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The extremely high precision of current radio interferometric observations demands a better theoretical
treatment of secondary effects in the propagation of electromagnetic signals in variable gravitational fields.
Such fields include those of oscillating and precessing stars, stationary or coalescing binary systems, and
colliding galaxies. Especially important is the problem of propagation of light rays in the field of gravitational
waves emitted by a localized source of gravitational radiation. A consistent approach for a complete and
exhaustive solution of this problem is developed in the present paper in the first post-Minkowskian and
qguadrupole approximation of general relativity. This approximation is linear with respect to the universal
gravitational constan® and accounts for the static monopole, spin, and time-dependent quadrupole moments
of an isolated system. We demonstrate for the first time that the equations of light propagation in the retarded
gravitational field of an arbitrary localized source emitting quadrupolar gravitational waves can be integrated
exactly in closed form. The influence of the gravitational field under consideration on the light propagation is
examined not only in the wave zone but also in cases when light passes through the intermediate and near
zones of the source. We reproduce the known results of integration of equations of light rays, both in a
stationary gravitational field and in the field of plane gravitational waves, establishing the relationship between
our new formalism and the simplified approaches of other authors. Explicit analytic expressions for light
deflection and integrated time delé§hapiro effecdtare obtained accounting for all possible retardation effects
and arbitrary relative locations of the source of gravitational waves, the source of light rays , and the observer.
Coordinate dependent terms in the expressions for observable quantities are singled out and used for physically
meaningful interpretation of observable quantities. It is shown that the ADM and harmonic gauge conditions
can both be satisfied simultaneously outside the source of gravitational waves. Such ADM-harmonic coordi-
nates are extensively used in the present paper. Their use drastically simplifies the integration of light propa-
gation equations and the equations for the motion of light source and observer in the gravitational field of the
source of gravitational waves, leading to the unique interpretation of observable effects. The two limiting cases
of small and large values of impact paramedaare elaborated in more detalil. It is proved that leading order
terms for the effect of light deflection in the case of small impact parameter depend neither on the radiative part
(~1/d) of the gravitational field nor on the intermediate 1/d?) zone terms, confirming a previous result in
the literature. The main effect rather comes from the near zen#/d®) terms. This property of strong
suppression of the influence of gravitational waves on the propagation of light rays makes much more difficult
any direct detection of gravitational waves by VLBI or pulsar timing techniques, in contrast with previous
claims by other authors. We also present a thorough-going analytical treatment of time delay and bending of
light in the case of large impact parameter. This exploration essentially extends previous results regarding
propagation of light rays in the field of a plane monochromatic gravitational wave. Explicit expressions for
Shapiro effect and deflection angle are obtained in terms of the transverse-tréé@lepart of the space-
space components of the metric tensor. We also discuss the relevance of the developed formalism for inter-
pretation of radio interferometric and timing observations, as well as for data processing algorithms for future
gravitational wave detectorS0556-282199)03706-9

PACS numbg(s): 04.30—~w, 04.80.Nn, 95.55.Ym, 95.85.S5z

[. INTRODUCTION tional waves emitted by binary pulsars was given by Taylor
[1]. However, the direct observation of gravitational waves
still remains the unsolved problem of experimental gravita-
Binary systems are well known sources of periodic gravi-tional physics. The expected spectrum of gravitational waves
tational waves. Indirect proof of the existence of gravita-extends from~10* Hz to 10 Hz [2,3]. Within that
range, the spectrum of periodic waves from known binary
systems extends from about T0Hz, the frequency of
*On leave from ASC FIAN, Leninskii Prospect, 53, Moscow, gravitational radiation from a contact white-dwarf bing4y,
117924, Russia. through the 10* to 10 ® Hz range of radiation from main-

A. Historical remarks
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sequence binarid$], to the 107 to 10 ° Hz frequencies Mmisinterpretation of the effect can be found in the paper by
emitted by binary supermassive black holes postulated to liabeyrie [21] who studied a photometric modulation of
in galactic nuclei[6]. The dimensionless strain of these background sources by gravitational waves emitted by fast
waves at the Eartth, may be as great as 18" at the highest binary stars. Because of this, the expected detection of the
frequencies, and as great ag 80~ 1° at the lowest frequen- gravitational waves from the observations of the radio source
cies in this range. GPS QSO 2022171 suggested by Pogrebenkbal. [22]
Sazhin[7] first suggested detection of gravitational waveswas not based on firm theoretical ground.
from a binary system using timing observations of a pulsar, Damour and Esposito-Fase[23] have studied the deflec-
the line of sight to which passes near the binary. It wagion of light and integrated time delay caused by the time-
shown that the integrated time delay for propagation of thelependent gravitational field generated by a localized mate-
electromagnetic pulse near the binary is proportional #5 1/ rial source lying close to the line of sight. They explicitly
whered is the impact parameter of the unperturbed trajectorttook into account the full, retarded gravitational field in the
of the signal. More recently, Sazhin and Saphori@lanade  near, intermediate, and wave zones. Contrary to the claims of
estimates of the probability of observations of this effect, forgykir [19] and Durrer[20] and in agreement with Sazhin’s
pulsars in globular clusters, and showed that the probability7] calculations, they found that the deflections due to both
can be high, reaching 0.97 for one cluster. We note howevey,q \yayve-zone gravitational wave and the intermediate-zone

that mathematical technique worked out in these papers etarded fields vanish exactly. The leading total time-

lows rigorous treatment only of effects of the near'Zom.e’dependent deflection is given only by the quasi-static, near-

quasi-static quadrupolar part of the gravitational field and is

not enough to make any conclusion about actual observabiF-One quadrupolar piece of the gravitational field.
. gh tc y . . In the present paper we work out an even more systematic
ity of gravitational waves emitted by a binary system.

Wahlquist[9] made another approach to the detection Ofapproach to the problem. While Damour and Esposito geare

eriodic aravitational waves. based on Dopoler trackin 0{23] considered both the light source and the observer to be
P 9 ’ PP 9 %gcated at infinity, and performed their calculations in terms

spacecraft traveling in deep space. His approach is restricte

by the plane gravitational wave approximation developedO the spacetime Fourier transform, we do not need these
earlier by Estabrook and Wahlquigto]. Tinto ( [11], and assumptions. Our approach is much more general and appli-

references therejrmade the most recent theoretical contri- cable for any location of the source of light and observer in
space with respect to the source of gravitational radiation.

) o ; nas beew, . integration technique which we use for finding the solu-
U.SEd In space missions, by sgeklng the characterlistlc trlplf:'r'on of equations of propagation of light rays was partially
signature, the presence of which would reveal the mﬂuenc%mployed in[24] and does not require any implementation of

of a gravitational wave crossing the line of sight from spacey o spacetime Fourier transform.
craft to observef12].

) . Section 1l of the present paper discusses equations of
.Qune recently, Bragmskyet al. [13] (see alsd14]) have ropagation of electromagnetic waves in the geometric op-
ralseq the qyesﬁon of using as'tro_metry asa detector. of st ics approximation. The metric tensor and coordinate sys-
chastic gravitational waves. This idea has also been invest} y

gated by Kaiser and Jaffd5] and, in particular, by Pyne ems in\_/olved in our cgl_culat_ions are described in Sec. Il
et al.[16] and Gwinnet al.[17] who’showed that ihe overall along with gauge condl_tlons imposed on the metric tensor.
effe(;t is proportional to. the strain of metric perturbation The me;hod of mtggraﬂon'of the equations of motion W'Fh
o . “emphasis on specific details of calculations of particular in-

gaqsed by the plane gra\(ltatlonal wave and set pbservatlon grals is given in Sec. IV. Exact solution of the equations of
limits on the energy density of ultra long gr.awtatlon.al V\.Iaveslight propagation and the form of relativistic perturbations of
present in early universe. MontangtB| studied polarization he light trajectory are obtained in Sec. V. Section VI is
perturbations of free electromagnetic radiation in the field Oftjevoted to derivation of basic obsérvaible relativistic
nggnd?ng[s\g?gﬁnal wave and found that the effects alr%ffec"ts—the integrateq time del'ay and the deflection angle.
Fakir ([19], and .references thergihas suggested the pos- we f_md the More precise meaning of quite g_ener_al formulas

' obtained in the previous section by discussing in Sec. VIl

several limiting cases in the relative configuration of the
ource of light, the observer, and the source of gravitational

caused by gravitational waves emitted from isolated SOUrces - es. Section VIII contains concluding remarks. Appendix

of gravitational radiation. He was not able to develop a seIf—A compares results of our calculations with those by Damour

consistent approach to tackle _the p“’b'em With necessaryq Esposito-Fase [23] and proves their gauge invariance
completeness and rigor. For this reason his estimate of th )

effect is erroneous. Another attempt to work out a more confgppen.dIX B gives more details on .the der!vat|on of the

sistent approach té the calculation of the deflection angle ir,f\rnovyltt—Deser-M|sner(ADM) r_\armomc qoordmate system
. ; L used in the present paper for interpretation of observed rela-

the field of arbitrary source of gravitational waves has beeqivi stic effects

undertaken by Durref20]. However, the calculations have '

been done only for the plane wave approximation and the

result obtained was extrapolated for the case of the localized

source of gravitational waves without justification. For this Calculations of the effects of gravitational waves are of

reason the deflection angle was overestimated. The sanmeost interest if they indicate that those can be detected with

B. Observational capabilities
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present techniques, or foreseeable improvements. Astromdten, could be short enough to avoid some atmospheric and
ric precision and accuracy have evolved rapidly in the laspther propagation effects. For known binary systems, the
decades, and can be expected to continue to improve. Wwave period, and perhaps the phase, are known accurately,
principle, the accuracy attainable with a given instrument igpermitting search for deflections at this period. Such a “syn-
approximately the angular resolution of the instrument, di-chronous” search would eliminate many noise sources, al-
vided by the signal-to-noise ratio. In practice, the time spadoW detection of short-period motions with the sensitivity
of the observations and the angular separation of the sourd@sulting from long integrations, and perhaps allow astromet-
from reference sources critically affect the attainable accutiC accuracy to approach the signal-to-noise ratio limit.

racy.
Very-long baseline interferometryVLBI) attains the Il. EQUATIONS OF PROPAGATION OF
highest angular resolution available on an operational basis. ELECTROMAGNETIC WAVES

It achieves angular resolution set by the diffraction limit, of

A6~\/B, whereB is the separation of the interferometer ) .
elements(the baseling and\ is the observing wavelength Wavelength of_ electromagnetic waves used for astrometric
.. observations is usually much smaller than wavelength of

Practical baselines may be about as long as an Earth raldius|‘avitational waves emitted by isolated astronomical systems
B~6400 km; a typical observing wavelengthNs=3 cm, g y y

ielding anaular resolution of 1 milliarcsecond like binary stars or supernova explosidi23. This allows us
y g ang ) to use the relativistic equation of geodesic motion of a mass-
Observations of a moderately strong{ Jy) extragalac-

tic source, such as a quasar, can reach signal-to-noise ratio Ief s particleisuch as a photorfor description of the process
' sag ' 9 . 8 propagation of electromagnetic signal from the source of
several hundred in 5 or 10 minutes, offering potential angu;

lar accuracy of microarcseconds. In principle, a day of inte-"ght to the observer at the Earth. We also assume that space-
gration with the US Very Long Baseline ArragvLBA) time is asymptotically flat. This assumption does not hold for

could vield anaular accuracy of about 0.1 microarcsecondscosmological distances. However, if we neglect all terms de-
Obsyervatior?s using the %ar est radi.otelesco es can irf_ending on the rate of cosmological expansion and make a
crease the si nal-to-goise ratig(]) by a factorﬂftgx n escaling of time and space coordinates with the cosmologi-
' 9 : y : ©. .., cal scale factora(t), our formalism will be still valid for
practice, a host of geodetic and propagation effects limit th% lication i |
reproducibility of VLBI astrometry. These factors must ei- pplication in cosmoiogy. i 1,203
: Co We denote spatial coordinates ky=x=(x",x*,x°) and
ther be measured during the observations, or calculated from . 0_ ! ) .
: - .time coordinate<”=ct, wherec is the speed of light antlis
models. At present, atmospheric stability and changes in di ) Let th . f h be defined b
source structure limit reproducibility of measured angles bes0°r Inate time. Let the motion of a photon be defined by
o . ?xmg the mixed initial-boundary conditions introduced and
tween sources to about 1 milliarcsecond, over periods o .
) . ; . extensively used by Brumbef§1]
months. Observations of pairs of radio sources, with separa-
tions of ~0.5°, can yield angular accuracy of about 50 mi- dx(—)
croarcseconds, reproducible over periods of years, when ef- X(tg)=Xo, ——— =Kk, (1)

fects of source structure are includggb]. dt

_ Astrophysical HO masers have extremely high flux den- wherek2=1 and the spatial components of vectors are de-
sities, of up to 16 Jy atA=1.3 cm. In principle, a day of npoted by bold letters. These conditions define the coordinates
observation of masers with the VLBA could yield angular X, of the photon at the moment of emissignand its veloc-

accuracy of a few picoarcseconds. Observations of masefg, 4t the infinite past and the infinite distance from the origin
have attained reproducibility of better than 10 microarcsecyf the spatial coordinateghat is, at past null infinity In

onds over several months, between individual maser spots inat follows we putt=1 for convenience.

a Galactic maser cluster, with separations of a few arcsec Equation of propagation of photons in a weak gravita-

[26]_. Astrometric observations of extragalactic masers haveong| field is given in the first post-Minkowskian approxi-
attained accuracies of better than 1 microarcsecond, for mgnation by the formuld31,32

ser spots separated by less than 1 ar¢8&E Atmospheric

variations probably dominate the error budget. . 1 1 . o .k
Shorter wavelengths offer potentially higher diffraction- X (1)= 5900 ~9oi,t ~ 5 900X ~ ik, tX —(9oi,k—Gok,i)X

limited angular resolution, but practical obstacles are severe.

