flat space-time@49#. Relationship~85! allows us to apply the
results of integration of equation of light propagation to t
boundary value problem as well. The boundary value pr
lem is formulated in terms of initial,x0, and final,x, posi-
tions of the photon

x~ t !5x, x~ t0!5x0 , ~92!

whilst the initial-boundary value problem~1! is formulated
by means of assignment of the initial positionx0 and velocity
of photon at past null infinity. The relativistic correction
the vectorKi contains in its denominator the large numeric
value of the distance between observer and source of li
However, the differenceJ j (t,j)2J j (t0 ,j) in the numera-
tor of Eq.~85! may be of the same order asux2x0u itself. For
this reason the relativistic correction in question must
taken into account, in general, for calculation of light defle
tion in the cases of finite distances of observer or sourc
light from the localized source of gravitational waves. On
in the case where observer and source of light reside at l
distances on opposite sides of the source of gravitatio
waves, as was assumed in the paper by Damour
Esposito-Fare´se ~1998!, can the relativistic correctionb i be
neglected.

VI. BASIC OBSERVABLE RELATIVISTIC EFFECTS

A. Time delay

The gravitational time delay is derived from Eqs.~82!,
~84!. In order to obtain the expression for the time delay
multiply the differencex2x0 from Eq.~82! by itself and then
find the differencet2t0 by taking the square root and usin
an expansion with respect to small relativistic paramet
This yields
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t2t05ux2x0u2k•J~t!1k•J~t0!, ~93!

or

t2t05ux2x0u1DM~ t,t0!1DS~ t,t0!1DQ~ t,t0!, ~94!

where ux2x0u is the usual Euclidean distance@50# between
the points of emission,x0 , and reception,x, of the photon,
DM is the classical Shapiro delay produced by the~constant!
spherically symmetric part of the gravitational field of th
deflector,DS is the Lense-Thirring or Kerr delay due to th
~constant! spin of the localized source of gravitational wave
and DQ describes an additional delay caused by the ti
dependent quadrupole moment of the source. Specifically
obtain:

DM52MlnF r 1t

r 01t0
G ~95!

DS522e i jkkjS k]̂ i lnF r 1t

r 01t0
G ~96!

DQ5 ]̂ i j @Bi j ~t,j!2Bi j ~t0 ,j!#1dQ~t,j!2dQ~t0 ,j!,
~97!

where

dQ~t,j!5ki~wi1w i !2w02w0

5
1

2
]̂ tF¹p¹qH ~22!Ipq~ t2r !

r J G
2¹p¹qH ~21!Ipq~ t2r !

r J 2kpkq]̂ tH Ipq~ t2r !

r J
12kpkqH İpq~ t2r !

r J ~98!

and functions(21)Ipq(t2r ) and (22)Ipq(t2r ) are defined
by formula~B5! of Appendix B. The expression for the se
ond derivative of functionBi j (t,j) has been given in Eq
~69!. The other derivatives appearing inDQ are as follows:
]̂ tH Ii j ~ t2r !

r J 52
y

r

İi j ~ t2r !

r
2

t

r

Ii j ~ t2r !

r 2
, ~99!

¹p¹qH ~21!Ipq~ t2r !

r J 5F İpq~ t2r !13
Ipq~ t2r !

r
13

~21!Ipq~ t2r !

r 2 GxN
p xN

q

r 3
, ~100!

¹p¹qH ~22!Ipq~ t2r !

r J 5FIpq~ t2r !13
~21!Ipq~ t2r !

r
13

~22!Ipq~ t2r !

r 2 GxN
p xN

q

r 3
, ~101!
3-13
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]̂ tH ¹p¹q

~22!Ipq~ t2r !

r J 52FIpq~ t2r !13
~21!Ipq~ t2r !

r
13

~22!Ipq~ t2r !

r 2 GxN
q kp

r 3
23

t

r FIpq~ t2r !14
~21!Ipq~ t2r !

r

15
~22!Ipq~ t2r !

r 2 GxN
p xN

q

r 4
2

y

r F İpq~ t2r !13
Ipq~ t2r !

r
13

~21!Ipq~ t2r !

r 2 GxN
p xN

q

r 3
. ~102!
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The relationship~94! for the time delay has been derive
with respect to coordinate timet. In order to convert this
relationship to observable proper time, we assume for s
plicity that the observer is in a state of free fall and that
velocity is negligibly small at the point of observation, wi
spatial coordinatex. If the observer’s velocity is not small a
additional Lorentz transformation of time must be applie
Transformation from the ADM-harmonic coordinate timet
to proper timeT is made with the help of the formula~e.g.
see@51#!

dT5dtA2g00~ t,x!5dtS 12
1

2
h00D . ~103!

Implementation of formula~B7! for h00 and subsequent in
tegration of Eq.~103! with respect to time yields

T5S 12
M
r D ~ t2t i !, ~104!

wheret i is the initial epoch of observation and all velocit
dependent terms are assumed small, as argued above, a
therefore omitted. We also stress that under usual circ
stances the distancer is so large that the difference betwee
the observer’s proper time and coordinate time can be
glected. Thus, we are allowed to treat coordinate timet as
proper time.

We note that the time delay in the propagation of lig
depends not only on instantaneous functions of retarded
but also on the integrals of time(21)Ipq(t2r ) and
(22)Ipq(t2r ). These integrals describe the whole past h
tory of the source of gravitational waves up to the momen
observation. Under usual circumstances, the influence
such integrals on the time delay is expected to be sm
However, this question deserves more detailed discus
and will be studied in more detail elsewhere. For examp
these terms may be revealed in observations as the ‘‘k
matic resonance effect’’ predicted by Braginsky and Gri
chuk @14#. These terms may be also important for detect
of the solar g-mode tidal oscillations by the LISA
gravitational- wave antenna in space@52#.

B. Deflection of light

The coordinate direction to the source of light measu
at the point of observationx is defined by the four-vecto
pa5(1,pi) wherepi52 ẋi , or

pi52ki2J̇ i , ~105!
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and the minus sign directs the vectorpi from observer to the
source of light. However, the coordinate directionpi is not a
directly observable quantity. A real observable vector
wards the source of light,sa5(1,si), is defined with respec
to the local inertial frame of the observer. In this framesi

52dXi /dT, whereT is the observer’s proper time andXi

are spatial coordinates of the local inertial frame. We sh
assume for simplicity that observer is at rest@53# with re-
spect to the~global! ADM-harmonic coordinate system
(t,xi). Then the infinitesimal transformation from the glob
ADM-harmonic coordinates (t,xi) to the local coordinates
(T,Xi) is given by the formulas

dT5L0
0dt1L j

0dxj , dXi5L0
i dt1L j

i dxj , ~106!

where the matrix of transformationLb
a is defined by the

requirements of orthonormality

gab5hmnLa
mLb

n . ~107!

In particular, the orthonormality condition~107! assumes
that spatial angles and lengths at the point of observat
are measured with the Euclidean metricd i j . Because the
vectorsa is isotropic, we conclude that the Euclidean leng
usu of the vectorsi is equal to 1. Indeed, one has

habsasb5211s250. ~108!

