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lllusions of general relativity in Brans-Dicke gravity
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Contrary to common belief, the standard tenet of Brans-Dicke theory reducing to general relativity in the
w— limit is false when the trace of the matter energy-momentum tensor vanishes. The issue is clarified in a
new approach using conformal transformations. The otherwise unaccountable limiting behavior of Brans-Dicke
gravity is easily understood in terms of the conformal invariance of the theory when the sources of gravity have
radiation-like properties. The rigorous computation of the asymptotic behavior of the Brans-Dicke scalar field
is straightforward in this new approadt$0556-282199)05208-X

PACS numbd(s): 04.50:+h, 04.20.Jb

I. INTRODUCTION It is a common belief that BD gravity reduces to general
relativity when the BD parametes— « (see e.g. Ref.20])),
Brans-Dicke(BD) theory is the prototype of gravitational and the BD field¢ is believed to exhibit the asymptotic
theories alternative to Einstein’s general relatiViiy. The  behavior
essential feature of Brans-Dicke theory is the presence of a

scalar field to describe gravitation together with the metric. _ 1

In this sense, BD gravity is a modification of general relativ- ¢=¢o+ 0O 5) 1.2
ity, in which the gravitational field is described by the metric

tensor alone. (whereg, is a constantwhenw— . However, the standard

Currently there is a revival of interest in Brans-Dicke tenet about thev—o limit has been shown to be false; a
gravity and its generalizations, which are collectively knownnumber of exact BD solutions have been reported not to tend
as scalar-tensor theorig¢$]. The reasons for the current in- to the corresponding general relativity solutions when
terest are several. First, the association of scalar fields to the- [21-29. In addition, the asymptotic behavior of the BD
metric seems to be unavoidable in superstring thed@és field is not Eq.(1.2) but rather
Second, scalar-tensor theories are invariant under a restricted
class of conformal transformatiofi8—7]; and this property
is reminiscent of the conformal invariance of string theories ¢=¢o+0 Jo
in the string frame. Further motivation comes from the fact @

that BD gravity can be derived from a Kaluza-Klein theory ¢, these solutions. These occurrences are alarming since the

[3]in Wh.i]fh dthe scal(jay field is generated by tref presenc;—:- o&tandard belief that BD theory always reduces to general
compactiied extra dimensions, an essential feature of allg|5iivity in the largew limit is the basis for setting lower

mod'ern unified theories. . .. limits on the w-parameter using Solar System experiments
Finally, not the least reason for the renewed interest is the%

1.3

i . 1] (the limit ©>500 coming from time-delay experiments
study of BD and scalar—tensor theories with respect to thei ] ( mit s I y expen

logical applications, the extended and h tendeg 0] | Often guotegi
cosmological appiications, theé exteénded and nyperexten As an example, one can consider the static, spherically

ir}flationary scena}rip@,g]. Many authors{;O_,lFi have con- symmetric, vacuum Brans soluti¢81,32 given by
sidered the possibility that general relativity behaves as an
attractor for scalar-tensor theorigh/]. It is generally agreed ds?= — 22 dt2+ [ dri+r(d6?+ sirt 0 de?)],

that the convergence of BD gravity to general relativity can (1.4
occur during the matter-dominated era, or even during the

inflationary phase of the early universe. The convergence of 1—B/r\%°
scalar-tensor theories has been studied in Ré8,19: a = ———| , (1.5
o 1+B/r
scalar-tensor theory converges to general relativifiL 8,19
B 4 1—-B/r 2(c—C—-1)lo
B— i I (——
1 do | ¢ 1+ r) (1+B/r ' (1.6
w—wo, — ——0. (1.7
L 3 d
w? 49 _[1-BIr| .
¢= ol 117y ’ 1.7
This paper is restricted to consideration of the BD theory for
the sake of simplicity. where
wC 1/2
=|(C+1)°-C|1——|]| , 1.8
*Email address: vfaraoni@ulb.ac.be o= ) ( 2 ” 18
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M [2w+4) 12 1 theory whenT ,,=0. Initially, we notice that the symmetry
=2 \2473 C=- 20" enjoyed by the purely gravitational sector of the BD action
2C% ¢\ 2@ @ also occurs when matter withi=0 is included into the ac-