We assume the approximation of geometric optics, as the

Atmospheric effects present greater phase changes, on oy 1 K
shorter time scales; and photon shot noise becomes a limiting 7 9o0)X X | Gik,j T 5 Gkji | XX
factor for fainter sources and at shorter wavelengths. Optical
interferometers in space will probably equal and exceed the 1 e
+{ = 0kj.t— Go,j | XXX 2
accuracy of VLBI. For example, the Space Interferometry 2 JKj,t™ POk, '

Mission (SIM), and the proposed European mission GAIA

seek to attain angular accuracy of about 1 microarcsecond wvhere thegog,do; ,9i; are components of metric tensor, fully

several hours of integratior28—30. determined by the given distribution and motion of mass
Astrometric observations to seek effects of gravitationalinside the source of gravitational field, dots over vectors de-

waves could attain higher accuracy, at least on shorter timestote the total derivative with respect to time, and commas

cales. The periods of the waves, and of the expected defletdicate partial derivatives with respect to spatial or time
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coordinates; that is, for any functidn = df/ox',f ,= af/at.

Hereafter repeated latin indices mean summation from 1 to
3. The given equation is valid in arbitrary coordinates
(gauges and represents the ordinary second order differen-

tial equation for light propagation.
The right-hand side of Eq2) includes terms which de-
pend on the coordinate velocity of the photon, in the

weak-field approximation approximately equal to the speed

of light c. We restrict ourselves to finding a solution of Eq.

(2) only in the first linear approximation with respect to the

universal gravitational constar®. For this reason, when
solving Eq.(2), only one iteration is enough and it is admis-

sible to make the replacemexit=k' in the right-hand side of
the equation. The result of this approach is

1 1 ) . .
X'(t)zigoo;'_gm,t_ Egoo,tkl_gij,tk]_(goi,j_goj,i)kJ
i 1 Pl

—JoojK'k'— gip,j_zgpj,i kPk

1

+ Egpj,t_gOp,j) kpkjki- (3)
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where N'=x//r, and the round brackets around indices in
equation(8) means symmetrization; that is, for any two in-

1)|{€pq PA _ 2(t )l
(|+1)l[ r

This equation must be solved to obtain a perturbed trajectorgices T ;)= 2(T +T;i). In the pure harmonic gauge the

of the photon propagating through the gravitational field offunctions w°w'

are solutions of the homogeneous

an isolated astronomical system emitting gravitationald’Alembert’s equation and are given by the expressions

waves. To accomplish this task one needs a mathematical

expression for the metric tensor.

Ill. METRIC TENSOR AND COORDINATE SYSTEMS

Let us chose the origin of the asymptotically flat coordi-
nate frame at the center of mass-energy of the isolated astro-

nomical system and impose the de-Don@l@rmoni¢ gauge

conditions on components of the “canonical” metric tensor.
We assume that gravitational field is weak and the metric of

spacetimey,, s is written as a sum of the Minkowski metric
nq5=diag(—1,1,1,1) plus a small perturbatidn, :

ga,l?: naﬁ+haﬁ’ (4)

where the Greek indices run from 0 to 3. The most general

expression for the linearized metric tensor, generated by

system emitting gravitational waves, in terms of its symmet-

ric and trace-freéSTF mass and spin multipole moments is
given by Thornd 33] (see alsq34,35). It can be written as

has=hog" +Vaw,+V,wg, (5)

whereV ,=d/9x*. The “canonical” form of the metric ten-
sor perturbations in harmonic gauge reads as foll(36$:

Ip(t=r)

r

can

2) SN

A

© [ Wha(t=r)
w3 | ——| ©
< A
Z X (=T
W,:E[ (1)
=0 JiA
+§ l Via,_,(t=T1)
=1 r Ay
Z (t—r)
+ eipqqu+ ]v (10
PA_g

whe ereWa, Xa, Jia,_,» anquAflare arbitrary functions

f time. Their specific choice will be made later on in the
iscussion regarding the interpretation of observable effects.
In Egs.(6)—(10), we adopt the notatiolA|=a;a, ...a, is a
polyindex, M is the total(Tolman or ADM) mass of the
system,Z, andSAI are the STF mass and spin gravitational

multipoles, andV\/Al,/’\,’Al,yAl,ZAI are multipoles which re-
flect the freedom of coordinate transformations. These mul-

tipoles can be eliminated from the metric using the transfor-
mation

X' *=x*—w*?, (11

relating an original harmonic coordinate systethto an-
other harmonic on&’#, in which only the “canonical” part
of the metric is present.
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However, we would like to emphasize that, in general, ADM gauge[36] it is possible to eliminate the gravitational
Eq. (5) holds in an arbitrary gauge. Particular examples ofwave terms from thégg™ andhg®™ components of the met-
functionsw® andw' in harmonic gauge are given in ES),  ric tensor and to bring all of them ﬁ},ajdm [41]. Thenh3dm
(10). Other expressions fow® and w' in the ADM  andh3®™depend only on the “instantaneous” timand not
(Arnowitt-Deser-Misner gauge[37] are given in Appendix on the retarded timé—r (see Appendix B In combining
B wherein we also prove that it is possible to choose functhe ADM gauge with the harmonic gauge an even simpler
tions w® andw' in such a way that ADM and harmonic representation is possible whemg, andhy; do not depend
gauge conditions will be satisfied simultaneously. Thison time at all. However, the transformation from the canoni-
means that the classes of harmonic and ADM coordinategal form of metric (12)—(15) to the ADM-harmonic form
overlap. The discussion of different gauges is helpful forincludes integration of the quadrupole moment with respect
giving a unique interpretation of observable effects by propio time. Appendix B gives a more detailed study of this
erly fixing the coordinate degrees of freedom in correspondProcedure. . )
ing quantities38,39. One mlght ask whether the ADM or harmonic co_ordlnate

The STF cartesian tensor has a special algebraic structufySt€m is more preferable, for the adequate physical treat-
which eliminates all reducible parts of the tensor and leave1€Nt Of the relativistic time delay and deflection of light rays
only the irreducible part having the highest rdi#8,40. In in the field of gravitational waves emitted by a localized
other words, contraction over of any two indices of STFS0Urce. Our pomt'of view is that the cpordmate system

should be chosen in such a way to be simultaneously both

tensor gives identically zero. It is worth noting the absence . o
of the dipole mass multipold; in Egs. (6)—(8) which is ADM and harmonic. The reason for this is that an observer

. ; . N ; who is at rest with respect to the ADM coordinate system
identically zero, due to the choice of the origin of coordinatey,eq not feel the gravitational force caused by gravitational
system at the center of mass of the gravitating system. Wgayes. This means that if the instantaneous gravitational
also stress that the multipoles in the linearized mele-  field of the localized source may be neglected, the observer
(10) depend on the “retarded timet—r. At first sight this  fixed with respect to the ADM system can be considered to
dependence seems to make subsequent calculations more @it in free fall. Hence, no artificial force need be applied to
ficult. However, just the opposite happens and the depenhe observer in order to keep him at rest at the fixed coordi-
dence of the multipoles on the retarded time makes the cahate point. The motion of such an observer is described by
culations simpler. the extremely simple equatioti= const and there is no need
In what follows we consider the concrete case of a localto account for kinematic effects associated with the observ-
ized deflector emitting gravitational waves. In this section weer's motion. All these advantages are lost in the “canonical”
restrict ourselves to considering the influence of gravitationaharmonic gauge. An observer fixed with respect to that co-
field of the deflector on the propagation of electromagneti®ordinate system must be kept at a fixed coordinate point by
signals made by its total constant maésspinS, and time-  Some e.xte.rnal force to prevent .his motion under the inflgence
dependent quadrupole momefj(t—r) only. This simpli- of gravitational waves. The existence of such a force is un-

fies the expression®)—(8) for the metric tensor, which are natural from physical and astronomical_ points of view. On
reduced to the expressions the other hand, the “canonical” harmonic gauge has the ad-

vantage of a much simpler integration of the equations of
Tpq(t—T1) light propagation than ;he “canonical”' ADM gauge. One
- (120 can see that the“canonical” ADM metric coefficient81),
(B2) contain functions which depend on tirhenly. As will
} be clear from the procedure of integration of equations of

2M
hggn.: T+Vqu[ r

light propagation described in the next section such “instan-

taneous” functions of time do not permit explicit integration
(13)  of each specific terntonly after summing all terms is the

explicit integration possible Fortunately, the classes of

can. _
2 r

2€ipqSpN Tij(t—r
c __MJFZVJ{ i(t=r)

r

hi2" = &;hgs™ + 7", (14  ADM and harmonic coordinate systems overlap and, for this
reason, we can substantially benefit by choosing a coordinate
where system that is simultaneously both ADM and harmonic. This
5 allows us to proceed in the following way. First we integrate
qicjan.:_j_j(t_r)_ (15) equations of light propagation in the harmonic gauge and

then apply coordinate transformatiofB13), (B14) which
. . ) transform the pure harmonic coordinate system to the ADM
Herein terms depending ol ands; are static and produce one without violation of the harmonic gauge conditions. This

well-known effects in the propagation of light rays. Retardedsimpiifies the treatment of observable effects drastically.
terms that are inversely proportional to the distandeom

the gravitating system describe the pure gravitational-wavey. METHOD OF INTEGRATION OF THE EQUATIONS
part of the metric. OF MOTION

Let us stress that in the harmonic coordinate system the
gravitational-wave part of the metric tensor is present in all
of its components and is expressed through the second time We  introduce  astronomical  coordinatesx=x'
derivative of the quadrupole momelr@3]. If we choose the = (x!,x? x%) corresponding to the plane of the sky of the

A. Useful relationships

084023-5



KOPEIKIN, SCHAFER, GWINN, AND EUBANKS PHYSICAL REVIEW D59 084023

photon (the vectork~—K). In the Newtonian approxima-

tion, the coordinate speed of the photdr=k' and is con-
‘ sidered to be constant.

It is convenient to introduce a new independent parameter
7 along the photon’s trajectory according to the r[2d]

I T To observer

g I,
K Vector field of light rays
ke ’K xi= kit +E TEk'X:t_t0+k'X01 (20)
x e g
0 I East

where the dot symbol between two vectors denotes the Eu-
clidean dot product of two vectors. The momegtof the
signal’'s emission corresponds to the numerical value of the
parameterro=k- Xy, and the moment* of the closest ap-
proach of the unperturbed trajectory of the photon to the
FIG. 1. Astronomical coordinate system used for calculationsorigin of the coordinate system corresponds to the value
The origin of the coordinate system is at the center-of-mass of the=Q (note thatr,<0 if the source of light is behind the

source of gravitational waves. The bundle of light rays is defined bygcalaized source of gravitational waye$hus, we find
the vector fieldk'. The vectork'=—k'+0O(c™?) is directed from

NS S —| To observer

Plane of the sky

observer towards the source of light. The vedt}ris directed from r=t—t*, Trp=ty—t*. (22
the observer towards the source of gravitational waves. We use in
the paper the equalitigsy=—N'=—x//r, wherex' are the coor- In case of gravitational lensing, for example, the variable

dinates of the observer with respect to the source of gravitationat is negative from the point of emission up to the point of the
waves, and =|x|. The plane of the sky to the vectéf, is not  closest approach, and is positive otherwise. The differential

shown. identity dt=d~ is valid and for this reason the integration
along ray’s path with respect to timean be replaced by the
observer and based on a triad of the unit vectbgsly,Ko).  integration with respect to parameter Using parameter,

The vectorK , points from the observer toward the deflector, the equation of the unperturbed trajectory of light ray can be
and the vectors, andJ, lie in the plane of the sky, being represented as
orthogonal to vectoK. The vectol ; is directed to the east, i i i i
andJ, points towards the north celestial pole. The origin of X(1)=xn(1) =K 7+&, (22)
the coordina_te system s chos_en to lie at the bgrycenter of thgnd the distance, of the photon from the origin of coordi-
deflector which emits gravitational wavésee Fig. L nate system is given by