Hence,usu51.
In the linear approximation with respect to G, the mat

of the transformation is as follows@31#

L0
0512

1

2
h00~ t,x!,

L i
05h0i~ t,x!,

L0
i 50,

L j
i 5F11

1

2
h00~ t,x!Gd i j 1

1

2
hi j

TT~ t,x!. ~109!

Using the transformation~106! we obtain the relationship
between the observable vectorsi and the coordinate direction
pi

si52
L0

i 2L j
i pj

L0
02L j

0pj
. ~110!

In the linear approximation this takes the form
3-14
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si5~11h001h0 j p
j !pi1

1

2
hi j

TTpj . ~111!

Remembering that vectorusu51, we find the Euclidean norm
of the vectorpi from the relationship

upu512h002h0 j p
j2

1

2
hi j

TTpipj , ~112!

which brings Eq.~111! to the form

si5mi1
1

2
Pi j mqhjq

TT~ t,x!, ~113!

where the Euclidean unit vectormi5pi /upu.
Let us now denote bya i the dimensionless vector de

scribing the total angle of deflection of the light ray me
sured at the point of observation, and calculated with resp
to vectorki given at past null infinity. It is defined accordin
to the relationship@32#

a i~t,j!5ki@k•J̇~t,j!#2J̇ i~t,j!, ~114!

or

a i~t,j!52Pj
i J̇ j~t,j!. ~115!

As a consequence of the definitions~105! and~115! we con-
clude that

mi52ki1a i~t,j!. ~116!

Accounting for expressions~113!, ~116!, and~86! we obtain
for the observed direction to the source of light
08402
-
ct

si~t,j!5Ki1a i~t,j!1b i~t,j!2b i~t0 ,j!1g i~t,j!,

~117!

where relativistic correctionsb i are defined by Eqs.~88!–
~90! and the perturbation

g i~t,j!52
1

2
Pi j kqhjq

TT~ t,x!. ~118!

If two sources of light~quasars! are observed along the d
rectionss1

i ands2
i the measured anglec between them in the

local inertial frame is:

cosc5s1•s2 , ~119!

where the dot denotes the usual Euclidean scalar produc
is worth emphasizing that the observed direction to
source of light includes the relativistic deflection of the lig
ray. This depends not only on quantities at the point of o
servation but also onb i(t0 ,j), at the point of emission of
light. This remark reveals that according to relation~119! a
single gravitational wave signal may cause different angu
displacements for different sources of light located at diff
ent distances from the source of gravitational waves.

Without going into further details of the observation
procedure we give an explicit expression for the anglea i .
We have

a i~t,j!5aM
i ~t,j!1aS

i ~t,j!1aQ
i ~t,j!, ~120!

where
s

aM
i ~t,j!522M]̂ iA~t,j!, ~121!

aS
i ~t,j!522S pkje jpq]̂ iqA~t,j!12S p~Pi j e jpq]̂q1kqe ipq]̂ t!H 1

r J , ~122!

aQ
i ~t,j!52 ]̂ ipqBpq~t,j!2Pi j ~2kp]̂ jq1kpkq]̂ j t12kpd jq]̂ tt12d jq]̂pt!H Ipq~ t2r !

r J 12Pi j ~ ]̂q12kq]̂ t!H İjq~ t2r !

r J
1

1

2
]̂ i tF¹p¹qH ~22!Ipq~ t2r !

r J G . ~123!

The expression for the third spatial derivative of functionBpq(t,j) has been given in Eq.~70!. The other relevant derivative
are:

]̂ j H İi j ~ t2r !

r J 52j jF Ïi j ~ t2r !

r 2
1
İi j ~ t2r !

r 3 G , ~124!

]̂tH İi j ~ t2r !

r J 52
y

r

Ïi j ~ t2r !

r
2

t

r

İi j ~ t2r !

r 2
, ~125!
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]̂ iqH Ipq~ t2r !

r J 52PiqF İpq~ t2r !

r 2
1
Ipq~ t2r !

r 3 G1j ijqF Ïpq~ t2r !

r 3
1

3İpq~ t2r !

r 4
1

3Ipq~ t2r !

r 5 G , ~126!

]̂ i tH Ipq~ t2r !

r J 5
y

r F Ïpq~ t2r !

r 2
1
İpq~ t2r !

r 3 Gj i1
t

r F2
İpq~ t2r !

r 3
13
Ipq~ t2r !

r 4 Gj i , ~127!

]̂ttH Ipq~ t2r !

r J 5
y2

r 2

Ïpq~ t2r !

r
1S 2yt

r 2
21D İpq~ t2r !

r 2
1S 3t2

r 2
21D Ipq~ t2r !

r 3
. ~128!

Straightforward but tedious calculation of the last term in Eq.~123! yields

]̂ i H ¹p¹q

~22!Ipq~ t2r !

r J 52FIpq~ t2r !13
~21!Ipq~ t2r !

r
13

~22!Ipq~ t2r !

r 2 GxN
p Piq

r 3
2F İpq~ t2r !16

Ipq~ t2r !

r

115
~21!Ipq~ t2r !

r 2
115

~22!Ipq~ t2r !

r 3 GxN
p xN

q j i

r 4
, ~129!

and

]̂ i tH ¹p¹q

~22!Ipq~ t2r !

r J 52FIpq~ t2r !13
~21!Ipq~ t2r !

r
13

~22!Ipq~ t2r !

r 2 GkpPiq

r 3
26

t

r FIpq~ t2r !14
~21!Ipq~ t2r !

r

15
~22!Ipq~ t2r !

r 2 GPiqxN
p

r 4
22

y

r F İpq~ t2r !13
Ipq~ t2r !

r
13

~21!Ipq~ t2r !

r 2 GkpPiq

r 3
22F İpq~ t2r !

16
Ipq~ t2r !

r
115

~21!Ipq~ t2r !

r 2
115

~22!Ipq~ t2r !

r 3 Gj ikpxN
q

r 4
14

t

r F İpq~ t2r !1
15

2

Ipq~ t2r !

r

1
45

2

~21!Ipq~ t2r !

r 2
1

45

2

~22!Ipq~ t2r !

r 3 Gj ixN
p xN

q

r 5
1

y

r F Ïpq~ t2r !16
İpq~ t2r !

r
115
Ipq~ t2r !

r 2

115
~21!Ipq~ t2r !

r 3 Gj ixN
p xN

q

r 4
. ~130!
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We note that the angular displacement in astrometric
sitions of sources of light in the sky depends not only
quantities that are instantaneous functions of retarded t
but also on integrals over time(21)Ipq(t2r ) and (22)Ipq(t
2r ), which describe the whole past history of the source
gravitational waves up to the moment of observation. Un
usual circumstances the influence of such integrals on
deflection of light is expected to be small. However, th
question deserves more detailed discussion and will be
cussed elsewhere.