(1.9 tion. Then the entire BD action is invariant under a one-
parameter Abelian grouf,} of transformations?, con-

and whereM is the mass. This solution reduces to thesisting of a conformal rescaling of the metric and a suitable
Schwarzschild solution of Einstein’s theory far— [24]. scalar field redefinition. A change— w of the BD param-
However, choices of the constatdifferent from the one in  eter is equivalent to a symmetry operatifp that moves BD
Eq. (1.9 are possible, and for arbitrary values of the param-theory within an equivalence clags The w— o limit is also
eter C the solution (1.4—(1.9) does not reduce to the seen as a parameter change that moves BD theory within the
Schwarzschild solution whea— . In addition, the scalar same equivalence clags General relativity is not invariant
field exhibits the asymptotic behavig¢l.3) in these cases under the action of a transformatigf,, and therefore it
[21,28,33. It is to be remarked that the values of the param-cannot be obtained by taking the— o limit, an operation
eters M,C, w) in the Brans solution are not arbitrary; physi- that cannot bring a BD spacetimM(gfL"’V) , () outside the
cal requirements impose constraints between the alloweglasse. Obtaining general relativity from BD gravity may be
values of these parameters. This is the content, for examplggn illusion.
of Ref.[34], in which it was shown that the positivity of the  On the other hand, when the trace of the stress-energy
tensor mass puts bounds @hand o [34]. A complete un-  tensor does not vanish, BD gravity is not invariant under the
derstanding of the relationships between the paraméders transformationsZ, , and a change in the-parameter or the
C andw, and their respective ranges of admissible values ig, . |imit do not move a BD spacetimeM,g{®) , $(*))
not yet available. To make the situation worse, the limit of\yithin an equivalence class: general reIativityMcan then be

the Brans solution, like that of any BD exact solution, de-rggptained. The new approach based on conformal transfor-
pends on the coordinate system adopiteet Ref[35] for a  ma60ns allows one to derive the asymptotic behavioB)

discussion of the coordinate-dependence, and RB&27  of the BD scalar field wheff=0 with a rigorous computa-
for a coordinate-independent approach to the propleé 54

detailed study of the Brans solution requires considerations pyevious works on the problem of the Einstein limit of
specific to this particular solution, which is not the main gp theory focussed on particular BD solutions. In the
topic of the present paper, and will be the subject of antur‘?)resent paper, instead, we present general results, without
work. _ o _ referring to special solutions.

Other examples of exact BD solutions studied in th_e _I|t-_ This paper details the new approach to the problem of the
erature which do not have the expected general relativistigjngtein’s limit of Brans-Dicke gravity; the preliminary re-
limit for w—oe include the static, spherically symmetric, gjts and method which were outlined in a previous letter
electrovacuum solution of Ref36]; Nariai's [37] solution [45]. Section Il develops the formalism related to the confor-
with the radiation equation of state; the cylindrically sym- .41 invariance property of BD gravity. Then the symmetry
metric, electrovacuum solution of Ref38]; the vacuum property is applied to the problem of the—c limit. The
O’Hanlon and Tuppef39] solution; the Bianchi | universe ,qymptotic behavior of the BD field is studied in Sec. IV,
with radiation equation of staf@0]; the static cosmological \\hile Sec. V presents a discussion and the conclusions.
solution of Ref.[22]; the Einstein—de Sitter solution of Ref. Throughout the paper, we use the metric signature
[Zle]:\i "’]}n?zg]‘e Ssolu:i?or}s[‘lvﬂt? cyILndricaI EB;mI’;“T_UY an;déB% ——+++; the Riemann tensor is given in terms of the
of Ref. . See Ref| or the weak field limit o ; o_T10 o a o
colutions. Christoffel symbo!s .by Ruvp .—FﬂpYV—FVpYMﬂLFMPFM