Another reference frame based on a triad of the unit vec-
tors (1,J,K) rotated with respect to vectordy(Jg,Kp) is r=ry(7)= NEE (23)
useful as well. The vectdf points from the observer toward
the source of light, and the vectdr&ndJ lie in the plane of where the length of the constaffor a chosen light ray
the sky, being orthogonal to vectdt, which is different transverse vectoé=kX (xqxXk)=kX (xxk) is called the
from the plane of the sky being orthogonal to vecky. impact parameter of the unperturbed trajectrory of the light
This is because the “plane of the sky” is tangent to a spheregay, d=|4, and the symbol ‘X’ between two vectors de-
and vectorK and K, point in different directions. Mutual notes the Euclidean cross product. It is worth emphasizing
orientation of one triad with respect to another one is deterthat the vectog' is directed from the origin of the coordinate
mined by the following equations: system toward the point of the closest approach of the un-

perturbed path of light ray to that origin. The relations

l[o=1cosQ+Jsin(}, (16
d? d?
Jo=—1cosfsinQ+Jcosd cosQ +K siné, (17) r+r=r—0: ro*‘Toer_q_O, (24)
Ko=1sin#sinQQ—Jsing cosl+K cod, (18)  also hold, and they are useful for presenting the results of
) integration of the light ray equations in different form. In
where rotational angle® and ¢ are constant. particular, if we assume,<0 and the strong inequalitie

To integrate the equations of propagation of electromag=r andd<r, to hold, then
netic waves in curved space-time we must resort to an ap-

proximation method. In the Newtonian approximation, the _ d? _ d?
unperturbed trajectory of the light ray is a straight line: =I5t To= Tl 2_r0+ s (29
X (1) =x\(t)=x5+K (t—tg), (19 which clearly shows that at the moment of light reception

is positive and at that of light emissiar is negative.
wheret, is the instant of time of the photon emission from  |et us consider a set of curve$(7)=k 7+ & with dif-
the point with spatial coordinates, andk'=k is a constant  ferent values of vectors andé'. The vector fielk', defined
unit vector tangent to the unperturbed trajectory and directedlong the curved'(7), describes the direction of a bundle of
from the point of emission to the point of observation of light rays along the curve, and introduces a natura12
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splitting of 3-dimensional space. The vectdr on the plane  Equation(33) is a generalization of the corresponding for-
orthogonal to the bundle of light rays, is a point of intersec-mula introduced by Kopeikif[24], Eq. (20)] for functions
tion of any of those rays with that plareee Fig. 1L This  which do not depend explicitly on time It is worth noting
vector does not depend anand can be defined, as in Eg. that in the left-hand side of formulé33) one has first to
(22), by the relationship differentiate the functiorF(t,x) with respect to time and
o spatial coordinates' and, then, to make the substitutian
g=Px, (26)  =x,+k(t—ty). However, one makes corresponding substi-
tutions in the right-hand side of the formui{@3) first and
where only afterwards takes derivatives. .
It is useful to stress again that because the coordiréates
Pij= &ij —kikj , (27) lie in the plane orthogonal to the vectkr only two of the
three ¢*,¢2,&* are, in fact, independent. We also stress that
&he new variableg' and 7 are independent as well. For this
“reason, the integration of any function, which can be repre-
sented as a time derivative with respect to the parametsr

is the projection operator onto the plane orthogonal to th
vectork'. The operator has only two algebraically indepen
dent components and satisfies the relationship

i i always quite straightforward:
PiPk=P!. 28) ys 49 g
14
Because of this property we can recast &) into the form f a—TF(T, édr=F(7,6§)+C(§), (39
g=Py&, (29

where C(£) is an arbitrary function of the constant impact
parameter. Moreover, as the vec@rdoes not depend on
éime 7, the partial derivatives with respect & can be re-
moved from within the time integrals when calculating them
along the photon’s trajectory, that is

which shows explicitly that the vectdt is constrained to lie
in a 2-dimensional plane. Thus, we immediately have for th
operation of partial differentiation in this plane

agi i ij
(?—é:J_:PjZPJ:Pij. (30) f %F(T,g)dq-:&ig'f F(Tag)dT' (35)

It is worth noting that the projection operator can be used 1Because of these advantages the new independent coordi-

raise and lower indices of any geometrical object lying in thenateST andé are quite useful in calculations. The usefulness
plane orthogonal to vectd'.

o . . _of the variablest and ¢ has been also recognized b
In what follows, it is convenient to consider the spatial 7 ¢ 9 y

. - _ *"2 Damour and Esposito-Fae[23].
components of coordinated as formally independent with The equations of motion of light ray8) in terms of pa-
subsequent projection onto the plane when doing diﬁerentiar'ametersg and 7 are simpler, and after accounting for a
tion with respect t&'. Therefore we always use the operator ¢ y
of differentiation with respect t@' in combination with the
projection operatoP}. For example, before the projection

we treat

reedom in gauge transformations and implementation of re-
lationship(33) assume the form42]

1. A 1 . n
| ()= NG G~ KNk
&_f' =4

N 1. .
+klgihg ™+ E(ai+k'¢97)kpkqh;§"'

and for the same expression with subsequent projection

= W —K'W), (36)
T _ _ . .
Pil—=P;, (32  where the following notations are used;=Pj;d/dé',d,
9¢1 =4d/d7. Let us emphasize once again that the representation

_ ) of Eq. (36) is valid in an arbitrary coordinate system and all
which agrees with Eqs28) and(30). Moreover, the follow-  metric coefficients are taken along the unperturbed trajectory
ing rule of differentiation for an arbitrary smooth function ¢ propagation of the light ray; that i$),s(t,X)=h,s(r,&
F(t,x) holds +k7). We also remark that the right-hand side of E8p)
contains only spatial partial derivatives with the same index

[ ik i F(t.x) “i” as does the left-hand side of the equation. This contrasts
oxi et ' with Eq. (3) where the indices of spatial derivatives are
x=Xgtk(t=to) mixed. Equation(36) will be used in Secs. V and VI for a
P p general treatment of gravitational perturbations of the pho-
:( Pl — +k _) F[,&+kr]. (33  ton’s trajectory and discussion of relativistic time delay and
d angle of light deflection.
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Another useful form of Eq(36) may be obtained if one limits of the integrals. Thus, partial derivatives of the inte-
introduces the four-vectde®=(1k'). Then we find grals can be calculated explicitly without assumptions about
the structure of the quadrupole moment of the deflector. Of
course, both methods give the same results. However, the

1 - - 1
— ZpaBh pean apcan _ pncan.
X(7) 2k KE9ihap — 0-| ki zklkjk g ) second method is more general.

ip
-9 (W—kw0. (37) 1. First method of integration

Let us assume the most general aperiodic form for the
ime variation of the deflector. In linear approximation the
otal mass and spin of the deflector are conserved quantities

This form of the equation clearly shows that only the first
term on the right-hand side contributes to the deflection ot

lcl)%gt’ir:]j[eoezi:nvnegf Edcg%u\:\(/:i?h()r];gggitatrg} t?r;én;'rg';y,r' Jon?:ed'[%] so that they do not depend on time at all, and we can
9 o P consider them as contributing only to the static part of the

thr) Oshgrg]sgSmallc:rstflzrt]r?ezicc(;‘nt?];I%Zt?‘?:”t\gtg:)ers'It'(r)fzenrf;k((jaie ravitational field of the deflectd#6]. The quadrupole mo-
ymptoti ! - ent is not static. It may be represented through a Fourier

connection between the formalism of the present paper anﬁjansform as
that of Damour and Esposito-Faed 23] (see also Appendix
A) + oo X

Ii,-(t—r)=(27r)‘1’2f_ Zij(w)€“""dw,  (40)
B. Calculation of integrals from the static part of the

gravitational field whereiij(w) is the (complexX Fourier image of the quadru-

The static part of the gravitational field of the deflector pole moment of the deflector which must be specified for any
contributes to perturbations of light's ray trajectory, definedparticular source of gravitational waves. Here, we need not

by the following indefinite integralf24]: know the specific structure @;(w) as it will be shown later
q q it is irrelevant for subsequent calculations.
N T __ 7.2 Taking time derivatives of the quadrupole moment yields
A(T,g)—J' ; f \/m In(\Vd“+ 75— 1),
- +DO ~ .
39 7 =(2w)*1’2f (i0)E (@) dw,  (41)
B(T,g)EfA(T,§)d7=—7|n(\/m—r)—\/m, ..
(39 Tl =(2m) 22 J (—0)Tj(@)e do. (42

where we have omitted constants of integration which are ) _ o )
absorbed by re-definition of constants of integration of un->€nerally speaking, arbitrary aperiodic source of gravita-
perturbed light trajectory19). Integrals(38), (39) are for-  tional waves have an infinite spectrum. However, it is pos-
mally divergent at the lower limit. However, this divergence SiPl€ to choose that frequency band which gives the largest
is not dangerous for setting the second of the boundary corPntribution to the spectrum. The mean frequeficyf this
ditions (1) because only derivatives of the integt@B) ap-  Pand defines the size of fawave zone of the source, as
pear in the result of the first time integration of the equationg€ing roughly equal to the wavelength of emitted gravita-
of motion of light rays, eliminating the divergent part of the tional wavesk=2ac/Q). For example, if the deflector of
integral[43]. With this in mind, it is easy to prove that inte- 19Nt rays is a binary system, then the strongest emission of
grals (38), (39) are in agreement with the boundary condi- gravitational waves takes place at twice the mean orbital fre-

tions (1). quency of the system. For making estimates we can use the
following approximations for components of the quadrupole
C. Calculation of integrals from time dependent part of moment:
gravitational field a a2
One meets two ways of calculation of integrals in finding |[ZV|=(Maeq) -, |TJ|:(MGC2))\—, etc., (43

the path of propagation of light in the gravitational field of a
localized source emitting gravitational waves. The first
method relies upon the use of the Fourier transf¢46) and

allows one, at least in principle, to calculate all integrals
explicitly if one knows the specific structure of the Fourier
image of the quadrupole moment of the defledtbf]. The

advantage of the second method is based on the fact that o
deals with the metric depending on retarded time only. This

wherea is a characteristic size of the source of gravitational
waves aneeis its oblateness, quantifying the deviation of the
density distribution from spherical symmetry.

When integrating the equations of light propagation using
the metric with Fourier transfornt40) for the quadrupole
oment one meets the following integrals:

allows one to make a special transformation of variables N
within the integral which excludes any dependence of the (7. &0)= ff cod w(r—Jd°+ 7 )]dr, (44)
integrands on the impact parameter, and transfers it to the —o Jd2+ 72
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7 i —Jd?+ 72 r Ti(t—r
|2(T,§,ﬁ)): r[w(r )]dT Cij(va)EJ Mdt
N e T
(45 +Oc
— -1/2 & i wt*
In order to evaluate the integrald4), (45) it is useful to =(2m) fﬁx wZij(w)e
change the time argument, to the argumeny, by the trans-
formation X[=la(7&w)+il(7,§w)]do, (53
y=r- T2, (46 :
Dij(T,f)Ej B”(T,g)dt
which yields o
—+ oo
2 2 2 2 2 2 _ —-1/2 7 i wt*
y -d > 1 de+y 1 de+y =(2m) f Tij(w)€
T= oy Vdo+ o= 2 Ty d7'—2 ¥ dy. —
(47) X[J(7,&w)+idy(7,&w)]dw, (54)
While the parametet runs from —o to +, the new pa- T
rametery runs from—o to 0; that is,y is always negative. Eij(T.§)EJ_ Cij(7,)dt

After transforming time arguments, the integrgjsandl ,

are reduced to the cosine- and sine integrals respectively +oo .