VII. DISCUSSION

It is remarkable that among all the integrals required
calculation of the trajectory of the light ray, onlyBi j (t,j)
enters the expressions~97!, ~123! for time delay and deflec
tion angle. Furthermore, it is remarkable that we need
know this integral explicitly, but only its second and thi
08402
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derivatives with respect to impact parameter. These are g
in Eqs. ~69! and ~70!. With the knowledge of these deriva
tives, and derivatives of other functions given in the previo
section, we have complete information about the functio
structure of the relativistic time delay and the angle of lig
deflection produced by any localized gravitating system p
sessing a time-dependent quadrupole momentIi j (t).

This structure indicates that the explicit time depende
of the quadrupole moment completely determines the res
of astrometric and timing observations. We shall not co
sider this problem in the present paper, leaving it for futu
exploration.

Our concern in this section is the simplification of th
general formalism developed in the foregoing text. In ord
to do this we consider three limiting cases:

~1! The impact parameterd is much smaller than the dis
tance from the localized source of gravitational waves
both the observer,r, and to the source of light,r 0 . The
3-16
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source of light is behind the source of gravitational wav
~see Fig. 2!;

~2! The impact parameterd is much smaller than the dis
tance from the localized source of gravitational waves to
observer,r, and to the source of light,r 0 . The source of light
is on the same side of the source of gravitational waves
the observer~see Fig. 3!;

~3! The distanceR from the source of light rays to th
observer is much smaller than distances from the observe
from the source of light to the localized source of gravi
tional waves. The impact parameterd may be comparable
with the distance from the deflector to observer or the sou
of light ~see Fig. 4!.

We will conventionally refer to the cases~1! and ~2! as
those of small impact parameter, with numerical values
t0,0 andt0.0 respectively. Case~3! is that of large im-
pact parameter, and its small numerical values are cov
by the formalism as well, as will be clear in Sec. VII
below.

A. Case 1. Small impact parameter„t0<0…

1. Asymptotic expansions of independent variables

We shall assume in this section that the conditiond
!min@r ,r 0# holds. Let L5min@r ,r 0# and recall thatt
5Ar 22d2 andt052Ar 0

22d2,0 ~see Fig. 2!. This yields

y5Ar 22d22r 52
d2

2r
2

d4

8r 3
1 . . . , ~131!

and

y052Ar 0
22d22r 0522r 01

d2

2r 0
1

d4

8r 0
3

1 . . . ,

~132!

where dots denote terms of higher order,r is the constant
distance from the deflector to observer, andr 0 is the constant
distance from the deflector to the point of emission of lig
Using these expansions we find

t5t* 1r 2
d2

2r
1 . . . , t05t* 2r 01

d2

2r 0
1 . . . .

~133!

FIG. 2. Relative configuration of observer~O!, source of light
~S!, and a localized source of gravitational waves~D!. The source
of gravitational waves deflects light rays which are emitted at
momentt0 at the point S and received at the momentt at the point
O. The point E on the line OS corresponds to the moment of
closest approach of light ray to the deflector D. Distances areOS
5R,DO5r ,DS5r 0 , the impact parameterDE5d,OE5t.0,ES
5t05t2R,0. The impact parameterd is small in comparison to
all other distances.
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These can be used for Taylor expansion of functions ab
the timet* , the moment of the closest approach of light r
to the deflector. Specifically, if we assume convergence
this Taylor series we find

Ii j ~ t2r !5Ii j ~ t* !2
d2

2r
İi j ~ t* !1 . . . , ~134!

Ii j ~ t02r 0!5Ii j ~ t* 22r 0!1
d2

2r 0
İi j ~ t* 22r 0!1 . . . ,

~135!

where dots again denote terms of higher order. Converge
of the time series given above requires:

vd2

cr
!1, and

vd2

cr0
!1, ~136!

where v is the highest frequency of gravitational wav
emitted by the deflector. If the source of light rays and o
server are at infinite distances from the deflector then
requirements~136! are satisfied automatically, irrespective
the structure of the Fourier spectrum of the quadrupole m
ment of the deflector. In practical situations such an assu
tion may not be always satisfied. For this reason, it will
more natural to avoid the Taylor expansions of the quad
pole moment with respect to retarded time. It is also wo
noting that in the case of small impact parameter we hav

~yr !2152
2

d2
1

1

2r 2
1

d2

8r 4
1 . . . , ~137!

and

~y0r 0!2152
1

2r 0
2

2
d2

8r 0
4

1 . . . . ~138!

The foregoing expansions then yield

]̂ jBpq~t,j!5S 22]̂ j lnd1
j j

2r 2D Ijk~ t2r !1 . . . ,

~139!

]̂ jBpq~t0 ,j!52
j j

2r 0
2
Ijk~ t02r 0!1 . . . , ~140!

]̂ jkBpq~t,j!522]̂ jklndIpq~ t2r !1
2

r
njnkİpq~ t2r !

1 . . . , ~141!

]̂ jkBpq~t0 ,j!52
1

2r 0
2

PjkIpq~ t02r 0!1 . . . ,

~142!

e

e
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]̂ i jkBpq~t,j!522FIpq~ t2r !1
d2

2r
İpq~ t2r !G ]̂ i jk lnd

1 . . . , ~143!

]̂ i jkBpq~t0 ,j!5OS 1

r 0
3D , ~144!

and

]̂ i jkDpq~t,j!522rIpq~ t2r !]̂ i jk ln d2
4ninjnk

d
İpq~ t2r !

1 . . . , ~145!

]̂ i jkDpq~t0 ,j!5OS 1

r 0
3D . ~146!

In addition we have

dQ~t,j!5
1

r
kpkqİpq~ t2r !1 . . . , ~147!

dQ~t0 ,j!5OS 1

r 0
2D . ~148!

We note that the leading terms of the expansions decay m
faster~at least as 1/r 0

2) at the point of emission of light than
those at the point of observation. This indicates that the m
contribution to the effects of time delay and deflection
light arise along the path of the light ray from the localiz
source of gravitational waves to the observer. We disc
this question in more detail in the following section.

The asymptotic expansions of integrals~38!, ~39! describ-
ing propagation of light rays in the static part of gravitation
field of the deflector are:

A~t,j!522 lnd1 ln 2r 2
d2

4r 2
1 . . . , ~149!

A~t0 ,j!52 ln2r 01
d2

4r 0
2

1 . . . , ~150!

B~t,j!52r 22r ln d1r ln 2r 2
d2

2r F1

2
2 lnS d2

2r D G . . . ,

~151!

B~t0 ,j!52r 01r 0 ln 2r 02
d2

2r 0
S 1

2
1 ln 2r 0D1 . . . .

~152!

These expansions are used for calculation of asymptotic
pressions for time delay and the angle of deflection of li
rays.
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2. Asymptotic expressions for time delay and the angle
of light deflection

The static part of time delay and deflection angle are:

DM524M ln d12Mln~4rr 0!1 . . . , ~153!

