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Illusions of general relativity in Brans-Dicke gravity

Valerio Faraoni*
RGGR, Faculte´ des Sciences, Universite´ Libre de Bruxelles, Campus Plaine CP231, Boulevard du Triomphe, 1050 Bruxelles, Belg

~Received 18 August 1998; published 22 March 1999!

Contrary to common belief, the standard tenet of Brans-Dicke theory reducing to general relativity in the
v→` limit is false when the trace of the matter energy-momentum tensor vanishes. The issue is clarified in a
new approach using conformal transformations. The otherwise unaccountable limiting behavior of Brans-Dicke
gravity is easily understood in terms of the conformal invariance of the theory when the sources of gravity have
radiation-like properties. The rigorous computation of the asymptotic behavior of the Brans-Dicke scalar field
is straightforward in this new approach.@S0556-2821~99!05208-X#

PACS number~s!: 04.50.1h, 04.20.Jb
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I. INTRODUCTION

Brans-Dicke~BD! theory is the prototype of gravitationa
theories alternative to Einstein’s general relativity@1#. The
essential feature of Brans-Dicke theory is the presence
scalar field to describe gravitation together with the met
In this sense, BD gravity is a modification of general relat
ity, in which the gravitational field is described by the met
tensor alone.

Currently there is a revival of interest in Brans-Dick
gravity and its generalizations, which are collectively know
as scalar-tensor theories@1#. The reasons for the current in
terest are several. First, the association of scalar fields to
metric seems to be unavoidable in superstring theories@2#.
Second, scalar-tensor theories are invariant under a restr
class of conformal transformations@3–7#; and this property
is reminiscent of the conformal invariance of string theor
in the string frame. Further motivation comes from the fa
that BD gravity can be derived from a Kaluza-Klein theo
@3# in which the scalar field is generated by the presence
compactified extra dimensions, an essential feature of
modern unified theories.

Finally, not the least reason for the renewed interest is
study of BD and scalar–tensor theories with respect to t
cosmological applications, the extended and hyperexten
inflationary scenarios@8,9#. Many authors@10,15# have con-
sidered the possibility that general relativity behaves as
attractor for scalar-tensor theories@17#. It is generally agreed
that the convergence of BD gravity to general relativity c
occur during the matter-dominated era, or even during
inflationary phase of the early universe. The convergenc
scalar-tensor theories has been studied in Refs.@18,19#: a
scalar-tensor theory converges to general relativity if@18,19#

v→`,
1

v3

dv

df
→0. ~1.1!

This paper is restricted to consideration of the BD theory
the sake of simplicity.
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It is a common belief that BD gravity reduces to gene
relativity when the BD parameterv→` ~see e.g. Ref.@20#!,
and the BD fieldf is believed to exhibit the asymptoti
behavior

f5f01OS 1

v D ~1.2!

~wheref0 is a constant! whenv→`. However, the standard
tenet about thev→` limit has been shown to be false;
number of exact BD solutions have been reported not to t
to the corresponding general relativity solutions whenv
→` @21–29#. In addition, the asymptotic behavior of the B
field is not Eq.~1.2! but rather

f5f01OS 1

Av
D ~1.3!

for these solutions. These occurrences are alarming since
standard belief that BD theory always reduces to gen
relativity in the largev limit is the basis for setting lower
limits on thev-parameter using Solar System experime
@1# ~the limit v.500 coming from time-delay experimen
@30# is often quoted!.

As an example, one can consider the static, spheric
symmetric, vacuum Brans solution@31,32# given by

ds252e2adt21e2b@dr21r 2~du21 sin2 u dw2!#,
~1.4!

e2a5S 12B/r

11B/r D
2/s

, ~1.5!

e2b5S 11
B

r D 4S 12B/r

11B/r D
2~s2C21!/s

, ~1.6!

f5f0S 12B/r

11B/r D
2C/s

, ~1.7!

where

s5F ~C11!22CS 12
vC

2 D G1/2

, ~1.8!
©1999 The American Physical Society21-1
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B5
M

2C2f0
S 2v14

2v13D 1/2

, C52
1

2v
,

~1.9!