([47], formula 8.23: =(2m) "2 f wlj(w)e " [I(r.§w)
|1(7‘,§,(¢))=_Ci(w)/), (48) —iJl(T,f,w)]dw, (55)
12(7,8,0) = = Si(wy), (49 \wheret* is the moment of closest approach of the photon to

where constants of integration have been omitted. Secondatyﬁ‘ 0”9‘{_' |OI1 cqor?inate f[zstem. Ir; twr:ﬁt f.OHOWSt’ we ne(id
integration of integral§48), (49) along the light trajectory is M"Y partial derivatives with respect o the impact parameter

required as well. Using transformatiof®s), (4 e obtain of t_he integrals(52), (55). These can be calculated rather
au! W g o), (47) w I easily. We have, for example,

Jl(T!glw)Efjwll(Tiglw)dT :?ill(Tang):(yr)_lcoiwy)‘giv
2y _ —1q; [
:_TCi(wa%wdz Si(wy) dila(7,&w)=(yr) “sifwy)¢', (56)
and so on. Thus, making use of the inverse Fourier transform
i btai
N cos;;)y) sw;:)y), (50 we obtain A
HBij (1. &) =(yr) 1 T(t—r) &, (57)
(réw)=| I(ré&w)dr . AT (t—1)
i [ aTBw,g):(l—;)JT, (58)
o[ sin(wy) . |
=~ mSley)+ yed Ciloy) = —50 BCiy (7,6 = (yr) Ty (t—r) & (59)
cog wy) 7. (t—
e (51) ?Lcu(r,a:(l—g)w, (60

where constants of integration have again been omitted. Calculation of partial derivatives from integral (7, &)

Using the Fourier transform of the quadrupole moment, 4 E(r,& may be done without difficulty in a similar
(40) and formulas(44), (45), (48), (49) one calculates the fashi0|J1 using Eqs(50), (51).

important integrals
2. Second method of integration

_ (7 Zy(t=r) _
Bij(7,6)= - dt The second method also uses the substitutidfy (47).
- The integralg52), (53) are brought into the form

r T(t— T (t* +
Bij(Taf)EJm¥dt=—Jme(T§)d§,

+ily(7,& w)]dw, (52 (61)

—2m) [ T (e T8 0)
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* Ti(t—r) y T (t5+0) It is evident from the structure of integral81)—(64) that
Cij(r.§)= J 8 = J R A taking partial derivatives of any of the foregoing integrals is
e T - ¢ reduced to taking the partial derivative with respecy.tdn

(62) particular, we obtain

One sees that the integrands of the integrals do not depend

on the parametersand r at all. They are present only in the 5 _ Lyt ty) s
upper limit of integration. Hence, the integral), (62) are 91Bpq(7.6) = y Y=(yn) Ipg(t=r)&,
functions of the variablg only, that isB;;(7,£) =B;;(y) and (68)

Cij(7,§)=Cjj(y). Making use of the transformatiorg6),
(47), the integralg54), (55) are reduced to the expressions hich exactly coincides with the resuf67) derived above
using the inverse Fourier transform method. Second and
Dij(7,6)= JT By (7,£)dt third partial derivatives of the functioB;;(7,&) with respect
—oo to the impact parameter will be useful subsequently. They
are calculated making use of formui@8). This yields

1 1
=§f7 B.J<§>d§+—f ‘“) . (63 o e
9jkBpg(7,&)=(yr) | P, +)‘/—rk—:—2k Tpg(t—T1)
Eij(Tyg)Ef_mCij(Tl‘f)dt i
== pq(t_r) (69)
1 1
=§ff .,<§>d§+—f ’(g) (64)

and

Hence, the integral®;;(7,£),E;;(7,£) are also functions of
the variabley only.

We stress once again that our formalism holds true for a,Jkqu(r H=(yr) 1!
arbitrary dependence of the quadrupole moment of the local-

&Pk N 2&Pj; N 266 &Pk
yr yr y2r? r2

ized source on time, and includes the case of sources which DE P 3EE 36 &

produce bursts of gravitational radiation, such as supernova _ 26k 36§ §k+ &€ Zoo(t—1)
explosions or coalescence of binary systems, as well as pe- r2 yrd r4 pa
riodic systems. Indeed, suppose that the burst starts at the

momentt, and terminates at the moment We assume for .| &P ]k 25P;;  2§&é
simplicity that before and after the burst the quadrupole mo- —yn~ r + yr2

ment of the source is identically zero. During the burst, the

tensor function;;(t) describes the time dependence of the &4 & gjgk
quadrupole moment. Then all formulas derived in this paper =5 |Zpq(t=1)+ —FZpg(t=T).
hold, if we describe the quadrupole moment of the source as r yr

a product of two Heaviside step functions with the tensor (70)

function F;;(t). Thus, for any moment of time we write

We note that the formulas of partial differentiation of
Cij(7,8) look the same as foB;;(7,£) after taking into ac-
count the fact that the integré®2) depends on the first time
derivative of the quadrupole moment. The derivatives of the
1 ift>T, functionalsk;;(7,£) andDj;(7,§) can be obtained using re-
(66) lationships (63), (64) and derviatives ofB;j(7,£) and
Cij(7,£). For example,

Zij()=H(t—t)H(t;— 1) F; (1), (65

where the Heaviside step function is defined as follows

H(t-T)= :
(t=T) 0 otherwise.

Time derivatives of the quadrupole moment are calculated

taking into account thaH(t—T)=48(t—T) is the Dirac - _ | Bpg(7.8) JV Bi;({)
delta-function, and &(t—ty) 7 (t;) = 8(t—t,) F; (t2) = 0. IDpo 1) =€\ =+ | 2 %) (71)
This yields
T =H(t=t)H(t,~ ) Fy (1), ;jkqu(Tyg):%ngpq(Tlngjk
Tij() =H(t—t)H(t,— 1) (1), (67 .
. o x| 2y [ B"“)dg], 72
and similar formulas for higher derivatives. y —w 2
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. [ . &4\,
(7ijkqu(T1§):§[(P"+W)ﬁk5pq(7.§)

X (7)=[2M(3,— kid,) — 25 €ipgdart Kq€ipgdsr

A 1 - - -
o T~ _kjfqu‘;iq)]{F +(dipg~ Kidpgrt 2Kpdigr
+PKOBpg(7,6) + E diBpg( 7,8

~ ~ ~ Ipq(t =r )
(73) + kpkqé’i T 2k| kpaQTT_ kikpkqarﬂ') f

+2(kiKydgqr— 8ipdgr— Sipkgdrrt KikoKgo
It is worth emphasizing that the third partial derivative of 2(Kikpdgr— dipdar~ dipked st Kikpkqd:r)

D 4( 7€) does not include the integr8l, (7, £) by itself, as
might be expected, but only its first and second derivatives.
Therefore, the third partial derivative & ,,(7,£) does not
depend on the past history of propagation of the light rayyherew' andw® are functions given by relationshig8),
[see formulag68) and (69)]. ~ (10. Remarkably, no terms depending on the second time
Now, after making these remarks, we are ready to disCUsgerivatives of the quadrupole moment appear in the equa-
the relativistic perturbations of the photon’s trajectory in thetions of motion of light ray$77), because of mutual cancel-
r_adiative gravitational field of a localized source deflecting|ation. This fact explicitly demonstrates that gravitational
light rays. waves emitted by localized sources are much more elusive
from detection by angular deflection than other authors sug-
gest. It is worth noting that the disappearance of terms with
V. PERTURBATIONS OF PHOTON'S TRAJECTORY second time derivatives from the quadrupole moment is a

We first note that in terms of the new variablesnd & local phenomena and is not a result of integration of Eq.
the components of the “canonical’” metric tensdi2)—(14) (77). This is a characteristic feature of General Relativity.

taken at an arbitrary point on the light ray can be re—writterfo‘ltem""tiv.e theories .Of gravity do not POSSEsS such a chal
as follows[48]: cancellation of gravitational wave terms. This cancellation

may be used for conducting new tests of General Relativity
in the weak, radiative gravitational-field limit.
can oM . R . [Tyt=1) Let us simplify the equations of motiofY7) in order to
hgo (7,6)= T+(¢9ij +2kid;,+ kik;d.,) - avoid writing down cumbersome expressions. We introduce
two functionse' and ¢° which generate in Eq77) the time

T (t—r

] — 9, (Wi—kiw®), (77)

T (t—r) To(t—r) derivativesd, of second and higher orders. These functions
—2(k; 3+ kikid.) J—}H(-k-”— are defined:
iYj invr iR r ’
Too(t—r Zoo(t—r
(74) ¢0=—2kpvq[—pq(r )] Kok —pq(r )], (78)
2€ipqSPxY . . | Ti(t—r i 1 Zpg(t—r)
hoi " (7,6)=— %N +2(9;+ kjﬁf){%)} ‘PI_Z‘SpkqeiDQ(F] - kpkqvi[f
: Tig(t—T)
Lij(t—r il A
where the differential operatdV;=4d/9x' must be applied
before the substitution of the unperturbed trajectory of light
pean — 5 hean + Zj - 76 rays. It can be easily confirmed by straightforward use of
i (1.8 =dijho (7.8 + T (t=1), (76) formula (33) that the expression&8), (79) generate terms

with second and third derivatives with respects#dn Eq.
(77). The equations for the path of the light ray now assume
where in the right-hand side of all formulas it is implicitly the form:
assumed that variablas x' are replaced by and £, and . . . ) . .
2,=Plalagl,3,=alar. In addition, note that the dot over the X (7)=[2M(di=kid;) =28 (€ipgdq, ~Kj€jpqdiq)]
quadrupole momeri;; takes the usual meaning of differen- Tpg(t—T)
tiation with respect to time, which must be completed first, X [f
before substitution of andx' for - and¢', and before taking
any other derivative. {'Z (t—r)

1 A A ~

The metric tensok74)—(76) is used in the equations of —2Py;dq, 19 ]—ETT[Wi-‘rq}i—ki(Wo-F o]
motion of light rays(36) which are reduced with the help of r

formula (33) to the expression: (80
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We note that the termg® and ¢' are gauge-dependent and We emphasize that before differentiation with respect to time
can be, in principle, eliminated from the equations of motionr or impact parametet', one has to differentiate the quad-
(77) by choosing appropriate gauge function§ and w'. rupole moment with respect to tinteand make the substitu-
However, such a procedure will introduce a reference systemions: t— r,r—\/d?+ 72,r g—+/d?+ 75. We also wish to un-
with a coordinate grid very sensitive to the direction to aderline that the only integrals which need be calculated
specific source of light rays; that is, to the vectdr The  explicitly in expressiong83), (84) are A(r,&) andB(r,&).
coordinate system obtained in this way will be of trifling All other integrals are acted upon by partial derivatives,
practical usage. For this reason we do not recommend thghich reduce them to ordinary functions as explained in the
elimination of functionse® and ¢' from Eq. (77) and give previous section. This remarkable fact allows considerable
preference to the ADM-harmonic coordinate system, whictsimplification of the calculations. This simplification results
admits a much simpler and unique treatment of observablgrom the fact that the integrands can be formed from retarded
effects. Thus, we leave the functiop$ and¢' in the equa- potentials independent of impact parameter, after using the
tions of motion of light rays, where gauge function8 and  transformation of variable@6). This would be impossible if

w' are defined by formulaéB13), (B14). the metric tensor were not a function of retarded time .
Proceeding further in this way and integrating EG&)  Thus, retardation simplifies the calculations in the case of
one obtains time-dependent gravitational fields. In the case of a static or
_ stationary gravitational field, the calculation of propagation
x(r)=k+Ei(7) (81  of light can be done using the same technique since one can
always consider a constant multipole also agcanstankt
Xi(T):Xil\l(T)+Ei(T)_:i(To), (82 function of retarded time. For this reason, more involved

calculations of light propagatiofe.g. sed24] and[32]) can

where the unperturbed trajectory of light ray(7) is deter-  P€ Simplified as well.

mined by the expressiof22). The relativistic perturbations Th? functlon_sw and w, which describe freedom in
to the trajectory are: choosing coordinate systems, are taken from form{B4s$),

(B14) of Appendix B. Consequently, the integrals of equa-
tions of light propagation(77) expressed in the ADM-

E'(1)=(2M3;+ 25K €jpqdiq) A(7,8) + dipgBpq( 7.4) harmonic coordinate gauge possess a simple interpretation of

(1 R R observable effects, as discussed in the following section.
—(ZMki+28’Jeipqﬁq)[F] — (Kidpg— 2Kpdig) It is convenient to obtain an expression for unit vedtor
written in terms of spatial coordinates of the points of emis-
T (t— A Tot— sion, Xo, and observatiory, of the light ray. From formula
{M] _ZPijaq[M] (82) one has
. - PIEN(rn&—-El(r,
— 5w+ ol — KW+ )], (83 W= —ki- METEZ= 8] gy
|X—Xq|
E'(7)=(2M;+ 28PK; €jpqdiq) B(7,9) or more explicitly
— (2MK; = 28 €ipqdg) AT, £) + JipgD po( 7, €) K'=—K—B(1,6 + B (10,8, (86)
— (Kidpg— 2Kpdiq)Bpg(7,8) = 2Py dqCiq(7,6) B (7.8)=Bu(r. 8+ Bs(7,8) + By(7,8), 87

_Wi(Tag)_QDi(Tlg)_l—ki[Wo(T!g)_l—(PO(Tag)]'

where the relativistic correction!(r,£) to the vectoK' are
(84) defined as follows:

i _ 2MB(7,8)
ﬂm(Tif)—W, (88)
L 28PK€jpq0igB (T, 8) + 2P SP e 0 0A (T, )
BS( Tag)_ |X_X0| ’ (89)
BL(r.8)= JipqDpq( 7. 8) + 2Ky diqBpg( 7. £) = 2P13,Ciq(7,) — Pi[W(7,8) + ¢! (7,8 ] . ©0)

|X—Xol
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The relativistic correctionﬁi(ro,g‘) are obtained by replac- t—to=|x—Xo| —k-E(7)+k-E(7p), (93
ing the parameter in the numerators of expressio(&8)—