DS524e j ipkjS p]̂ iF ln d2
1

2
ln~4rr 0!G1 . . . ,

~154!

aM
i ~t,j!54M]̂ iF ln d2

1

2
ln~4rr 0!G1 . . . ,

~155!

aS
i ~t,j!524e jpqkpS q]̂ i j F ln d2

1

2
ln ~4rr 0!G1 . . . ,

~156!

bM
i ~t,j!52

r

R
aM

i ~t,j!1 . . . , ~157!

bS
i ~t,j!52

r

R
aS

i ~t,j!2
4

R
Pi jS ke jkq]̂qln d1 . . . ,

~158!

where we have neglected the angleg i(t,j) because it is
small @recall thatg i(t,j).Pi j kqhjq

TT#.
Asymptotic expressions for the time delay and angle

deflection caused by the quadrupole moment are:

DQ522Ii j ~ t2r !]̂ i j ln d1
1

r
~2ninj1kikj !İi j ~ t2r !1 . . . ,

~159!

and

aQ
i ~t,j!52FIjk~ t2r !1

d2

2r
İjk~ t2r !G ]̂ i jk ln d1 . . . ,

~160!

bQ
i ~t,j!52

r

R
aQ

i ~t,j!2
4

RFkjIjk~ t2r !]̂ ik ln d

1
1

2
j i İjk~ t2r !]̂ jk ln dG1 . . . , ~161!

whereni5j i /d is the unit vector directed along the impa
parameter,R5ux2x0u, and dots denote terms of higher ord
@54#. The angleb i(t0 ,j) at the point of emission of light is
negligibly small and, for this reason, its exact expression
been not shown.

Our calculations show that the time dependent part of
time delay and light deflection by the quadrupole momen
a localized source of gravitational field fall off in the firs
approximation as theinverse squareand inverse cubeof the
impact parameterd respectively. For this reason there is n
magnification of the gravitational wave signal in astromet
or pulsar timing observations as some authors have s
gested@19#– @21#. In particular, terms proportional to 1/d, or
3-18
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even to 1/d2 , appear only in terms of high order in th
expansion~160! and are always multiplied by the factor 1r
to some power.

The first term of formula~159! was first derived by
Sazhin @7# for the special case of a binary system with
specific orientation of its orbital plane. Our derivation
formula ~160! improves and gives independent confirmati
of the result established previously by Damour and Espos
Farèse @23# using another mathematical technique based
application of Fourier transform and pure harmonic coor
nates. For completeness we have repeated the calculatio
Damour and Esposito-Fare`se@23# for the effect of deflection
of light rays by localized sources of gravitational waves
ADM rather than harmonic coordinates~see Appendix A!.
The result coincides completely with that of Damour a
Esposito-Fare`se @23# and clearly demonstrates the gauge
variance of the result. However, our technique is more g
eral and powerful. Our formalism is valid for any relativ
position of observer, source of light, and source of grav
tional waves, and with finite or infinite separations. T
method developed by Damour and Esposito-Fare`se @23# is
valid only for infinite separations and for small values
impact parameter. In particular, we note that while Dam
and Esposito-Fare`se @23# find that the deflection depends o
the timet* of the closest approach of light to the deflecto
our calculation shows that it depends on the retarded timt
2r . This difference is insignificant for extremely large sep
ration of the light source and observer from the deflector,
small impact parameter, but it can be important in the ca
of finite distances or large impact parameter.

It is important to realize that in the case of a small imp
parameter, the basic time-dependent contribution to
bending of light and time delay by the gravitational field o
localized source of gravitational waves comes from the st
part of the near-zone gravitational field of the source take
the retarded time@cf. formulas~50!–~53! from @24# #. In this
respect it is worth emphasizing that the formula for the be
ing of light given in paper@23# as well as in Appendix A is
valid under two assumptions:~1! the impact parameterd is
small compared with the distance to the observerr, ~2! the
velocity of matter inside the source of gravitational radiati
is much smaller than the speed of light~the slow-motion
approximation!.

The first assumption is rather trivial, since the impact p
rameterd is the only finite distance when the source of lig
and observer are at infinity. The second assumption app
because paper@23# uses the Taylor expansion of the Fouri
image of the tensor of energy-momentum of matter with
spect to wave vectork @see Eqs.~3.3! and ~3.4! of paper
@23# #. This expansion is mathematically equivalent to the u
of a slow-motion approximation@55# which, in particular,
restricts the nature of the source of gravitational waves
that its Fourier spectrum is not allowed to include too hi
frequencies.

In contrast, the general formalism given in the pres
paper produces results~159! and~160! applicable to arbitrary
sources of gravitational waves, including gravitational rad
tion bursts with internal velocity of matter comparable to t
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speed of light@56#. Moreover, we do not assume positions
observer and the source of light to be at infinity.

If we introduce the notion of the transverse-traceless~TT!
and longitudinal~L! tensors@24,33# with respect to the di-
rection of propagation of light rays

I i j
TT5Ii j 1

1

2
~d i j 1kikj !kpkqIpq2~d ipkjkq1d jpkikq!Ipq ,

~162!

I i j
L 5kikpIjp1kjkpIip2kikj~kpkqIpq!, ~163!

the expressions~159!, ~160! are reduced to the form

DQ522I i j
TT~ t2r !]̂ i j ln d1

2

r
ninj İi j

TT~ t2r !1 . . . ,

~164!

aQ
i ~t,j!52FI jk

TT~ t2r !1
d2

2r
İjk

TT~ t2r !G ]̂ i jk ln d1 . . . ,

~165!

bQ
i ~t,j!52

r

R
aQ

i ~t,j!2
4

RFkjI jk
L ~ t2r !]̂ ik ln d

1
1

2
j i İjk

TT~ t2r !]̂ jk ln dG1 . . . , ~166!

which reveals explicitly that only the transverse-tracele
part of the quadrupole moment of the localized source
gravitational waves contributes to the leading terms. Ho
ever, terms of higher order can depend on the longitud
part of the quadrupole moment as well.

It is interesting to see that if we apply the expansio
~134!, ~135!, use the approximation of a gravitational len
and omit all terms depending on time derivatives of t
quadrupole moment, the expressions for the time delay
the angle of light deflection can be reduced to the formu
@57#

t2t05ux2x0u24c12Mln~4rr 0!, a i54]̂ ic,
~167!

where c is the gravitational lens potential@58# having the
form

c5FM1e jpqkpS q]̂ j1
1

2
I pq

TT~ t* !]̂pqG ln d. ~168!

Scrutiny of the multipole structure ofc in cosmological
gravitational lenses may reveal the presence of dark matte
the lens and identify the position of its center of mass,
locity and density distribution.

Expression~168! includes explicit dependence on mas
spin, and quadrupole moment of the deflector and gene
izes that given by Damour and Esposito-Fare`se @23# by ac-
counting for the spin multipole. A similar result for th
gravitational lens potential was obtained independently
Kopeikin @24# in the case of a stationary gravitational fie
for the deflector. The fact that the deflection angle can
represented as a gradient of the gravitational lens potentic
3-19
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explicitly indicates that the, so-called, frame-dragging eff
in gravitational lenses@59# can give a noticeable contributio
to the deflection angle. Frame-dragging also produce
small displacement of the image of the background sou
from the plane formed by the two vectors directed from
observer toward the image of the light source and toward
gravitational lens. This torsional displacement of the ima
is produced only by the component of spin of the deflec
directed along the light ray@see the second term in Eq
~158!#. The overall effect of the torsion is of orderd/r
smaller than the main terms in the expression~168!. These
remarks dispel a seemingly common opinion that rotation
the deflector prevents representation of the deflection a
as a gradient of a gravitational lens potential. Similar conc
sions can be derived from@24# and @32#. Ibáñez and Martin
@60# and Ibáñez @61# give a formula for effects of frame
dragging equivalent to the spin-dependent term in Eq.~168!,
although they do not calculate all necessary integrals or
timate residual terms.