and whereM is the mass. This solution reduces to t
Schwarzschild solution of Einstein’s theory forv→` @24#.
However, choices of the constantC different from the one in
Eq. ~1.9! are possible, and for arbitrary values of the para
eter C the solution ~1.4!–~1.9! does not reduce to th
Schwarzschild solution whenv→`. In addition, the scalar
field exhibits the asymptotic behavior~1.3! in these cases
@21,28,33#. It is to be remarked that the values of the para
eters (M ,C,v) in the Brans solution are not arbitrary; phys
cal requirements impose constraints between the allo
values of these parameters. This is the content, for exam
of Ref. @34#, in which it was shown that the positivity of th
tensor mass puts bounds onC and s @34#. A complete un-
derstanding of the relationships between the parametersM ,
C andv, and their respective ranges of admissible value
not yet available. To make the situation worse, the limit
the Brans solution, like that of any BD exact solution, d
pends on the coordinate system adopted~see Ref.@35# for a
discussion of the coordinate-dependence, and Refs.@26,27#
for a coordinate-independent approach to the problem!. A
detailed study of the Brans solution requires considerati
specific to this particular solution, which is not the ma
topic of the present paper, and will be the subject of a fut
work.

Other examples of exact BD solutions studied in the
erature which do not have the expected general relativ
limit for v→` include the static, spherically symmetri
electrovacuum solution of Ref.@36#; Nariai’s @37# solution
with the radiation equation of state; the cylindrically sym
metric, electrovacuum solution of Ref.@38#; the vacuum
O’Hanlon and Tupper@39# solution; the Bianchi I universe
with radiation equation of state@40#; the static cosmologica
solution of Ref.@22#; the Einstein–de Sitter solution of Re
@22#; and the solutions with cylindrical symmetry andTÞ0
of Ref. @29#. See Ref.@41# for the weak field limit of BD
solutions.

Recently, it was realized that the asymptotic behavior
BD solutions goes hand-in-hand with the vanishing of
trace T5Ta

a of the matter stress-energy tensorTab @33#.
This is a hint suggesting a new approach to the issue of
v→` limit of BD theory. The vanishing of the trace of th
stress-energy tensor is associated to conformal invaria
@42# and the closely related mathematical technique of c
formal transformation. The latter has been widely used
recent years in the context of scalar-tensor theories, n
linear gravitational theories, cosmology, non-minima
coupled scalar fields~see Refs.@43,44# for reviews!. Further,
conformal transformations leave the light cones unchang
the propagation of light and the causal structure of space
are unaffected. It is a natural step to use conformal trans
mations in problems involving sources of gravity wi
radiation-like properties.

A new approach is explored in this paper by using
well known but seldom used conformal invariance of B
08402
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theory whenTmn50. Initially, we notice that the symmetry
enjoyed by the purely gravitational sector of the BD acti
also occurs when matter withT50 is included into the ac-
tion. Then the entire BD action is invariant under a on
parameter Abelian group$Fa% of transformationsFa con-
sisting of a conformal rescaling of the metric and a suita
scalar field redefinition. A changev→ṽ of the BD param-
eter is equivalent to a symmetry operationFa that moves BD
theory within an equivalence classE. Thev→` limit is also
seen as a parameter change that moves BD theory within
same equivalence classE. General relativity is not invarian
under the action of a transformationFa , and therefore it
cannot be obtained by taking thev→` limit, an operation
that cannot bring a BD spacetime (M ,gmn

(v) ,f (v)) outside the
classE. Obtaining general relativity from BD gravity may b
an illusion.

On the other hand, when the trace of the stress-ene
tensor does not vanish, BD gravity is not invariant under
transformationsFa , and a change in thev-parameter or the
v→` limit do not move a BD spacetime (M ,gmn

(v) ,f (v))
within an equivalence class; general relativity can then
reobtained. The new approach based on conformal trans
mations allows one to derive the asymptotic behavior~1.3!
of the BD scalar field whenT50 with a rigorous computa-
tion.

Previous works on the problem of the Einstein limit
BD theory focussed on particular BD solutions. In th
present paper, instead, we present general results, wit
referring to special solutions.

This paper details the new approach to the problem of
Einstein’s limit of Brans-Dicke gravity; the preliminary re
sults and method which were outlined in a previous let
@45#. Section II develops the formalism related to the conf
mal invariance property of BD gravity. Then the symmet
property is applied to the problem of thev→` limit. The
asymptotic behavior of the BD field is studied in Sec. I
while Sec. V presents a discussion and the conclusions.