(90) by 75. One notes that in Eq86) the unit Euclidean or
vector

X% t—to=|X—Xo| + Am(t,to) +Ag(t,tg) +Ag(t,tg), (94)
K'=

(91)

X=X where|x—X,| is the usual Euclidean distanf&0] between

the points of emissionx,, and receptiony, of the photon,

defines the direction from the observer towards the source OAM is the classical Shapiro delay produced by tbenstant
light and may be interpreted as a direction in asymptoticallyspherically symmetric part of the gravitational field of the

flat space-timg49]. Relationship(85) allows us to apply the  gefiector A is the Lense-Thirring or Kerr delay due to the

results of integration of equation of light propagation to the qnstany spin of the localized source of gravitational waves,
boundary value problem as well. The boundary value prob 4 Ao describes an additional delay caused by the time

lem is formulated in terms of initialk, and final,x, posi-  yenendent quadrupole moment of the source. Specifically we
tions of the photon

obtain:
X(t)=X, X(tg)=Xo, (92
r+r7
whilst the initial-boundary value problerfi) is formulated Ay=2Min ro+ 7o (95)
by means of assignment of the initial positiyand velocity
of photon at past null infinity. The relativistic correction to o r+7r
the vectorK' contains in its denominator the large numerical Ag=— Zeijkk‘S"aiIn ot TJ (96)

value of the distance between observer and source of light.
However, the differenc&!(r,& —E!(79,£) in the numera- R
tor of Eq.(85) may be of the same order ps— x| itself. For Aq=3;[Bij(7,6) —Bjj(70,8) ]+ 6o(7,8) — 6o(70,€),
this reason the relativistic correction in question must be ©
taken into account, in general, for calculation of light deflec-

tion in the cases of finite distances of observer or source ovhere

light from the localized source of gravitational waves. Only S

in the case where observer and source of light reside at largedq(7,& =K (W' + ¢') —w%— ¢°

distances on opposite sides of the source of gravitational

(-2 _
waves, as was assumed in the paper by Damour and :Eg {V Vl Zp(t r)H
Esposito-Farse (1998, can the relativistic correctiog' be 277 r
neglected. (-1
Loo(t—r A | Zpo(t—r
— vaq|p—q()} — kpkan[ M]
VI. BASIC OBSERVABLE RELATIVISTIC EFFECTS r r
A. Time dela Tyq(t—r
o v +2kok, M] 99
The gravitational time delay is derived from Ed82), r

(84). In order to obtain the expression for the time delay we

multiply the differencex—x, from Eq.(82) by itself and then and functions(‘l)Ipq(t—r) and (‘Z)qu(t—r) are defined
find the difference —t, by taking the square root and using by formula(B5) of Appendix B. The expression for the sec-
an expansion with respect to small relativistic parametersond derivative of functiorB;;(7,£€) has been given in Eq.
This yields (69). The other derivatives appearing &y, are as follows:

s [Zt=D]_ yLt-n  r Lt ©9
’ r r r r 2
vz (t-r)) . Togt=r)  OYT (t—r) [xRx],
vaq( prq ]: Tpo(t—r)+3 pqr +3 F;qz 3 (100
a7 (t-r)] | (D7 (t—r) DT (t—r)]|xBx
vaq(—"r“ ]z Toqt—1)+3—F1 +3 ‘;‘*2 Rt (101
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(D Tpq(t—T) UL (t=r) AT (t—1) | xFkP DT (t=T)
e q pPq Pqg N pq
a, Vqu—] Tpg(t=r)+3 ; +3 2 . — Zpg(t=1)+4——"""—
A7 (=) [XRxf y Togt—r)  OYT (t—r) [ xRx}
Pq NN : pq Pq NN
5 = i Tpg(t=r)+3————+3 = = (102

The relationshig94) for the time delay has been derived and the minus sign directs the vecfmrfrom observer to the
with respect to coordinate time In order to convert this source of light. However, the coordinate directjonis not a
relationship to observable proper time, we assume for simdirectly observable quantity. A real observable vector to-
plicity that the observer is in a state of free fall and that hiswards the source of lighg*= (1), is defined with respect
velocity is negligibly small at the point of observation, with to the local inertial frame of the observer. In this frasie
spatial coordinate. If the observer’s velocity is not smallan = —dX//dT, whereT is the observer's proper time antl
additional Lorentz transformation of time must be applied.are spatial coordinates of the local inertial frame. We shall
Transformation from the ADM-harmonic coordinate tihe assume for simplicity that observer is at réS8] with re-
to proper timeT is made with the help of the formul@.g.  spect to the(globa) ADM-harmonic coordinate system

see[51)) (t,x"). Then the infinitesimal transformation from the global
ADM-harmonic coordinatest(x') to the local coordinates
dT=dt —goo(t,x)=dt(l— Ehoo)- (103 (T,X") is given by the formulas

dT=AJdt+Aldx, dX'=Aydt+Ajdx, (108
Implementation of formuldB7) for hyy and subsequent in-

tegration of Eq(103 with respect to time yields where the matrix of transformation ; is defined by the

requirements of orthonormality

T:(l— g)(t—ti), (104) Yap= Nurl - (107)

In particular, the orthonormality conditiol07) assumes
wheret; is the initial epoch of observation and all velocity- that spatial angles and lengths at the point of observations
dependent terms are assumed small, as argued above, and @@ measured with the Euclidean metdg. Because the
therefore omitted. We also stress that under usual circumvectors® is isotropic, we conclude that the Euclidean length
stances the distangeis so large that the difference between |5 of the vectors' is equal to 1. Indeed, one has
the observer's proper time and coordinate time can be ne-
glected. Thus, we are allowed to treat coordinate tinas 7ap8s = —1+8=0. (108

proper time. Hence|§ = 1.

We note that the time delay in the propagation of light . L , :
depends not only on instantaneous functions of retarded time In the linear approximation with respect to G, the matrix

but also on the integrals of time~YZ,,(t—r) and 6f the transformation is as followis1]
(=27 4(t—r). These integrals describe the whole past his- 1

tory of the source of gravitational waves up to the moment of A8= 1- Ehoo(t,x),

observation. Under usual circumstances, the influence of
such integrals on the time delay is expected to be small.
However, this question deserves more detailed discussion
and will be studied in more detail elsewhere. For example,
these terms may be revealed in observations as the “kine-
matic resonance effect” predicted by Braginsky and Grish-
chuk[14]. These terms may be also important for detection A=
of the solar g-mode tidal oscillations by the LISA !
gravitational- wave antenna in space].

AP=hgi(t,%),

Ap=0,

hTT(t X). (109

1
1+ zhoo(t,X)

Using the transformatioril06) we obtain the relationship
between the observable vecwrand the coordinate direction
pl

The coordinate direction to the source of light measured

B. Deflection of light

at the point of observation is defined by the four-vector P —A}Dj 110
p®=(1,p) wherep'=—x', or S= A ADp) (110
pi=—ki—5i, (105 In the linear approximation this takes the form
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- o1 ' s(r,§ =K'+ (1,8 +B (7,6 B(10,8) + (7,8,
— TT,
s'—(1+hoo+hojpl)p'+§hij p. (111 (117
Remembering that vect¢s| = 1, we find the Euclidean norm where relativistic correctiong' are defined by Eqs(88)—
of the vectorp' from the relationship (90) and the perturbation
— 1 hoo—ho;pi— =hTTpip 112 - 1
p|= 0o~ NojP" = 5Nij PP 112 Y(1,86=— EP”kthTqT(taX)- (118

which brings Eq.(111) to the form
If two sources of light(quasars are observed along the di-
. 1 : [ [ .
S—m+ - pi mqh-TT(t,x), (113 rect|o.nssl.ands2 thg measured angleé between them in the
2 19 local inertial frame is:
where the Euclidean unit vectan' = p'/|p]. e
Let us now denote by' the dimensionless vector de- cos)=91-%, (119

scribing the total angle of deflection of the light ray mea-

sured at the point of observation, and calculated with respecd¥here the dot denotes the usual Euclidean scalar product. It
to vectork given at past null infinity. It is defined according IS Worth emphasizing that the observed direction to the
to the relationshig32] source of light includes the relativistic deflection of the light

ray. This depends not only on quantities at the point of ob-
[ LT = =i servation but also oB'(7y,£), at the point of emission of
(1.8 =Klk-Z(7,9]-E(7.9, (114 light. This remark reveals that according to relatidd9 a
or single gravitational wave signal may cause different angular
displacements for different sources of light located at differ-
a(1,6)=— p}'Ei(T’ &). (115  entdistances from the source of gravitational waves.
Without going into further details of the observational
As a consequence of the definitiofi®5) and(115 we con-  procedure we give an explicit expression for the angle
clude that We have

mi=—K+al(r,9. (116 d(r.8=ay(rd+ayrd+ag(rd, (120

Accounting for expressiond 13), (116), and(86) we obtain

for the observed direction to the source of light where
ay(r,8=—2MA(1,8), (121)
4 R L. -~ |1
CYIS( T,f) = - ZSpk] fqu&iqA( T, g) + ZSD( PIJ équ(?q+ quipan)(F] , (122)

)

i - 5 5 . N 5 o | Talt=1)
aQ(T=§)=_(9iqupq(T1§)_Pij(ka(?jq_Fkpkq(?jr"'2kp5jq§ﬂ-+25jq(?pr) f +2PIJ([?q+2kan) f

(‘Z)Ipq(t—r)
2 r

+ Ebi T{vaq } (123

The expression for the third spatial derivative of functiggy,(,£) has been given in Eq70). The other relevant derivatives
are:

| T - | Ti(t=r) I (t—

8}[ it r)]:_gl J(rz 0., ,(rg ”1, (124
L Te-n| Yy Tjt-n 1 Gt-n)

‘”[f]“? rr 2 (129
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o [Tyt Tog(t—1) Tyo(t—r To(t—1) 3IL,,(t—r) 3T, t—r
ﬁiq[ pq(r )]:_Piq pq<r2 ), pq<r3 )1+ " pq<r3 ), pqr(4 ), pqr<5 | 126
o (Tog(t=1)] Y| Zpg(t—1) Tyu(t—r) 7 Too(t—r)  T,o(t—r)
Pq _ Y| Zpg Pq R oL Pq _
ﬁir[ . ]_r Tt &+-2 = +3 o - (127
o (Zogt=1)) Y2 Zoo(t—1) [2yr N\, (t—r) [372 Z,o(t—T)
Pq _J “pq . Pq _ Pq
a”[f]—rz—r + = 1 -~ + = 1 — (128
Straightforward but tedious calculation of the last term in 823 yields
(=27 ((t—=T) O (t=r) AT (t—1) [ XRPig | - Too(t—r)
e pq _ pq pPq N'iq pq
ai[vpvqf]_z Tpg(t—1)+3 . +3 e e Tpq(t=r)+6————
U (t=r (A7 (t—r) [XRxAE
p152edT0 g ThedlT0) VRE (129
r2 r3 ré
and
(=27 (t—=T) YT (t=1) AT (t—1) KPPy 7 U7 (t=T)
4 pPq _ pPq Pqg q pPq
aif[vpvqfl—z Tpg(t—1)+3 . +3 = S 6 Tpg(t—1)+4—2—=
A7 (t—=1) [PigXR Y| . Too(t—1r) YT (t—r)|KkPP; :
Pqg 19N P9 pqg q
5— 7 | Tt 33— 5 2 Tpg(t=)
Too(t—r) D7 (t—r1) (=27 (t—r) [EKPx] . 157,,(t—r)
Pqg pq pq p
+ +15 +15 +4- -+ = —
6 1 = 1 e " A Tpg(t=1)+ > .
45 GV (t—r) 45 CAT (t—r1) |EXRxT . Tog(t—r Too(t—r
pq( )+_ pq( ) NN y Ipq(t—r)+6 pq( )+15 pq( )

2

+— +Z
2 r2 2 r3 rd r r

i\ Py
EXNXN

(-1 _
L 15 Tog(t=r) '

< 3

(130

r r

We note that the angular displacement in astrometric poderivatives with respect to impact parameter. These are given
sitions of sources of light in the sky depends not only onin Egs.(69) and (70). With the knowledge of these deriva-
quantities that are instantaneous functions of retarded timeives, and derivatives of other functions given in the previous
but also on integrals over time Y7, (t—r) and ("?)Z,,(t  section, we have complete information about the functional
—r), which describe the whole past history of the source oftructure of the relativistic time delay and the angle of light
gravitational waves up to the moment of observation. Undegeflection produced by any localized gravitating system pos-
usual circumstances the influence of such integrals on thgessing a time-dependent quadrupole mortg(t).
deflection of light is expected to be small. However, this  Tpjs structure indicates that the explicit time dependence
question deserves more detailed discussion and will be digss the quadrupole moment completely determines the results
cussed elsewhere. of astrometric and timing observations. We shall not con-
sider this problem in the present paper, leaving it for future
exploration.