Taking into account formula~117! and expressions fo
a i ,b i , and g we obtain the vector equation for a gravit
tional lens

si5Ki1
r 0

R
a i , ~169!

wherea i is given by relationships~167!, ~168! and we have
taken into account that in the case under consideratioR
.r 1r 0 . One recognizes that when distances are finite
deflection angle with respect to vectorKi is not simplya i

but the product ofr 0 /R and a i . In the limit whenKi→ki ,
which is equaivalent tob i→0, or r 5const.,r 0→` the ob-
served angle of deflection approaches the total angle of
flection a i , as it must in this limiting case.

B. Case 2. Small impact parameter„t0>0…

1. Asymptotic expansions of independent variables

We shall again assume in this section that the condi
d!min@r ,r 0# holds and thatt5Ar 22d2 and t05Ar 0

22d2

.0 ~see Fig. 3!. This yields

FIG. 3. Relative configuration of observer~O!, source of light
~S!, and a localized source of gravitational waves~D!. The source
of gravitational waves deflects light rays which are emitted at
momentt0 at the point S and received at the momentt at the point
O. The point E on the line OS indicates the point of minimal d
tance of the light ray trajectory extrapolated backward to the defl
tor D. Distances areOS5R,DO5r ,DS5r 0 , the impact paramete
DE5d,OE5t.0,ES5t05t2R.0. The impact parameterd is
small in comparision to all other distances.
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y5Ar 22d22r 52
d2

2r
2

d4

8r 3
1 . . . , ~170!

and

y05Ar 0
22d22r 052

d2

2r 0
2

d4

8r 0
3

1 . . . , ~171!

where dots denote terms of higher order,r is the constant
distance from the deflector to observer, andr 0 is the constant
distance from the deflector to the point of emission of lig
Using these expansions we obtain the following decomp
tions

t5t* 1r 2
d2

2r
1 . . . , t05t* 1r 02

d2

2r 0
1 . . . .

~172!

These can be used for Taylor expansion of functions t
depend on retarded time about the timet* . In this caset* is
the moment of closest approach of the light ray traject
extrapolated backward to the deflector~see Fig. 3!. If we
assume convergence of this Taylor series we find:

Ii j ~ t2r !5Ii j ~ t* !2
d2

2r
İi j ~ t* !1 . . . , ~173!

Ii j ~ t02r 0!5Ii j ~ t* !2
d2

2r 0
İi j ~ t* !1 . . . , ~174!

where dots again denote terms of higher order. We also h

~yr !2152
2

d2
1

1

2r 2
1

d2

8r 4
1 . . . , ~175!

and

~y0r 0!2152
2

d2
1

1

2r 0
2

1
d2

8r 0
4

1 . . . . ~176!

The foregoing expansions yield

]̂ jBpq~t,j!5S 22]̂ j ln d1
j j

2r 2D Ijk~ t2r !1 . . . ,

~177!

]̂ jBpq~t0 ,j!5S 22]̂ j lnd1
j j

2r 0
2D Ijk~ t02r 0!1 . . . ,

~178!

]̂ jkBjk~t,j!522]̂ jklndIjk~ t2r !

1
2

r
njnkİjk~ t2r !1 . . . , ~179!

e

-
c-
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]̂ jkBjk~t0 ,j!522]̂ jklndIjk~ t02r 0!

1
2

r 0
njnkİjk~ t02r 0!1 . . . , ~180!

]̂ i jkBjk~t,j!522FIjk~ t2r !1
d2

2r
İjk~ t2r !G ]̂ i jk ln d

1 . . . , ~181!

]̂ i jkBjk~t0 ,j!522FIjk~ t02r 0!1
d2

2r 0
İjk~ t0

2r 0!G ]̂ i jk ln d1 . . . , ~182!

and

]̂ i jkDpq~t,j!522rIpq~ t2r !]̂ i jk ln d2
4ninjnk

d
İpq~ t2r !

1 . . . , ~183!

]̂ i jkDpq~t0 ,j!522r 0Ipq~ t02r 0!]̂ i jk ln d

2
4ninjnk

d
İpq~ t02r 0!1 . . . . ~184!

In addition we have

dQ~t,j!5
1

r
kpkqİpq~ t2r !1 . . . , ~185!

dQ~t0 ,j!5
1

r 0
kpkqİpq~ t02r 0!1 . . . .

~186!

We note that the leading terms of the expansions now h
the same dependence on the distance of the point of emis
of light and of the point of observation from the source
gravitational waves. If the source of light is closer to t
source of gravitational waves than the observer, it makes
largest contribution to the effects of time delay and defl
tion of light.

The asymptotic expansions of integrals~38!, ~39! describ-
ing propagation of light rays in the static part of the gravi
tional field of the deflector are:

A~t,j!522 ln d1 ln~2r !2
d2

4r 2
1 . . . , ~187!

A~t0 ,j!522 ln d1 ln~2r 0!2
d2

4r 0
2

1 . . . , ~188!

B~t,j!52r 22r ln d1r ln~2r !2
d2

2r F1

2
2 lnS d2

2r D G . . . ,

~189!
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B~t0 ,j!52r 022 r 0 ln d1r 0 ln~2r 0!2
d2

2r 0
F1

2
2 lnS d2

2r 0
D G

1 . . . . ~190!

These expansions are used for calculation of asymptotic
pressions for time delay and the angle of deflection of lig
rays.

2. Asymptotic expressions for time delay and the angle of ligh
deflection

The static part of time delay and deflection angle a
given by:

DM52MF lnS r

r 0
D1

d2

4 S 1

r 0
2

2
1

r 2D G1 . . . , ~191!

DS5e i jpkjS pj iS 1

r 0
2

2
1

r 2D 1 . . . . ~192!

Expressions foraM
i ,aS

i , andaQ
i will be the same as in Eqs

~155!, ~156!, and~160! because they are taken at the point
observation only. Expressions forbM

i ,bS
i , andbQ

i are given
at the point of observation by Eqs.~157!, ~158!, and ~161!.
Expressions forbM

i ,bS
i , andbQ

i at the point of emission of
light are given by the same Eqs.~157!, ~158!, and~161! after
substitutingr 0 for r. The relativistic perturbationg i is calcu-
lated in Eq.~118!.

The asymptotic expression for the time delay caused
the quadrupole moment is:

DQ522@Ii j ~ t2r !2Ii j ~ t02r 0!#]̂ i j lnd ~193!

1~2ninj1kikj !F İi j ~ t2r !

r
2
İi j ~ t02r 0!

r 0
G1 . . . .

~194!