. : . . ~r<1rs , the Ricci tensor isR,=R,,", and R

Recently, it was realized that the asymptotic behavior of:gggR““ V is the covariant d gﬁivati\/;ep operatok]

BD solutions goes hand-in-hand with the vanishing of the_ MVVQIBV' z;nd we use units in which the speed of liaht
trace T=T, of the matter stress-energy tensbgs [33]. an% Ne‘\jvt(;r,l’s constant assume the value unitS 9
This is a hint suggesting a new approach to the issue of the ’

w—o0 limit of BD theory. The vanishing of the trace of the

stress-energy tensor is associated to conformal invariance | BRANS-DICKE THEORY AND CONFORMAL

[42] and the closely related mathematical technique of con- INVARIANCE

formal transformation. The latter has been widely used in

recent years in the context of scalar-tensor theories, non- The starting point of our analysis is the BD action in the
linear gravitational theories, cosmology, non-minimally SO-called Jordan conformal frame

coupled scalar fieldésee Refs[43,44] for reviews. Further,

conformal transformations leave the light cones unchanged; 1 ®

the propagation of light and the causal structure of spacetime SBD:FJ d“x\/—_g{ PR+ —g“BVa¢Vﬁ¢ + Shatters

are unaffected. It is a natural step to use conformal transfor- & ¢ 21
mations in problems involving sources of gravity with 20
radiation-like properties.

A new approach is explored in this paper by using thewhereS, .t IS the matter part of the action which is inde-
well known but seldom used conformal invariance of BD pendent of the BD scalar field. The BD field equations are
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this statement, one begins by noticing that the consecutive

action of two mapsF,,, F of the kind(2.4), (2.7), (2.8 is a

map of the same kind:
FooFg=F,, (2.12

where

v(a,B)=a+B—2apB. (2.13

Let us consider the purely gravitational sector of the theoryFurthermore,a, 8+ 1/2 implies y(«,8) #1/2. For a<1/2,

Under the conformal transformation

90— 9= 0%, (2.4

where)(x%) is a non-vanishing smooth function, the Ricci

curvatureR and the Jacobian determinagt g appearing in
the action(2.1) transform ag46—-4§

‘2R+@}, V-9=0%=9. (25

R= Q

Q

the identity corresponds to the transformation with O,

(2.19

The inverse §,) ! of the transformatiotF,, is the mapF;,
where

Fo=identity.

(2.15

for <<1/2. Finally, sincey(a,8) = y(B,«a), the group{F,}

The integrand in the purely gravitational part of the actioniS commutative.

2.1 is
6600
LooV=9=1-5 0 2¢R- (/;5
w ~
+Qz¢ 9“'V ¢V, |. (2.6)
The ansatz
O =" 2.7

with a# 1/2 for the conformal factof), and the redefinition
of the scalar field

d— b=t 2, (2.9
yield
Lopy—g=\—g| 3R+ %@WV@&VP& . (29
where
~_w—6a(a—l) (2.10
T T (1-2a)? '

Thus, the gravitational part of the BD action is left un-
changed in form by the transformatiof, consisting of the
conformal rescaling2.4), (2.7), and the change of the scalar
field variable(2.8) for a# 1/2. The transformations

) —(M,g@ @) (2.1

, () into another consti-

Fo:(M, g

uv

mapping a BD spacetimé(, g(

The group{F,} establishes an equivalence relation: two
BD spacetimesM1,g'), ¢(“)), (M,gl),$(*) are equiva-
lent if they are related by a transformatigf) . All the space-
times M,g,,.¢) related by such a map constitute an
equivalence clasg. This property is crucial in the under-
standing of the anomalous behavior of BD solutions when
w— andT=0, which is discussed in the next section.