Our concern in this section is the simplification of the

It is remarkable that among all the integrals required forgeneral formalism developed in the foregoing text. In order
calculation of the trajectory of the light ray, onB;;(r,£  to do this we consider three limiting cases:
enters the expressiori87), (123 for time delay and deflec- (1) The impact parametet is much smaller than the dis-
tion angle. Furthermore, it is remarkable that we need notance from the localized source of gravitational waves to
know this integral explicitly, but only its second and third both the observerr, and to the source of light;y. The

VIl. DISCUSSION
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source of light is behind the source of gravitational wavesThese can be used for Taylor expansion of functions about

(see Fig. 2, the timet*, the moment of the closest approach of light ray
(2) The impact parametet is much smaller than the dis- to the deflector. Specifically, if we assume convergence of

tance from the localized source of gravitational waves to thehis Taylor series we find

observerr, and to the source of light,. The source of light

is on the same side of the source of gravitational waves as d?.

the observefsee Fig. 3 Tij(t—r)=T;(t*)— Ez—ij(t*)"’ e (134
(3) The distanceR from the source of light rays to the

observer is much smaller than distances from the observer or 2

from the source of light to the localized source of gravita- T (to—ro) =T (t* —2ro) + —fj(t* —2rg) ¥ ...,
tional waves. The impact parametgrmay be comparable 2
with the distance from the deflector to observer or the source (135
of light (see Fig. 4. ) )

We will conventionally refer to the casg4) and (2) as  Where (_jots again dgnote terms of hl_gher order. Convergence
those of small impact parameter, with numerical values off the time series given above requires:
70<0 andr,>0 respectively. Cas€3) is that of large im-
pact parameter, and its small numerical values are covered d? <1 d wd?
by the formalism as well, as will be clear in Sec. VIIC cr > an cro
below.

<1, (136

where o is the highest frequency of gravitational waves

A. Case 1. Small impact parameter( 7,<0) emitted by the deflector. If the source of light rays and ob-
server are at infinite distances from the deflector then the

requirement$136) are satisfied automatically, irrespective of
We shall assume in this section that the conditibn the structure of the Fourier spectrum of the quadrupole mo-
<min[r,ro] holds. Let L=min[r,rq] and recall thatr  ment of the deflector. In practical situations such an assump-
=r?=d? and To=— \/roz—d2<0 (see Fig. 2 This yields tion may not be always satisfied. For this reason, it will be
more natural to avoid the Taylor expansions of the quadru-

1. Asymptotic expansions of independent variables

— dz d* pole moment with respect to retarded time. It is also worth
y=yre—d—r=- or @4' cr (131 noting that in the case of small impact parameter we have
and (yr)-1 2 N 1 N d? N (139
N ‘=——+—+—+...,
2 g Y a2 2r2 sgrt
2 2
=—\rg—d*=ro=—2ro+ s—+—+...,
Yo 0 ° 0" 2ry g3 and
(132
2
where dots denote terms of higher orderis the constant (Yofo) “t=— 1 d_+ o (139
distance from the deflector to observer, agds the constant 2r  8rg
distance from the deflector to the point of emission of light.
Using these expansions we find The foregoing expansions then yield
d2 d? )
t=t*+r——+..., te=t*—rog+-—+.... - - )
o T aijq(T,§)=(—2aj|nd+§—2 Ty(t=1)+ ...,
(133 2r
(139
(8} T T h

-4 e

Observer d Source of light R gl
’ ’ 71Bpq(70,:8) =~ STi(to=T0) + ..., (140
D ro

Source of gravitational waves

FIG. 2. Relative configuration of observéd), source of light
(9), and a localized source of gravitational way&y. The source
of gravitational waves deflects light rays which are emitted at the
momentt, at the point S and received at the momeat the point +..., (141
0. The point E on the line OS corresponds to the moment of the
closest approach of light ray to the deflector D. DistancesCsse

- - 2 .
&jkqu( T,g) =— 2(9jk|ndeq(t— r) + FnjnkIpq(t— r)

. - 1
=R,DO=r,DS=r,, .the impact param_ethE=q,OE= r>_O,ES IikBpg(70,&) = — =5 PixZpg(to—ro) + - - -,
=79o=7—R<O0. The impact parametetis small in comparison to ro
all other distances. (142
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n d?. “
aijkqu( T,g): - Z[Ipq(t_ r)+ EIpq(t— r) ﬁijklnd
+ .., (143
n 1
%ikBpg(70,6) =0 3| (144
0
and
. R 4n'nink.
aijkqu(T,f)z —2rIpq(t—r)(9ijk|n d— TIp (t—r)
+ ..., (145
JijkDpq( 70,8 =0 5| (146)
0
In addition we have
1 .
do(1,8)= kaqupq(t— N+..., (147
1
5Q( To,g):O r_2 . (148)
0

PHYSICAL REVIEW D59 084023

2. Asymptotic expressions for time delay and the angle
of light deflection

The static part of time delay and deflection angle are:

Ay=—4MInd+2MIn(4rrg)+ ..., (153
Ag=—4€;i,kISP3;| In d—%ln(4rr0)}+ e
(154)
‘ . 1
ay(7,&€=4M0, Ind—iln(4rro)}+...,
(159
(1,8 =—4e,,kPSIT Ind—lln arro) |+
ag(7,6) = —4€jpq i SIn(4rre) |+,
(156)
. r .
Bu(r.d=—gau(rE+. .., (157)
. ro. 4 “
B(1.H=— gax(n.H— 5PISkeqdgnd+ ...,
(158

where we have neglected the angl 7,£) because it is
small [recall thaty'(,£=Pk%[].
Asymptotic expressions for the time delay and angle of

We note that the leading terms of the expansions decay mu&i]eflectlon caused by the quadrupole moment are:

faster(at least as I/S) at the point of emission of light than

those at the point of observation. This indicates that the main o=
contribution to the effects of time delay and deflection of

light arise along the path of the light ray from the localized

- 1 .
—2Zj(t=r)d;j Ind+ F(Zninj+kik]-)2”(t—r)+ Ce

source of gravitational waves to the observer. We discusgpq

this question in more detail in the following section.

The asymptotic expansions of integr&®8), (39) describ-
ing propagation of light rays in the static part of gravitational

field of the deflector are:

d2
A(r,§)=—-2Ind+In2r——+ ..., (149
4r?
d2
A(¢0,§)=—|n2r0+—2+..., (150
4rg
d? d?
B(7,§)=—r—2rInd+r|n2r—5[§—ln o)
(159
2
B(719,&)=—rg+rgln2r ——(—+In2r +....
(70,8 otlo 0 210 2 0
(152

(159
_ d?. .
a'IQ(Tag):z{z-jk(t_r)'i' Ez-jk(t_r)}&ijklnd‘f‘...,
(160
. ro. 4| -
ﬁb(r,@:—ﬁaar,f)—ﬁ[klzjk(t—rwiklnd
1 . A
+§§ij(t—r)ajklnd +..., (161

wheren'=£/d is the unit vector directed along the impact
parameterR=|x— x|, and dots denote terms of higher order
[54]. The angleB'(7y,&) at the point of emission of light is
negligibly small and, for this reason, its exact expression has
been not shown.

Our calculations show that the time dependent part of the
time delay and light deflection by the quadrupole moment of
a localized source of gravitational field fall off in the first
approximation as th@éverse squarendinverse cubef the
impact parameted respectively. For this reason there is no

These expansions are used for calculation of asymptotic exnagnification of the gravitational wave signal in astrometric
pressions for time delay and the angle of deflection of lightor pulsar timing observations as some authors have sug-

rays.

gested 19]- [21]. In particular, terms proportional tod,/ or
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even to 1d4? , appear only in terms of high order in the speed of lighf56]. Moreover, we do not assume positions of
expansion(160) and are always multiplied by the factor1/ observer and the source of light to be at infinity.
to some power. If we introduce the notion of the transverse-tracel@sg)
The first term of formula(159 was first derived by and longitudinal(L) tensors[24,33 with respect to the di-
Sazhin[7] for the special case of a binary system with arection of propagation of light rays
specific orientation of its orbital plane. Our derivation of 1
formula (160 improves and gives independent confirmation IT]T—I + 5 (8 + ik KpKqZpg— (8ipkiKg+ 8jpkiKg) Zpg
of the result established previously by Damour and Esposito- 2
Farese [23] using another mathematical technique based on (162
application of Fourier transform and pure harmonic coordi- = kikpZip+ KikoTip— Kik; (KokgZpg), (163
nates. For completeness we have repeated the calculations of
Damour and Esposito-Fae[23] for the effect of deflection the expression§l59), (160) are reduced to the form
of light rays by localized sources of gravitational waves in
ADM rather tr_]an_ harmonic coordin_ateésee Appendix A Ag= —ZITT(t—r)éi- Ind+ Eninj'ITT(t_rH
The result coincides completely with that of Damour and ! ! r !
Esposito-Farse[23] and clearly demonstrates the gauge in- (164
variance of the result. However, our technique is more gen-
eral and powerful. Our formalism is valid for any relatlveaQ(T &= 2[1 T(t—r)+
position of observer, source of light, and source of gravita-
tional waves, and with finite or infinite separations. The (165
method developed by Damour and Esposito-E@f@3] is ‘ P
valid only for infinite separations and for small values ofBq(7,£)=— ﬁa'Q(T,g) {k'I (t—r)dyInd
impact parameter. In particular, we note that while Damour
and Esposito-Fase[23] find that the deflection depends on ~
the timet* of the closest approach of light to the deflector, +3 § (t=1) 5 Ind |+
our calculation shows that it depends on the retarded time
—r. This difference is insignificant for extremely large sepa-which reveals explicitly that only the transverse-traceless
ration of the light source and observer from the deflector, anghart of the quadrupole moment of the localized source of
small impact parameter, but it can be important in the casegravitational waves contributes to the leading terms. How-
of finite distances or large impact parameter. ever, terms of higher order can depend on the longitudinal
It is important to realize that in the case of a small impactpart of the quadrupole moment as well.
parameter, the basic time-dependent contribution to the It is interesting to see that if we apply the expansions
bending of light and time delay by the gravitational field of a (134), (135), use the approximation of a gravitational lens,
localized source of gravitational waves comes from the stati@1d omit all terms depending on time derivatives of the
part of the near-zone gravitational field of the source taken ajuadrupole moment, the expressions for the time delay and
the retarded timécf. formulas(50)—(53) from [24]]. In this  the angle of light deflection can be reduced to the formulas
respect it is worth emphasizing that the formula for the bend{57]
ing of light given in papet23] as well as in Appendix A is -
valid under two assumptionsi) the impact parametet is t—to=|X—Xo| —4¢+2MIn(4rrg), a;=44;,
small compared with the distance to the obsemng®) the (167)
velocity of matter inside the source of gravitational radiation ; P ; ;
is much smaller than the speed of liglihe slow-motion },(\;?rirew 's the gravitational lens potentigh8] having the
approximation.
The first assumption is rather trivial, since the impact pa- ——
rameterd is the only finite distance when the source of light Y=| M+ €jpgkPS 90, + _I q(t*)dpg|Ind. (168
and observer are at infinity. The second assumption appears
because papgf3] uses the Taylor expansion of the Fourier Scrutiny of the multipole structure ofy in cosmological
image of the tensor of energy-momentum of matter with re-gravitational lenses may reveal the presence of dark matter in
spect to wave vectok [see Egs(3.3) and (3.4) of paper the lens and identify the position of its center of mass, ve-
[23] ]. This expansion is mathematically equivalent to the usdocity and density distribution.
of a slow-motion approximatiof55] which, in particular, Expression(168 includes explicit dependence on mass,
restricts the nature of the source of gravitational waves sgpin, and quadrupole moment of the deflector and general-
that its Fourier spectrum is not allowed to include too highizes that given by Damour and Esposito-FBa&23] by ac-
frequencies. counting for the spin multipole. A similar result for the
In contrast, the general formalism given in the presengravitational lens potential was obtained independently by
paper produces resul$59 and(160 applicable to arbitrary Kopeikin [24] in the case of a stationary gravitational field
sources of gravitational waves, including gravitational radiafor the deflector. The fact that the deflection angle can be
tion bursts with internal velocity of matter comparable to therepresented as a gradient of the gravitational lens potefatial

d?. .
EIJTKT(t—r)}a”k Ind+ ...,

(166)
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Ubserver Source of light d 2 d 4
o S o E
y=\/rz—dz—r=————+..., (170
: 2r  grd
and
Source of gravitational waves
d? d*
FIG. 3. Relative configuration of observé®), source of light Yo= \/rg—dz— ro=— C TP . 17y
(S), and a localized source of gravitational way€s. The source fo 8rg

of gravitational waves deflects light rays which are emitted at the
momentt, at the point S and received at the momeat the point ~ Where dots denote terms of higher ordeiis the constant
O. The point E on the line OS indicates the point of minimal dis- distance from the deflector to observer, agds the constant
tance of the light ray trajectory extrapolated backward to the deflecelistance from the deflector to the point of emission of light.
tor D. Distances ar®S=R,DO=r,DS=r, the impact parameter Using these expansions we obtain the following decomposi-
DE=d,0E=7>0ES=7,=7—R>0. The impact parameteat is tions
small in comparision to all other distances.

d? d?
explicitly indicates that the, so-called, frame-dragging effect ~ =t +r—5 -+ ..., te=t"+ro— 2_r0+ R
in gravitational lensef59] can give a noticeable contribution (172
to the deflection angle. Frame-dragging also produces a
small displacement of the image of the background sourc&hese can be used for Taylor expansion of functions that
from the plane formed by the two vectors directed from thedepend on retarded time about the titfie In this casd* is
observer toward the image of the light source and toward thene moment of closest approach of the light ray trajectory
gravitational lens. This torsional displacement of the imagextrapolated backward to the deflect@ee Fig. 3. If we
is produced only by the component of spin of the deflectorassume convergence of this Taylor series we find:
directed along the light raysee the second term in Eg.