One might think that the effect of retardation is again
versely proportional to the square of impact parameterd.
However, this is actually true only for sources of gravit
tional waves with rapidly varying quadrupole moment.
motion of matter inside the localized source of gravitation
waves is slow, then conditions~136! apply. In this case, the
real amplitude of the effect becomes extremely small, be
inversely proportional to 1/r 2 and 1/r 0

2 .
The asymptotic expression for the observed directionsi to

the source of light is derived from the basic formula~117!
and is:

si5Ki2
2r 0

R
@Ijk~ t2r !2Ijk~ t02r 0!#]̂ i jk ln d

2
4kj

R
@Ijk~ t2r !2Ijk~ t02r 0!#]̂ ik ln d2

2j i

R
@ İjk~ t2r !

2İjk~ t02r 0!#]̂ jk ln d1g i~t,j!1 . . . , ~195!
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where we have accounted for the approximate equalityR
.r 2r 0 valid in the case oft0.0. One can see that deflec
tion angle is small in the expression given. Moreover, if
again assume that motion of the matter is slow, then
observed deflection is even smaller and is inversely prop
tional to 1/(rR) and 1/(r 0R).

C. Case 3. Large impact parameter

1. Asymptotic expansions of independent variables

In this limiting case we assume that the distanceR be-
tween observer and source of light is much smaller thar
andr 0 , their respective distances from the deflector~see Fig.
4!. Then we have

r 0
25r 222rR cosu1R25r 2S 12

2R

r
cosu1

r 2

r 2D ,

~196!

which leads to the expansions

r 05r 2R cosu1 . . . , ~197!

1

r 0
5

1

r S 11
R

r
cosu D1 . . . . ~198!

The time parameters are

FIG. 4. Relative configuration of observer~O!, source of light
~S!, and a localized source of gravitational waves~D!. The source
of gravitational waves deflects light rays which are emitted at
momentt0 at the point S and received at the momentt at the point
O. The point E on the line OS corresponds to the moment of
closest approach of light ray to the deflector D. Distances areOS
5R,DO5r ,DS5r 0 , the impact parameterDE5d,OE5t
5rcosu,ES5t05t2R. The distanceR is much smaller than bothr
and r 0 . The impact parameterd is, in general, not small in com
parison to all other distances.
08402
e
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t5r cosu, and t05t2R. ~199!

Their numerical values may be larger or less than zero.
following exact equalities hold:

d5r sinu, ~200!

y5t2r 5r ~cosu21!,
~201!

~yr !215
1

r 2~cosu21!
. ~202!

In addition, we have asymptotic expansions

y05t02r 05yS 11
R

r D1 . . . , ~203!

~y0r 0!215
1

yr
1

R

r 3
1 . . . , ~204!

t02r 05t2r 1R~cosu21!1 . . . . ~205!

Thus, we can decompose any function of the time argum
t02r 0 in a Taylor series with respect to the retarded timt
2r if convergence is assumed@62#. For example,

Ii j ~ t02r 0!5Ii j ~ t2r !1R~cosu21!İi j ~ t2r !1 . . . .
~206!

Finally, we note that the vectorj i corresponding to impac
parameterd can be represented as

j i5r ~Ni2kicosu!, ~207!

where Ni52K0
i 5xi /r ,uNu51, andki is the unit vector in

the direction from the source of light to observer@63#.

2. Asymptotic expressions for time delay and the angle of ligh
deflection

In this section all asymptotic expressions for relativis
effects are given only up to leading terms of order 1/r and
1/r 0 . For this reason all residual terms of order 1/r 2 and 1/r 0

2

are omitted in subsequent formulas without note. Us
asymptotic expansions of functions from the previous sec
and reducing similar terms we obtain

DQ5
1

12cosuFkikj22kiNjcosu1
1

2
~11cos2u!NiNj G

3H İi j ~ t2r !

r
2
İi j ~ t02r 0!

r 0
J , ~208!

where cosu5k•N5K•K0 ~see Figs. 1 and 4!. We note that
the expression for time delay given above can be furt
simplified if the definition of ‘‘transverse-traceless’’ tens
with respect to the directionNi is applied@24,33#:

e

e
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I i j
TT5Ii j 1

1

2
~d i j 1NiNj !NpNqIpq

2~d ipNjNq1d jpNiNq!Ipq , ~209!

where the projection is onto the plane orthogonal to u
vector Ni . Formula ~208! for time delay now assumes th
form

DQ5
kikj

12cosu
F İi j

TT~ t2r !

r
2
İi j

TT~ t02r 0!

r 0
G . ~210!

Differentiation of DQ with respect to time gives the fre
quency shift due to a remote localized source of gravitatio
waves

zg~ t,t0!512
dt

dt0
52

1

2

kikj

12k•N
@hi j

TT~ t2r !2hi j
TT~ t02r 0!#,

~211!

where the metrichi j
TT is defined by the Eq.~B10! and taken in

the leading order approximation with respect to 1/r . We rec-
ognize that the expression~211! is a generalization of the
analogous formula forzg obtained previously by Mashhoo
and Seitz@64# in the case of a plane gravitational wave. Th
exact coincidence demonstrates the power of our formali
which both reproduces well-known results and yields n
observational predictions for relativistic effects in the prop
gation of light rays in the field of an arbitrary source
gravitational waves@65#.

Repeating the calculations for the angle of light deflect
under the assumption that the wavelength,l, of gravitational
waves emitted by the localized source is smaller than
distanceR between source of light and observer, we come
the following result:

aQ
i 5

1

12cosuF ~cosu22!~kikpkq12kikpNq cosu!

1~cos2u22 cosu21!S 1

2
kiNpNq cosu2NiNpNqD

1Nikpkq22NiNpkqG H Ïpq~ t2r !

r J 12~kp2Np cosu!

3H Ïip~ t2r !

r J . ~212!

Transformation of this result using relationship~209! and
expression~B10! for hi j

TT , where only leading terms of orde
1/r are retained, reveals that

aQ
i 5

1

2

kpkq

12k•N
@~k•N22!ki1Ni #hpq

TT~ t2r !1kphip
TT~ t2r !,

~213!

and, because the vectorb i is small,

si5Ki1aQ
i 1g i1 . . . , ~214!
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where the ellipsis designates unimportant terms of hig
order with respect to 1/r @66#, and we have neglected th
constant deflection caused by mass-monopole and s
dipole dependent terms. One sees again that only
transverse-traceless componenthi j

TT of the metric tensor ap-
pears in the final expression.

It is worthwhile to stress that the observed optical dire
tion to the source of light given by the formula~214! coin-
cides with that which can be obtained by means of VL
observations. Indeed, it is easy to confirm that Eq.~214! can
be re-written as follows@67#

si5Ki1
1

2

Ki1Ni

11K•N
KpKqhpq

TT~ t2r !2
1

2
Kphip

TT~ t2r !.

~215!

The direction to the source of electromagnetic waves m
sured by VLBI is determined as difference between times
arrival of the wave to the first and second antennas. Tak
into account Eqs.~94! and ~210! for the first and second
observing sites, and assuming that the time differencet2
2t1 in observation of the radio signal at the observatories
small compared to the period of gravitational waves, we fi

t22t152S K1
1

2

Ki1Ni

11K•N
KpKqhpq

TT~ t2r ! D •~x22x1!.