Throughout the paper, we use the metric signat
22111; the Riemann tensor is given in terms of th
Christoffel symbols by Rmnr

s5Gmr,n
s 2Gnr,m

s 1Gmr
a Gan

s

2Gnr
a Gam

s , the Ricci tensor is Rmr[Rmnr
n , and R

5gabRab . ¹m is the covariant derivative operator,h
[gmn¹m¹n , and we use units in which the speed of lig
and Newton’s constant assume the value unity.

II. BRANS-DICKE THEORY AND CONFORMAL
INVARIANCE

The starting point of our analysis is the BD action in t
so-called Jordan conformal frame

SBD5
1

16pE d4xA2gFfR1
v

f
gab¹af¹bfG1Smatter,

~2.1!

whereSmatter is the matter part of the action which is inde
pendent of the BD scalar fieldf. The BD field equations are
1-2
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Rmn2
1

2
gmnR5

8p

f
Tmn1

v

f2S ¹mf¹nf2
1

2
gmn¹af¹af D

1
1

f
~¹m¹nf2gmnhf!, ~2.2!

hf5
8pT

312v
. ~2.3!

Let us consider the purely gravitational sector of the theo
Under the conformal transformation

gmn→g̃mn5V2gmn , ~2.4!

whereV(xa) is a non-vanishing smooth function, the Ric
curvatureR and the Jacobian determinantA2g appearing in
the action~2.1! transform as@46–48#

R̃5V22FR1
6hV

V G , A2g̃5V4A2g. ~2.5!

The integrand in the purely gravitational part of the acti
~2.1! is

LBDA2g5A2g̃FV22fR̃2
6fhV

V5

1
v

V2f
g̃mn¹mf¹nfG . ~2.6!

The ansatz

V5fa ~2.7!

with aÞ1/2 for the conformal factorV, and the redefinition
of the scalar field

f→f̃5f122a, ~2.8!

yield

LBDA2g5A2g̃F f̃R̃1
ṽ

f̃
g̃mn¹mf̃¹nf̃G , ~2.9!

where

ṽ5
v26a~a21!

~122a!2
. ~2.10!

Thus, the gravitational part of the BD action is left u
changed in form by the transformationFa consisting of the
conformal rescaling~2.4!, ~2.7!, and the change of the scala
field variable~2.8! for aÞ1/2. The transformations

Fa :~M ,gmn
~v! ,f~v!!→~M ,g̃mn

~ṽ! ,f̃~ṽ!! ~2.11!

mapping a BD spacetime (M ,gmn
(v) ,f (v)) into another consti-

tute a one-parameter Abelian group of symmetries wit
singularity in the parameter dependence ata51/2. To prove
08402
.

a

this statement, one begins by noticing that the consecu
action of two mapsFa , Fb of the kind~2.4!, ~2.7!, ~2.8! is a
map of the same kind:

Fa+Fb5Fg , ~2.12!

where

g~a,b!5a1b22ab. ~2.13!

Furthermore,a,bÞ1/2 implies g(a,b)Þ1/2. For a,1/2,
the identity corresponds to the transformation witha50,

F05 identity. ~2.14!

The inverse (Fa)21 of the transformationFa is the mapFd ,
where

d52
a

122a
~2.15!

for a,1/2. Finally, sinceg(a,b)5g(b,a), the group$Fa%
is commutative.

The group$Fa% establishes an equivalence relation: tw

BD spacetimes (M ,gmn
(v) ,f (v)), (M ,g̃mn

(ṽ) ,f̃ (ṽ)) are equiva-
lent if they are related by a transformationFa . All the space-
times (M ,gmn ,f) related by such a map constitute a
equivalence classE. This property is crucial in the under
standing of the anomalous behavior of BD solutions wh
v→` andT50, which is discussed in the next section.