(158]. The overall effect of the torsion is of ordet/r d2.

smaller than the main terms in the expressit68). These Tij(t—r)=T;(t*)— ZIij(t*)"— Ces (173
remarks dispel a seemingly common opinion that rotation of

the deflector prevents representation of the deflection angle 2

as a gradient of a gravitational lens potential. Similar conclu- Tij(to—ro)=Tj(t*")— 5—Z;(t)+ ..., (174

sions can be derived frofi24] and[32]. Ibanez and Martin 2_ro
[60] and Ibaez [61] give a formula for effects of frame- _ _
dragging equivalent to the spin-dependent term in(E§9), where dots again denote terms of higher order. We also have

although they do not calculate all necessary integrals or es-

timate residual terms. . 2 1 d
~Taking into account formuld117) and expressions for (yr) "=- & ;JF FJF SR (179
a',B', and v we obtain the vector equation for a gravita- r r
tional lens
and
N 2
s=Kitga (169 Woro) = -2t =+ Ly e

—_ _+_
d® 2r3 s8rg

where«' is given by relationship§l67), (168 and we have The foregoing expansions yield
taken into account that in the case under considerd®on

=r+ry. One recognizes that when distances are finite the i
deflection angle with respect to vecttit is not simply o' bijq( T, §)=( —ZZ?J- Ind+ -
but the product of /R and «'. In the limit whenK'—k', 2r
which is equaivalent tg8'—0, or r =const.f,— the ob- 177
served angle of deflection approaches the total angle of de-
flection @', as it must in this limiting case.

Ijk(t_r)+ Ceey

. . 2

5J-qu(7'o,§)=( _20"J|nd+ 5
2rg

B. Case 2. Small impact parameter( 7,>0) (178

Z-jk(to_ro)"_ sy

1. Asymptotic expansions of independent variables ~ ~
. . . iy IikBijk(7,8) = — 29, IndZ; (t—r)
We shall again assume in this section that the condition
d<min[r,ro] holds and that= 2~ d? and 7= i3 d LT t—r)+ (179
>0 (see Fig. 3 This yields ro kK T
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IikBjk(70,8) = — 23, IndZj (to— 1)
(180

2 .
+ annkz-jk(to_ro)'F ey

A d?. A
JijkBik(7,8) = _Z[Ijk(t_r)+ Ezjk(t_r) dijk Ind

+..., (181
“ d?.
%iikBik(70,8) = —Z[Ijk(fo—fo)Jr Z_rOIjk(tO
—ro)}bijk Ind+ ..., (182
and
. . hink.
&ijkqu(T,§)= _ZrIpq(t_r)ﬂijk Ind— szq(t_r)
+..., (183
&ijkqu(To,g): _2roz-pq(t0_ro)&ijk Ind
4n'nink,
— g Zpg(to—T0)F ... . (184)
In addition we have
1 .
So(m,8)= TKPK Tpq(t=1)+ .., (185
1 .
5Q(To,§): Ekpqupq(to_ro)‘f' e
(186)

We note that the leading terms of the expansions now have
the same dependence on the distance of the point of emission
of light and of the point of observation from the source of
gravitational waves. If the source of light is closer to the
source of gravitational waves than the observer, it makes th
largest contribution to the effects of time delay and deflec

tion of light.

The asymptotic expansions of integr&d8), (39) describ-
ing propagation of light rays in the static part of the gravita-

tional field of the deflector are:

2
A(m,&)=—-21In d+|n(2r)—d—2+..., (187
4r
d2
A(7o,§)=—2 Ind+In(2ro)— —+..., (188
4rg
d? d?
B(r,§)=—r—2r Ind+r In(2r)—§{§—ln(§” R
(189

PHYSICAL REVIEW [39 084023

B(7g,%) 2r9Ind+rgIn(2ry) dz[l I(dzﬂ

& =—Tr9—2r151In roIN(2rg)— =—{z—Inl 5—

70 0 0 0 0 21| 2 210
+.... (190

These expansions are used for calculation of asymptotic ex-
pressions for time delay and the angle of deflection of light
rays.

2. Asymptotic expressions for time delay and the angle of light
deflection

The static part of time delay and deflection angle are
given by:

Ay=2 I 11 191

M= M| In G Z %—r—z + ..., ( )
: i 1 1

As=eijpk18p§ %_r_z + ... (192)

Expressions fory ,as, andag will be the same as in Egs.
(159, (156), and(160) because they are taken at the point of
observation only. Expressions 84, ,8s, andB, are given
at the point of observation by Eq€l57), (158, and(161).
Expressions fop), ,8s, and B at the point of emission of
light are given by the same Eq4d.57), (158, and(161) after
substitutingr o for r. The relativistic perturbationy' is calcu-
lated in Eq.(118.

The asymptotic expression for the time delay caused by
the quadrupole moment is:

Aq=—2[Z;(t—1)=Tj(to—r)]dInd (193
+(2ninj+kikj) z-lj(tr_r)_—z”(trc_)_r()) + ...
0
(194

One might think that the effect of retardation is again in-
versely proportional to the square of impact parameter
ﬁowever, this is actually true only for sources of gravita-

tional waves with rapidly varying quadrupole moment. If
motion of matter inside the localized source of gravitational
waves is slow, then conditiord36) apply. In this case, the
real amplitude of the effect becomes extremely small, being
inversely proportional to t# and 11‘(2).

The asymptotic expression for the observed direcsidn
the source of light is derived from the basic formuylal7)
and is:

. 2rg A
=K'= [ Zj(t=r) = Zi(to—ro) ]9k Ind

4K’ . P
- F[Ijk(t_r)_zjk(to_ro)]aik Ind— ﬁ[Ijk(t_r)

—Zi(to—ro) 10 Ind+ Y (1,&+ ..., (195
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Source of gravitational waves r=rcosfd, and to=7—R. (199

Their numerical values may be larger or less than zero. The
following exact equalities hold:

d=rsiné, (200

y=r—r=r(cosé—1),
(202)
(yn = Pcoss—1) (202

In addition, we have asymptotic expansions
Yo=To—lo=Y 1+rE +..., (203

0] s E

Observer Source of light (yofo)_l= % N r53+ L (204

FIG. 4. Relative configuration of observéd), source of light
(S), and a localized source of gravitational way€y. The source
of gravitational waves deflects light rays which are emitted at the to—ro=t—-r+R(cosf—1)+.... (205
momentt, at the point S and received at the momeat the point
O. The point E on the line OS corresponds to the moment of thelhus, we can decompose any function of the time argument
closest approach of light ray to the deflector D. DistancesCs#8e  ty—rg in a Taylor series with respect to the retarded time

=R,DO=r,DS=ry, the impact parameterDE=d,OE=7  —r if convergence is assumé¢@2]. For example,
=rco,ES=7y=7—R. The distance&r is much smaller than both

andr,. The impact parametet is, in general, not small in com- I--(to—r0)=I~(t—r)+R(cos€—1)f-(t—r)+ o
parison to all other distances. ! . N (206)

where we have accounted for the approximate equdllity Finally, we note that the vectaf corresponding to impact
=r—rq valid in the case of,>0. One can see that deflec- parameted can be represented as
tion angle is small in the expression given. Moreover, if we

again assume that motion of the matter is slow, then the £=r(N'—Kcosb), (207
observed deflection is even smaller and is inversely propor- . o .
tional to 1/¢R) and 1/¢,R). where N'= —Ky=x'/r,|[N|=1, andk' is the unit vector in

the direction from the source of light to obseryés].

C. Case 3. Large impact parameter
2. Asymptotic expressions for time delay and the angle of light

1. Asymptotic expansions of independent variables deflection

In this limiting case we assume that the distafic@e- In this section all asymptotic expressions for relativistic
tween observer and source of light is much smaller than gffects are given only up to leading terms of order ahd
andr, their respective distances from the deflecsme Fig. 1/r . For this reason all residual terms of order?l#nd 1f2
4). Then we have are omitted in subsequent formulas without note. Using
R 5 asymptotic expansions of functions from the previous section
r%=r2—2rR c030+R2=r2( 1 TCO56+ r_z and reducing similar terms we obtain
r

- - 1 o
(196) AQ:m k'k! — 2k'N!cosf+ §(1+COSZ(9)N'NJ
which leads to the expansions ) _
Zij(t—r)  Z(to—ro)
ro=r—Rcosf+..., (197 xj = P - o : (208)
1 R —k-N=K - i
214 Bosal v (198 where cog)=k-N=K-K, (see Figs. 1 and)4We note that
ro r r the expression for time delay given above can be further
simplified if the definition of “transverse-traceless” tensor
The time parameters are with respect to the directioN' is applied[24,33:
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1 where the ellipsis designates unimportant terms of higher
ZETZLH' 5(5ij+NiNj)NquIpq order with respect to 1/[66], and we have neglected the

constant deflection caused by mass-monopole and spin-

—(6ipNjNg+ 6jpNiNg) Zyg, (2090  dipole dependent terms. One sees again that only the

transverse-traceless componeﬁ{ of the metric tensor ap-
where the projection is onto the plane orthogonal to unifpears in the final expression.
vector N'. Formula(208) for time delay now assumes the |t is worthwhile to stress that the observed optical direc-
form tion to the source of light given by the formu{@14) coin-
cides with that which can be obtained by means of VLBI

k'k! ['IET('E— r B -IET(to— ro) observations. Indeed, it is easy to confirm that &44) can

Q~ 1—cos6| r ro - (10 pe re-written as follow$67]
. - . . . ) . ) i i 1
D|fferent|a_t|on of Ag with respect to time gives the fr_e i_Kiy = KPKINTT(t—r)— =KPhTT(t—r).
guency shift due to a remote localized source of gravitational 21+K-N Pa 2 '
waves (215
dt 1 KK The direction to the source of electromagnetic waves mea-

Zy(tt)=1-q-=—3 m[hET(I_ r=hi'(toc=ro)],  sured by VLBI is determined as difference between times of
0 (211 arrival of the wave to the first and second antennas. Taking

into account Eqs(94) and (210 for the first and second

where the metrid:ﬂT is defined by the EqB10) and taken in  observing sites, and assuming that the time difference
the leading order approximation with respect to. We rec-  —t; in observation of the radio signal at the observatories is
ognize that the expressio211) is a generalization of the small compared to the period of gravitational waves, we find
analogous formula fozy obtained previously by Mashhoon .
and Seit464] in the case of a plane gravitational wave. This KPKIhTT(t—1) | - (xp—xy)

exact coincidence demonstrates the power of our formalism, 1+K-N pa 2 "
which both reproduces well-known results and yields new (219

observational predictions for relativistic effects in the propa- . . . . .
gation of light rays in the field of an arbitrary source of If the baseline vector measured in the local inertial frame is

gravitational wave§65). denoted ad and the transformatiofil06) is taken into ac-

Repeating the calculations for the angle of light deflectioncoUnt,
under the assumption that the wavelengthof gravitational 1
waves emitted by the localized source is smaller than the xb—xi =b'— =hlT(t—r)bi+0O(b?). (217
distanceR between source of light and observer, we come to 2
the following result:

1
t2_tl:_ K+§

We confirm that

(cosf—2)(k'kPkI+ 2k' kPN cos8) t,—t;=—s-b, (218

i
QT 1" cos#
1 where the vectos' is given by formula(215), which proves
+(cog6—2 cosf— 1)(—kiNPNq cosfH— NinNq> our statement. It is worth emphasizing that Eg15 was
2 obtained independently by Pynet al. [[16], see formula
i (t—r) (47)]. Their formalism, however, has a limited region of ap-
+ NikPKI— 2N Npkq} { pq—] +2(kP—NP cos6) plication. Extension of the formalism of Pyme¢ al.[16] was
r one of the motivation of the present work.
jip(t_ I’)