~216!

If the baseline vector measured in the local inertial frame
denoted asb and the transformation~106! is taken into ac-
count,

x2
i 2x1

i 5bi2
1

2
hi j

TT~ t2r !bj1O~b2!. ~217!

We confirm that

t22t152s•b, ~218!

where the vectorsi is given by formula~215!, which proves
our statement. It is worth emphasizing that Eq.~215! was
obtained independently by Pyneet al. @@16#, see formula
~47!#. Their formalism, however, has a limited region of a
plication. Extension of the formalism of Pyneet al. @16# was
one of the motivation of the present work.

VIII. CONCLUSIONS

The most accurate astrometric measurements are diffe
tial. They measure the angle between 2 sources. The hig
accuracy is attainable when the sources are close to
other in the sky. In contrast, angular deflection by gravi
tional waves varies only over large angles in the general c
of large impact parameter. Specifically, in such a case
bending angle depends only on the metric in the neighb
hood of the observer and its first derivatives, as in E
~213!, ~214!. It thus can vary only as a quadrupole and t
derivative of a quadrupole, over the sky. Similarly, Eq
~123!, ~160! and ~195! depend on the mass quadrupole m
ment Ii j and its first and second derivatives. Note that t
3-23
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angle of light deflection~123! involves the time integrals o
Ii j (t2r ) which may be interpreted as the presence of
‘‘kinematic resonance effect’’@14#; however, this term is
small, as discussed above. In the context of a purely loca
determined deflection angle, it is not unexpected that line
sight that pass close to the deflector show almost purely
static effect, as was shown in Sec. VII.

The magnitudes of the leading terms in the limiting form
for the deflection angleaQ , in Eqs.~123!, ~160! and ~195!
areaQ;V2GMa2/c4r , whereM is the mass of the deflec
tor, anda is its dimension. The frequency of the gravitation
waves isV. For a gravitationally bound binary system wi
a circular orbit,V is twice the orbital frequency@68,69#. We
can use Kepler’s third law to express this in the formaQ
;V2/3(GM)5/3/c4r , or alternatively, aQ;2.4
310214(M /M ()5/3Psec

22/3(r kpc)
21 arcsec wherePsecis the or-

bital period of the binary system. For a contact white-dw
binary at 200 pc, the expected deflection is about
310213 arcsec, with a period of about 1000 sec. For a
permassive black-hole binary, with mass 106 M ( and pe-
riod 10 yr at a distance of 1 Mpc, the expected deflection
about 5310211 arcsec.

Because the effect varies smoothly over the sky, the p
ently available astrometric accuracies are a few microarc
onds. Higher accuracies are attainable only over sma
angles. Very-long baseline interferometry of a suite of ra
sources attains microarcsecond accuracy, over period
days to years. Specially-designed observations sensitiv
source motions of minutes or hours might attain higher
curacy, perhaps as much as an order of magnitude be
Clearly, detection of deflection of light rays by gravitation
waves from nearby localized sources is not a goal for
near future because of its smallness. However the ba
ground gravitational wave noise may be, perhaps, measu

The near-perfect cancellation of the effect in Gene
Relativity suggests that deflection of light by gravitation
waves could be a test of that theory in radiative regime@70#.
In a theory that does not posess the symmetries that caus
deflection to vanish, we can only guess the resulting defl
tion. Such a guess might multiply the general-relativisticaQ

i

by 3 factors. The first factor, ofr /d, reflects the amplitude o
the gravitational wave at the point of closest approach, ra
than at the observer. The second factor, some function o
distance to the source measured in gravitational-wave w
lengths, perhaps ln(r/l) @71#, reflects the cumulative effect o
bending along the line of sight. The final factor, unknow
reflects the coupling of the non-general-relativistic part
the wave to the source and its effect on the light ray. Fo
source an arcsecond from the deflectors described above
first 2 factors can increase the effect by several orders
magnitude. Moreover, if the effect is not local to the o
server, differential astrometry across small angles can de
it, so that greater accuracy is attainable. Given sufficien
strong departures from General Relativity, the effect mi
be detectable.
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APPENDIX A: COMPARISON TO THE PAPER BY
DAMOUR AND ESPOSITO-FARÈ SE

In this appendix we rederive the results of the paper
Damour and Esposito-Fare`se @23# applying the generalized
isotropic ADM coordinate conditions.~For an application of
the conditions in post-Newtonian calculations, see e.g.@41#.!
This explicitly shows that the asymptotic results do not d
pend on the chosen gauge. We do not putc51 in this and
the following appendices to make more clear the order
terms with respect to the small parameter 1/c.

The ADM coordinate conditions, in linear approximatio
read

2¹ ig0i2¹0gii 50, 3¹ jgi j 2¹ igj j 50, ~A1!

where ¹05]/]t and ¹ i5]/]xi . For comparison, the har
monic coordinate conditions, in linear approximation, rea

2¹ ig0i2¹0gii 5¹0g00, 2¹ jgi j 2¹ igj j 52¹ ig00.
~A2!

The ADM gauge conditions~A1! brings the space-spac
component of metric to the form

gi j 5d i j S 11
1

3
hkkD1hi j

TT , ~A3!

wherehi j
TT denotes the transverse-traceless part ofhi j . Fur-

thermore, in linear approximation, the Einstein field equ
tions read

h0052
8p

c4
D21~T001Tii !, ~A4!

h0i52
16p

c4
D21S T0i2

1

4
¹0¹ iD

21T00D ,

~A5!

hkk52
24p

c4
D21T00, ~A6!

hi j
TT52

16p

c4
Pi jkl h ret

21Tkl , ~A7!

where the TT-projection operatorPi jkl , applied to symmet-
ric tensors depending on both time and spatial coordinate
given by
3-24
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Pi jkl 5~d ik2D21¹ i¹k!~d j l 2D21¹ j¹ l !

2
1

2
~d i j 2D21¹ i¹ j !~dkl2D21¹k¹ l !, ~A8!

whereD21 denotes the Euclidean inverse Laplacian.
We now follow the calculation in the paper by Damo

and Esposito-Fare`se @23# using the ADM coordinate condi
tions. The deflection of the light ray is given by

D lm5 lm~1`!2 lm~2`!5
1

2E2`

1`

dt lalb¹mhab~jl1t ll!.

~A9!

In terms of the Fourier transform

ĥmn~kl!5E d4xhmn~xl! e2 ikaxa
, ~A10!

wherekaxa52k0x01k•x, the boldface letters denote sp
tial components of vectors@72#, and integration is over all o
space-time. Accounting for the formulas~A10! the equation
for light deflection now reads

D lm5 ipE d4k

~2p!4
km eikmjm

lalbĥab~kl!d~k• l2k0l 0!,

~A11!

where use has been made of the exact relationship

E
2`

1`

dt exp~ i tkal a!52pd~k• l2k0l 0!. ~A12!

In terms of the Fourier transformed energy-momentum t
sor T̂ab , the Fourier transformed metric field reads

ĥ005
8p

c4

T̂001T̂ii

k2
~A13!