[ll. APPLICATION TO THE @— LIMIT
OF BRANS-DICKE THEORY

In the previous section we considered the purely gravita-
tional part of the BD Lagrangiaf2.1). When ordinary(i.e.,
other than the BD scalamatter is added to the BD action,
the conformal invariance is generally broken. However the
transformations ¥, are still symmetries of Brans-Dicke
theory when the stress-energy tenggy, has a vanishing
trace. In fact, under the conditiors,,=T,, andT=0, the
conservation equation

v'T,,=0 (3.1
containing the dynamical equations for the motion of matter,
is conformally invarian{47]. We notice that, in the Jordan
frame, the stress-energy tensiy, does not depend on the
scalar field¢, and hence it is not affected by the change of
the ¢-variable (2.8). Then the total BD action is invariant
under the action of the group of transformatidiig,} if T

=0. This salient feature of invariance of the BD action in the
presence of matter has not apparently been previously ob-
served. From the physical perspective, the lack of conformal
invariance corresponds to the presence of a length or mass
scale in the theory. This happens in general relativity. Con-
formal invariance corresponds to the absence of a preferred
length or mass scale in the theory, hence to scale invariance.

tute a one-parameter Abe||an group of Symmetnes with a With the understandlng afforded by this new observation,

singularity in the parameter dependencerat1/2. To prove

whenT=0, a change of the BD parameter—m is equiva-
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lent to a transformatiotF,, for a suitable value of the param- @ number of times to scalar-tensor and non-linear gravity
eter «. A BD spacetime K1,9,,,¢) is moved into the theories. In the Einstein frame, the parameter disappears
equivalence class discussed in the previous section. In par-and there is na—o limit.

ticular, one can consider a parameter change in which  Finally, we note that the»= —3/2 BD theory corresponds

>1. This is made possible by the fact that the funciiga) tp the a— o limit and is a fixed point of the tra_nsforma-
. . . o . tion F, given by Egs.(2.4), (2.5. In fact, for a=» we
given by Eq.(2.4) has a pole singularity at=1/2 and it can Ta .
assume arbitrarily large values there. Also theso limit ~ OPtainw=w=—3/2 from Eq.(2.10. Although the BD field
~ ~ equations(2.2), (2.3) are not defined in the form presented
can be seen as a parameter change w, wherew grows

without bound. The result is that this limit simply moves the Zggiefgrw: —3/2, the corresponding theory is sometimes
i (@) p(@)Y withi i ) . .

BD spacetime,g,,;, ¢'*’) within the equivalence clags The formalism of conformal transformations allows a

General relativity, however is not conformally invaridas].

o X general treatment of the—oo limit of BD theory without
This is the reason why GR cannot be obtained asdhe reqorting to special exact solutions. In the next section, we
—oo |imit of BD theory whenT=0. If matter withT+#0 is

S ) show that the new approach allows a straightforward com-
added to the BD gravitational Lagrangian, the conformalytation of the asymptotic behavior of the BD field, which is

equivalence is broken. o _ . the root of the problems in the— o limit.
This explanation of the anomalies in the—o limit

emerges in a simple and clear way in the new approach
based on conformal transformations. This possibility relieslV. ASYMPTOTIC BEHAVIOR OF THE BD SCALAR FOR

upon the structure of the functian(«) given by Eq.(2.10), W=

which deserves further comment(«) has four branches, It is generally difficult to obtain a series expansion of the
symmetric aboute=1/2, which is a pole singularity, and BD scalar field¢ in powers of 1 for w—cc. This is the
about w=—3/2. Since both then<<1/2 and thea>1/2  reason why the asymptotic behavior ¢fhas been derived
branches span the entire rangeo, + ») of the parameter only as an order of magnitude estim®0,33, or exactly

, We restrict our considerations to only one of the twoonly for special solutions. Contrary to the standard tenet that

branches. In this paper, we choose te 1/2 branch for ¢=constant O(w™ ') as w—, the scaling ¢=const
ease of demonstration. Theb=w at =0 which corre- +O(@ ') has been obtained when the tracef the matter

sponds to the identity%,, in the group of transformations StrESS-energy tensor vanishes. _
(2.4), (2.7) and (2.9). Instead of using the BD parameter, we consider the

The a— 1/2 limit corresponds to the—c limit of the ~ NeW parameter obtained by inverting Eq(2.10,