X f] (212 VIIl. CONCLUSIONS

The most accurate astrometric measurements are differen-

Transformation of this result using relationship09 and tial. They measure the angle between 2 sources. The highest

expressior(B10) for hET, where only leading terms of order accuracy is attainable when the sources are close to each
1/ are retained, reveals that other in the sky. In contrast, angular deflection by gravita-

tional waves varies only over large angles in the general case

- UTT T of large impact parameter. Specifically, in such a case the
[(k-N=2)k'+N'Jhpq(t=r)+KkPhip (t=r), bending angle depends only on the metric in the neighbor-
(213  hood of the observer and its first derivatives, as in Egs.
, (213, (214). It thus can vary only as a quadrupole and the
and, because the vectgf is small, derivative of a quadrupole, over the sky. Similarly, Egs.
i C : (123, (160 and (195 depend on the mass quadrupole mo-
s=K'tagty+..., (214 mentZ; and its first and second derivatives. Note that the

L1 KRk
“QT21-k-N

084023-23



KOPEIKIN, SCHAFER, GWINN, AND EUBANKS PHYSICAL REVIEW D59 084023

angle of light deflectior{123) involves the time integrals of peikin is pleased to acknowledge the hospitality of G. Neu-
Z;j(t—r) which may be interpreted as the presence of theyebauer and G. Scfea and other members of the Institute
“kinematic resonance effect'[14]; however, this term is for Theoretical Physics of the Friedrich Schiller University
small, as discussed above. In the context of a purely locallyef Jena. The US National Science Foundation supported
determined deflection angle, it is not unexpected that lines oharts of this work(AST-9731584. This work was partially
sight that pass close to the deflector show almost purely theypported by the Thinger Ministerium fu Wissenschatt,
static effect, as was shown in Sec. VII. Forschung und Kultur Grant No. B501-96068.M.K.) and

The magnitudes of the leading terms in the limiting formsine Max-Planck-Gesellschaft Grant No. 02160-361-TG74
for the deflection anglexg, in Egs.(123, (160 and(195 (g g),

are ag~Q0?GMa’/c’r, whereM is the mass of the deflec-
tor, anda is its dimension. The frequency of the gravitational
waves is(). For a gravitationally bound binary system with
a circular orbit,Q) is twice the orbital frequenc}68,69. We
can use Kepler's third law to express this in the foay In this appendix we rederive the results of the paper by
~Q#¥GM)>Fcr, or alternatively,  ag~2.4  Damour and Esposito-Fare[23] applying the generalized
X 10" Y(M/M )PP 2(ry,0 ! arcsec wher@.is the or-  isotropic ADM coordinate conditiongFor an application of
bital period of the binary system. For a contact white-dwarfthe conditions in post-Newtonian calculations, see [é.j}.)
binary at 200 pc, the expected deflection is about 7This explicitly shows that the asymptotic results do not de-
x 10" 12 arcsec, with a period of about 1000 sec. For a supend on the chosen gauge. We do not pstl in this and
permassive black-hole binary, with mass® 1Bl and pe- the following appendices to make more clear the order of
riod 10 yr at a distance of 1 Mpc, the expected deflection igerms with respect to the small parametes. 1/
about 5< 10" ! arcsec. The ADM coordinate conditions, in linear approximation,
Because the effect varies smoothly over the sky, the presead
ently available astrometric accuracies are a few microarcsec-
onds. Higher accuracies are attainable only over smaller 2Vi00i—V00;;=0, 3V;g;;—Vig;;=0, (A1)
angles. Very-long baseline interferometry of a suite of radio i ,
sources attains microarcsecond accuracy, over periods $fhereVo=a/dt and V;=4/ox'. For comparison, the har-
days to years. Specially-designed observations sensitive {§0NIC coordinate conditions, in linear approximation, read:
source motions of minutes or hours might attain higher ac- _ _
curacy, perhaps as much as an order of magnitude better. 2Vi90i = Vodii = VoGoo, 2V,—gij—Vig,—,———Vigoo.(A2)
Clearly, detection of deflection of light rays by gravitational
waves from nearby localized sources is not a goal for therhe ADM gauge conditiongA1) brings the space-space
near future because of its smallness. However the backsomponent of metric to the form
ground gravitational wave noise may be, perhaps, measured.
The near-perfect cancellation of the effect in General
Relativity suggests that deflection of light by gravitational 9ij = 6ij
waves could be a test of that theory in radiative regjf@.

In & theory that does not posess the symmetries that cause fierenh” denotes the transverse-traceless pat; pf Fur-
deflection to vanish, we can only guess the resulting deﬂeomermor]e, in linear approximation, the Einstein field equa-
tion. Such a guess might multiply the general-relativisic  tions read

by 3 factors. The first factor, offd, reflects the amplitude of

the gravitational wave at the point of closest approach, rather -

than at the observer. The second factor, some function of the hoo=— —4A*1(T00+ Tii), (A4)
distance to the source measured in gravitational-wave wave- ¢

lengths, perhaps InQ\) [71], reflects the cumulative effect of

APPENDIX A: COMPARISON TO THE PAPER BY
DAMOUR AND ESPOSITO-FARE SE

1
1+ §hkk

+hii', (A3)

bending along the line of sight. The final factor, unknown, oo 167TA_1 T 1V V.A-LT
reflects the coupling of the non-general-relativistic part of 0 4 0 gz vovi 00/
the wave to the source and its effect on the light ray. For a (A5)
source an arcsecond from the deflectors described above, the
first 2 factors can increase the effect by several orders of 24

. . . T
magnitude. Moreover, if the effect is not local to the ob- he= — —4A*1T00, (AB)
server, differential astrometry across small angles can detect c

it, so that greater accuracy is attainable. Given sufficiently
strong departures from General Relativity, the effect might T 167 4
be detectable. hjj =~ =y Pijki Uret Twr (A7)
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where the TT-projection operat®;;, , applied to symmet-
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Pij = (85— A"V, V) (8, — A1V, V) wheree is a positive infinitesimal number which shows ex-
plicitly that we have used the retarded Green’s function
while solving the Einstein equations for the component of
the metrich;; . If we putk-1—k%°=0 and take into account
the relations

1
- E(‘sij_Ailvivj)(‘skl_AileVI)a (A8)

whereA ~* denotes the Euclidean inverse Laplacian.

We now follow the calculation in the paper by Damour . kikj ~ . K ~
and Esposito-Fase [23] using the ADM coordinate condi- Too=?Tij o Toi= Tijs (A17)
tions. The deflection of the light ray is given by 0 0

which follow from the macroscopic equations of motion for
1 [+ matterV ,T#”=0, we find:
AI”=IM(+oo)—IM(—oo)=§fimdrl“lﬁvuha5(9+rl*). e VK] 2
(A9) lalﬂﬁa3=<l°>2<—'——')(—J——J)—” —.
KO 19/\K® 19/k2—(KO+ie)?
(A18

In terms of the Fourier transform . L . . .
This expression is identical with that obtained by Damour

and Esposito-Fase [23] in the harmonic gauge. For this
R o reason calculation of the total deflection angle gives the same
h,w(kk)Zf dxh,,(x*) e k", (A10)  result in both harmonic and ADM gauges, reflecting the co-
ordinate independence of the final result.
Defining aM=A|M/|O, one gets for the angle of total de-
wherek x*=—k%°+k-x, the boldface letters denote spa- flection
tial components of vectof§2], and integration is over all of
space-time. Accounting for the formulé&10) the equation

for light deflection now reads 4
g ay= = [ T(t) = Tolt), (A19)
Al =i ka &kut”1218R (kM) 8(k - 1—KOI0) 8
W 2m** P ’ = @Iu(t*), (A20)
(A11)

a =a0=—£[j (t*)—-I At*)]

where use has been made of the exact relationship 3 g2t 2 :
(A21)

+ oo
H ay — | — KO0
Jfoc dr explizk,l %) =2ma(k- 1=k (A12) One can check that expressions for,a, are the same as

those obtained in Sec. VIIA. The quantiy® gives the
In terms of the Fourier transformed energy-momentum tengravitational shift in frequency of the electromagnetic wave.
sori’aﬁ, the Fourier transformed metric field reads It can be obtained from the expression for gravitational time
delay A after its differentiation with respect to time.

~ 87T -’roo+ :I\—ii
Roo= k2 (A13) APPENDIX B: HARMONIC AND ADM GAUGE
CONDITIONS IN THE FIRST POST-MINKOWSKIAN
A 167 ?Oi 1 kok; :roo APPROXIMATION
0T a2 42 k2 (A14) In this appendix we give other representations of the met-
ric coefficients(12)—(14). Using the ADM coordinate condi-
Y tions (A1) of Appendix A the metric coefficient&l2)—(14)
A= % (A15)  can be cast into the “canonical” ADM form
k=" 2
2M  T(1)
adm_ 1 v.,r-1
ATT 16 kik| kjkk 1 klkj hoo CZr + CZ V'Vlr ! (Bl)
A= 8 ——|| §ip—— | —=| & — —
ij 4 il k2 ik k2 2 ij k2
~ 2 EipquNq 2:.Zij(t) _ :.ij(t)
Kiki Ty hgiM=— = =+ — =V - 2oV,
X\l 2 (A16) c o c 4c
k? | k2= (K%+ie)? (B2)
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hgk™=3hoo, (B3) M= 3hoo, (BY)
27 (t—rlc) 27;(t—rlc)
hiajmeT:ij+(5iijV|_25i|Vij_25j|Vin) h;IJ—T:f
cr cr
Z(t—=rlc) Iyt Zy(t—rlc)
X al 5 ) klz() +ViV;V, v, +(5iijVI_25iIVij_25j|Vin)klf
cer cer cer
(=27 (t— (-2) =27, (t—rlc
o Z(t—rlc) 3 Za(t) B T(O)r _’_Vivjvkvl[# (B10)
r r 2¢2 |’ r

(B4)
This form of the metric is obtained from the expressions

where we have used a special symbolic notation for “semi(Bl)_(B4) by applying the coordinate transformatipfd, 75
hereditary functionals’[73]

) t , t . o 1 CDT(1)
“ )Iij(t)EJlmdinj(v), - )Iij(t)zfiwdv(’ T (v). W= ViV —— | (B11)
(BS)
7 TR e IO P U
The following equality holds.(*z)Iij.(.t—r):Iij(t—r). We W=35ViVVi r i s
also notice thatA(Iij(t—r/c)/r)=Z”-(t—r/c)/02r for r
#0. For this reason functioh™2Z;(t—r) is a solution of 1 Za(t)r
the homogeneous d'Alembert's equation; that is, +ZVinV' 2 (B12)

O[C2Z;(t—r)/r]=0 for r #0.

We emphasize that the metriB1)—(B4) is an external
solution of Egs.(A4)—(A7), outside the source of gravita- |t is marvelous that this representation of metric also satisfies
tional waves. It matches smoothly to the internal solutionthe harmonic coordinate conditiori$2). This means that
which is valid inside the source, without additional coordi- outside the localized source of gravitational waves the class
nate transformations. It is remarkable that outside the sourcgf ADM coordinates overlaps with that of harmonic ones.

the metric componentB4) may be represented as an alge-The coordinate transformation from met(ic2)—(14) written
braic decomposition of the retarded and instantaneous funga the pure harmonic coordinate system to the ADM-

tions of time harmonic metrigB7)—(B10) is:
padm T 17l D B6 o_1 “HT(t—rlc)

ij = hyj o X ij (1,%), (B6) w =§VkV| Era— (B13)
where h{"(t=r/c,x) is shown below in Eq.B10), and 1 27, (t—r/c)
~ I —
hij(t,x) is the rest of the metric componelnf*™ " which is W= EVinVI[
actually a symmetrized gradient of a vector comprising of
singular harmonic functions. For this reason function Zii(t—rlc)
hj;(t,x) satisfies the conditiom®;jhy(t,x)=0 and can be T T 2, : (B14)

eliminated by an infinitesimal coordinate transformation.
Making use of this and without leaving the ADM coordinate

conditions, we may construct the following representationThese gauge functions have been extensively used in the

for the metric: main body of the paper for elaborating unique interpretation
of observable effects. In contrast to the expressi@b—
ho— 2M (87) (B4) the expression$B7)—(B10) show terms which decay
0™ 2, like 1/r* and 1t°. These terms depend on time integrals of

the quadrupole momers;(t—r/c) and may lead to the ap-
pearance of the “kinematic resonance effect” discussed by
hoi= L (B8) Braginsky and Grish_chu[d4]. Another important remark is
that the transformation&éB13), (B14) clearly show how to
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eliminate non-radiative terms from the metric, written downonly with terms of the first order in d/and could not be
in a harmonic gauge, including all terms with respect to anyapplied for analysis of gravitational radiation in near or in-

power of 1f. Previously used transformatiofisee, for ex-
ample, the textbook of Misnat al.[45], paragraph 3bdealt

termediate zones of the localized source of gravitational
waves.
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