III. APPLICATION TO THE v˜` LIMIT
OF BRANS-DICKE THEORY

In the previous section we considered the purely grav
tional part of the BD Lagrangian~2.1!. When ordinary~i.e.,
other than the BD scalar! matter is added to the BD action
the conformal invariance is generally broken. However
transformationsFa are still symmetries of Brans-Dicke
theory when the stress-energy tensorTmn has a vanishing
trace. In fact, under the conditionsTmn5Tnm andT50, the
conservation equation

¹nTmn50 ~3.1!

containing the dynamical equations for the motion of matt
is conformally invariant@47#. We notice that, in the Jorda
frame, the stress-energy tensorTmn does not depend on th
scalar fieldf, and hence it is not affected by the change
the f-variable ~2.8!. Then the total BD action is invarian
under the action of the group of transformations$Fa% if T
50. This salient feature of invariance of the BD action in t
presence of matter has not apparently been previously
served. From the physical perspective, the lack of confor
invariance corresponds to the presence of a length or m
scale in the theory. This happens in general relativity. C
formal invariance corresponds to the absence of a prefe
length or mass scale in the theory, hence to scale invaria

With the understanding afforded by this new observati
whenT50, a change of the BD parameterv→ṽ is equiva-
1-3
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lent to a transformationFa for a suitable value of the param
eter a. A BD spacetime (M ,gmn ,f) is moved into the
equivalence classE discussed in the previous section. In pa
ticular, one can consider a parameter change in whichṽ

@1. This is made possible by the fact that the functionṽ(a)
given by Eq.~2.4! has a pole singularity ata51/2 and it can
assume arbitrarily large values there. Also thev→` limit
can be seen as a parameter changev→ṽ, whereṽ grows
without bound. The result is that this limit simply moves t
BD spacetime (M ,gmn

(v) ,f (v)) within the equivalence classE.
General relativity, however is not conformally invariant@16#.
This is the reason why GR cannot be obtained as thev
→` limit of BD theory whenT50. If matter withTÞ0 is
added to the BD gravitational Lagrangian, the conform
equivalence is broken.

This explanation of the anomalies in thev→` limit
emerges in a simple and clear way in the new appro
based on conformal transformations. This possibility rel
upon the structure of the functionṽ(a) given by Eq.~2.10!,
which deserves further comment.ṽ(a) has four branches
symmetric abouta51/2, which is a pole singularity, an
about v523/2. Since both thea,1/2 and thea.1/2
branches span the entire range (2`,1`) of the parameter
ṽ, we restrict our considerations to only one of the tw
branches. In this paper, we choose thea,1/2 branch for
ease of demonstration. Thenṽ5v at a50, which corre-
sponds to the identityF0, in the group of transformation
~2.4!, ~2.7! and ~2.8!.

The a→1/2 limit corresponds to thev→` limit of the
BD parameter. It is indeed convenient to use the new par
etera instead of the usualv ~or ṽ); and this is done in the
next section. It is well known@43,44# that whena51/2, the
conformal transformation

gmn→g̃mn5f gmn ~3.2!

in conjunction with the BD scalar field redefinition

f̃5E ~312v!1/2

f
df ~3.3!

recasts the theory in the so-called Einstein conformal fra
~or ‘‘Pauli frame’’!. In the Einstein frame, the gravitationa
part of the action becomes that of Einstein gravity plus
non-self-interacting scalar field as a material source,

S5E d4xA2g̃F R̃

16p
2

1

2
g̃mn¹mf̃¹nf̃G . ~3.4!

In the Einstein frame, one cannot contemplate solutions
the vacuum Einstein equationsRmn50, because the scala
field f̃ cannot be eliminated. In addition, the scalarf̃ exhib-
its an anomalous coupling to the energy-momentum ten
of ordinary matter ifTÞ0 ~@44,43# and references therein!.

The transformation~3.2!, ~3.3! is well known since the
original BD paper@31#; and has been generalized and appl
08402
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a number of times to scalar-tensor and non-linear gra
theories. In the Einstein frame, thev parameter disappear
and there is nov→` limit.

Finally, we note that thev523/2 BD theory corresponds
to thea→6` limit and is a fixed point of the transforma
tion Fa given by Eqs.~2.4!, ~2.5!. In fact, for a5` we
obtainṽ5v523/2 from Eq.~2.10!. Although the BD field
equations~2.2!, ~2.3! are not defined in the form presente
here for v523/2, the corresponding theory is sometim
studied.