BD parameter. It is indeed convenient to use the new param-

etera instead of the usuab (or ); and this is done in the B 1 N \/5
next section. It is well knowh43,44 that whena=1/2, the *=5 1= \/—~ 4.1
conformal transformation 3+2w
9,0—0,,= b0, (3.2  for w>—23/2, keeping in mind that the situation is symmetric
for @< —3/2. The limit@—o corresponds tax— 1/2, and
in conjunction with the BD scalar field redefinition Eq. (2.9) yields
~ 3+2w)1?
¢=f Cr2o7 4y (33 (3"
¢ o=1%F = In ¢ 4.2
w

B

~_~ 1 ~_ ~
2( V,U.¢VV¢_ Egﬂvva¢va¢)

!

recasts the theory in the so-called Einstein conformal frame

(or “Pauli frame”). In the Einstein frame, the gravitational 557 . Since the “old” BD scalar field corresponds to

part of the action becomes that of Einstein gravity plus ane fixed valuew=0 of the parameter, its value is not af-

non-self-interacting scalar field as a material source, fected by the limitw—: then the “new” BD field $ has
B 1 the asymptotic behavigid.3).

S:J dx /_5 A —B”VV,;WV& _ (3.4) The second term.m the rlght han.d §|de of Eg.2 doSs
16m 2 not go to zero in thew—o limit because V,
= (3/20)Y% 1 d

In the Einstein frame, one cannot contemplate solutions of *(3/20) 7V, In ¢ an

the vacuum Einstein equatiori®,,=0, because the scalar

field ¢ cannot be eliminated. In addition, the scafaexhib- o

its an anomalous coupling to the energy-momentum tensor

of ordinary matter ifT#0 ([44,43 and references thergin 3 1

The transformation3.2), (3.3) is well known since the S = «
original BD papef31]; and has been generalized and applied 2 VubVod 2 9uV OV ad |, “.3
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and Eq.(2.2) does not reduce to the Einstein equation withact solutions. Now, the behavior gf asw— can be com-
the sameT ,, asw— . In this sense, the asymptotic behav- puted using the new approach. N
ior of the BD scalar¢ when w—« determines whether a The conditionT#0 is not a necessary and sufficient con-
metric which solves the BD equatiok.2), (2.3) converges dition for BD exact solutions to reduce to the corresponding
to a solution of the Einstein equations. solutions of the Einstein equations, contrary to what was
The quantity stated in Ref[33]. In fact, certain solutions corresponding to
T+#0 are known, which fail to reduce to the corresponding
o 1 general relativistic solutions whew—o [29]. What has
A= ViV b~ 59, V0V (4.4 been proved in this paper is thelutions with T=0 generi-
¢ cally fail to reduce to the corresponding solutions of general
relativity when w—o (apart from the trivial case of the
Minkowski metric corresponding t¢ = constant). An expla-
nation which is independent of particular exact solutions has
been given for this behavior.
Of course, the results of this paper do not exclude that

cannot be identically vanishing: in fact, assuming that
=0, one has two possibilitiesi) V,46V*¢»=0; thend, ¢
=0 and¢ is identically constant, which does not correspond
to a BD solution.(ii) V,$V“¢+#0: in this case one defines

the vector solutions associated to a nonvanishing trdce0 fail to
have the expected general-relativistic limit, for reasons dif-
VEp . T
[ S (4.5 ferent from the ones described in this paper, and examples of
|V, 6V p|Y2 such situations have been reported in the literature
[21,28,29.
which has unit normu,u#“=1. The vanishing ofA corre- Regarding the application of BD and scalar tensor theo-
sponds ta,,,=2u,u, . The trace of the latter equation gives ries to cosmological scenarios, using the new approach of
u,u#=2, which contradicts the normalization of‘. this paper it becomes easy to understand why the general