ĥ0i5
16p

c4 S T̂0i

k2
2

1

4

k0ki

k2

T̂00

k2 D ~A14!

ĥkk5
24p

c4

T̂00

k2
~A15!

ĥi j
TT5

16p

c4 F S d i l 2
kikl

k2 D S d jk2
kjkk

k2 D 2
1

2S d i j 2
kikj

k2 D
3S dkl2

kkkl

k2 D G T̂kl

k22~k01 i e!2
, ~A16!
08402
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wheree is a positive infinitesimal number which shows e
plicitly that we have used the retarded Green’s funct
while solving the Einstein equations for the component
the metrichi j . If we put k• l2k0l 050 and take into accoun
the relations

T̂005
kikj

k0
2

T̂i j , T̂0i5
kj

k0
T̂i j , ~A17!

which follow from the macroscopic equations of motion f
matter¹nTmn50, we find:

lalbĥab5~ l0!2S ki

k0
2

li

l0
D S kj

k0
2

lj

l0
D T̂i j

k22~k01 i e!2
.

~A18!

This expression is identical with that obtained by Damo
and Esposito-Fare`se @23# in the harmonic gauge. For thi
reason calculation of the total deflection angle gives the sa
result in both harmonic and ADM gauges, reflecting the c
ordinate independence of the final result.

Defining am5D lm / l0, one gets for the angle of total de
flection

a152
4

d3
@I11~ t* !2I22~ t* !, ~A19!

a25
8

d3
I12~ t* !, ~A20!

a35a052
2

d2
@ İ11~ t* !2İ22~ t* !#.

~A21!

One can check that expressions fora1 ,a2 are the same as
those obtained in Sec. VII A. The quantitya0 gives the
gravitational shift in frequency of the electromagnetic wav
It can be obtained from the expression for gravitational ti
delayDQ after its differentiation with respect to time.

APPENDIX B: HARMONIC AND ADM GAUGE
CONDITIONS IN THE FIRST POST-MINKOWSKIAN

APPROXIMATION

In this appendix we give other representations of the m
ric coefficients~12!–~14!. Using the ADM coordinate condi-
tions ~A1! of Appendix A the metric coefficients~12!–~14!
can be cast into the ‘‘canonical’’ ADM form

h00
adm5

2M
c2r

1
Ii j ~ t !

c2
¹ i¹ j r

21, ~B1!

h0i
adm52

2

c3

e ipqSpNq

r 2
1

2İi j ~ t !

c3
¹ j r

212
İjk~ t !

4c3
¹ i¹ j¹kr ,

~B2!
3-25
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hkk
adm53h00, ~B3!

hi j
admTT5

2Ïi j ~ t2r /c!

c4r
1~d i j ¹k¹ l22d i l ¹ j¹k22d j l ¹ i¹k!

3FIkl~ t2r /c!

c2r
2
Ikl~ t !

c2r
G1¹ i¹ j¹k¹ l

3F ~22!Ikl~ t2r /c!

r
2

~22!Ikl~ t !

r
2
Ikl~ t !r

2c2 G ,

~B4!

where we have used a special symbolic notation for ‘‘se
hereditary functionals’’@73#

~21!Ii j ~ t ![E
2`

t

dvIi j ~v !, ~22!Ii j ~ t ![E
2`

t

dv ~21!Ii j ~v !.

~B5!

The following equality holds:(22)Ïi j (t2r )5Ii j (t2r ). We
also notice thatD(Ii j (t2r /c)/r )5Ïi j (t2r /c)/c2r for r

Þ0. For this reason function(22)Ïi j (t2r ) is a solution of
the homogeneous d’Alembert’s equation; that
h@ (22)Ii j (t2r )/r #50 for rÞ0.

We emphasize that the metric~B1!–~B4! is an external
solution of Eqs.~A4!–~A7!, outside the source of gravita
tional waves. It matches smoothly to the internal soluti
which is valid inside the source, without additional coord
nate transformations. It is remarkable that outside the so
the metric component~B4! may be represented as an alg
braic decomposition of the retarded and instantaneous f
tions of time

hi j
admTT5hi j

TTS t2
r

c
,xD1h̃i j ~ t,x!, ~B6!

where hi j
TT(t2r /c,x) is shown below in Eq.~B10!, and

h̃i j (t,x) is the rest of the metric componenthi j
admTT which is

actually a symmetrized gradient of a vector comprising
singular harmonic functions. For this reason functi
h̃i j (t,x) satisfies the conditionPi jkl h̃kl(t,x)[0 and can be
eliminated by an infinitesimal coordinate transformatio
Making use of this and without leaving the ADM coordina
conditions, we may construct the following representat
for the metric:

h005
2M
c2r

, ~B7!

h0i52
2

c3

e ipqSpNq

r 2
, ~B8!
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hkk53h00, ~B9!

hi j
TT5

2Ïi j ~ t2r /c!

c4r

1~d i j ¹k¹ l22d i l ¹ j¹k22d j l ¹ i¹k!
Ikl~ t2r /c!

c2r

1¹ i¹ j¹k¹ lF ~22!Ikl~ t2r /c!

r G . ~B10!

This form of the metric is obtained from the expressio
~B1!–~B4! by applying the coordinate transformation@74,75#

w05
1

2
¹k¹ lF ~21!Ikl~ t !

cr G , ~B11!

wi5
1

2
¹ i¹k¹ lF ~22!Ikl~ t !

r G22¹kFIki~ t !

c2r
G

1
1

4
¹ i¹k¹ lFIkl~ t !r

c2 G . ~B12!

It is marvelous that this representation of metric also satis
the harmonic coordinate conditions~A2!. This means that
outside the localized source of gravitational waves the c
of ADM coordinates overlaps with that of harmonic one
The coordinate transformation from metric~12!–~14! written
in the pure harmonic coordinate system to the ADM
harmonic metric~B7!–~B10! is:

w05
1

2
¹k¹ lF ~21!Ikl~ t2r /c!

cr G , ~B13!

wi5
1

2
¹ i¹k¹ lF ~22!Ikl~ t2r /c!

r G
22¹kFIki~ t2r /c!

c2r
G . ~B14!

These gauge functions have been extensively used in
main body of the paper for elaborating unique interpretat
of observable effects. In contrast to the expressions~B1!–
~B4! the expressions~B7!–~B10! show terms which decay
like 1/r 4 and 1/r 5. These terms depend on time integrals
the quadrupole momentIi j (t2r /c) and may lead to the ap
pearance of the ‘‘kinematic resonance effect’’ discussed
Braginsky and Grishchuk@14#. Another important remark is
that the transformations~B13!, ~B14! clearly show how to
3-26
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eliminate non-radiative terms from the metric, written dow
in a harmonic gauge, including all terms with respect to a
power of 1/r . Previously used transformations~see, for ex-
ample, the textbook of Misneret al. @45#, paragraph 35! dealt
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only with terms of the first order in 1/r and could not be
applied for analysis of gravitational radiation in near or i
termediate zones of the localized source of gravitatio
waves.
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