The formalism of conformal transformations allows
general treatment of thev→` limit of BD theory without
resorting to special exact solutions. In the next section,
show that the new approach allows a straightforward co
putation of the asymptotic behavior of the BD field, which
the root of the problems in thev→` limit.

IV. ASYMPTOTIC BEHAVIOR OF THE BD SCALAR FOR
v˜`

It is generally difficult to obtain a series expansion of t
BD scalar fieldf in powers of 1/v for v→`. This is the
reason why the asymptotic behavior off has been derived
only as an order of magnitude estimate@20,33#, or exactly
only for special solutions. Contrary to the standard tenet t
f5constant1O(v21) as v→`, the scaling f5const
1O(v21/2) has been obtained when the traceT of the matter
stress-energy tensor vanishes@33#.

Instead of using the BD parameterv, we consider the
new parametera obtained by inverting Eq.~2.10!,

a5
1

2S 16
A3

A312ṽ
D ~4.1!

for ṽ.23/2, keeping in mind that the situation is symmetr
for ṽ,23/2. The limit ṽ→` corresponds toa→1/2, and
Eq. ~2.8! yields

f̃517S 3

2ṽ
D 1/2

ln f ~4.2!

asṽ→`. Since the ‘‘old’’ BD scalar fieldf corresponds to
the fixed valuev50 of the parameter, its value is not a
fected by the limitṽ→`; then the ‘‘new’’ BD field f̃ has
the asymptotic behavior~1.3!.

The second term in the right hand side of Eq.~2.2! does
not go to zero in the ṽ→` limit because ¹mf̃

57(3/2ṽ)1/2¹m ln f and

Ã[
ṽ

f̃2S ¹mf̃¹nf̃2
1

2
gmn¹af̃¹af̃ D

→
3

2S ¹mf¹nf2
1

2
gmn¹af¹af D , ~4.3!
1-4
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and Eq.~2.2! does not reduce to the Einstein equation w
the sameTmn asṽ→`. In this sense, the asymptotic beha
ior of the BD scalarf when v→` determines whether a
metric which solves the BD equations~2.2!, ~2.3! converges
to a solution of the Einstein equations.

The quantity

A[
v

f2S ¹mf¹nf2
1

2
gmn¹af¹af D ~4.4!

cannot be identically vanishing: in fact, assuming thatA
50, one has two possibilities.~i! ¹af¹af50; then ]mf
50 andf is identically constant, which does not correspo
to a BD solution.~ii ! ¹af¹afÞ0: in this case one define
the vector

um[
¹mf

u¹af¹afu1/2
~4.5!

which has unit normumum51. The vanishing ofA corre-
sponds togmn52umun . The trace of the latter equation give
umum52, which contradicts the normalization ofum.

When matter represented by a stress-energy tensorTmn

with non-vanishing trace is present, the invariance under
group$Fa% is broken, and the conformal transformation a
proach cannot be applied. Then, only the order of magnit
estimate~1.2! instead of Eq.~1.3! is available@20# @we still
lack a rigorous derivation of Eq.~1.2! whenTÞ0].

V. DISCUSSION AND CONCLUSIONS

When Brans-Dicke theory fails to reproduce general re
tivity it is disturbing as this contradicts the standard bel
exposed in the textbooks, and indeed it is the basis for p
ing lower limits on the BD parameterv using Solar System
experiments. Repeated observations have been made i
literature that many exact solutions of BD theory fail to gi
back the corresponding general relativistic solution in
v→` limit when the trace T of the matter energy-
momentum tensor vanishes@21–25, 27–29#. However, the
connection between the vanishing trace and the problem
of obtaining general relativity as thev→` limit of BD
theory was tentatively established only in Ref.@33#.

It is rather a natural step to look at the conformal symm
try property of BD theory when matter withT50 is added to
the BD gravitational action, and to apply conformal transf
mation techniques. This new approach is useful as it perm
an enhanced comprehension of the problems associated
the v→` limit of BD theory.

The v→` limit along with a parameter changev→ṽ
can be seen as a transformation which moves a BD sp
time (M ,gmn

(v) ,f (v)) within an equivalence class that do
not contain general-relativistic spacetimes. Moreover, a n
parameter is introduced which is more appropriate than
usualv parameter. The asymptotic behavior of the BD sca
field was previously obtained by using merely an order
magnitude estimate, and was verified only for particular
08402
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act solutions. Now, the behavior off asv→` can be com-
puted using the new approach.