When matter represented by a stress-energy tefigpr relativity-as-an-attractor behavior of scalar-tensor theories
with non-vanishing trace is present, the invariance under thE10—-15 has been discovered to occur during the matter-
group{F,} is broken, and the conformal transformation ap-dominated era or during inflation, but not during the radia-
proach cannot be applied. Then, only the order of magnitudéion era. In fact, during the latter epoch, the radiation equa-
estimate(1.2) instead of Eq(1.3) is available[20] [we still  tion of stateP=p/3 makes the trace of the stress-energy
lack a rigorous derivation of Eq1.2) whenT#0]. tensorT vanish, and even ib— o it would be impossible to

recover general relativity as a limiting solution and as an

attractor. Indeed it has been shown that general relativity is
V. DISCUSSION AND CONCLUSIONS very peculiar in the space of scalar-tensor theories and that a

scalar-tensor theory does not always contain an attractor

When Brans-Dicke theory fails to reproduce general relamechanism towards general relativjty3,15.
tivity it is disturbing as this contradicts the standard belief The approach presented here is not a panacea, however
exposed in the textbooks, and indeed it is the basis for plaggnd its limitations must be balanced with its proper applica-
ing lower limits on the BD parametes using Solar System tjon. It is useful only whenl*,=0 and it does not exhaust
experiments. Repeated observations have been made in thfs understanding of the BD theory. The situation can be
literature that many exact solutions of BD theory fail to give quite complicated; to obtain some general insight of what
back the corresponding general relativistic solution in thenappens in the limit of a spacetime as one parameter varies

w—o limit when the traceT of the matter energy- consider, for example, the partial differential equation
momentum tensor vanish¢g1-25, 27-29 However, the

connection between the vanishing trace and the problematic L(a)f(x*)=0, (5.0
of obtaining general relativity as the—o limit of BD . S ) )
theory was tentatively established only in RE3]. whereL (a) is a partial differential operator depending on the

It is rather a natural step to look at the conformal symme-Parameten. LetL, be the limit ofL(a) asa—0, and letf,
try property of BD theory when matter wiffi=0 is added to  be the limit
the BD gravitational action, and to apply conformal transfor-
mation techniques. This new approach is useful as it permits
an enhanced comprehension of the problems associated with

the w— limit of BD theory. _If s a solution of the equatiobyf =0, then in general one
The w— limit along with a parameter change—w  hasy+ f,. Although thew— o limit of the BD field equa-
can be seen as a transformation which moves a BD spaceéions usually yields the Einstein equations whe# 0, it is
time (M,gﬁfj) ,(®) within an equivalence class that does not trivial that a BD exact solution tends to the correspond-
not contain general-relativistic spacetimes. Moreover, a newng solution of the Einstein equations in the same limit. This
parameter is introduced which is more appropriate than thproperty of the BD field equations has not yet been investi-
usualw parameter. The asymptotic behavior of the BD scalaigated in the literature.
field was previously obtained by using merely an order of The w— o limit of a BD solution is even more ambigu-

magnitude estimate, and was verified only for particular ex-ous when there is more than one parameter involved. This is

fo=lim f(x2). (5.2

a—0
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the case of BD exact solutions which often depend on moréicular solution of the Einstein equations, when it exists, de-
parameters than the corresponding solution of the Einsteipends on the coordinate system adopted and hence it may not

equationg49]. If n parameters, ,a,, ... ,a, are present in be unique35]. For example, the limit of the Schwarzschild
a solutionf(a,, ... a;,...,a,,X), the limits solution as the mass diverges is the Minkowski space or a
. ) Kasner spacg35]. A coordinate-independent approach based
“mo ||mof (5.3 on the Cartan scalars has been pursued in the context of
a;—0 aj—

general relativityf 26] and applied to the—c of BD theory
[27]. It emerges that the limit of BD solutions to general-

and L ; ;
relativistic solutions corresponding to the same stress-energy
lim lim f, (5.4  tensor is not unique, or the limit may not yield a GR solution
a;—0 a;—0 at all[27]. These issues are worth further investigation in the

future.
in general, do not coincide. Often the general relativistic so-

lution can be obtained only for particular combinations of the
parameters. Examples are given in R¢83,29,50,28

From a more general point of view, the limit of space-
times when a parameter varies may not be well defined even The author is grateful to S.P. Bergliaffa and to M. Sus-
within the context of general relativity. The limit of a par- perregi for pointing out Ref429] and[15].
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