The conditionTÞ0 is not a necessary and sufficient co
dition for BD exact solutions to reduce to the correspond
solutions of the Einstein equations, contrary to what w
stated in Ref.@33#. In fact, certain solutions corresponding
TÞ0 are known, which fail to reduce to the correspondi
general relativistic solutions whenv→` @29#. What has
been proved in this paper is thatsolutions with T50 generi-
cally fail to reduce to the corresponding solutions of gene
relativity when v→` ~apart from the trivial case of the
Minkowski metric corresponding tof5constant). An expla-
nation which is independent of particular exact solutions
been given for this behavior.

Of course, the results of this paper do not exclude t
solutions associated to a nonvanishing traceTÞ0 fail to
have the expected general-relativistic limit, for reasons d
ferent from the ones described in this paper, and example
such situations have been reported in the literat
@21,28,29#.

Regarding the application of BD and scalar tensor th
ries to cosmological scenarios, using the new approach
this paper it becomes easy to understand why the gen
relativity-as-an-attractor behavior of scalar-tensor theo
@10–15# has been discovered to occur during the matt
dominated era or during inflation, but not during the rad
tion era. In fact, during the latter epoch, the radiation eq
tion of stateP5r/3 makes the trace of the stress-ener
tensorT vanish, and even ifv→` it would be impossible to
recover general relativity as a limiting solution and as
attractor. Indeed it has been shown that general relativit
very peculiar in the space of scalar-tensor theories and th
scalar-tensor theory does not always contain an attra
mechanism towards general relativity@13,15#.

The approach presented here is not a panacea, how
and its limitations must be balanced with its proper appli
tion. It is useful only whenTm

m50 and it does not exhaus
the understanding of the BD theory. The situation can
quite complicated; to obtain some general insight of w
happens in the limit of a spacetime as one parameter va
consider, for example, the partial differential equation

L~a! f ~xa!50, ~5.1!

whereL(a) is a partial differential operator depending on t
parametera. Let L0 be the limit ofL(a) asa→0, and letf 0
be the limit

f 05 lim
a→0

f ~xa!. ~5.2!

If c is a solution of the equationL0f 50, then in general one
hascÞ f 0. Although thev→` limit of the BD field equa-
tions usually yields the Einstein equations whenTÞ0, it is
not trivial that a BD exact solution tends to the correspon
ing solution of the Einstein equations in the same limit. Th
property of the BD field equations has not yet been inve
gated in the literature.

The v→` limit of a BD solution is even more ambigu
ous when there is more than one parameter involved. Th
1-5



o
te

so
he

e-
v
r-

e-
y not
ld
r a
ed
t of

l-
ergy
on
he

s-

VALERIO FARAONI PHYSICAL REVIEW D 59 084021
the case of BD exact solutions which often depend on m
parameters than the corresponding solution of the Eins
equations@49#. If n parametersa1 ,a2 , . . . ,an are present in
a solutionf (a1 , . . . ,aj , . . . ,an ,x), the limits

lim
aj→0

lim
ai→0

f ~5.3!

and

lim
ai→0

lim
aj→0

f , ~5.4!

in general, do not coincide. Often the general relativistic
lution can be obtained only for particular combinations of t
parameters. Examples are given in Refs.@33,29,50,28#.

From a more general point of view, the limit of spac
times when a parameter varies may not be well defined e
within the context of general relativity. The limit of a pa
s

al
a

ar
ve

et

B

o

ul

08402
re
in

-

en

ticular solution of the Einstein equations, when it exists, d
pends on the coordinate system adopted and hence it ma
be unique@35#. For example, the limit of the Schwarzschi
solution as the mass diverges is the Minkowski space o
Kasner space@35#. A coordinate-independent approach bas
on the Cartan scalars has been pursued in the contex
general relativity@26# and applied to thev→` of BD theory
@27#. It emerges that the limit of BD solutions to genera
relativistic solutions corresponding to the same stress-en
tensor is not unique, or the limit may not yield a GR soluti
at all @27#. These issues are worth further investigation in t
future.
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